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a b s t r a c t

Sparse representation has attracted great attention in the past few years. Sparse representation based

classification (SRC) algorithm was developed and successfully used for classification. In this paper, a

kernel sparse representation based classification (KSRC) algorithm is proposed. Samples are mapped

into a high dimensional feature space first and then SRC is performed in this new feature space by

perform KSRC directly. In order to overcome this difficulty, we give the method to solve the problem of

sparse representation in the high dimensional feature space. If an appropriate kernel is selected, in the

high dimensional feature space, a test sample is probably represented as the linear combination of

training samples of the same class more accurately. Therefore, KSRC has more powerful classification

ability than SRC. Experiments of face recognition, palmprint recognition and finger-knuckle-print

recognition demonstrate the effectiveness of KSRC.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In pattern recognition, classification is an indispensable step
and classifier design is one of the most popular technologies.
Several classification approaches have been proposed over the
past several decades [1,2]. Among them, the nearest-neighbor
(NN) classifier and the nearest-mean (NM) classifier are most
widely used because of their simpleness and availability. The NN
classifier assigns a test sample to the category of its nearest
neighbor from the labeled training set. Instead of searching the
nearest training sample, the NM classifier assigns a test sample to
the category of its nearest class mean.

Over the last more than 10 years, the kernel based algorithms
[3] such as kernel principal component analysis (KPCA) [4] and
kernel fisher discriminant analysis (KFD) [5,6] have aroused
considerable interest in pattern recognition and machine learn-
ing. These kernel based algorithms improve the computational
power of the linear algorithms. They map the data into a high
dimensional feature space by a nonlinear mapping and perform
linear algorithms in the high dimensional feature space using the
inner products. In the high dimensional feature space, the inner
products can be computed by a kernel function. For classification,
utilizing kernel approach, Yu et al. present the kernel nearest
neighbor (KERNEL-NN) classifier [7]. KERNEL-NN applies the
nearest neighbor classification method in the high dimensional
ll rights reserved.
feature space. Kernel approach could change the distribution of
samples by the nonlinear mapping. Some linearly inseparable
samples in the original feature space can become linearly separ-
able in the high dimensional feature space. If an appropriate
kernel is chosen to reshape the distribution of samples, the
KERNEL-NN classifier could perform better than the NN classifier.

Recently, sparse representation becomes a hot topic of pattern
recognition and computer vision. It is applied to image super-
resolution [8], motion segmentation [9] and supervised denoising
[10]. Wright et al. apply sparse representation to classification
and exploit the sparse representation based classification (SRC)
algorithm [11]. For SRC, a test sample is represented as a sparse
combination of training samples, and its sparse representation
coefficient is obtained by solving the problem of sparse repre-
sentation. The test sample is assigned to the class that minimizes
the residual between itself and the reconstruction constructed by
training samples of this class. SRC shows its effectiveness in face
recognition experiments.

As well known, after mapping samples into a high dimensional
feature space by a nonlinear mapping, kernel approach can change
the distribution of samples. If an appropriate kernel function is
utilized, for a test sample, more neighbors probably have the same
class label as itself in the high dimensional feature space. Here,
in the high dimensional feature space, the test sample can be
represented more accurately as the combination of training sam-
ples from the same class. Then the nonzero entries of sparse
representation coefficient vector of the test sample will be more
associated with training samples from the same class as itself.
Namely, sparse representation coefficient in the high dimensional
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feature space can denote the category of the test sample more
accurately and it has more powerful discriminating ability. To use
sparse representation coefficient in the high dimensional feature
space, we propose the kernel sparse representation based classifi-
cation (KSRC) algorithm in this paper. For KSRC, samples are
mapped into a high dimensional feature space first and then SRC
is performed in this new feature space. We prove that SRC in the
high dimensional feature space can be formulated in terms of the
inner products, while the inner products could be computed by
kernel function. Comprehensive comparisons between KSRC and
NM, NN, KERNEL-NN and SRC reveal the superior characteristics
of KSRC.

The rest of the paper is organized as follows: Section 2
describes SRC algorithm and proposes KSRC algorithm. Section 3
describes experiments on several popular databases. Finally, the
conclusions are summarized in Section 4.
2. The proposed algorithm

2.1. Sparse representation based classification (SRC) [11]

Suppose that we have n training samples for c classes and
sufficient training samples belong to the kth class, Ak ¼ ½xk,1,
xk,2,. . .,xk,nk

�ARm�nk , where m is the dimension of samples and
nk is the number of training samples of the kth class. Any test
sample yARm from the kth class can be approximately repre-
sented as the linear combination of training samples of this class:

y¼ ak,1xk,1þak,2xk,2þ � � � þak,nk
xk,nk

ð1Þ

Since the label of y is unknown initially, we represent y as the
linear combination of all the training samples:

y¼ Aa0 ð2Þ

where A¼ ½A1,A2,. . .,Ac� ¼ ½x1,1,x1,2,. . .,xc,nc �ARm�n is a matrix com-
posed of all the n training samples of c classes and a0 ¼

½0,. . .,0,ak,1,ak,2,. . .,ak,nk
,0,. . .,0�T ARn is the coefficient vector

whose nonzero entries are only associated with the kth class.
When c is large, a0 will be sparse.

If mon, Eq. (2) is underdetermined. The problem of sparse
representation is to search a vector a such that Eq. (2) is satisfied
and :a:0 is minimized, where :a:0 is the l0-norm of a. This can be
described as

â0 ¼ arg min
a

:a:0 subject to y¼ Aa ð3Þ

However, finding the sparse solution of Eq.(3) is NP-hard [12]:
namely, there is no known procedure for obtaining the sparsest
solution, which is significantly more efficient than exhausting all
subsets of the entries for a. The theory of sparse representation
and compressive sensing [13–15] reveals that we can solve the
following convex relaxed optimization to obtain approximate
solution:

â1 ¼ arg min
a

:a:1 subject to y¼ Aa ð4Þ

where :a:1 is the l1-norm of a. This problem can be solved by
standard linear programming methods [16]. Furthermore, the obser-
vations are often inaccurate, then we should relax the constraint in
Eq. (4) and get the following optimization problem:

â1 ¼ arg min
a

:a:1 subjectto :Aa�y:2re ð5Þ

where e is the tolerance of the reconstruction error. This convex
optimization problem can be solved via second-order cone program-
ming [16].

The optimization problem (5) is mainly used to deal with small
noise. In practice, the observations possibly contain big noise. For
example, the images are corrupted or occluded. Here, the errors
cannot be ignored or solved by the optimization problem (5). The
constraint should be modified as

y¼ Aaþe¼ ½A I�
a
e

� �
ð6Þ

where eARm is a vector of errors, IARm�m is the identity matrix.
Now, we get the following optimization problem:

ĝ1 ¼ arg min
g

:g:1 subject to y¼ Pg ð7Þ

where

P¼ ½A I�ARm�ðnþmÞ,g¼
a
e

� �
ARnþm and ĝ1 ¼

â1

ê1

" #
ARnþm

Let â1 denote the solution of sparse representation problem (7)
obtained by l1-minimization. Ideally, the nonzero entries in â1

will be associated with the columns of A from a single object class,
and we can easily assign the test sample y to that class. However,
noise and modeling error may cause small nonzero entries
associated with multiple classes. Simple heuristics such as assign-
ing y to the class with the largest entry are not dependable.
Instead, we define a new vector âk

1ðk¼ 1,2,. . .,cÞ whose only
nonzero entries are the entries in â1 that are associated with
class k. The reconstruction with the training samples of the kth
class is ŷk ¼ Aâk

1ðk¼ 1,2,. . .,cÞ. Then y can be assigned to the class
that minimizes the residual between y and ŷk:

min
k

rkðyÞ ¼ :y�Aâk
1:2 ð8Þ

The SRC algorithm is summarized as follows:

Algorithm 1. Sparse representation based classification (SRC)
1.
 Input: the matrix of training samples AARm�n, a test sample
yARm.
2.
 Normalize the columns of A to have unit l2-norm.

3.
 Solve the l1-minimization problem defined in Eq. (4) or (5)

or (7).

4.
 Compute the residuals rkðyÞ ðk¼ 1,2,. . .,cÞ defined in Eq. (8).
5. Output : identityðyÞ ¼ arg min
k

ðrkðyÞÞ

2.2. Kernel sparse representation based classification (KSRC)

As we know, kernel approach can change the distribution of
samples by mapping samples into a high dimensional feature
space [7]. This change possibly has two effects if an appropriate
kernel function is selected. On the one hand, some linear insepar-
able samples in the original feature space become linear separable
in the high dimensional feature space. This leads to superiority of
the KERNEL-NN classifier over the NN classifier. On the other hand,
a test sample can be represented as the linear combination of
training samples from the same class as itself more accurately in
the high dimensional feature space than original. Then the nonzero
entries of sparse representation coefficient vector of the test sample
are more associated with training samples of the same class. This
results in better classification ability of SRC. So we perform SRC in
the high dimensional feature space and propose kernel sparse
representation based classification (KSRC). Because the explicit
mapping from the original feature space to the high dimensional
feature space is unknown, KSRC cannot be performed directly.
However, we successfully solve this problem by Theorem 1.

Suppose that samples are mapped from original feature space
Rm into a high dimensional feature space H by a nonlinear
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mapping f:

Rm-H, x-fðxÞ ð9Þ

Let B¼ ½fðx1,1Þ,fðx1,2Þ,. . .,fðxc,nc Þ� represent the matrix com-
posed of all the training samples after the nonlinear mapping f.
The problem of sparse representation in H can be described as [11]

b̂0 ¼ arg min
b

:b:0 subject to fðyÞ ¼ Bb ð10Þ

where f(y) is any test sample in the high dimensional feature
space, which corresponds to y in the original feature space.
Similarly, the approximate solution of Eq. (10) can be obtained
through the following convex relaxed optimization [13–15]:

b̂1 ¼ arg min
b

:b:1 subject to fðyÞ ¼ Bb ð11Þ

When the observations are not accurate, the constraint in Eq. (11)
should be relaxed and the following optimization problem is
obtained:

b̂1 ¼ arg min
b

:b:1 subject to :Bb�fðyÞ:2re ð12Þ

If we set e¼0, Eq. (12) is equivalent to Eq. (11). So Eq. (11) can
be seen as a special case of Eq. (12) and we can only consider the
optimization problem (12).

Since B and f(y) are unknown, Eq. (12) cannot be solved directly.
But according to Theorem 1, Eq. (12) can be transformed to

b̂1 ¼ arg min
b

:b:1 subject to :BT Bb�BTfðyÞ:2rd ð13Þ

Theorem 1. For any eZ0, there must exist dZ0 such that we have

:Bb�fðyÞ:2re, as long as :BT Bb�BTfðyÞ:2rd is satisfied.

The inner product of samples in the high dimensional feature
space can be computed by kernel function. Namely, for any
samples x and y, we have fðxÞTfðyÞ ¼ kðx,yÞ, where kðx,yÞ is a
kernel function. Then

BT B¼ ½fðx1,1Þ,fðx1,2Þ,. . .,fðxc,nc Þ�
T ½fðx1,1Þ,fðx1,2Þ,. . .,fðxc,nc Þ�

¼

kðx1,1,x1,1Þ kðx1,1,x1,2Þ � � � kðx1,1,xc,nc Þ

kðx1,2,x1,1Þ kðx1,2,x1,2Þ � � � kðx1,2,xc,nc Þ

^ ^ & ^

kðxc,nc ,x1,1Þ kðxc,nc ,x1,2Þ � � � kðxc,nc ,xc,nc Þ

2
66664

3
77775 ð14Þ

and

BTfðyÞ ¼ ½fðx1,1Þ,fðx1,2Þ,. . .,fðxc,nc Þ�
TfðyÞ ¼

kðx1,1,yÞ

kðx1,2,yÞ

^

kðxc,nc ,yÞ

2
66664

3
77775 ð15Þ

When the kernel function kðx,yÞ is given, BT B and BTfðyÞ are
obtained. Now we could solve the convex optimization problem
(13) via second-order cone programming [16]. If the observations
contain big noise, as SRC, the constraint in Eq. (13) should be
modified as

BTfðyÞ ¼ BT BbþE¼ ½BT B ~I�
b
E

� �
ð16Þ

where EARn is a vector of errors, ~IARn�n is the identity matrix.
Utilizing constraint (16), the following optimization problem is
obtained:

Ẑ1 ¼ arg min
Z

:Z:1 subject to BTfðyÞ ¼QZ ð17Þ
where

Q ¼ ½BT B ~I�ARn�2n,Z¼
b
E

� �
AR2n and Ẑ1 ¼

b̂1

Ê1

" #
AR2n

Let b̂1 denote the solution of optimization problem (17).

Similar to SRC, we define a new vector b̂
k

1ðk¼ 1,2,. . .,cÞ by setting

only those entries in b̂1 associated with class k nonzero and
assigning zero to other entries. Then y can be assigned to the class

that minimizes the residual between BTfðyÞ and BT Bb̂
k

1:

min
k

RkðyÞ ¼ :BTfðyÞ�BT Bb̂
k

1:2 ð18Þ

Algorithm 2. Kernel sparse representation based classification
(KSRC)
1.
 Input: the matrix of training samples AARm�n, a test sample
yARm and a kernel function.
2.
 Normalize the columns of A to have unit l2-norm.

3.
 Calculate BT B and BTfðyÞ by Eqs. (14) and (15).

4.
 Solve the l1-minimization problem defined in Eqs. (13) or (17).

5.
 Compute the residuals RkðyÞ ðk¼ 1,2,. . .,cÞ defined in Eq. (18).

6.
 Output : identityðyÞ ¼ arg min

k

ðRkðyÞÞ

For samples containing small noise, the computational cost of SRC

and KSRC is mainly caused by solving the convex optimization
problem (5) and (13), respectively. According to AARm�n and
BT BARn�n, the computational complexity of solving Eqs. (5) and
(13) are both Oðn3Þ. Here, SRC and KSRC have the same computa-
tional cost. For samples containing big noise, the computational
cost of SRC and KSRC is mainly caused by solving the convex
optimization problems (7) and (17) separately. We know that the
size of P is m� ðnþmÞ and the size of Q is n� 2n. Then the
computational complexity of solving Eq. (7) is OððnþmÞ3Þ and the
computational complexity of solving Eq. (17) is Oðð2nÞ3Þ [23]. At
this time, if the number of training sample size n is smaller than
the dimension m, the computational cost of KSRC is shorter than
SRC. Otherwise, the computational cost of KSRC is longer than SRC.
3. Experiments

In this section, the effectiveness of KSRC algorithm is evaluated
by experiments. We do experiments on FERET, ORL, Yale and AR
face databases and the PolyU palmprint and finger-knuckle-print
(FKP) databases. Principal component analysis (PCA) [17] and
random projection (RP) [18] are used for feature extraction. We
compare the classification ability of KSRC algorithm with NM, NN,
KERNEL-NN and SRC algorithms after feature extraction. Two
popular kernels are involved in our experiments. One is polynomial
kernel kðx,yÞ ¼ ð1þxT yÞd and the other is Gaussian kernel kðx,yÞ ¼
expð�:x�y:2

=tÞ. For KSRC, we use these two kernels, respectively.
Since KERNEL-NN [7] using Gaussian kernel is equivalent to NN,
only polynomial kernel is used for KERNEL-NN. The optimal kernel
parameters are selected.

3.1. Data corpora

3.1.1. FERET face database

The FERET face database [19] was sponsored by the US
Department of Defense through the DARPA Program. It has
become a standard database for testing and evaluating face
recognition algorithms. We perform algorithms on a subset of
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the FERET face database. The subset is composed of 1400 images
of 200 individuals, and each individual has seven images. It
involves variations in face expression, pose and illumination. In
the experiment, the facial portion of the original image was
cropped based on the location of eyes and mouth. Then we
resized the cropped images to 80� 80 pixels and preprocess
them by histogram equalization. Seven sample images of one
person are shown in Fig. 1.

3.1.2. ORL face database

ORL face database contains 400 face images of 40 individuals.
The image size is 112� 92 with 256 gray levels per pixel. The face
images are centralized. There are variations in pose, illumination
and facial expression. Fig. 2 shows sample images of one person.

3.1.3. Yale face database

The Yale face database was constructed at the Yale Center for
Computational Vision and Control. It contains 165 gray-scale images
of 15 individuals. The images demonstrate variations in lighting,
facial expression and with/without glasses. In our experiment, every
image was manually cropped and resized to 100� 80 pixels. Fig. 3
shows 11 images of one people.

3.1.4. AR face database

The AR face database [20] contains over 4000 color face images
of 126 people, including 26 frontal views of faces with different
facial expressions, lighting conditions, and occlusions for each
Fig. 1. Sample images of one per

Fig. 2. Sample images of one pe
people. The pictures of 120 individuals were collected in two
sessions (14 days apart) and each session contains 13 color
images. Fourteen face images (each session containing 7) of these
120 individuals are selected in our experiment. The images are
converted to grayscale. The face portion of each image is manu-
ally cropped and normalized to 50� 40 pixels. Fig. 4 shows
sample images of one person. These images vary as follows:
neutral expression, smiling, angry, screaming, left light on, right
light on, all sides light on.

3.1.5. PolyU FKP database

FKP images on the PolyU FKP database were collected from
165 volunteers. These images are collected in two separate
sessions. In each session, the subject was asked to provide six
images for each of the left index finger, the left middle finger, the
right index finger and the right middle finger. The images were
processed by ROI extraction algorithm described in [21]. In the
experiment, we select 1200 FKP images of the right index finger of
100 subjects. These selected images were resized to 55� 110
pixels and preprocessed by histogram equalization. Fig. 5 shows
12 sample images of one right index finger.

3.1.6. PolyU palmprint database

The PolyU palmprint database contains 600 images of 100
different palms with six samples for each palm. Six samples from
each of these palms were collected in two sessions, where the
first three were captured in the first session and the other three in
son on FERET face database.

rson on ORL face database.



Fig. 4. Sample images of one person on AR face database.

Fig. 3. Sample images of one person on Yale face database.
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the second session. The central part of each original image was
automatically cropped using the algorithm mentioned in [22]. The
cropped images were resized to 128� 128 pixels and prepro-
cessed by histogram equalization. Fig. 6 shows six sample images
of one palm.

3.2. Experimental results

On FERET face database, first we try to find the optimal kernel
parameters for KSRC using global-to-local search strategy [3].
Three images per person are randomly selected for training and
the remaining four images are used for validation. After feature
extraction by PCA, the dimension of the samples is fixed at 150.
Through globally searching over a wide range of the parameter
space, we find a candidate interval where the optimal parameters
may exist. Here, for the parameter d of polynomial kernel, the
candidate interval is from 1 to 10, for the parameter t of Gaussian
kernel, the candidate interval is also from 1 to 10. Now, we try to
find the optimal kernel parameters within these intervals. Fig. 7a
shows the recognition rates of KSRC with polynomial kernel
versus the variation of the parameter d. Fig. 7b shows the
recognition rates of KSRC with Gaussian kernel versus the varia-
tion of the parameter t. From Fig. 7a and b, we can see that the
optimal parameter d is 2 and the optimal parameter t is also 2.
After determining the optimal kernel parameters, we compare
KSRC with NM, NN, KERNEL-NN and SRC. The first three images
per person are used for training and the rest four images are used
for testing. Table 1 shows the maximal recognition rates of five
methods and the corresponding dimensions and parameters.
From Table 1, it can be seen that KSRC outperforms other four
methods, whether polynomial kernel is used or Gaussian kernel
is used.

In the first experiment on ORL face database, three images per
individual are randomly chosen for training and the remaining
seven images are used for testing. PCA is used for feature extraction.
The experiment is repeated for 20 times. The first 10 times are used
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for tuning kernel parameters and the other 10 times for comparing
the performance of NM, NN, KERNEL-NN, SRC and KSRC. The
optimal kernel parameters are also determined by global-to-local
search strategy. Fig. 8 shows the average recognition rates versus
the dimensions. Table 2 lists the maximal average recognition rate
and the standard deviation of each method across 10 runs and the
corresponding dimension and parameter. From Fig. 8 and Table 2,
we can see four main points. First, no matter which kernel is used,
our KSRC consistently outperforms other four algorithms irrespec-
tive of the variation of dimensions. Second, SRC performs better
than NM, NN and KERNEL-NN algorithms when the dimension is
Fig. 6. Sample images of one palm on PolyU palmprint database.
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Fig. 7. The recognition rates of KSRC on FERET face database versus the variation of th

kernel and (b) recognition rates versus the parameter t of Gaussian kernel.

Fig. 5. Sample images of one right index finger on PolyU FKP database.
over about 20. Third, KERNEL-NN almost outperforms NN. Last,
NM has the worst performance in this experiment. From the first
and the third points, we can see that kernel approach indeed
improve the classification ability.

We know SRC has a good performance for recognition under
occlusion. In the second experiment on ORL face database, we test
the ability of KSRC for handling occlusion. For the last image of
every individual, the region from 30 to 60 in width and from 30 to
60 in length was replaced by a 31� 31 black block. Fig. 9 shows
the image of one person under occlusion. We use the first nine
images per person for training and the last image under occlusion
for testing. SRC and KSRC are used for classification after PCA
transformation. The maximal recognition rates and the corre-
sponding dimensions of two classifiers are given in Table 3. From
Table 3, it can be seen that KSRC outperforms SRC. Especially for
1 2 3 4 5 6 7 8 9 10
0.535

0.54

0.545

0.55

0.555

0.56

0.565

parameter:t

KSRC(Gaussian)

e kernel parameters: (a) Recognition rates versus the parameter d of polynomial

Table 1
The maximal recognition rates (percent) of NM, NN, KERNEL-NN, SRC and KSRC on

FERET face database and the corresponding dimensions and parameters.

Method NM NN KERNEL-NN SRC KSRC

(polynomial)

KSRC

(Gaussian)

Recognition

rate

40.6 54.0 54.6 55.8 58.4 56.6

Dimension 210 150 250 150 210 210

Parameter – – d¼ 0:8 – d¼ 2 t ¼ 2

0.94
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0.86

0.84
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Fig. 8. The average recognition rates of NM, NN, KERNEL-NN, SRC and KSRC versus

the dimensions on ORL face database across 10 runs.



Table 2
The maximal average recognition rates (percent) and standard deviations of NM, NN, KERNEL-NN, SRC and KSRC on ORL face database across 10 runs and the

corresponding dimensions and parameters.

Method NM NN KERNEL-NN SRC KSRC (polynomial) KSRC (Gaussian)

Recognition rate 87:572:8 88:673:0 89:673:0 90:072:7 91:672:8 91:072:8

Dimension 110 110 110 60 110 100

Parameter – – d¼ 0:5 – d¼ 2 t¼ 2

Fig. 9. Sample image of one person under occlusion on ORL face database.

Table 3
The maximal recognition rates (percent) of SRC and KSRC under occlusion on ORL

face database and the corresponding dimensions and parameters.

Method SRC KSRC (polynomial) KSRC (Gaussian)

Recognition rate 72.5 80.0 75.0

Dimension 330 130 90

Parameter – d¼ 2 t ¼ 3

3 4 5
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0.88

0.9

0.92

0.94

0.96

Training sample size

R
ec

og
ni

tio
n 

ra
te

NM
NN
KNN
SRC
KSRC(Polynomial)
KSRC(Gaussian)

Fig. 10. The maximal average recognition rates of NM, NN, KERNEL-NN, SRC and

KSRC versus the variation of the training sample size on Yale face database.

Table 4
The maximal recognition rates (percent) of NM, NN, KERNEL-NN, SRC and KSRC on

AR face, the PolyU FKP and the PolyU palmprint databases and the corresponding

parameters (in parentheses).

NM NN KERNEL-NN SRC KSRC

(polynomial)

KSRC

(Gaussian)

AR 53.2 66.4 66.7

(d¼ 0:5)

73.0 74.2 (d¼ 2) 73.7 (t¼ 5)

PolyU FKP 42.3 58.8 59.2

(d¼ 0:5)

66.2 70.6 (d¼ 1) 71.8 (t¼ 9)

PolyU

palmprint

87.3 88.3 89.0

(d¼ 0:8)

92.7 99.3 (d¼ 1) 96.3 (t¼ 3)
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KSRC with polynomial kernel, its recognition rate is 7.5 percent
more than SRC. Therefore, KSRC is a good classifier to handle
occlusion.

On Yale face database, l images per individual (l varies from
3 to 5) are randomly selected for training and the remaining 11�l

images are used for testing. We run the system 20 times. The first
10 times are used for parameter selection and the rest 10 times
are used for performance evaluation of NM, NN, KERNEL-NN, SRC
and KSRC. Here RP is used for feature extraction. For RP, samples
are projected into a lower dimensional feature space using a
random matrix whose column has unit lengths. It has been found
to be a sufficiently accurate method for extracting feature of high
dimensional data. The optimal kernel parameters are required by
global-to-local search strategy. The optimal d of polynomial
kernel is set as 5 for KSRC and 0.3 for KERNEL-NN, respectively.
The optimal t of Gaussian kernel for KSRC is set as 1. Fig. 10
illustrates the maximal average recognition rates of five methods
versus the variation of training sample size. Fig. 10 shows that
KSRC still performs best irrespective of the variation of training
sample size, whether polynomial kernel is used or Gaussian
kernel is used. SRC performs second best. Moreover, KERNEL-NN
outperforms NN and NM. These are all consistent with the
experiments on FERET and ORL face databases. However, there
is also one inconsistent point that NM performs better than NN in
this experiment.

For AR face database, the first seven images, which were taken
in the first session, are used for training while the rest seven taken
in the second session are used for testing. For the PolyU FKP
database, we use the first six FKP images collected in the first
session for training and the rest six collected in the second session
for testing. For the PolyU palmprint database, the first three
palmprint images captured in the first session are chosen for
training and the remaining three captured in the second session for
testing. PCA is first performed for feature extraction and dimension
reduction. Then the dimension reduced samples are classified by
NM, NN, KERNEL-NN, SRC and KSRC separately. Table 4 lists the
maximal recognition rates and the corresponding dimensions of
each classification method on three databases. From Table 4, we
can see that SRC and KSRC still outperform other three classifiers
and KSRC performs better than SRC. This demonstrates that KSRC is
more effective than SRC for classification again.
4. Conclusions

SRC applies sparse representation coefficient to classification.
Sparse representation coefficient contains very important discrimi-
nating information, so SRC has more powerful discriminating ability
than classification methods such as NM, NN and KERNEL-NN. In this
paper, we develop a kernel sparse representation based classifica-
tion (KSRC) algorithm. For KSRC, samples are mapped from original



J. Yin et al. / Neurocomputing 77 (2012) 120–128 127
feature space into a high dimensional feature space first, and then
SRC is performed in the high dimensional feature space. Although
the explicit samples in the high dimensional feature space are
unknown, we prove that SRC could be implemented successfully
using kernel function. If an appropriate kernel is utilized, sparse
representation coefficient of the test sample in the high dimen-
sional feature space will reflect its label information more accu-
rately. Namely, sparse representation coefficient in the high
dimensional feature space contains more effective discriminating
information than sparse representation coefficient in the original
feature space. Hence, KSRC could obtain higher recognition rate
than SRC. Experimental results on FERET, ORL, Yale and AR face
databases and the PolyU palmprint and FKP databases indicate the
effectiveness of KSRC. For samples containing small noise, SRC and
KSRC have the same computational cost. For samples containing big
noise, if the number of training sample size is smaller than the
dimension of sample, KSRC is more efficient than SRC. Contrarily,
SRC is more efficient than KSRC. Besides, when performing KSRC,
we should find the optimal parameters. This process will increase
its computational cost.
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Appendix A
The Proof of Theorem 1. Let

GðbÞ ¼ ðBb�fðyÞÞT ðBb�fðyÞÞ

The derivative of GðbÞ with respect to the variable b is

G0ðbÞ ¼ 2BT Bb�2BTfðyÞ

Since GðbÞZ0, GðbÞ achieves the minimum value when

BT Bb�BTfðyÞ ¼ 0

If BT Bb�BTfðyÞ is close to 0, GðbÞ will approach its minimum

value and

:Bb�fðyÞ:2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBb�fðyÞÞT ðBb�fðyÞÞ

q
¼

ffiffiffiffiffiffiffiffiffiffi
GðbÞ

p
will also approach its minimum value. Therefore, for any eZ0,

there must exist dZ0 such that if

:BT Bb�BTfðyÞ:2rd

:Bb�fðyÞ:2re will be satisfied. &
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