
INTRODUCTION TO GAUSSIAN PROCESSESDAVID J.C. MACKAYDepartment of Physics, Cambridge University.Cavendish Laboratory, Madingley Road,Cambridge, CB3 0HE. United Kingdom.mackay@mrao.cam.ac.ukAbstract. Feedforward neural networks such as multilayer perceptrons arepopular tools for nonlinear regression and classi�cation problems. From aBayesian perspective, a choice of a neural network model can be viewed asde�ning a prior probability distribution over non-linear functions, and theneural network's learning process can be interpreted in terms of the pos-terior probability distribution over the unknown function. (Some learningalgorithms search for the function with maximum posterior probability andother Monte Carlo methods draw samples from this posterior probability).In the limit of large but otherwise standard networks, Neal (1996) hasshown that the prior distribution over non-linear functions implied by theBayesian neural network falls in a class of probability distributions knownas Gaussian processes. The hyperparameters of the neural network modeldetermine the characteristic lengthscales of the Gaussian process. Neal'sobservation motivates the idea of discarding parameterized networks andworking directly with Gaussian processes. Computations in which the pa-rameters of the network are optimized are then replaced by simple matrixoperations using the covariance matrix of the Gaussian process.In this chapter I will review work on this idea by Williams and Ras-mussen (1996), Neal (1997), Barber and Williams (1997) and Gibbs andMacKay (1997), and will assess whether, for supervised regression and clas-si�cation tasks, the feedforward network has been superceded.FOREWORDMy lectures on neural networks and Gaussian processes feature a sequenceof computer demonstrations written in the free language octave. The source



2 DAVID J.C. MACKAYcode is available at:http://wol.ra.phy.cam.ac.uk/mackay/.Mark Gibbs's software for Gaussian processes is available at:http://wol.ra.phy.cam.ac.uk/mng10/GP/GP.html.Radford Neal's is at http://www.cs.toronto.edu/~radford/.1. OverviewSince the publication of Rumelhart, Hinton and Williams's (1986) paperon supervised learning in neural networks there has been a surge of interestin the empirical modelling of relationships in high{dimensional data usingnonlinear parametric models such as multi{layer perceptrons and radialbasis functions. In the Bayesian interpretation of these modelling methods,a nonlinear function y(x) parameterized by parameters w is assumed tounderlie the data fx(n); tngNn=1, and the adaptation of the model to the datacorresponds to an inference of the function given the data. We will denotethe set of input vectors by XN � fx(n)gNn=1 and the set of correspondingtarget values by the vector tN � ftngNn=1. The inference of y(x) is describedby the posterior probability distributionP (y(x)jtN ;XN) = P (tN jy(x);XN)P (y(x))P (tN jXN) : (1)Of the two terms on the right hand side, the �rst, P (tN jy(x);XN), is theprobability of the target values given the function y(x), which in the case ofregression problems is often implicitly assumed to be a separable Gaussiandistribution; and the second term, P (y(x)), is the prior distribution onfunctions assumed by the model. This prior is implicit in the choice ofparametric model and the choice of regularizers used during the modeladaptation. The prior typically speci�es that the function y(x) is expectedto be continuous and smooth, having less high frequency power than lowfrequency power, but the precise meaning of the prior is somewhat obscuredby the use of the parametric model.Now, from the point of view of prediction of future values of t, all thatmatters is the assumed prior P (y(x)) and the assumed noise model | theparameterization of the function y(x;w) is irrelevant.The idea of Gaussian process modelling is, without parameterizing y(x),to place a prior P (y(x)) directly on the space of functions. The simplesttype of prior over functions is called a Gaussian process. It can be thoughtof as the generalization of a Gaussian distribution over a �nite vector spaceto a function space of in�nite dimension. Just as a Gaussian distributionis fully speci�ed by its mean and covariance matrix, a Gaussian process isspeci�ed by a mean and a covariance function. Here, the mean is a function



GAUSSIAN PROCESSES 3of x (which we will often take to be the zero function), and the covarianceis a function C(x;x0) which expresses the expected covariance between thevalue of the function y at the points x and x0. The actual function y(x)in any one data modelling problem is assumed to be a single sample fromthis Gaussian distribution. Gaussian processes are already well establishedmodels for various spatial and temporal problems (Ripley 1991) | forexample, Brownian motion, Langevin processes and Wiener processes areall examples of Gaussian processes; Kalman �lters, widely used to modelspeech waveforms, also correspond to Gaussian process models; the methodof `kriging' in geostatistics is a Gaussian process regression method.1.1. RESERVATIONS ABOUT GAUSSIAN PROCESSESIt might be thought that it is not possible to reproduce the interesting prop-erties of neural network interpolation methods with something so simple asa Gaussian distribution, but as we shall now see, many popular nonlinearinterpolation methods are equivalent to particular Gaussian processes. (Iwill use the term `interpolation' to cover both the problem of `regression' |�tting a curve through noisy data | and the task of �tting an interpolantthat passes exactly through the given data points.)It might also be thought that the computational complexity of inferencewhen we work with priors over in�nite dimensional functions spaces mightbe in�nitely large. But by concentrating on the joint probability distributionof the observed data and the quantities we wish to predict, it is possible tomake predictions with resources that scale as polynomial functions of N ,the number of data points.1.2. SUMMARYIn this chapter we describe how inferences with a Gaussian process work,and how they can be implemented with �nite computational resources. Wenext discuss the role of the hyperparameters controlling a Gaussian processand describe how they can be adapted to data. We then study a varietyof di�erent ways in which Gaussian processes can be constructed. We alsogive an overview of advanced methods using Gaussian processes and discusstheir application to classi�cation problems as well as regression problems.It is surprising how much you can do with a single Gaussian distribution!



4 DAVID J.C. MACKAY2. Nonlinear Regression2.1. THE PROBLEMWe are given N data points XN ; tN = fx(n); tngNn=1. The inputs x are vec-tors of some �xed input dimension I . The targets t are either real numbers,in which case the task will be a regression or interpolation task, or theyare categorical variables, for example t 2 f0; 1g, in which case the task isa classi�cation task. We will concentrate on the case of regression for thetime being.Assuming that a function y(x) underlies the observed data, the task isto infer the function from the given data, and predict its value | or thevalue of the observation tN+1 | at new points x(N+1).2.2. PARAMETRIC APPROACHES TO THE PROBLEMIn a parametric approach to regression we express the unknown functiony(x) in terms of a nonlinear function y(x;w) parameterized by parametersw.Example 1: Fixed basis functions. Using a set of basis functions f�h(x)gHh=1,we can write y(x;w) = HXh=1wh�h(x): (2)If the basis functions are nonlinear functions of x such as the followingradial basis functions centred at �xed points fchgHh=1,�h(x) = exp "�(x� ch)22r2 # ; (3)then y(x;w) is a nonlinear function of x; however, since the dependenceof y on the parameters w is linear, we might sometimes refer to thisas a `linear' model.Other possible sets of �xed basis functions include polynomials suchas �h(x) = xpi xqj where p and q are integer powers that depend on h.Example 2: Adaptive basis functions. Alternatively, we might make a func-tion y(x) from basis functions which depend on additional parametersincluded in the vector w. In a two layer feedforward neural networkwith nonlinear hidden units and a linear output, the function can bewritten y(x;w) = HXh=1w(2)h tanh IXi=1w(1)hi xi + w(1)h0 !+ w(2)0 (4)



GAUSSIAN PROCESSES 5where I is the dimensionality of the input space and the weight vectorw consists of the input weights fw(1)hi g, the hidden unit biases fw(1)h0 g,the output weights fw(2)h g and the output bias w(2)0 .We then infer the function y(x;w) by inferring the parameters w. Mostsensible methods for inferring the parameters can be interpreted in termsof a Bayesian model for the problem, in which the posterior probability ofthe parameters is given byP (wjtN ;XN) = P (tN jw;XN)P (w)P (tN jXN) : (5)The factor P (tN jw;XN) states the probability of the observed data pointswhen the parameters w (and hence, the function y) are known. This prob-ability distribution is often taken to be a separable Gaussian, each datapoint tn di�ering from the underlying value y(x(n);w) by additive noise.The factor P (w) speci�es the prior probability distribution of the parame-ters. This too is often taken to be a separable Gaussian distribution. If thedependence of y on w is nonlinear the posterior distribution P (wjtN ;XN)is not in general a Gaussian distribution.The inference can be implemented in various ways. One technique is tominimize an objective functionM(w) = � log [P (tN jw;XN)P (w)] (6)with respect to w, locating the locally most probable parameters, thenuse the curvature of M , @2M(w)=@wi@wj to de�ne error bars on w. Amore general method uses Markov chain Monte Carlo techniques to createsamples from the posterior distribution P (wjtN ;XN).Having obtained one of these representations of the inference of w giventhe data, predictions are then made by marginalizing over the parameters:P (tN+1jtN ;XN+1) = Z dHw P (tN+1jw;x(N+1))P (wjtN ;XN): (7)If we have found a Gaussian representation of the posterior distributionP (wjtN ;XN), then this integral can typically be evaluated directly. In thealternative Monte Carlo approach which generates R samples w(r) whichare intended to be samples from the posterior distribution P (wjtN ;XN),we approximate the predictive distribution byP (tN+1jtN ;XN+1) ' 1R RXr=1P (tN+1jw(r);x(N+1)): (8)



6 DAVID J.C. MACKAY2.3. NONPARAMETRIC APPROACHES.In nonparametric methods, predictions are obtained without giving the un-known function y(x) an explicit parameterization. One well known nonpara-metric approach to the regression problem is the spline smoothing method(Kimeldorf and Wahba 1970). A spline solution to a one{dimensional re-gression problem can be described as follows: we de�ne the estimator ofy(x) to be the function ŷ(x) which minimizes the functionalM(y(x)) = �12 � NXn=1(y(x(n))� tn)2 � 12 � Z dx [y(p)(x)]2 (9)where y(p) is the pth derivative of y and p is a positive number. If p is setto 2 then the resulting function ŷ(x) is a cubic spline, that is, a piecewisecubic function that has `knots' | discontinuities in its second derivative |at the data points fx(n)g.This estimation method can be turned into a Bayesian method by iden-tifying the prior for the function y(x) as:log P (y(x)j�) = �12 � Z dx [y(p)(x)]2 + const; (10)and the probability of the data measurements tN = ftngNn=1 assumingindependent Gaussian noise as:logP (tN j y(x); �) = �12 � NXn=1(y(x(n))� tn)2+ const: (11)[The constants in equations (10) and (11) are functions of � and � re-spectively. Strictly the prior (10) is improper since addition of an arbitrarypolynomial of degree p � 1 to y(x) is not constrained. This impropriety iseasily recti�ed by the addition of (p� 1) appropriate terms to (10).] Giventhis interpretation of the functions in equation (9),M(y(x)) is equal to thelog of the posterior probability P (y(x)jtN ; �; �), within an additive con-stant, and the splines estimation procedure can be interpreted as yieldinga Bayesian MAP estimate. The Bayesian approach allows us additionallyto put error bars on the splines estimate and to draw typical samples fromthe posterior distribution. The issue of setting the hyperparameters � and� is an important one, as reviewed in MacKay (1992).2.4. COMMENTS2.4.1. Splines priors are Gaussian processesThe prior distribution de�ned in equation (10) is in fact our �rst exampleof a Gaussian process. Throwing mathematical precision to the winds, a



GAUSSIAN PROCESSES 7Gaussian process can be de�ned as a probability distribution on a space offunctions y(x) which can be written in the formP (y(x)j�(x); A) = 1Z exp ��12(y(x)� �(x))TA(y(x)� �(x))� ; (12)where �(x) is the mean function of the distribution and A is a linear op-erator, and where the inner product of two functions y(x)Tz(x) is de�nedby, for example, R dxy(x)z(x). Here, if we denote by D the linear operatorwhich maps y(x) to the derivative of y(x), we can writelog P (y(x)j�) = �12 � Z dx [Dpy(x)]2 + const = �12 y(x)TAy(x) + const;(13)which has the same form as (13) with �(x) = 0, and A � [Dp]TDp.In order for the prior in equation (12) to be a proper prior, A mustbe a positive de�nite operator, i.e., one satisfying y(x)TAy(x) > 0 for allfunctions y(x) other than y(x) = 0.2.4.2. Splines can be written as parametric modelsSplines may be written in terms of an in�nite set of �xed basis functions,as in equation (2), as follows. First rescale the x axis so that the interval(0; 2�) is much wider than the range of x values of interest. Let the basisfunctions be a Fourier set fcoshx; sin hx, h=0; 1; 2; : : :g. Use the regularizerEW (w) = 1Xh=0 12h p2w2h(cos) + 1Xh=1 12h p2w2h(sin) (14)to de�ne a Gaussian prior on w,P (wj�) = 1ZW (�) exp(��EW ): (15)If p=2 then we have the cubic splines regularizer EW (w)=R y(2)(x)2dx, asin equation (9); if p=1 we have the regularizer EW (w)=R y(1)(x)2dx, etc.(To make the prior proper we must add an extra regularizer on the termw0(cos).) Thus in terms of the prior P (y(x)) there is no fundamental di�er-ence between the `nonparametric' splines approach and other parametricapproaches.2.4.3. Representation is irrelevant for predictionFrom the point of view of prediction at least, there are two objects ofinterest. The �rst is the conditional distribution P (tN+1jtN ;XN+1) de�nedin equation (7). The other object of interest, should we wish to compare



8 DAVID J.C. MACKAYone model with others, is the joint probability of all the observed datagiven the model, P (tN jXN), which appeared as the normalizing constantin equation (5). Neither of these quantities makes any reference to therepresentation of the unknown function y(x). So at the end of the day, ourchoice of representation is irrelevant.The question we now address is, in the case of popular parametric mod-els, what form do these two quantities take? We will see that for standardmodels with �xed basis functions and Gaussian distributions on the un-known parameters, the joint probability of all the observed data given themodel, P (tN jXN), is a multivariate Gaussian distribution with mean zeroand with a covariance matrix determined by the basis functions; this im-plies that the conditional distribution P (tN+1jtN ;XN+1) is also a Gaussiandistribution, whose mean depends linearly on the values of the targets tN .Standard parametric models are simple examples of Gaussian processes.3. From parametric models to Gaussian processes3.1. LINEAR MODELSLet us consider a regression problem using H �xed basis functions, forexample one{dimensional radial basis functions as de�ned in equation (3).We will then consider what happens as we increase H .Let us assume that a list of N input points fx(n)g has been speci�edand de�ne the N � H matrix R to be the matrix of values of the basisfunctions f�h(x)gHh=1 at the points fxng,Rnh � �h(x(n)): (16)We de�ne the vector yN to be the vector of values of y(x) at the N points,yn �Xh Rnhwh: (17)If the prior distribution of w is Gaussian with zero mean,P (w) = Normal(0; �2wI); (18)then clearly y, being a linear function of w, is also Gaussian distributed,with mean zero. The covariance matrix of y isQ = hyyTi = hRwwTRTi = R hwwTiRT (19)= �2wRRT: (20)So the prior distribution of y is:P (y) = Normal(0;Q) = Normal(0; �2wRRT): (21)



GAUSSIAN PROCESSES 9This result, that the vector of N function values y has a Gaussian distri-bution, is true for any selected points XN . This is the de�ning propertyof a Gaussian process. The probability distribution of a function y(x) is aGaussian process if for any �nite selection of points x(1);x(2); : : : ;x(N), themarginal density P (y(x(1)); y(x(2)); : : : ; y(x(N))) is a Gaussian.Now, if the number of basis functions H is smaller than the number ofdata points N , then the matrix Q will not have full rank. In this case theprobability distribution of y might be thought of as a at elliptical pan-cake con�ned to an H{dimensional subspace in the N{dimensional spacein which y lives.What about the target values? If each target tn is assumed to di�erby additive Gaussian noise of variance �2� from the corresponding functionvalue yn then t also has a Gaussian prior distribution,P (t) = Normal(0;Q+ �2�I): (22)We will denote the covariance matrix of t by C:C = Q+ �2�I = �2wRRT + �2�I: (23)Whether or not Q has full rank, the covariance matrix C always has fullrank since �2�I is full rank.What does the covariance matrix Q look like? In general, the (n; n0)entry of Q is Qnn0 = [�2wRRT]nn0 = �2wXh �h(x(n))�h(x(n0)) (24)and the (n; n0) entry of C isCnn0 = �2wXh �h(x(n))�h(x(n0)) + �nn0 ; (25)where �nn0 = 1 if n = n0 and 0 otherwise.Let's take as an example a one{dimensional case, with radial basis func-tions. The expression for Qnn0 becomes simplest if we assume we have uni-formly spaced basis functions and take the limit H ! 1, so that the sumover h becomes an integral; to avoid having a covariance that diverges withH , we had better make �2w scale as S=(�H), where �H is the number ofbasis functions per unit length of the x{axis; thenQnn0 = S Z hmaxhmin dh �h(x(n))�h(x(n0)) (26)= S Z hmaxhmin dh exp "�(x(n) � h)22r2 # exp "�(x(n0) � h)22r2 # : (27)



10 DAVID J.C. MACKAYIf we let the limits of integration be �1, we can solve this integral:Qnn0 = p�r2S exp "�(x(n0) � x(n))24r2 # : (28)We are arriving at a new perspective on the interpolation problem. Insteadof specifying the prior distribution on functions that the standard radialbasis function model assumes in terms of basis functions and priors onparameters, it can be summarised simply by a covariance function,C(x(n); x(n0)) � �1 exp "�(x(n0) � x(n))24r2 # ; (29)where we have given a new name, �1, to the constant out front.Generalizing from this particular case, a vista of interpolation methodsopens up. Given any valid covariance function Q(x;x0) | we'll discuss in amoment what `valid' means | we can de�ne the covariance matrix for Nfunction values at locations XN to be the matrix Q given byQnn0 = C(x(n);x(n0)) (30)and the covariance matrix for N corresponding target values, assumingGaussian noise, to be the matrix C given byCnn0 = C(x(n);x(n0)) + �2��nn0 : (31)3.2. MULTILAYER NEURAL NETWORKS AND GAUSSIAN PROCESSESThe recent interest among neural network researchers in Gaussian processeswas initiated by the work of Neal (1996) on priors for in�nite networks.Figures 1 and 2 show some random samples from the prior distributionover functions de�ned by a selection of standard multilayer perceptronswith large numbers of hidden units. Neal showed that the properties of aneural network with one hidden layer (as in equation (4)) converge to thoseof a Gaussian process as the number of hidden neurons tends to in�nityif standard `weight decay' priors are assumed. The covariance function ofthis Gaussian process depends on the details of the priors assumed for theweights in the network and the activation functions of the hidden units.This observation motivated the idea of replacing supervised neural net-works by Gaussian processes, a research direction explored by Williams andRasmussen (1996) and Neal (1997). A thorough comparision of Gaussianprocesses with other methods such as neural networks and MARS was madeby Rasmussen (1996).
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Figure 1. Properties of a function produced by a random network. The vertical scaleof a typical function produced by the network with random weights is of order pH�out;the horizontal range in which the function varies signi�cantly is of order �bias=�in; andthe shortest horizontal length scale is of order 1=�in. This network had H = 400, andGaussian weights were generated with �bias = 4, �in = 8, and �out = 0:5.4. Using a given Gaussian Process model in regressionWe have spent some time talking about priors. We now return to our dataand the problem of prediction. How do we make predictions with a Gaussianprocess?Having formed the covariance matrixC de�ned in equation (31) our taskis going to be to infer tN+1 given the observed vector tN . The inference oftN+1 given tN is simple because the joint density P (tN+1; tN) is a Gaussian;so the conditional distributionP (tN+1jtN) = P (tN+1; tN)P (tN ) (32)is also a Gaussian. We now distinguish between di�erent sizes of covariancematrixC with a subscript, such thatCN+1 is the (N+1)�(N+1) covariancematrix for the vector tN+1 � (t1; : : : ; tN+1)T. We de�ne submatrices of



12 DAVID J.C. MACKAY
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Figure 2. Samples from the prior of (a) a one input network; and (b) a two inputnetwork. (a) Varying �wbias and �win in a one input network: In this �gure, H = 400,�wout = 0:05. For each graph the parameter �wbias takes a di�erent value in the sequence:8, 6, 4, 3, 2, 1.6, 1.2, 0.8, 0.4, 0.3, 0.2 (from most wiggly to smoothest). The parameter�win was also varied such that �win=�wbias = 5:0. The larger values of �win and �wbias producethe more complex functions with more uctuations. (b) A typical function producedby a two input network with fH;�win; �wbias; �woutg = f400; 8:0; 8:0; 0:05g.CN+1 as follows: CN+1 � 266424 CN 3524 k 35� kT �� � �3775 (33)The posterior distribution (32) is given byP (tN+1jtN ) / exp ��12 � tN tN+1 �C�1N+1 � tNtN+1 �� : (34)We can evaluate the mean and standard deviation of the posterior distri-bution of tN+1 by brute force inversion of CN+1. There is a more elegantexpression for the predictive distribution, however, which is useful when-ever predictions are to be made at a number of new points on the basis ofthe data set of size N . We can write C�1N+1 in terms of CN and C�1N usingthe partitioned inverse equations (Barnett 1979)C�1N+1 = � M mmT � � (35)where � = ��� kTC�1N k��1 (36)



GAUSSIAN PROCESSES 13m = ��C�1N k (37)M = C�1N + 1�mmT : (38)When we substitute this matrix into equation (34) we �ndP (tN+1jtN) = 1Z exp24�(tN+1 � t̂N+1)22�2̂tN+1 35 (39)where t̂N+1 = kTC�1N tN (40)�2̂tN+1 = � � kTC�1N k: (41)The predictive mean at the new point is given by t̂N+1 and �t̂N+1 de�nes theerror bars on this prediction. Notice that we do not need to invert CN+1in order to make predictions at x(N+1). Only CN needs to be inverted.Thus Gaussian Processes allow one to e�ectively implement a model witha number of basis functions H much larger than the number of data pointsN , with the computational requirement being only of order N3.The predictions produced by a Gaussian process depend entirely on thecovariance matrix C. We will now discuss the sorts of covariance functionsone might choose to de�ne C, then how we can automate the selection ofthe covariance function in response to data.5. Examples of covariance functions5.1. GENERAL POINTSThe only constraint on our choice of covariance function is that it mustgenerate a non-negative de�nite covariance matrix for any set of pointsfxngNn=1. We will denote the parameters of a covariance function by �.The covariance matrix of t has entries given byCmn = C(x(m);x(n); �) + �mnN (x(n); �) (42)where C is the covariance function on which we concentrate from now on,and N is a noise model which might be stationary or spatially varying, forexample,N (x; �) = ( �3 for input{independent noiseexp �PJj=1 �j�j(x)� for input{dependent noise. (43)



14 DAVID J.C. MACKAYThe continuity properties of C determine the continuity properties oftypical samples from the Gaussian process prior. If C(x;x0) is a continuousfunction of its arguments then typical functions y(x) are continuous too.An encyclopaedic paper on Gaussian processes giving many valid covariancefunctions has been written by Abrahamsen (1997).5.2. STATIONARY COVARIANCE FUNCTIONSA stationary covariance function is one which is translation invariant inthat it satis�es C(x;x0; �) = D(x� x0; �) (44)for some function D, i.e., the covariance is a function of separation only, alsoknown as the autocovariance function. If additionally C only depends onthe magnitude of the distance between x and x0 then the covariance func-tion is said to be homogenous. Stationary covariance functions may alsobe described in terms of the Fourier transform of the function D, which isknown as the power spectrum of the Gaussian process. This Fourier trans-form is necessarily a positive function of frequency. One way of constructinga valid stationary covariance function is simply to invent a positive functionof frequency and de�ne D to be its inverse Fourier transform. A simple ex-ample of this relationship is given by a power spectrum that is a Gaussianfunction of frequency. Since the Fourier transform of a Gaussian is a Gaus-sian, the autocovariance function corresponding to this power spectrum isa Gaussian function of separation. This argument rederives the covariancefunction we derived at equation (29).One possible form for C isC(x;x0; �) = �1 exp "�12 IXi=1 (xi � x0i)2r2i #+ �2 (45)where xi is the ith component of x, an I dimensional vector, and � =(�1; �2; frig). There is a length scale ri corresponding to each input whichcharacterizes the distance in that particular direction over which y is ex-pected to vary signi�cantly. A very large length scale means that y is ex-pected to be essentially a constant function of that input. Such an inputcould be said to be irrelevant, as in the automatic relevance determina-tion (ARD) method for neural networks (MacKay 1994, Neal 1996). The�1 hyperparameter de�nes the vertical scale of variations of a typical func-tion. The �2 hyperparameter allows the whole function to be o�set awayfrom zero by some unknown constant | to understand this term, examineequation (24) and consider the basis function �(x) = 1.



GAUSSIAN PROCESSES 15Another stationary covariance function isC(x; x0) = exp(�jx� x0j�); 0 < � � 2: (46)For � = 2, this is a special case of the previous covariance function. For� 2 (1; 2), the typical functions from this prior are smooth but not analyticfunctions. For � � 1 typical functions are continuous but not smooth.A covariance function that models a function that is periodic withknown period �i in the ith input direction isC(x;x0; �) = �1 exp264�12Xi 0@sin � ��i (xi � x0i)�ri 1A2375 : (47)Figure 3 shows some random samples drawn from Gaussian processeswith a variety of di�erent covariance functions.5.3. NONSTATIONARY COVARIANCE FUNCTIONSThe simplest nonstationary covariance function is the one correspondingto a linear trend. Consider the plane y(x) = Piwixi + c. If the fwig andc have Gaussian distributions with zero mean and variances �w and �crespectively then the plane has a covariance functionClin(x;x0; f�w; �cg) = IXi=1 �2wxix0i + �2c : (48)An example of random sample functions incorporating the linear term canbe seen in �gure 3(d).5.3.1. Spatially varying length scales:The standard covariance function (45) assumes that the length scales frigare �xed. We might be interested in a model in which the length scalesare somehow made to be functions of x. We cannot simply substitute aparameterized form for ri(x) into equation (45) as this will not in generalgive us a positive de�nite covariance function. Gibbs (1997) shows that thecovariance functionCns(x;x0) = �1Yi ( 2ri(x)ri(x0)r2i (x) + r2i (x0))1=2 exp �Xi (xi � x0i)2r2i (x) + r2i (x0)! ;(49)is positive de�nite and has spatially varying length scales, where ri(x) is anarbitrary positive function of x. It also has the property that the marginalvariance is independent of x and equal to �1.
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GAUSSIAN PROCESSES 17Simple product: If C1(x; x0) and C2(x; x0) are covariance functions on thesame space then so is D(x; x0) � C1(x; x0)C2(x; x0).Covariance functions for product spaces: If C1(x; x0) and C2(y; y0) arecovariance functions over di�erent spaces, and we de�ne a productspace z = (x; y) then D(z; z0) = C1(x; x0) + C2(y; y0) and E(z; z0) =C1(x; x0)C2(y; y0) are also covariance functions.Hence we can generate new functions using simpler covariance functionsas the building blocks. For example, we can use a sum of several of theGaussian terms which appear in equation (45), each with independent hy-perparameters, in the covariance function. This gives us the possibility ofmodelling large scale uctuations in one direction with one Gaussian andsmaller scale uctuations with another, i.e., producing an additive model.5.4.1. BlurringWe can imagine making a new Gaussian process by convolving an old oneC with an arbitrary kernel h:D(x; x0) = Z dy dy0 h(x� y)C(y; y0)h(y0 � x0): (50)A simple Gaussian process from which to start is the white noise processhaving C(x; x0) = �(x; x0). If we select as our kernel a one{dimensional tophat function of width 1, we obtain:C1(x; x0) = � 1� jx� x0j jx� x0j < 10 jx� x0j > 1 : (51)If we move to three dimensions and use a spherical top hat function weobtain: C3(x; x0) = � 1� 32 jx� x0j+ 12 jx� x0j3 jx� x0j < 10 jx� x0j > 1 ; (52)which is a valid covariance function in one, two or three dimensions.Other kernels can be used and give rise to other covariance functions.The kernel need not be a strictly positive function.5.4.2. Vertical rescalingA trivial way of making a nonstationary covariance function from somegiven covariance function C(x;x0) is to introduce any function a(x) andde�ne D(x;x0) � a(x)C(x;x0)a(x0): (53)This function is a valid covariance function, and if the original function wasstationary with marginal variance C(x;x)� C0 for all x, the new functionhas marginal variance D(x;x) = C0a(x)2.



18 DAVID J.C. MACKAY5.4.3. Warping or embeddingGiven any covariance function C(u;u0), we can introduce an arbitrary non-linear mapping x! u(x) and de�ne a new covariance functionD(x;x0) � C(u(x);u(x0)): (54)If the original covariance function C is stationary, this mapping will ingeneral produce a nonstationary covariance function with uniform variance.Note that x and u need not have the same dimensionality as each other,and the function x! u(x) need not be invertible | though if two distinctvalues of x satisfy u(x(A)) = u(x(B)) then all sample functions y(x) fromthe Gaussian process will necessarily have y(x(A)) = y(x(B)), which mightor might not be desired.An example of an embedding of a one{dimensional x in a higher di-mensional space u = (u1; u2) is the mapping u = (cos(x); sin(x)). ThenD(x; x0) = C(u(x);u(x0)) is automatically a covariance function for a pe-riodic function. Using the standard C of equation (45), this is one way ofderiving the covariance function given in equation (47).5.4.4. A few derived covariance functionsUsing the tricks of vertical rescaling and multiplication, we may obtainsome more covariance functions from Gibbs's function (49). Assume wede�ne some positive function r(x).Ca(x; x0) = 1r(x)2 + r(x0)2 exp "� (x� x0)2r(x)2 + r(x0)2# (55)Cb(x; x0) = r(x)r(x0)r(x)2 + r(x0)2 exp "� (x� x0)2r(x)2 + r(x0)2# (56)Cc(x; x0) = 1[r(x)�2 + r(x0)�2]1=2 exp "� (x� x0)2r(x)2 + r(x0)2# (57)Whether these covariance functions are useful remains to be seen. Thefunction Ca looks like a reasonable model for neuronal spikes, as it asso-ciates short lengthscales with large vertical variations.5.4.5. O'Hagan's modelAnother covariance function obtained by multiplication and addition (O'Hagan1978) is D(x; x0) = xC(x; x0)x0 + C(x; x0); (58)where C is any convenient covariance function, for example the standardone (45). If the length scale of C is long then typical functions have quasi{linear trends, except that the slope and intercept of the linear trend maywander with x.
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Figure 4. Multimodal Likelihood Functions: This �gure highlights the problemsthat can be encountered when using a Gaussian process with no priors on the hyperpa-rameters. (a) shows the most probable interpolant and its 1� error bars obtained when aGaussian process was used to model the data shown by the black points. The covariancefunction used is given in equation (45). The hyperparameters of the Gaussian process wereinitialized with the noise level and length scale both set to low values (�3 = 0:01; r1 = 1:0)and the evidence was maximized with respect to the hyperparameters using conjugategradients. (b) shows the most probable interpolant and its 1� error bars obtained when anidentical Gaussian process with identical training data and learning procedure was givendi�erent initial conditions (high noise level and large length scale (�3 = 2:0; r1 = 4:0)).Panel (c) shows a contour plot of the likelihood of �. The two distinct modes (one atrl = 0:95, �3 = 0:0 and one at rl = 3:5, �3 = 3:0) which give rise to the two di�erentsolutions are shown by crosses.



20 DAVID J.C. MACKAY6. Adaptation of Gaussian Process modelsLet us assume that a form of covariance function has been chosen, but thatit depends on undetermined hyperparameters �. We would like to `learn'these hyperparameters from the data. This learning process is equivalentto the inference of the hyperparameters of a neural network, for example,weight decay hyperparameters. Ideally we would like to de�ne a prior dis-tribution on the hyperparameters and integrate over them in order to makeour predictions, i.e., we would like to �ndP (tN+1jxN+1; tN ;XN) = Z P (tN+1jxN+1;�; tN ;XN)P (�jtN ;XN)d�(59)But this integral is usually intractable. There are two approaches we cantake.1. We can approximate the integral by using the most probable values ofhyperparameters.P (tN+1jxN+1; tN ;XN) ' P (tN+1jxN+1; tN ;XN ;�MP) (60)2. Or we can perform the integration over � numerically using MonteCarlo methods (Williams and Rasmussen 1996, Neal 1997).Either of these approaches is implemented most e�ciently if the gradientof the posterior probability of � can be evaluated.6.1. GRADIENTThe posterior probability of � isP (� j tN ;XN) / P (tN jXN ;�)P (�) (61)The log of the �rst term (the evidence for the hyperparameters) L isL = �12 log detCN � 12tTNC�1N tN � N2 log 2� (62)and its derivative with respect to a hyperparameter � is@L@� = �12Trace�C�1N @CN@� �+ 12tTNC�1N @CN@� C�1N tN : (63)6.2. COMMENTSAssuming that �nding the derivatives of the priors is straightforward, wecan now search for �MP. However there are two problems that we need to



GAUSSIAN PROCESSES 21be aware of. Firstly, as illustrated in �gure 4, the data{dependent termL is often multimodal. This can mean that the �MP that is found by theoptimization routine is dependent on the initial conditions. Suitable priorsand a sensible parameterization of the covariance function often eliminatethis problem. Secondly and perhaps most importantly the evaluation ofthe gradient of the log likelihood requires the evaluation of C�1N . Any exactinversion method has an associated computational cost that is of orderN3 and so calculating gradients becomes time consuming for large trainingdata sets.7. Implementation of the ModelThere are two possible approaches to the implementation of prediction(equations (40) and (41)) and gradient computation (equation (63)).7.1. DIRECT METHODSThe most obvious implementation of these equations is to evaluate theinverse of the covariance matrix exactly. This can be done using a varietyof methods such as Cholesky decomposition, LU decomposition or Gauss{Jordan Elimination. Having obtained the explicit inverse, we then applyit directly to the appropriate vectors. Thus in order to calculate a singleprediction t̂N+1, we construct the vector k, invert the matrix CN , calculatethe vector v = C�1N tN and then �nd the dot product t̂N+1 = (kTv). If wewish to �nd the most probable value of the interpolant at another newpoint xN+2 given the same data tN ;XN (which does not include tN+1), weneed only construct the new vector kN+2 and �nd the dot product of thisvector with v | only O(N) operations. This means that given the mostprobable hyperparameters and using the explicit representation of C�1N wecan calculate the most probable value of the interpolant atM points for thecost of only one matrix inversion, one application of a matrix to a vectorand M dot products. Thus �nding the predictive mean has a cost similarto the cost of using a feedforward network with N �xed basis functions. Inthis analogy, the vector v is the weight vector and the N basis functionsare �n(x) � C(x(n);x), for n = 1; : : : ; N .Each evaluation of the gradient of the log likelihood also requires theinversion of CN as well as four matrix{to{vector applications and one dotproduct. The evaluation of Trace�C�1N @CN@� � does not require the explicitcalculation of C�1N @CN@� as we need only evaluate its diagonal elements.The explicit method has two principal disadvantages. Firstly, the in-version of CN can be time consuming for large data sets. Secondly, themethod is prone to numerical inaccuracies. The dot product kTv may turn



22 DAVID J.C. MACKAYout to be the sum of very large positive and negative numbers although itsmagnitude may be small. This may lead to inaccuracies in the evaluationof the most probable value of the interpolant and its error bars when themodel is implemented on a computer. The problem is caused by an ill con-ditioned covariance matrix, for example, when the model assumes a smallnoise level. To reduce such numerical errors, we can use the LU decomposi-tion of CN or eigenvector/eigenvalue decompositions. Another way to dealwith ill{conditioning is to split C into several pieces and make use of theidentity [C+MN]�1 = C�1 �C�1M(I+NC�1M)�1NC�1: (64)This is a useful way to handle ill conditioning produced by a large value ofthe constant term �2 in the covariance function of equation (45).These exact methods scale as O(N3) and can be time consuming forlarge data sets.7.2. APPROXIMATE METHODSAn alternative method for the implementation of Gaussian processes basedon the ideas of Skilling (1993) makes approximations toC�1t and TraceC�1using iterative methods which scale as O(N2). These methods are usefulwhen the number of data points exceeds a few hundred (Gibbs and MacKay1996).8. Regression ExamplesWe present two simple examples. The �rst is a one dimensional regressionproblem. This consists of a set of 37 noisy training data points shown in�gure 5(a). We used the basic covariance function given in equation (45).Ten runs were performed with di�erent initial conditions to guard againstthe possibility of multiple maxima in P (�jtN ;XN). Broad priors wereplaced on all the hyperparameters (gamma priors on the length scales;inverse gamma priors on �1; �2 and �3) as it was assumed that there waslittle prior knowledge other than a belief that the interpolant should berelatively smooth. For each run the initial values of the hyperparameterswere sampled from their priors and then a conjugate gradient optimizationroutine was used to �nd �MP. The matrix inversions involved in the op-timization were performed using exact LU-decomposition methods. Eachrun took approximately 10 seconds on a Sun SPARC classic. The resultscan be seen in �gure 5(b).For the second example 400 noisy data points were generated from a2D function (see �gure 6(a)). Again broad priors were placed on all the
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Figure 5. 1d Example : (a) shows the 37 noisy data points used as the training data.Note the lack of data in the region 2:5 � x � 3:5. In (b) we see the interpolant and its1� error bars. The error bars represent how uncertain we are about the interpolant ateach point assuming that the model is correct. Note how the error bars increase wherethe data point density decreases. The point near (1; 0) is outside the error bars becausethe prior on the length scales speci�es that the interpolant is moderately smooth. Hencethis point is treated as an improbable outlier.hyperparameters and ten runs were performed, each with initial hyperpa-rameters sampled from their priors. In this case the approximate techniquesof Section 7.2 were used to evaluate inverses and traces. The results fromeach run were similar and the interpolant obtained from the �rst run isshown in �gure 6(b).The time required to perform the optimization in the second examplewas as follows. Each training run took about 16 minutes using the approx-imate inversion techniques. Training runs performed using direct methodstook approximately 39 minutes. This shows the advantage of the approxi-mate methods when dealing with large amounts of training data. Figure 7shows the training times for data sets of varying size generated using thesame function.9. Advanced topics in regression9.1. ON-LINE DATA ADDITIONConsider the case in which we have a data set fxn; tng(n = 1 � � �N) and havefound the most probable hyperparameters of the Gaussian process �MP.Then we obtain a new data point fxN+1; tN+1g and wish to incorporatethis into the model. Let us assume that the new piece of data does notimply a change in the hyperparameters, i.e., that the form of the function
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Figure 6. 2d Example : (a) shows the function from which 400 noisy data pointswere generated and the noisy data points in relation to the function. The o�set of eachdatum due to noise is shown as a dashed line. In (b) we see the most probable interpolantgenerated using an approximate implementation of a Gaussian process. 1� error bars areonly given at selected points in order to preserve clarity.
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Figure 7. Scaling of training time with amount of data : (a) shows the trainingtimes for noisy data sets of di�erent sizes generated from the function shown in �gure 6.Times are shown for both the direct LU decomposition method and the approximatemethod. (b) shows the same graph with a logarithmic vertical scale. For small data setsthe LU method is signi�cantly quicker than the approximate approach. At over 100 datapoints we can see that the O(N2) scaling of the approximate method begins to yieldbene�ts. For 400 and 800 data points the approximate method is signi�cantly faster thanthe LU decomposition method. It should, however, be noted that the problem is only twodimensional and the bene�ts of the approximate method for higher dimensional problemswill only be obvious for larger data sets.



GAUSSIAN PROCESSES 25described by the new larger data set is approximately the same as thatdescribed by the old. We can calculate C�1N+1 from CN and C�1N using thepartitioned inverse equations (35{38). For the direct implementation, wherewe already have an explicit form forC�1N , the most costly part of calculatingC�1N+1 is the application of a matrix to a vector requiring O(N2) operationsin comparison to the O(N3) operations required for the inversion of CN+1from scratch.9.2. MULTIPLE OUTPUTSThe subject of multiple outputs (or co-kriging (Cressie 1993)) is problem-atic. It is possible to de�ne Gaussian processes with multiple outputs but itis not clear in general how the covariance function should be de�ned. Manyproblems are symmetric a priori, in that the sign of an output variablecould be ipped, and the user would be none the wiser. If this symmetryof the user's prior distribution holds, then the covariance function can onlybe of the form Cabnm = �abCnm, where a and b run over the output variables.This means that each output is modelled independently | a method knownas multi-kriging (Williams and Rasmussen 1996). At this point we may feelthat Gaussian processes are missing out on something, since we might in-tuitively expect two output variables to have some features in common.One way to put in the `missing something' might be to introduce somecommon hyperparameters into the covariance functions for outputs a andb. In particular, one might introduce warping functions u(x), as in section5.4.3, that are common to both covariance functions, so that we have covari-ance functions Caa(x;x0) = B(a)(u(x);u(x0)) and Cbb(x;x0) = B(b)(u(x);u(x0)),with u(x) being an a priori undetermined function. If u is subsequentlyinferred to be some nonlinear function, then the various output functionsy(a)(x); y(b)(x) : : : will be functions which, while they are still uncorrelatedin terms of their prior second order statistics, show their most complexvariations in the same regions of x space.10. Classi�cationThe work of Rasmussen (1996) has shown that for non{linear regressionproblems with between one and one thousand data points, Gaussian pro-cesses should certainly be considered as replacement for supervised neuralnetworks. What about classi�cation problems?Gaussian processes can be integrated into classi�cation modelling oncewe identify a variable which can sensibly be given a Gaussian process prior.In a a binary classi�cation problem, we can de�ne a quantity an �



26 DAVID J.C. MACKAYa(x(n)) such that the probability that the class is 1 rather than 0 isP (tn = 1jan) = 11 + e�an : (65)Large positive values of a correspond to probabilities close to one; largenegative values of a de�ne probabilities that are close to zero. In a classi�-cation problem, we typically intend that the probability P (tn = 1) shouldbe a smoothly varying function of x. We can embody this prior belief byde�ning a(x) to have a Gaussian process prior. Neal (1997) gives other waysof connecting Gaussian processes to classi�cation models.10.1. IMPLEMENTATIONIt is not so easy to perform inferences and adapt the Gaussian process modelto data in a classi�cation model as in regression problems because the likeli-hood function is not a Gaussian function of an. So the posterior distributionof a given some observations t is not Gaussian and the normalization con-stant P (tN jXN) cannot be written down analytically. Barber and Williams(1997) have implemented classi�ers based on Gaussian process priors usingLaplace approximations. Neal (1997) has implemented a Monte Carlo ap-proach to implementing a Gaussian process classi�er. Gibbs and MacKay(1997) have implemented another cheap and cheerful approach based onthe methods of Jaakkola and Jordan (1996). In this variational Gaussianprocess classi�er (VGC), we obtain tractable upper and lower bounds forthe unnormalized posterior density over a, P (tN ja)P (a). These bounds areparameterized by variational parameters which are adjusted in order to ob-tain the tightest possible �t. Using normalized versions of the optimizedbounds we then compute approximations to the predictive distributions.10.2. RESULTS ON TEXTBOOK PROBLEMSWe tried our VGC method on two well known classi�cation problems, theLeptograpsus crabs and Pima Indian diabetes datasets1. The results forboth tasks, together with comparisons with several other methods are givenin table 1.In the Leptograpsus crabs problem we attempted to classify the sex ofcrabs based upon six characteristics. 200 labelled examples are split into atraining set of 80 and a test set of 120. The performance of the VGC is notsigni�cantly di�erent from the best of the other methods. The Pima Indiandiabetes problem involved the prediction of the occurence of diabetes inwomen of Pima Indian heritage based on seven characteristics. 532 examples1Available from http://markov.stats.ox.ac.uk/pub/PRNN.



GAUSSIAN PROCESSES 27Crab PimaMethod Error % Error Error % ErrorNeural Network (1) 3 � 1.7 2.5 � 1.4 - -Neural Network (2) 5 � 2.1 4.2 � 1.8 - -Neural Network (3) - - 75 22.6Linear Discriminant 8 � 2.7 6.7 � 2.3 67 � 7.3 20.2 � 2.2MARS (degree = 1) 8 � 2.7 6.7 � 2.3 75 � 7.6 22.6 � 2.32 Gaussian Mixture - - 64 � 7.2 19.3 � 2.2HMC Gaussian process 3 � 1.7 2.5 � 1.4 68 � 7.4 20.5 � 2.2VGC 4 � 2 3.3 � 1.6 70 � 7.4 21.1 � 2.2TABLE 1. Pima and Crabs Results : The table shows the performanceof a range of di�erent classi�cation models on the Pima and Crabs prob-lems (Ripley 1994, Ripley 1996). The number of classi�cation errors andthe percentage of errors both refer to the test set. The error bars givenare calculated using binomial statistics. The results quoted for the VGCare those obtained using the approximations from the lower bound. TheHMC Gaussian process is the classi�er described by Barber and Williams(1997).were available and these were split into 200 training examples and 332 testexamples. 33% of the population were reported to have diabetes so an errorrate of 33% can be achieved by declaring all examples to be non-diabetic.The VGC achieved an error rate of 21% | again comparable with the bestof the other methods.10.3. WELD CRACKING EXAMPLEHot cracking can occur in welds as they cool. The occurence of such cracksdepends on the chemical composition of the weld metal, the cooling rateand the weld geometry. We wish to predict whether a given weld will crackby examining the dependence of cracking on 13 input variables describinga weld. This problem has previously been tackled using Bayesian neuralnetworks (Ichikawa, Bhadeshia and MacKay 1996).An initial test was performed using a training set of 77 examples and atest set of 77 examples. The test error rates and test log likelihoods for theVGC and the Bayesian neural network approach (Ichikawa et al. 1996) canbe seen in table 2 where the test log likelihood is de�ned astest log likelihood = NtestXn=1 tn log(yn) + (1� tn) log(1� y); (66)



28 DAVID J.C. MACKAYMethod Test Error Log LikelihoodBayesian Neural Network 8 -23.6Variational GP Classi�er 10 , 10 -25.73 , -31.57TABLE 2. Weld Cracking Classi�cation Problem:This table shows the test error and log likelihood scores ofthe VGC and the Bayesian neural network of Ichikawa etal. (1996). The two results given for the VGC correspond tothe approximations using the lower and upper bound respec-tively.where tn is the true test set classi�cation (either 0 or 1) and yn is theprediction P (tn = 1jtN ;XN). The performance of the VGC is slightly in-ferior to that of the Bayesian neural network. However the neural networkresult was obtained using a committee of four networks. A large amountof experimentation with di�erent architectures and parameter settings wasperformed and the four networks found with the best test error were usedin the committee (this is generally regarded as cheating, in such compar-isons!). The VGC results required no such experimentation. 20 runs of theVGC with di�ering initial conditions were performed to check whether therewere multiple minima. The results quoted in table 2 are from the �rst run;all the runs produced almost identical results.We then trained the VGC using all 154 examples and studied the car-bon dependence of the probability of cracking as in Ichikawa et al. (1996).A plot of the carbon dependence can be seen in �gure 8 along with thecorresponding results of Ichikawa et al.10.4. CONCLUSIONGaussian processes can be used to produce e�ective binary classi�ers. Theresults using the variational Gaussian process classi�er are comparable tothe best of current classi�cation models. Multi{class classi�cation problemscan also be solved with Monte Carlo methods (Neal 1997) and variationalmethods (Gibbs 1997).11. DiscussionGaussian processes are moderately simple to implement and use. Becausevery few parameters of the model need to be determined by hand (generallyonly the priors on the hyperparameters), Gaussian processes are useful toolsfor automated tasks where �ne tuning for each problem is not possible.
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Figure 8. Carbon Dependence of Weld Cracking probability:These graphs showthe predictions as a function of one the 13 input variables given by a committee of neuralnetworks (Ichikawa et al. 1996) and those found using the lower bound approximation ofa VGC. Both have the same large scale features.However we do not appear to sacri�ce any performance for this simplicity.It is easy to construct Gaussian processes that have particular desiredproperties; for example we can make a transparently simple automatic rel-evance determination model.One obvious problem with any method based upon Gaussian processes isthe computational cost associated with inverting anN�N matrix. The costof direct methods of inversion may become prohibitive when the number ofdata points N is greater than ' 1000. In Gibbs and MacKay (1996) e�cientmethods for matrix inversion (Skilling 1993) are developed that allow largedata sets to be tackled. But further research is going to be needed beforeGaussian processes can be applied to more than about 10,000 data points. Ispeculate that there may be a useful connection to be made between Gaus-sian processes and `support vector' learning machines (Scholkopf, Burgesand Vapnik 1995, Vapnik 1995), which are in some ways quite similar toGaussian processes.A problem with the variational approach for classi�cation is the pro�l-eration of variational parameters when dealing with large amounts of thedata. Reducing the number of these variational parameters is an important



30 DAVID J.C. MACKAYdirection for further research.11.1. HAVE WE THROWN THE BABY OUT WITH THE BATH WATER?According to the hype of 1987, neural networks were meant to be intelligentmodels which discovered features and patterns in data. Gaussian processesin contrast are simply smoothing devices. How can Gaussian processes pos-sibly replace neural networks? What is going on?I think what the work of Williams and Rasmussen (1996) shows is thatmany real{world data modelling problems are perfectly well solved by sensi-ble smoothing methods. The most interesting problems, the task of featurediscovery for example, are not ones which Gaussian processes will solve.But maybe multilayer perceptrons can't solve them either.On the other hand, it may be that the limit of an in�nite number ofhidden units, to which Gaussian processes correspond, was a bad limit totake; maybe we should backtrack, or modify the prior on neural networkparameters, so as to create new models more interesting than Gaussianprocesses. Evidence that this in�nite limit has lost something comparedwith �nite neural networks comes from the observation that in a �nite neu-ral network with more than one output, there are non{trivial correlationsbetween the outputs (since they share inputs from common hidden units);but in the limit of an in�nite number of hidden units, these correlationsvanish. Radford Neal has suggested the use of non{Gaussian priors in net-works with multiple hidden layers. Another option suggested in section 9.2is to introduce high{order correlations between output variables by havingtheir Gaussian process priors share adaptable hyperparameters.But perhaps a fresh start is needed, approaching the problem of ma-chine learning from a paradigm di�erent from the supervised feedforwardmapping.LITERATUREThe study of Gaussian processes for regression is far from new. Time seriesanalysis was being performed by the astronomer T.N. Thiele using Gaus-sian processes in 1880 (Lauritzen 1981). In the 1940s, Wiener{Kolmogorovprediction theory was introduced for prediction of trajectories of militarytargets (Wiener 1948). Within the geostatistics �eld, Matheron (1963) pro-posed a framework for regression using optimal linear estimators whichhe called `kriging' after D.G. Krige, a South African mining engineer.This framework is identical to the Gaussian process approach to regres-sion. Kriging has been developed considerably in the last thirty years (seeCressie (1993) for an excellent review) including several Bayesian treat-ments (Omre 1987, Kitanidis 1986). However the geostatistics approach to
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