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Abstract— This paper evaluates the effect of timing
in data aggregation algorithms. In-network aggregation
achieves energy-efficient data propagation by processing
data as it flows from information sources to sinks. Our goal
is to show that the decision of when to “clock out” data as it
is processed by nodes have significant performance impact
in terms of data accuracy and freshness. Using the sensor
network paradigm where all nodes produce information
periodically, we compare three aggregation timing policies.
Through extensive simulations we show that setting up
the clock out timer based on a node’s position in the
aggregation tree results in a beneficial “cascading effect”,
yielding considerable energy efficiency, yet maintaining
data accuracy and freshness.

I. I NTRODUCTION

One of the challenges posed by sensor networks is the
fact that they are energy constrained. Because of power
and transmission range limitations, data dissemination in
sensor networks is typically carried out as a collective
operation, in which sensors collaborate to get data from
different parts of the sensor network to the information
sinks.

One way of performing power-efficient data collection
in sensor networks is to process the data as it flows
from information sources to sinks. This technique is
commonly referred to as (in-network) data aggregation
and can be quite effective at conserving power. Indeed,
a number of research efforts targeting sensor networks
have proposed different forms of aggregation techniques
to achieve power efficiency [1][2][3][4].

We focus on data aggregation techniques that target an
important class of sensor network applications, namely
monitoring. In particular, we consider monitoring appli-
cations in whichall nodes produce relevant information
periodically. Example scenarios that fall in this category
include monitoring of continuous environmental condi-
tions like temperature, humidity, seismic activity, etc.

By favoring energy efficiency, in-network aggregation
may affect the quality (e.g., accuracy and freshness) of
the data that ultimately reaches information sinks. The

goal of this paper is to investigate the trade-off be-
tween energy efficiency and data accuracy and freshness
posed by in-network aggregation. More specifically, we
investigate the effect of timing in periodic aggregation:
our hypothesis is that timing models have significant
impact on the freshness and accuracy of data delivered
by aggregation algorithms. The timing model defines
when to “clock out” data as it is aggregated by nodes
on its way to the information sink. The question is how
long should a node wait to receive data from its children.
If nodes wait too long, data produced in the next period
will interfere with data from previous periods.

We compare three different timing models.Periodic
simple aggregation works by having each node wait
a pre-defined period of time, aggregate all data items
received, and send out a single packet containing the
result. Periodic per-hop aggregation works similarly to
periodic simple, but transmits the aggregated data as
soon as it hears from all its children. Finally, inperiodic
per-hop adjusted, nodes adjust their timeout based on
their position in the data collection tree.

The contributions of this paper include: (1) the de-
velopment of a timing model for periodic aggregation
we call cascading timeouts, that achieves considerable
energy savings while maintaining data accuracy and
freshness, and (2) a comparative performance study of
different aggregation algorithms using extensive simula-
tions.

The remainder of the paper is organized as follows.
Section II presents related work and Section III de-
scribes ourcascading timeouts aggregation mechanism.
Simulation results comparingcascading timeouts with
other aggregation algorithms are presented in Section IV.
Section V outlines our concluding remarks and future
work directions.

II. RELATED WORK

Protocols for sensor networks have sparked consid-
erable interest in the network research community. In



this context, data aggregation rose as a technique for
improving sensor network protocols’ energy efficiency.
We briefly describe some previous and on-going research
efforts in order to put our work in perspective.

Directed diffusion [1] has been proposed as a data
gathering protocol for sensor networks. It targets the
monitoring of events which are typically sensed only
by a few nodes. Diffusion’s communication paradigm
is based on information sinks broadcasting requests, or
interests, for relevant data. Nodes producing relevant
information respond anddata paths are formed. Data
is aggregated when a node is part of various data paths.
Diffusion falls in theperiodic simple category.

eScan [3] is an energy monitoring scheme that collects
energy readings from every participating node. Their
scenario is somewhat similar to the ones we target, i.e.,
every node maintains an energy value that is reported
to a collection sink. Aggregation is performed as data
flows to the sink by merging reports of similar energy
values intoenergy range polygons. Rather than being
an alternative to eScan, our aggregation techniques can
complement it, for example, to improve data freshness,
since, in its original design, eScan does not try to
optimize latency in delivering data to the sink.

SPIN [4], Sensor Protocols for Information via Ne-
gotiation, is a protocol for data collection and dis-
semination. In SPIN, all nodes have pieces of named
information that they want to send to the rest of the
nodes. Data transfers are first negotiated based on the
names of items. Only requested items are exchanged.
SPIN does not really use an explicit aggregation mech-
anism; aggregation is performed implicitly during initial
negotiation between nodes.

TAG [2], or Tiny AGreggation, is a sensor network
querying system. It employs a SQL-like syntax and uses
aggregation as the query is processed within the network.
When a query involves anepoch, requiring readings to
be collected periodically, TAG uses theperiodic per-hop
adjusted aggregation approach. It subdivides the epoch
into slots. The length of a slot is given by the epoch
length divided byn, the radius of the network. Slots
are assigned to nodes in decreasing order,n, n − 1,
n− 2, ... , as the query propagates through the network.
Nodes transmit in their slot, hence, the out-most nodes
will transmit first and nodes closest to the sink, last.
As in any time-slotted mechanism, clock synchronization
among nodes is required so that nodes transmit in their
designated slots.

Convergecasting [5] also performs aggregation as it
collects data periodically from all nodes to a single
sink. Like TAG, its data aggregation mechanism also

falls in theperiodic per-hop adjusted category. It assigns
aggregation slots as the query percolates the sensor
network, trying to assign nodes to different (increasing)
slots in order to avoid collisions. Once the algorithm
finishes assigning slots, the order of the slots is inverted
according to the data collection tree. A similar concept
is used by Florence et al. [6].

More recently, the energy-accuracy tradeoff study by
Boulis et al. [7] recognizes the importance of timing
models for efficient data aggregation. It proposes a data
collection mechanism where nodes decide whether to
share their own readings based on estimates they get
from other nodes. While this works well for operations
like reporting the maximum or minimum value, it does
not apply to more general sensor network monitoring
applications. The work does not try to optimize data
freshness.

III. CASCADING TIMEOUTS

Cascading timeouts aggregation targets periodic data
generation applications in which nodes produce data at
regular periods. A given node aggregates data received
from its children into a single data item, which is then
forwarded upstream towards the information sink. Appli-
cation scenarios that fit well within this communication
model include monitoring of continuous environmental
conditions like temperature, humidity, seismic activity,
etc. While we focus on the single information sink
scenario, the proposed technique applies to multi-sink
scenarios.

Some ofcascading timeouts’ design goals include:
• Simplicity: given that sensor network nodes are

typically anemic devices in terms of energy, process-
ing, storage, and communication capabilities, designing
simple aggregation algorithms is key.
• Efficiency: generating close to minimal control

overhead is another critical requirement for the resource-
constrained environments our algorithms target.
• No clock synchronization: not relying on exter-

nal clock synchronization mechanisms is important. No
matter how efficient clock synchronization mechanisms
become (an example of an efficient clock synchroniza-
tion mechanism is reported in [8]), they will require
additional message exchange among nodes and thus
incur additional energy consumption.
• Routing protocol independence: not assuming a

specific underlying routing protocol makescascading
timeouts quite general.

Similar to most periodic aggregation mechanisms,cas-
cading timeouts starts by having the sink broadcast the
initial request to all nodes. This initial request triggersa
simple tree establishment protocol which sets up reverse



paths from all nodes back to the sink (root of the tree).
Upon receiving the request message, nodes send a reply
back to their parent. Each node can then deduce how
many children they have. Nodes assume a broadcast
medium and forward data using one-hop broadcasts. In
order to avoid collisions, transmissions are scheduled
using a small staggering delay.

Note that tree establishment overhead is incurred by
cascading timeouts and most other in-network aggrega-
tion mechanisms. Even if no aggregation is employed, a
distribution tree is typically used to propagate data from
information sources to sinks.

In cascading timeouts, instead of having nodes ran-
domly schedule their timeout, i.e., the time interval they
wait to receive data from their children before forwarding
the next data aggregate, a node’s timeout is set based on
the node’s position in the data distribution tree. Thus, a
node’s timeout will happen right before its parent’s. This
causes the so-called “cascading” effect: data originating
at the leaves is clocked out first, reaching nodes in the
next tree level in time to be aggregated with data from
other leaf nodes and locally generated data, and so on.
The net effect is that a “data wave” reaches the sink
in one period. This is the main reason whycascading
timeouts is able to achieve power efficiency without
sacrificing data freshness.

Timeout scheduling is part of the distribution tree
setup protocol and is triggered by the initial request from
the sink. The sink’s request contains a “hop count” field
which gets incremented as the request travels toward the
leaf nodes. Using this hop count information, nodes can
estimate their distance, in time, to the sink and schedule
their timeout to produce the cascading effect.

Fig. 1. Cascading timeouts timeout calculation

Figure 1 shows graphically timeout calculation incas-
cading timeouts, wheret is the data generation period,
h is a node’s distance to the sink in number of hops,
andshd, thesingle hop distance, is the delay to traverse
one hop. Once the request packet is received, a node
schedules its timeout to happen after2e. Subsequent
timeouts will continue to be scheduled everyt interval.

Note that a node’s timeout depends on thesingle hop
distance, shd. A detailed analysis of howshd impacts
cascading timeouts’s performance is presented in [9].
Essentially, we show that a good estimate value of the
shd can be determined and that it will undergo very
small variations since traffic flows over the same data
collection tree and the offered load is basically constant.

As noted above,cascading timeouts’ timing scheme
is parallel to the ones employed by both TAG and Cov-
ergecasting. According to our taxonomy, all three mech-
anisms are classified in theperiodic per-hop adjusted
category. In our simulations, we usecascading timeouts
to representperiodic per-hop adjusted algorithms.

Other Periodic Aggregation Mechanisms

Below we describe the other classes of aggregation
algorithms we use in our comparative study. As baseline,
we employ no in-network aggregation when sending
data from information sources to the sink. As previously
pointed out, even in the no-aggregation case, we employ
a distribution tree rooted at the information sink and
spanning all (relevant) data sources. As packets flow
from the leaves to the root, nodes simply forward them
along the tree.

Periodic Simple: In periodic simple aggregation pro-
tocols, all nodes wait a pre-defined amount of time,
aggregate all the data received in that period, and send
out a single packet. The aggregation period is equal to
the data generation period.

This class of aggregation protocols represents the
basic mechanism used by Directed Diffusion [1] consid-
ering that all nodes have relevant data to send. Based
on feedback (or reinforcements) from the sink, every
node uses a specific gradient which determines the rate
at which data is sent to the sink. Note that nodes are not
necessarily synchronized when “clocking out” data.

Periodic Per-Hop: According to per-hop simple ag-
gregation, once all data items are received from a node’s
children in the distribution tree, an aggregated packet
is produced and sent onto the next hop. Each node
uses a timeout for sending out packets in case their
children’s response is lost. The timeout is equal to the
data generation period since once that time is up, we
will be expecting and producing new readings.

IV. SIMULATIONS

A. Experimental Setup

For our comparative study of the different in-network
aggregation algorithms, we ran extensive simulations us-
ing thens-2 network simulator [10]. In the experiments
we conducted, 100 nodes were randomly placed in a
500 ∗ 500 m2 area. Nodes’ transmission range and data



rate are set to 100 meters and 115 Kbps, respectively.
A CSMA-like broadcast radio and FLIP [11] are used
as the MAC and network protocols, respectively. Based
on values used by commercially available radios, we set
transmission and reception power levels to 24.75 and
13.5 milliwatts, respectively. Idle power consumption
was set to 0.675 milliwatts to reflect MAC protocols
that switch to low-power radio mode whenever possible.

In order to avoid collisions, nodes stagger their trans-
missions using a small random interval. This is important
when performing data collection over a tree, especially
when nodes try to send at scheduled intervals based on
their depth in the tree. The maximum staggering value
used was0.03 seconds, i.e., nodes pick a uniformly
distributed random timer between0 and 0.03 before
transmitting a packet.

Nodes are stationary and no transmission errors were
simulated1; however, packets can still be lost due to
collisions. Simulations were run for 20 seconds with
data being generated every second (round). Although
establishing the distribution tree can be initiated by the
data request from the sink, in our simulations the tree
was formed at time 1 second and data collection was
triggered by the sink at time 3 seconds. We present
steady state results, that is, measurements taken during
the second half of the simulation (during the last 10
seconds).

Data points were obtained by averaging over twenty
different runs using different seeds to perform random
node placement. Information sink placement can greatly
affect the performance of tree-based aggregation algo-
rithms. For this reason, we ran experiments using three
different sink placement strategies: corner, center, and
random placement. Placing the sink in corners means
that the resulting collection trees will be deeper. Center
placement minimizes tree height.

Performance metrics we use includeenergy con-
sumed, data accuracy, data freshness, andoverhead.
While energy consumed measures the algorithm’s energy
efficiency, data accuracy and freshness account for its
effectiveness in terms of conveying as much information
as possible to the sink in a timely manner.

In these experiments, we do not model the actual
values being sensed by the nodes, how fast they are
changing or in what manner. Therefore, accuracy is mea-
sured as the ratio of total number of readings received
at the sink to the total number of readings generated.
We assume lossless aggregation, which means no data
is discarded. Examples include computing the minimum,

1We have proposed different mechanisms to handle packet drops.
They can be found in our tech report [9].

maximum, as well as counting occurrences. In these
scenarios, total accuracy is achieved when the sink can
“calculate” an answer that involves one reading from
every node per round.

Freshness is computed as the difference between the
time a data item is generated and the time it is received
at the sink. Overhead measures the communication com-
plexity of the in-network aggregation algorithms.

B. Results

For each class of in-network aggregation algorithms
(i.e., periodic simple labeled as “Simple”,periodic per-
hop labeled as “Per-hop”, andperiodic per-hop ad-
justed labeled as “Per-hop adjusted”) and sink placement
strategy (corner, random, and center), Figure 2 shows
their accuracy given by the total number of readings
collected (bar height) and their freshness (bar shades).
For comparison purposes, as baseline we use the no-
aggregation strategy (labeled as “None”). The height of
the bars indicate the average number of readings received
per data generation period. The different shades represent
the fraction of readings of different ages. In terms of data
accuracy, we observe that there is not a big difference in
performance when comparing the different aggregation
mechanisms. However, no aggregation andperiodic per-
hop adjusted (represented by ourcascading timeouts
algorithm exhibit the highest percentage of fresh data.
No aggregation has a small fraction of data 1-round old
because some readings time out at the end of one round
but arrive until the next one.Periodic simple exhibits the
largest range of data ages; this is because nodes simply
send data periodically, thus it can take up toD periods
for the readings to arrive in the worst case, whereD is
the diameter of the network.

Even though most studies of data aggregation mech-
anisms often do not account for sink placement, we
observe from Figure 2 that sink placement has indeed
considerable impact on data freshness. Even for the no-
aggregation case, where packets are forwarded imme-
diately after they are received, placing the sink in the
center yields fresher data.

From Table I, which shows the energy consumed
by the different algorithms, we observe that, for our
experimental setup, energy consumption can be reduced
to a third when data aggregation is used. Note that all
aggregation schemes exhibit similar energy efficiency.

We introduceweighed accuracy, which accounts for
a data item’s age, as an another metric to compare the
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None Periodic PHSimple PHAdjusted

Corner sink 0.1425 0.0485 0.0485 0.0431
Random sink 0.1293 0.0486 0.0488 0.0425
Center sink 0.1122 0.0488 0.0489 0.0412

TABLE I

ENERGY CONSUMED BY THE DIFFERENT ALGORITHMS

performance of the aggregation algorithms with respect
to freshness. The motivation behind measuring weighed
accuracy lies in the fact that while some applications
are interested in historical data, others may only want
the most up-to-date information. This is the case of
real-time monitoring, where information sinks are only
interested in the latest data sensed. For the latter type
of applications, aggregation algorithms should not delay
data delivery beyond a certain threshold.

Weighted accuracy is computed as follows. Readings
received in the same period they were produced have
weight 1. Older readings are assigned an exponentially
decaying weight: the older the reading, the less weight

we assign to it. The expression for weighted accuracy is
thus given by:

weighted accuracy =

∑

i∈I

riw
i

WhereI is the set of ages of the readings,ri is the
number of readings of agei per period andw is the
weight. Readings from the current period have an age of
0 and therefore a weight of 1.
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Fig. 4. Weighted accuracy - random sink placement

The graph in Figure 4 shows the performance of in-
network aggregation according to weighted accuracy. We
observe that no aggregation andperiodic per-hop ad-
justed are the best performers.Periodic per-hop adjusted
has a better performance because no aggregation doesn’t
time readings to arrive in the same period, and hence
some of them arrive in the following period.

Corner and center sink placements exhibit similar
performance considering that corner placement starts at



lower values and center placement starts a little higher
for low weights. For corner sinks data will have to travel
more hops, for center sinks the opposite is true.

We should point out thatcascading timeouts perform
consistently well for different data collection intervals.
We measure the average delay ( in seconds ) per reading
between when the reading is originally produced by a
node until the sink processes all readings generated in
that period. For example, in the case of a 10-second col-
lection period using random sink placement,cascading
timeouts achieves average delays that are more than an
order of magnitude smaller than when no aggregation is
used. With this same setup we can comparecascading
timeouts to TAG. Since TAG divides the period into as
many equal segments as levels in the aggregation tree, a
longer period increases it’s average delay per reading.

In summary, our results show that in-network data
aggregation can achieve considerable energy savings.
Yet, periodic per-hop adjusted aggregation (specifically
our cascading timeouts algorithm) is also able to main-
tain the samefreshness and accuracy as compared no
aggregation. This is an impressive result considering the
constraints imposed by applications that generate data
periodically.

V. CONCLUSIONS

This paper explored in-network aggregation as a
power-efficient mechanism for propagating data in wire-
less sensor networks. Our focus was on applications
where a large number of sensing nodes produce data
periodically which is consumed by fewer sink nodes.
Such communication model is typical of monitoring
scenarios, one key application of sensor networks.

Through simulations, we evaluate the performance
of different in-network aggregation algorithms, includ-
ing our own cascading timeouts, and characterize the
tradeoffs between energy efficiency, data accuracy and
freshness. Our results show that timing, i.e., how long
a node waits to receive data from its children (down-
stream nodes in respect to the information sink) before
forwarding data onto the next hop (toward the sink)
plays a crucial role in the performance of aggregation
algorithms in the context of periodic data generation.
By carefully selecting when to aggregate and forward
data, we achieved considerable energy savings (as much
as 6 times less traffic) while maintaining data freshness
and accuracy.
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