
INFORMATIONSCIENCES9,43-80(1975) 43 

The Concept of a Linguistic Variable 
and its Application to Approxirqate Reasoning-III* 

L. A. ZADEH 

COmputer Sciences division, De~urtment of E~e~~i&a~ Engineering 
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1. LINGUISTIC PROBABILITIES 
AND AVERAGES OVER FUZZY SETS 

In the classical approach to probability theory, an event, A, is defined as a 

member of a o-field,,d, of subsets of a sample space ft. Thus, ifP is a normed 
measure over a measurable space (a,_~#), the probabibty of A is defined as P(A), 
the measure of.4, and is a number in the interval [0, I]. 

There are many real-world problems in which one or more of the basic 
assumptions which are implicit in the above definition are violated. First, the 
event, A, is frequently ill-defined, as in the question, “What is the probability 
that it will be a warm day tomorrow ?” In this instance, the event warm day 

is a fuzzy event in the sense that there is no sharp dividing line between its 
occurrence and nonoccurrence. As shown in [48], such an event may be char- 
acterized as a fuzzy subset, A, of the sample space Q, with tiA , the membership 
function of A, being a measurable function. 

Second, even if A is a well-defined nonfuzzy event, its probability, P(A), 
may be ill-defined. For example, in response to the question, “What is the 
probability that the Dow Jones average of stock prices will be higher in a 
month from now?” it would be patently unreasonable to give an unequivocal 
numerical answer, e.g., 0.7. In this instance, a vague response like “quite 
probable,” would be much more commensurate with our lack of understanding 
of the dynamics of stock prices, and hence a more realistic-if less precise- 
characterization of the probability in question. 
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The limitations imposed by the assumption that A is well-defined may be 
removed, at least in part, by allowing A to be a fuzzy event, as was done in 
[48]. Another and perhaps more important step that can be taken to widen 
the applicability of probability theory to ill-defined problems is to allow P to 
be a linguistic variable in the sense defined in Part II, Sec. 3. In what follows, 
we shall outline a way in which this can be done and explore some of the 
elementary consequences of allowing P to be a linguistic variable. 

LINGUISTIC PROBABILITIES 

To simplify our exposition, we shall assume that the object of our concern 
is a variable, X, whose universe of discourse, U, is a finite set 

u=u1 tu* t---tun. (1.1) 

Furthermore, we assume that the restriction imposed by X coincides with II. 
Thus, any point in U can be assigned as a value to X. 

With each ui, i = 1, . . . , n, we associate a linguistic probability, pi, which 
is a Boolean linguistic variable in the sense of Part II, Definition 2.2, with 
pi, 0 G Pi d 1, representing the base variable for&@{. For concreteness, we 
shall assume that V, the universe of discourse associated with ‘gi, is either the 
unit interval [0, I] or the finite set 

V=OtO.l t.**to.9+ 1. (l-2) 

Using 48 as a generic name for the .J?~, the term-set for @will typically be 
the following. 

T(9) = likely + not likely t unlikely + very likely t more or less likely 
+ very unlikely t - * * 
+ probable + improbable + very probable t . . . 
t neither very probable nor very improbable + . ’ . 
+closetoOtcloseto0.1 t-*.tcloseto 1 t..- 
+ very close to 0 t very close to 0.1 t . . . , (1.3) 

in which likely, probable and close to play the role of primary terms. 
The shape of the membership function of likely will be assumed to be like 

that of true [see Part II, Eq. (3.2)] , with not likely and unlikely defined by 

p~cH likely @) = ’ - plikely @)y (1.4) 
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and 

p unlikely @) = plikely c1 - p), (1.5) 

where p is a generic name for the pi. 

EXAMPLE 1.1. A graphic example of the meaning attached to the terms 

likely, not likely, very likely and unlikely is shown in Fig. 1. In numerical terms, 

if the primary term likely is defined as 

likely = 0.5/0.6 + 0.710.7 t 0.910.8 t l/0.9 t l/l, (1.6) 

then 

not likely = l/(0 t 0.1 t 0.2 t 0.3 t 0.4 t 0.5) t 0.510.6 t 0.310.7 t 0.1/0.8, 

(1.7) 

unlikely = l/O + l/O.1 + 0.910.2 t 0.710.3 t OS/O.4 (1.8) 

and 

very likely = 0.2510.6 t 0.4910.7 t 0.81/0.8 t 110.9 t l/l. (1.9) 

‘P Unlikely 

Not likely 

I 

Fig. 1. Compatibility functions of likely. nof 
likely, unlikely and very likely. 

The term probable will be assumed to be more or less synonymous with 
likely. The term close to a, where (Y is a point in [0, l] , will be abbreviated as 
2 or, alternatively, as “o?,l suggesting that (Y is a “best example” of the fuzzy 
set “cY”. In this sense then > > 

‘The symbol “or” will be employed in place of zwhen the constraints imposed by type- 

setting dictate its use. 
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likely 4 close to 1 2 ” 1”) 

unlikely 4 close to 0 4 “O”, 

close to 0.8 4 “0.8” = 0.610.7 t l/O.8 t 0.610.9, 

(1.10) 

(1.11) 

(1.12) 

from which it follows that 

very close to 0.8 = very “0.8” 

= ((‘0.8”)* [in the sense of Part II, Eq. (2.38)] 

= 0.3610.7 + l/O.8 t 0.36lO.9. 

A particular term in T(p) will be denoted by Tj, or T.i in case a double sub- 
script notation is needed. Thus, if T4 = very likely, then + 43 would indicate that 

very likely is assigned as a value to the linguistic variable @‘a . 
The n-ary linguistic variable (_~?r , . . . , _CPn) constitutes a linguistic probability 

assignment list associated with X. A variable X which is associated with a lin- 

guistic probability assignment list will be referred to as a linguistic random 
variable. By analogy with linguistic truth-value distributions [see Part II, Eq. 

(3.74)] , a collection of probability assignment lists will be referred to as a lin- 
guistic probability distribution. 

The assignment of a probability-value Ti to Pi may be expressed as 

Pi = q., (1.13) 

where Pi is used in a dual role as a generic name for the fuzzy variables which 

comprise S@ i. For example, we may write 

P3 = T4 

= very likely (1.14) 

in which case very likely will be identified as T,, (i.e., T4 assigned to P3). 
An important characteristic of the linguistic probabilities P, , . . . , P, is that 

they are P-interactive in the sense of Part II, Definition 3.2. The interaction 
between the Pj is a consequence of the constraint (+ 4 arithmetic sum) 

p1 tpz +.*.+p, = 1, (1.15) 

in which the pi are the base variables (i.e., numerical probabilities) associated 
with the Pi. 
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More concretely, let R@i + . . . + p, = 1) denote the nonfuzzy n-ary relation 

in [0, l] X . * . X [0, l] representing (1.15). Furthermore, let R(P$ denote the 

restriction on the values of pi. Then the restriction imposed by the n-ary fuzzy 

variable (Pr, . . . , P,) may be expressed as 

R(P,,... ,P,)=R(P,)X... XR(P,JnRR(pr +...tp, = 1) (1.16) 

which implies that, apart from the constraint imposed by (1.15), the fuzzy 

variables Pi, . , P, are noninteractive. 

EXAMPLE 1.2. Suppose that 

PI = likely 

= O.SlO.8 •t 0.810.9 •t l/l 

and 

P2 = unlikely 

= l/O •t 0.810.1 t 0.5/0.2. (1.18) 

(1.17) 

Then 

R(P,) X R(P,) = likely X unlikely 

= (O.SlO.8 + 0.8/0.9 + l/l) X (l/O + 0.8/0.1 •t 0.5/0.2) 

= 0.5/(0.8,0) + 0.8/(0.9,0) + l/(1,0) 

+ 0.5/(0.8,0.1) + 0.8/(0.9,0.1) + 0.8/(1,0.1) 

+ 0.5/(0.8,0.2) + 0.5/(0.9,0.2) + 0.5/(1,0.2). (1.19) 

As for R(pl + . . . + p,, = l), it can be expressed as 

R(pr + p2 = 1) = c ll(k, l-k), k=O,O.l,..., 0.9,1, (1.20) 

k 

and forming the intersection of (1 .19) and (1.20), we obtain 

R(P1,P2) = l/(1,0) t 0.8/(0.9,1)+ 0.5/(0.8,0.2) (1.21) 

as the expression for the restriction imposed by (PI, P2). Obviously, R(Pr , P2) 
comprises those terms in R(P, ) X R(P,) which satisfy the constraint (1.15). 
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REMARK 1.1. It should be observed that R(Z’i,P,) as expressed by (1.21) 
is a normal restriction [see Part I, Eq. (3.23)]. This will be the case, more 

generally, when the Pi are of the form 

Pi = “q,“, i=l,...,n (1.22) 

andq, +*..tq, = 1. Note that in Example 1.2, we have 

p, = “I”, (1.23) 

pz = “0” (1.24) 

and 

1+0=1. (1.25) 

COMPUTATION WITH LINGUISTIC PROBABILITIES 

In many of the applications of probability theory, e.g., in the calculation 

of means, variances, etc., one encounters linear combinations of the form 

(t 4 arithmetic sum) 

z=ulpl +“*+anpn, (1.26) 

where the ai are real numbers and the pi are probability-values in [0, 11. Com- 

putation of the value of z given the ai and the pi presents no difficulties when 

the pi are points in [0, 11. It becomes, however, a nontrivial problem when 

the probabilities in question are linguistic in nature, that is, when 

Z=aIPI +..*+a P n n’ (1.27) 

where the Pi represent linguistic probabilities with names such as likely, un- 
likely, very likely, close to ~1, etc. Correspondingly, Z is not a real number-as 
it is in (1.26)-but a fuzzy subset of the real line W 4 (- 00, -), with the mem- 
bership function of Z being a function of those of the Pi. 

Assuming that the fuzzy variables PI, . . . , P,, are noninteractive [apart from 
the constraint expressed by (1 .I S)] , the restriction imposed by (PI, . . , , P,) 
assumes the form [see (1.16)] 

R(P, I..., P,)=R(P,)X.*.XR(P,)nR(p, t...tp,= 1). (1.28) 

Let i-&l?. . . , p,) be the membership function of R(P,, . . . , P,), and let 
pi’i(pi) be that of R(Pi), i = 1, . . . , n. Then, by applying the extension principle 



LINGUISTIC VARIABLE III 49 

[Part I, Eq. (3.90)] to (1.26) we can express 2 as a fuzzy set (t 4 arithmetic 

sum) 

which in view of (1.28) may be written as 

Z= s p1cp1) A.. ‘A ~,(P,>l(~lPl +. . +z,P,) (1.30) 

W 

with the understanding that the pi in (1.30) are subject to the constraint 

pi t...tp, = 1. (1.31) 

In this way, we can express a linear combination of linguistic probability-values 

as a fuzzy subset of the real line. 

The expression for Z may be cast into other forms which may be more con- 

venient for computational purposes. Thus, let M(Z) denote the membership 
function of Z, with z E W. Then (1.30) implies that 

(1.32) 

subject to the constraints 

z = alpI +-+anpn. (1.33) 

p1 t-tp, = 1. (1.34) 

In this form, the computation of Z reduces to the solution of a nonlinear pro- 

gramming problem with linear constraints. In more explicit terms, this problem 
may be expressed as: Maximize z subject to the constraints (t 4 arithmetic 

sum) 

(1.35) 

z=alpl +..*+anpn, 

p1 +.a-tp, = 1. 
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EXAMPLE 1.3. As a very simple illustration, assume that 

PI = likely (1.36) 

and 

where 

and 

Thus [see (IS)] 

P2 = unlikely, (1.37) 

I- 
1 

likely = plikely @)lP (1.38) 
0 

unlikely = 1 likely (1.39) 

(1.40) 

Suppose that we wish to compute the expectation (t b arithmetic sum) 

Z = a, likely + az unlikely. (1.41) 

Using (1.32), we have 

/*(‘)‘“pl,pz %kely ~1)Apunlikely~2)~ 

subject to the constraints 

(1.42) 

z =alpl +w2, 

Pl +p2 = 1. 

Nowinviewof(1.40),ifpI tp2 = 1,then 

~likely071)=~unlikely~2)’ 

and hence (1.42) reduces to 

(1.43) 

(1.44) 
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Z =UI~I +Qz(l -PI), 

or, more explicitly, 

51 

(1.45) 

(1.46) 

This result implies that the fuzziness in our knowledge of the probability pr 

induces a corresponding fuzziness in the expectation of [see Fig. 21 

p Likely 

Fig. 2. Computation of the linguisticvalue ofalp +a2pz. 

If the universe of probability-values is assumed to be V = 0 + 0.1 + . . . + 0.9 

+ 1, then the expression for 2 can be obtained more directly by using the ex- 
tension principle in the form given in Part I, Eq. (3.97). As an illustration, 

assume that 

Pr = “0.3” = 0.810.2 + l/O.3 + 0.610.4, (1.47) 

Pz = “0.7” = 0.810.6 + l/O.7 + 0.610.8, (1.48) 

and (0 0 arithmetic sum) 
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Z = alp1 0 a2P2, (1.49) 

where the symbol 0 is used to avoid confusion with the union. 

On substituting (1.47) and (1.48) in (1.49), we obtain 

Z=a1(0.8/0.2 t l/O.3 t 0.6/0.4) 0 a*(0.8/0.6 t l/O.7 t 0.6/0.8) 

=(0.8/0.2a, t 1/0.3ar + 0.6/0.4al) 0 (0.8/0.6a2 + 1/0.7az +0.6/0.8a2). 

(1.50) 

In expanding the right-hand side of (1 SO), we have to take into account the 
constraint pr + p2 = 1, which means that a term of the form 

(1.51) 

evaluates to 

til/plal Q p2Ip2a2 = ~11 A ,u2lhal Q P2a2) ifpr i-p2 = 1 

= 0 otherwise. (1.52) 

In this way, we obtain 

Z = 1/(0.3al 0 0.7a2) + 0.6/(0.2aI 0 0.8a2) + 0.6/(0.4al 0 0.6a2),(1.53) 

which expresses Z as a fuzzy subset of the real line W = (- 00, -). 

AVERAGES OVER FUZZY SETS 

Our point of departure in the foregoing discussion was the assumption that 
with each point ui of a finite2 universe of discourse U is associated a linguistic 
probability-value Pi which is a component of a linguistic probability distribution 
(.%...M~). 

In this context, a fuzzy subset,A, of U plays the role of afuzzy event. Let 
pA (ui) be the grade of membership of ui in A. Then, if the Pi are conventional 
numerical probabilities pi, 0 dp, Q 1, then the probability of A, P(A), is de- 
fined as (see [48] ; h + = arithmetic sum) 

2The assumption that lJ is a finite set is made solely for the purpose of simplifying our 
exposition. More generally, lJ can be a countable set or a continuum. 
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W=F&h +“~+~/&QP,. (1.54) 

It is natural to extend this definition to linguistic probabilities by defining 

the linguistic probability3 of A as 

P(-KI=I_1A(ur)Pr +--+/$J~n)~n (1.55) 

with the understanding that the right-hand side of (1.55) is a linear form in the 

sense of (1.27). In connection with (1.55), it should be noted that the constraint 

p1 t-+p,=1 

on the underlying probabilities, together with the fact that 

(1.56) 

oq_l,&+ 1, i=l,...,n, 

insures that P(A) is a fuzzy subset of [0, 11. 

EXAMPLE 1.4. As a very simple illustration, assume that 

U=atb+c. 

A = 0.4atb +O.~C, 

P, = “0.3” = 0.610.2 + l/O.3 + 0.610.4, 

Pb = “0.6” = 0.610.5 t l/0.6 t 0.610.7, 

PC = “0.1” = 0.6/O + l/O.1 + 0.6/0.2. 

(1.57) 

(1.58) 

(1.59) 

(1.60) 

(1.61) 

Then (0 4 arithmetic sum) 

P(A)= 0.4(0.6/0.2 + l/O.3 + 0.6/0.4)0(0.6/0.5 + l/0.6+0.6/0.7) 

0 0.8 (0.6/O t l/O.1 + 0.6/0.2), (1.62) 

subject to the constraint 

Pl +pz +p3 = 1. (1.63) 

‘It should be noted that the computation of the right-hand side of (1.55) definesP(A) 

as a fuzzy subset of [0, 1 ] In general, a linguistic approximation would be needed to ex- 

press P(A) as a linguistic probability-value. 
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Picking those terms in (1.62) which satisfy (1.63), we obtain 

L. A. ZADEH 

P(A) = 0.6/(0.4 X 0.2 0 0.6 0 0.8 X 0.2) 

t 0.6/(0.4 X 0.2 00.7 0 0.8 X 0.1) 

t 0.6/(0.4 X 0.3 0 0.5 0 0.8 X 0.2) 

t l/(0.4 X 0.3 0 0.6 0 0.8 X 0.1) 

t 0.6/(0.4 X 0.3 0 0.7) 

t 0.6/(0.4 X 0.4 0 0.5 0 0.8 X 0.1) 

t 0.6/(0.4 X 0.4 0 0.6) 

which reduces to 

(1.64) 

P(A) = 0.6/(0.84 to.86 + 0.78 + 0.82 + 0.74) + l/0.8, (1.65) 

and which may be roughly approximated as 

P(A) = “0.8”. (1.66) 

The linguistic probability of a fuzzy event as expressed by (1.55) may be 
viewed as a particular instance of a more general concept, namely, the linguistic 
average or, equivalently, the linguistic expectation of a function (defined on U) 

over a fuzzy subset of U. More specifically, letfbe a real-valued function de- 

fined on U; let A be a fuzzy subset of U; and let PI, . . . , P,, be the linguistic 

probabilities associated with u 1, . . . , un , respectively. Then, the linguistic 
average off over A is denoted by AvCf;A) and is defined by (t 4 arithmetic 

sum) 

A concrete example of (1.67) is the following. Assume that individuals 
namedur,. . . , un are chosen with linguistic probabilities P, , _ . , , P,, , with 
Pi being a restrictron on pi, i = 1, . . . , n. Suppose that ui is fined an amount 
f(u$, which is scaled down in proportion to the grade of membership of ui in 
a class A. Then, the linguistic average (expected) amount of the fine will be 
expressed by (1.67). 

COMMENT 1.1. Note that (1.67) is basically a linear combination of the 
form (1.27) with 
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(1.68) 

Thus, to evaluate (1.67), we can employ the technique described earlier for 

the computation of linear forms in linguistic probabilities. In particular, it 
should be noted that, in the special case where f(ui) = 1, the right-hand side 

of (1.67) becomes 

and Av(f;A) reduces to P(A). 

In addition to subsuming the expression for P(A), the expression for Av(f;A) 

subsumes as special cases other types of averages which occur in various appli- 

cations. Among them there are two that may be regarded as degenerate forms 

of (1.67) and which are encountered in many problems of practical interest. 

In what follows, we shall dwell briefly on these averages and, for convenience 

in exposition, will state their definitions in the form of answers to questions. 

QUESTION 1 .l. What is the number of elements in a given fuzzy set A? 

Clearly, this question is not well posed, since in the case of a fuzzy set the 
dividing line between membership and nonmembership is not sharp. Never- 

theless, the concept of the power of a fuzzy set [49], which is defined as 

(1.70) 

appears to be a natural generalization of that of the number of elements in A. 
As an illustration of ) A 1, suppose that U is the universe of residents in a 

city, and A is the fuzzy set of the unemployed in that city. If pA (ui) is inter- 
preted as the grade of membership of an individual, ui, in the class of the un- 

employed [e.g., F~ (ui) = 0.5 if ui is working half-time and is looking for a 

full-time job] , then 1 A 1 may be interpreted as the number of full-time equiva- 
lent unemployed. 

QUESTION 1.2. Suppose that f is a real-valued function defined on U. What 
is the average value off over a fuzzy subset, A, of U? 

Using the same notation as in (1.67), let Av(fL4) denote the average value 

off over A. If A were nonfuzzy, Avcf;A) would be expressed by 

x uiEA f(“i) 
M&4)= ,Ar , (1.71) 
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where C, EA is the summation over those ui which are in A, and 1 A ( is the 

number elf the ui which are in A. To extend (1.71) to fuzzy sets, we note that 
(1.71) may be rewritten as 

x 
Ave.4) = 

~~Euf(~j)pA (“i) 

z1 uiEll llA (5) ’ 
(1.72) 

where bA is the characteristic function of A. Then, we adopt (1.72) as the 
definition of Av(GI) for a fuzzy A by interpreting ll~ (ui) as the grade of 
membership of ui in A. In this way, we arrive at an expression for AvCf;A) 
which may be viewed as a special case of (1.67). 

As an illustration of (1.72), suppose that U is the universe of residents in a 
city and A is the fuzzy subset of residents who are young. Furthermore, assume 
that f(ui) represents the income of ui. Then, the average income of young 
residents in the city would be expressed by (1.72). 

COMMENT 1.2. Since the expression for 1 A 1 is a linear form in the pA (ui), 
the power of a fuzzy set of type 2 (see Part I, Definition 3.1) can readily 
be computed by employing the technique which we had used earlier to compute 
P(A). In the case of Av(+l), however, we are dealing with a ratio of linear 
forms, and hence the computation of Avv;‘A) for fuzzy sets of type 2 presents 
a more difficult problem. 

In the foregoing discussion, our very limited objective was to indicate that 
the concept of a linguistic variable provides a basis for defining linguistic proba- 
bilities and, in conjunction with the extension principle, may be applied to the 
computation of linear forms in such probabilities. We shall not dwell further on 
this subject and, in what follows, will turn our attention to a basic rule of in- 
ference in fuzzy logic. 

2. COMPOSITIONAL RULE OF INFERENCE 
AND APPROXIMATE REASONING 

The basic rule of inference in traditional logic is the modus ponens, according 
to which we can infer the truth of a proposition B from the truth of A and the 
implication A * B. For example, if A is identified with “John is in a hospital,” 
and B with “John is ill,” then if it is true that “John is in a hospital,” it is also 
true that “John is ill.” 

In much of human reasoning, however, modus ponens is employed in an 
approximate rather than exact form. Thus, typically, we know that A is true and 
that A * *B, where A * is, in some sense, an approximation to B. Then, from A 
and A * * B we may infer that B is approximately true. 
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In what follows, we shall outline a way of formalizing approximate reasoning 
based on the concepts introduced in the preceding sections. However, in a de- 
parture from traditional logic, our main tool will not be the modus ponens, but 
a so-called compositional rule of inference of which modus ponens forms a very 
special case. 

COMPOSITIONAL RULE OF INFERENCE 

The compositional rule of inference is merely a generalization of the following 
familiar procedure. Referring to Fig. 3, suppose that we have a curve y = f(x) and 
are given x = a. Then from y = f(x) and x = a, we can infer y 4 b = f(a). 

Next, let us generalize the above process by assuming that a is an interval and 
f(x) is an interval-valued function such as shown in Fig. 4. In this instance, to 
find the intervaly 4 b which corresponds to the interval a, we first construct a 
cylindrical set, & with base a [see Part I, Eq. (3.58)] and find its intersection, 1, 
with the interval-valued curve. Then we project the intersection on the OY axis, 
yielding the desired y as the interval b. 

b 

I 
a 

Fig. 3. Infering y = b from x = a and y = f(x). 

b 

a 

Fig. 4. Illustration of the compositional rule of in- 

ference in the case of interval-valued variables. 
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Going one step further in our chain of generalizations, assume that A is a 
fuzzy subset of the OX axis and F is a fuzzy relation from OX to OY. Again, 
forming a cyIindrica1 fuzzy set x with base A and intersecting it with the 
fuzzy relation F (see Fig. S), we obtain a fuzzy set x n F which is the analog 
of the point of intersection I in Fig. 3. Then, projecting this set on OY, we 
obtainy as a fuzzy subset of OY. In this way, fromy = f(x) and x 4 A (fuzzy 
subset of OX), we infer y as a fuzzy subset, B, of OY. 

I 
0 V 

A 
X 

Fig. 5. Illustration of the compositional rule of 
inference fox fuzzy variables. 

More specifically, let Pi, ~2, pF and pB denote the membership functions 
of A, 2, F and B, respectively. Then, by the definition of 2 [see Part I, Eq. 

(3.58)] 

and consequently 

~,nF(x,Y)=CIA(x,Y)A~~(X,Y) 

= PA WmJ&~Y). (2.2) 

Projecting 2 n F on the OY axis, we obtain from (2.2) and from Eq. (3.57) 
of Part I 

P&J> =v& (xmu&Y) (2.3) 

as the expression for the membership function of the projection (shadow) of 
2 n F on OY. Comparing this expression with the definition of the composition 
of A and F [see Part I, Eq. (3.55)], we see that B may be represented as 
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B=A°F, (2.4) 

where o denotes the operation of composition. As stated in Part I, Sec. 3, this 

operation reduces to the max-min matrix product when A and F have finite 
supports. 

EXAMPLE 2.1. Suppose that A and F are defined by 

A = 0.2/l + l/2 f 0.3/3 (2.5) 

and 

F=0.8/(1,1)+0.9/(1,2)+0.2/(1,3) 

+ 0.6/(2,1) + l/(2,2) + 0.4/(2,3) 

t 0.5/(3,1) + 0.8/(3,2)+ l/(3,3). (2.6) 

Expressing A and F in terms of their relation matrices and forming the matrix 

product (2.4), we obtain 

F 

A 0.8 0.9 0.2 

[ 1 
B 

[0.2 1 0.31 0 0.6 1 0.4 = [0.6 1 0.41 . (2.7) 

0.5 0.8 1 

The foregoing comments and examples serve to motivate the following rule 

of inference. 

RULE 2.1. Let U and V be two universes of discourse with base variables 

u and V, respectively. Let R(u), R(u, v) and R(v) denote restrictions on u, (u, V) 

and V, respectively, with the understanding that R(u), R(u, v) and R(v) are fuzzy 

relations in U, (IX V and V. Let A and F denote particular fuzzy subsets of 

U and U X V. Then the compositional rule of inference asserts that the solution 

of the relational assignment equations 

R(u) = A (2.8) 

and 

is given by 

R&v) = F (2.9) 
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R(v)=A”I;: (2.10) 

where A 0 F is the composition of A and F. In this sense, we can infer R(v) = 
A 0 F from R(u) = A and R(u, v) = F. 

As a simple illustration of the use of this rule, assume that 

U=V=lt2+3+4, (2.11) 

(2.12) 

and 

A = small = l/l + 0.6/2 + 0.2/3 

F = approximately equal 

= l/(l,l) + l/(2,2) + l/(3,3) + l/(4,4) 

+ 05/1(l,2)+(2,l)+(2,3)+(3,2)+(3,4)+(4,3)1. (2.13) 

In other words, A is unary fuzzy relation in U named small and F is a binary 

fuzzy relation in U X V named approximately equal. 
The relational assignment equations in this case read 

R(u) = small, (2.14) 

R(u, u) = approximately equal (2.15) 

and hence 

R(v) = small a approximately equal 

= [l 0.6 0.5 0.21 

which may be approximated by the linguistic term 

(2.16) 

R(v) = more or less small 

if more or less is defined as a fuzzifier [see Part I, Eq. (3.48)] , with 

(2.17) 
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K(1) = l/l + 0.7/2, 

K(2) = l/2 + 0.7/3, 

K(3) = l/3 + 0.7/4, 

K(4) = l/4. (2.18) 

Note that the application of this fuzzifier to R(u) yields 

[l 0.7 0.42 0.141 (2.19) 

as an approximation to [l 0.6 0.5 0.21. 

In summary, then, by using the compositional rule of inference, we have 

infered from R(u) = small and R(u, v) = approximately equal 

R(v) = [l 0.6 0.5 0.21 exactly (2.20) 

R(v) = more or less small as a linguistic approximation. (2.21) 

Stated in English, this approximate inference may be expressed as 

u is small 

u and v are approximately equal 

premiss 

premiss 

v is more or less small approximate conclusion. (2.22) 

The general idea behind the method sketched above is the following. Each 
fact or a premiss is translated into a relational assignment equation involving 

one or more restrictions on the base variables. These equations are solved for 
the desired restrictions by the use of the composition of fuzzy relations. The 

solutions to the equations then represent deductions from the given set of 

premisses. 

MODUS PONENS AS A SPECIAL CASE 

OF THE COMPOSITIONAL RULE OF INFERENCE 

As we shall see in what follows, modus ponens may be viewed as a special 
case of the compositional rule of inference. To establish this connection, we 
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shall first extend the notion of material implication from propositional variables 

to fuzzy sets. 
In traditional logic, the material implication =$ is defined as a logical con- 

nective for propositional variables. Thus, if A and B are propositional variables, 

the truth table for A =$ B or, equivalently, IF A THEN B, is defined by 

Table 1 (see Part II, Table 2). 

TABLE 1 

T F 

T TF 

F T T 

In much of human discourse, however, the expression IF A THEN B is used 

in situations in which A and B are fuzzy sets (or fuzzy predicates) rather than 

propositional variables. For example, in the case of the statement IF John is ill 

THEN John is cranky, which may be abbreviated as ill * cranky, ill and cranky 
are, in effect, names of fuzzy sets. The same is true of the statement IF apple is 

red THEN apple is ripe, where red and ripe play the role of fuzzy sets. 
To extend the notion of material implication to fuzzy sets, let U and V be 

two possibly different universes of discourse and let A, B and C be fuzzy subsets 

of U, V and I’, respectively. First we shall define the meaning of the expression 

IF A THEN B ELSE C, and then we shall define IF A THEN B as a special case 

of IF A THEN B ELSE C. 

DEFINITION 2.1. The expression IF A THEN B ELSE C is a binary fuzzy 

relation in U X V defined by 

IFA THENBELSEC=A XB+lA X C (2.23) 

That is, if A, B and C are unary fuzzy relations in fJ, V and V, then IF A THEN 
B ELSE C is a binary fuzzy relation in U X V which is the union of the Cartesian 
product ofA and B [see Part I, Eq. (3.45)] and the Cartesian product of the 
negation of A and C. 

Now IF A THEN B may be viewed as a special case of IF A THEN B ELSE 

C which results when C is allowed to be the entire universe V. Thus 

IF A THEN B g IF A THEN B ELSE I’ 

=AXB+lAX V. (2.24) 
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In effect, this amounts to interpreting IF A THEN B as IF A THEN B ELSE 
don ‘t care. 4 

It is helpful to observe that in terms of the relation matrices of A, B and C, 
(2.23) may be expressed as the sum of dyadic products involving~ and B (and 
1 A and C) as column and row matrices, respectively. Thus, 

IFA THENBELSEC= [ B ]+ 1 A [ C 1. [I (2.25) 

EXAMPLE 2.2. As a simple illustration of (2.23) and (2.24), assume that 

u=v=1+2+3, (2.26) 

A = small = l/l t 0.412, (2.27) 

B = large = 0.412 + l/3, (2.28) 

C = not large = l/l t 0.612. (2.29) 

Then 

IF A THEN B ELSE C= (l/l + 0.4/2) X (0.4/2 + l/3) + (0.6/2 + I/3) X (I/I 

+ 0.612) 

= 0.4/(1,2) t l/(1,3) + 0.6/(2,1) + 0.6/(2,2) 

+ 0.4/(2,3) + l/(3,1) + 0.6/(3,2). (2.30) 

which, represented as a relation matrix, reads 

IF A THENB ELSE C= (2.32) 

Similarly 

IF A THENB = (l/l + 0.4/2) X (0.4/2 + I/3) + (0.6/2 + l/3) X (I/I + I/2 + I/3) 

= O-4/(1,2) + l/(1,3) f 0.6/(2,1) f 0.6/(2,2) 

t 0.6/(2,3) + I/(3,1) + I/(3,2) + l/(3,3), 
-- 

4A” alternative ~terpretation that is consistent with Lukasiewicz’s definition of 

implication 1461 is expressed by IF A THEN B !?l(A X V) &, (U X B), where the 

operation @(bounded-sum) is defined for fuzzy sets P, Q by /.,tp e ,4 1 A (/.$ + pQ), 

with + denoting the arithmetic sum. More generally, IF A THEN B ELSE C 

g(l(A x V)@(UXB)] n((A x V) @tUxC’)]. 
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or equivalently 
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(2.32) 

COMMENT 2.1. It should be noted that in defining IF A THEN 5 by (2.24) 

we are tacitly assuming that A and B are noninteractive in the sense that there 

is no joint constraint involving the base variables u and Y. This would not be 

the case in the nonfuzzy statement IF u E A THEN u E B, which may be ex- 

pressed as IF u EA THEN v E B, subject to the constraint u = v. Denoting this 

constraint by R(u = v), the relation representing the statement in question 

would be 

IFuEATHENuEB$XB+lAX V)n[R(u=v)]. (2.33) 

REMARK 2.1. In defining A =$ B, we assumed that IF A THEN B is a 
special case of IF A THEN B ELSE C resulting from setting C = V. If we set 

C equal to 19 (empty set) rather than V, the right-hand side of (2.23) reduces 

to the Cartesian product A X B-which may be interpreted as A COUPLED 

WITH B (rather than A ENTAILS B). Thus, by definition, 

A COUPLED WITH B 4 A X B, (2.34) 

and hence 

A *B 4 A COUPLED WITH B plus 1 A COUPLED WITH V. (2.35) 

More generally, an expression of the form 

Al XB, +-+AnXBn (2.36) 

would be expressed in words as 

AI COUPLED WITH Bi plus . . . plus An COUPLED WITH B, . (2.37) 

It should be noted that expressions such as (2.37) may be employed to repre- 
sent a fuzzy graph as a union of fuzzy points (see Fig. 6). For example, a fuzzy 

graph G may be represented as 

G = “ul ” X “v1 ” + “uz ” X “+ ” + . . . + “u, ” X “,,/‘, (2.38) 

where the ui and vi are points in U and V, respectively, and “z.+” and “vi”, i = 
1 9 . . . , n, represent fuzzy sets named close to ui and close to vi [see (1.12)] . 

COMMENT 2.2. The connection between (2.24) and the conventional 
definition of material implication becomes clearer by noting that 

1AXBClAXV (2.39) 
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Fig. 6. Representation of a fuzzy graph as a 
union of fuzzy points. 

and hence that (2.24) may be rewritten as 

IFATHENB=AXBtlAXB+lAXV 

=(AtlA)XBtlAXV. (2.40) 

Now, if A is a nonfuzzy subset of U, then 

A+lA=U, (2.41) 

and hence IF A THEN B reduces to 

IFATHENB=UXB+lAX I’, (2.42) 

which is similar in form to the familiar expression for A *B in the case of 

propositional variables, namely 

A-B-1AvB. (2.43) 

Turning to the connection between modus ponens and the compositional 

rule of inference, we first define a generalized modus ponens as follows. 

DEFINITION 2.2. Let Al, AZ and B be fuzzy subsets of U, U and V, re- 

spectively. Assume that A 1 is assigned to the restriction R(u), and the relation 
A2 * B [defined by Eq. (3.24) of Part I] is assigned to the restriction R(u, v). 
Thus 

!+)=A,, (2.44) 

R(u,v)=A* -B. (2.45) 

As was shown earlier, these relational assignment equations may be solved 
for the restriction on v, yielding 

R(v)=A, o(A~ *B). (2.46) 
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An expression for this conclusion in the form 

premiss (2.47) 

AZ =‘B implication (2.48) 

AI o (AZ *B) conclusion (2.49) 

constitutes the statement of the generalized modus ponens. ’ 

COMMENT 2.3. The above statement differs from the traditional modus 
ponens in two respects: First, AI, AZ and B are allowed to be fuzzy sets, and 
second, Al need not be identical with A*. To check on what happens when 
A, = AZ = A and A is nonfuzzy, we substitute the expression for AZ *B in 
(2.46) yielding 

A”(A=‘B)=A”(AXB+lAX V) 

= A, AC B, + A, (1 AC) V,, (2.50) 

where r and c stand for row and column, respectively; A, and AC denote the 
relation matrices for A expressed as a row matrix and a column matrix, re- 
spectively; and the matrix product is understood to be taken in the max-min 
sense. 

Now, since A is nonfuzzy, 

A, (1 AC> = 0, (2.5 1) 

and so long as A is normal [see Part I, Eq. (3.23)] 

A,AC = 1. (2.52) 

Consequently 

AO(A *B)=B, (2.53) 

which agrees with the conclusion yieled by modus ponens. 

EXAMPLE 2.3. As a simple illustration of (2.49), assume that 

u=v=1+2t3, (2.54) 

‘The generalized modus ponens as defined here is unrelated to probabilistic rules of in- 

ference. A discussion of such rules and related issues may be found in [SO] . 
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AZ = small = l/l t 0.412, 

A, = more or less small = l/l t 0.412 + 0.213 

and 

B = large = 0.412 + l/3. 

Then (see (2.32)) 

0 

[ 0.6 

0.4 1 

smaN*large = 0.6 1 1 0.6 1 1 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

and 

0 0.4 1 

more or less small o (small * large) = [ 1 0.4 0.21 o 0.6 0.6 0.6 

1 1 1 

= [0.4 0.4 11) (2.59) 

which may be roughly approximated as more or less large. Thus, in the case 

under consideration, the generalized modus ponens yields 

u is more or less small 

IF u is small THEN v is large 

premiss 

implication 
(2.60) 

v is more or less large approximate conclusion 

COMMENT 2.4. Because of the way in which A *B is defined, namely, 

A*B=AXB+lAX V. 

the grade of membership of a point (u, v) will be high in A + B if the grade of 
membership of u is low in A. This gives rise to an overlap between the terms 
A X B and 1 A X V when A is fuzzy, with the result that [see (2..50)] , the 
inference drawn from A and A *B is not B but6 

6We assume that A is normal, so that A,Ac = 1. 
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Ao(A=,B)=BtA"(lAX V), (2.61) 

where the difference term A o (1 A X V) represents the effect of the overlap. 

To avoid this phenomenon it may be necessary to define A * B in a way that 
differentiates between the numerical truth-values in [0, I] and the truth-value 
unknown [see Part II, Eq. (3.52)] . Also, it should be noted that for A COUPLED 
WITH B [see (2.34)], we do have 

A 0 (A COUPLED WITH B) = B (2.62) 

so long as A is a normal fuzzy set. 

FUZZY THEOREMS 

By a fuzzy theorem or an assertion we mean a statement, generally of the 
form IF A THEN B, whose truth-value is true in an approximate sense and 
which can be inferred from a set of axioms by the use of approximate reasoning, 
e.g., by repeated application of the generalized modus ponens or similar rules. 

As an informal illustration of the concept of a fuzzy theorem, let us con- 
sider the theorem in elementary geometry which asserts that if Mr , M2 and Ma 
are the midpoints of the sides of a triangle (see Fig. 7), then the lines AMr, BM2 
and CM3 intersect at a point. 

A 

Fig. 7. An elementary theorem ingeometry. 

FUZZY THEOREM 2.1. Let AB, BCartd CA be approximate straight lines 
which form an approximate equilateral triangle with vertices A, B, C (see Fig. 8). 
Let MI, Mz and M3 be approximate midpoints of the sides BC, CA and AB, 
respectively. Then the approximate straight lines AM,, BM2 and CM, jbrm an 
approximate triangle T1 T2 T3 which is more or less (more or less small) in 
relation to ABC. 
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Fig. 8. A fuzzy theorem in geometry. 

Before we can proceed to “prove” this fuzzy theorem, we must make more 

specific the sense in which the terms approximate straight line, approximate 

midpoint, etc. should be understood. To this end, let us agree that by an 

approximate straight line AB we mean a curve passing through A and B such 

that the distance of any point on the curve from the straight line AB is small 
in relation to the length of AB. With reference to Fig. 9, this implies that we are 

assigning a linguistic value small to the distance d, with the understanding that 

d is interpreted as a fuzzy variable. 

Fig. 9. Definition of approximately straight line. 

Let (AB)’ denote the straight line AB. Then, by an approximate midpoint 

of AB we mean a point on AB whose distance from My, the midpoint of (AB)‘, 

is small. 
Turning to the statement of the fuzzy theorem, let 0 be the intersection of 

the straight lines (AM;)’ and (BM:)” (Fig. 10). Since MI is assumed to be an 
approximate midpoint of BC, the distance of MI from My is small. Consequently, 
the distance of any point on (AM,)’ from (AMY)’ is small. Furthermore, since 
the distance of any point on AM, from (AM,)’ is small, it follows that the 
distance of any point on AM, from (AMY)’ is more or less small. 
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The same argument applies to the distance of points on BM2 from (BM')' . 

Then, taking into consideration that the angle between (AM,)’ and (BM,)’ is 
approximately 120”, the distance between an intersection ofAM, and BM, and 

0 is (more or less)2 small [that is, more or less (more or less small)] . From this 

it follows that the distance of any vertex of the triangle T1 T2 T3 from 0 is (more 
or Zess)2 small. It is in this sense that the triangle T1 T2 T3 is (more or Zess)2 
small in relation to ABC. 

A 

Fig. 10. Illustration of an approximate proof of the fuzzy 
theorem. 

The reasoning used above is both approximate and qualitative in nature. It 

uses as its point of departure the fact that AMI , BM2 and CM3 intersect at 0, 

and employs what, in effect, are qualitative continuity arguments. Clearly, the 

“proof’ would be longer and more involved if we had to start from the basic 

axioms of Euclidean geometry rather than the nonfuzzy theorem which 
served as our point of departure. 

At this point, what we can say about fuzzy theorems is highly preliminary 
and incomplete in nature. Nonetheless, it appears to be an intriguing area for 

further study and eventually may prove to be of use in various types of ill- 
defined decision processes. 

GRAPHICAL REPRESENTATION BY FUZZY FLOWCHARTS 

As pointed out in [7], in the representation and execution of fuzzy algo- 
rithms it is frequently very convenient to employ flowcharts for the purpose 
of defining relations between variables and assigning values to them. 

In what follows, we shall not concern ourselves with the many complex 
issues arising in the representation and execution of fuzzy algorithms. Thus, 
our limited objective is merely to clarify the role played by the decision boxes 
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which are associated with fuzzy rather than nonfuzzy predicates by relating 

their function to the assignment of restrictions on base variables. 

In the conventional flowchart, a decision box such as A in Fig. 11 repre- 

sents a unary7 predicate, A(x). Thus, transfer from point 1 to point 2 signifies 
that A(x) is true, while transfer from 1 to 3 signifies that A(x) isfalse. 

Fig. Il. A fuzzy decision box 

The concepts introduced in the preceding sections provide us with a basis 

for extending the notion of a decision box to fuzzy sets (or predicates). Specfi- 

tally, with reference to Fig. 11, suppose that A is a fuzzy subset of 0, and the 
question associated with the decision box is: “Is x A?” as in “Is x small?” 

where x is a generic name for the input variable. Flowcharts containing decision 

boxes of this type will be referred to asfuzzy flowcharts. 
If the answer is simply YES, we assign A to the restriction on x. That is, we 

set 

R(x) = A (2.63) 

and transferx from 1 to 2. 

‘For simplicity, we shall not consider decision boxes having more than one input and 

two outputs. 
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On the other hand, if the answer is NO, we set 

R(x) = 1 A (2.64) 

and transferx from 1 to 3. 

As an illustration, if A 4 small, then (2.63) would read 

R(x) = small. (2.65) 

If the answer is YES/p, where 0 <p < 1, then we transfer x to 2 with the 
conclusion that the grade of membership ofx in A is p. We also transfer x to 3 
with the conclusion that the grade of membership of x in 1 A is 1 - P. 

If the grade of membership, fl, is linguistic rather than numerical, we repre- 
sent it as a linguistic truth-value. Typically, then, the answer would have the 
form YES/true or YES/very true or YES/more or less true, etc. As before, we 
conclude that the grade of membership of x in A is ~1, where /.t is a linguistic 
truth-va!ue, and transfer x to 3 with the conclusion that the grade of member- 
shipofxinlAisl-p. 

If we have a chain of decision boxes as in Fig. 12, a succession of YES 
answers would transferx from 1 to n t 1 and would result in the assignment 
to R(x) of the intersection of A,, . . . , An. Thus, 

I 

Yes : 

An 
No v- 

Yes I n+l 

Fig. 12. A tandem 

combination of 
decision boxes. 
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R(x)=A, n-mAn, (2.66) 

where I? denotes the intersection of fuzzy sets. (See also Fig. 13.) 

NO NO 
Q R(x):lArllC 

YES 
0 R(x)=lAIIC 

R( x)=AbB 

t- R(x)=ArlB 

Fig. 13. Restrictions associated with various exits from a 

fuzzy flowchart. 

As a simple illustration, suppose that x = John, A I = tall and AZ = fat. Then, 

if the response to the question “Is John tall?” is YES, and the response to “Is 

John fat?” is YES, the restriction imposed by John is expressed by 

R(John) = fall n fat. (2.67) 

It should be noted that “John” is actually the name of a binary linguistic 
variable with two components named Height and Weight. Thus (2.67) is equiva- 
lent to the assignment equations 

Height = tall (2.68) 

and 

Weight = fat. (2.69) 

As implied by (2.66), a tandem connection of decision boxes represents the 
intersection of the fuzzy sets (or, equivalently, the conjunction of the fuzzy 
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predicates) associated with them. In the case of nonfuzzy sets, their union may 
be realized by the scheme shown in Fig. 14. In this arrangement of decision 

boxes, it is clear that transfer from 1 to 2 implies that 

R(u)=A +1/i nB, (2.70) 

and since 

A nBcA, (2.71) 

it follows that (2.70) may be rewritten as 

since 

A+lA=U 

and 

UnB=B. 

No 
0 

Fig. 14. A graphical representation of the dis- 

junction of fuzzy predicates. 

(2.72) 

(2.73) 

(2.74) 

The same scheme would not yield the union of fuzzy sets, since the identity 

A+lA=U (2.75) 
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does not hold exactly if A is fuzzy. Nevertheless, we can agree to interpret the 

arrangement of decision boxes in Fig. 14 as one that represents the union of 

A and B. In this way, we can remain on the familiar ground of flowcharts in- 

volving nonfuzzy decision boxes. The flowchart shown in Fig. 16 below illus- 
trates the use of this convention in the definition of Hippie. 

The conventions described above may be used to represent in a graphical 

form the assignment of a linguistic value to a linguistic variable. Of particular 
use in this connection is a tandem combination of decision boxes which repre- 

sent a series of bracketing questions which are intended to narrow down the 

range of possible values of a variable. As an illustration, suppose that x = John 
and (see Fig. 15) 

A, = tall, 

A2 = very tall, 

A3 = very very tall, 

A4 = extremely tall. 

4- No 
Tall Not toll 

Yes 

Tall and not very tall 

Yes 

Very tall and not 

very very tall 

Yes 

No o- E Tall Very very toll 

and not extremely tall 

Yes 

b Extremely tall 

(2.76) 

Fig. 15. Use of a tandem combination of decision 

boxes for purposes of bracketing. 
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If the answer to the first question is YES, we have 

R(x) = tall. (2.77) 

If the answer to the second question is YES and to the third question is NO, 
then 

R(John) = very tall and not very very tall, (2.78) 

which brackets the height of John between very tall and not very very tall. 
By providing a mechanism-as in bracketing-for assigning linguistic values 

in stages rather than in one step, fuzzy flowcharts can be very helpful in the 
representation of algorithmic definitions of fuzzy concepts. The basic idea 
in this instance is to define a complex or a new fuzzy concept in terms of 
simpler or more familiar ones. Since a fuzzy concept may be viewed as a name 
for a fuzzy set, what is involved in this approach is, in effect, the decomposi- 
tion of a fuzzy set into a combination of simpler fuzzy sets. 

As an illustration, suppose that we wish to define the term Hippie, which 
may be viewed as a name of a fuzzy subset of the universe of humans. To this 
end, we employ the fuzzy flowcharts shown in Fig. 16. In essense, this flow- 
chart defines the fuzzy set Hippie in terms of the fuzzy sets labeled Long Hair, 
Bald, Shaved, Job and Drugs. More specifically, it defines the fuzzy set Hippie 
as (t 4 union) 

Hippie = (Long Hair t Bald t Shaved) rl Drugs f-11 Job (2.79) 

Suppose that we pose the following questions and receive the indicated 
answers. 

Does x have Long Hair 

Does x have a Job? 

YES 

NO 

Does x take Drugs? YES 

Then we assign to x the restriction 

R(x) = Long Hair n 1 Job fl Drugs, 

81t should be understood, of course, that this highly oversimplified definition is used 

merely as an illustration and has no pretense at being accurate, complete or realistic. 
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and since it is contained in the right-hand side of (2.79) we conclude that x is 

a Hippie. 

Fig. 16. Algorithmic definition of Hippie 
presented in the form of a fuzzy flowchart. 

By modifying the fuzzy sets entering into the definition of Hippie through 
the use of hedges such as very, more or less, extremely, etc., and by allowing 
the answers to be of the form YES/p or NO/p, where or is a numerical or lin- 

guistic truth-value, the definition of Hippie can be adjusted to fit more closely 

our conception of what we want to define. Furthermore, we may use a soft 

and (see Part I, Comment 3.1) to allow some trade-offs between the characteris- 
tics which define a hippie. And, finally, we may allow our decision boxes to 

have multiple inputs and multiple outputs. In this way, a concept such as Hippie 
can be defined as completely as one may desire in terms of a set of constituent 

concepts each of which, in turn, may be defined algorithmically. In essence, 

then, in employing a fuzzy flowchart to define a fuzzy concept such as Hippie, 
we are decomposing a statement of the general form 

Y(U is : Iinguistic value of a Boolean linguistic variable Z ) = 
linguistic value of a Boolean linguistic truth-variable T (2.80) 

into truth-value assignments of the same form, but involving simpler or more 

familiar variables on the left-hand side of (2.80). 
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CONCLUDING REMARKS 

In this as well as in the preceding sections, our main concern has centered on 

the development of a conceptual framework for what may be called a linguistic 
approach to the analysis of complex or ill-defined systems and decision processes. 

The substantive differences between this approach and the conventional quanti- 

tative techniques of system analysis raise many issues and problems which are 

novel in nature and hence require a great deal of additional study and experi- 

mentation. This is true, in particular, of some of the basic aspects of the concept 

of a linguistic variable on which we have dwelt only briefly in our exposition, 

namely: linguistic approximation, representation of linguistic hedges, nonnumeri- 

cal base variables, X- and @interaction, fuzzy theorems, linguistic probability 
distributions, fuzzy flowcharts and others. 

Although the linguistic approach is orthogonal to what have become the pre- 

vailing attitudes in scientific research, it may well prove to be a step in the right 

direction, that is, in the direction of lesser preoccupation with exact quantitative 

analyses and greater acceptance of the pervasiveness of imprecision in much of 

human thinking and perception. It is our belief that, by accepting this reality 

rather than assuming that the opposite is the case, we are likely to make more 

real progress in the understanding of the behavior of humanistic systems than 

is possible within the confines of traditional methods. 
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