Available online at www.sciencedirect.com
@ ScienceDirect Computer methods

CrossMark [11] apglled
mechanics and

engineering

g

" G
ELSEVIER Comput. Methods Appl. Mech. Engrg. 278 (2014) 1-19

www.elsevier.com/locate/cma

An accurate error estimator for Guyan reduction

Jin-Gyun Kim, Phill-Seung Lee*
Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea

Received 25 February 2014; received in revised form 2 May 2014; accepted 4 May 2014
Available online 10 May 2014

Highlights

e We propose an accurate error estimator for Guyan reduction.
e The error estimator can estimate relative eigenvalue errors in reduced models.
e We present the excellent performance through various numerical examples.

Abstract

The objective of this study is to develop an error estimator that accurately predicts relative eigenvalue errors in finite element
models reduced by Guyan reduction. We present a derivation procedure for the error estimator, in which Kidder’s transformation
matrix for Guyan reduction is employed. We demonstrate the excellent performance of the proposed error estimator through various
numerical examples: rectangular plate, cylindrical panel, hyperboloid panel, and shaft—shaft interaction problems.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Due to the rapidly increasing size of finite element models in engineering practice, reduced-order modeling tech-
niques are becoming increasingly important in computational mechanics. In the 1960s, Guyan proposed a DOFs (de-
grees of freedom) based reduction method [1]. At the same time, similar methods were introduced by Irons [2,3]. These
methods are generally referred to as Guyan reduction (sometimes also referred to as Irons—Guyan reduction, eigen-
value economizer, mass condensation, and dynamic condensation). Since then, various DOFs based reduction methods
have been proposed [4—7]. Recently, related studies have focused on efficient iterative procedures to improve the level
of accuracy [8—13] or on combinations with substructuring approaches for better computational efficiency [14-17].

In the DOFs based reduction method, a small proportion of the dominant DOFs, known as “master”, is only re-
tained in the reduced model, and the remaining DOFs, known as “slave”, are eliminated. Therefore, the size of the
original model can be significantly reduced. The accuracy of the reduced model highly depends on the choice of mas-
ter DOFs. Thus, a proper selection of the master DOFs is very important, and much effort has gone into the creation
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Fig. 1. Rectangular plate problem (L =3 m, B =2m, 2 = 0.008 m, E = 69 GPa, v = 0.35 and pg = 2700 kg/m3).

of DOFs selection methods [18-22]. Similarly, in mode based methods like component mode synthesis and modal
transformation methods, the selection of modes is also a key issue [23-25].

However, there has not been a good methodology to estimate the reliability of the reduced model. In particular, a
method to estimate the relative eigenvalue errors in reduced models is needed but no such method exists. Therefore,
the usefulness of the DOFs based reduction methods has been limited. This is a major drawback associated with
DOFs based reduction methods. This fact is well revealed by Hughes’s statement [26]: “A disadvantage of reduction
techniques such as the Irons—Guyan procedure is that there is no guarantee that the eigenvalues and eigenvectors of
the reduced problem will be good approximations of those of the original problem”. This difficulty could be indirectly
avoided by using some iterative procedures [9,10,12].

The objective of this study is to develop an error estimator that accurately predicts relative eigenvalue errors in finite
element models reduced by Guyan reduction without using any iterative procedure. Basically, it is not easy to estimate
relative eigenvalue errors because the exact eigenvalues of the original model are unknown. To derive the error estima-
tor, the original exact eigenvector is decomposed into the approximated and error parts and Kidder’s transformation
matrix is used to approximate the exact eigenvector [4]. The decomposed eigenvector and Kidder’s transformation
matrix are substituted into the original eigenvalue problem and, analyzing the resulting expanded terms, the error es-
timator is obtained. The derivation procedure is simple and straightforward. In particular, the required computational
cost is low because only simple additions and multiplications of known matrices are necessary.

In order to test the feasibility and performance of the proposed error estimator, we calculate both the exact rel-
ative eigenvalue errors and the estimated errors using the proposed error estimator, after which the error values are
compared. Various numerical examples are considered for performance tests: rectangular plate, cylindrical panel,
hyperboloid panel, and shaft—shaft interaction problems.

In the following sections, we review Guyan reduction, derive the proposed error estimator, demonstrate the perfor-
mance of the error estimator, and provide conclusions.

2. Guyan reduction

In this section, we introduce the general framework of the DOFs based reduction methods, the original formulation
of Guyan reduction [1] and Kidder’s transformation matrix [4].

2.1. General framework
The eigenvalue problem of the original model is
K(g); = AiM(g);, i=1,2,...,N, withu = @q, (1)

where M and K are the mass and stiffness matrices of the original model, respectively, and A; and (¢); are the original
eigenvalue and eigenvector, respectively. N is the number of DOFs in the original model, and ® and q are the original
eigenvector matrix and generalized coordinate vector, respectively.
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Fig. 2. Selected nodes in the rectangular plate problem. (a) 18 nodes and (b) 42 nodes. At each selected node, all DOFs are considered as master
DOFs.

Table 1
Exact and estimated eigenvalue errors in the rectangular plate problem.
Mode number (a) Case of 18 nodes selected (b) Case of 42 nodes selected

Exact Estimated Exact Estimated
1 4.04931E—-03 4.06570E—03 6.12028E—05 6.12065E—05
2 4.54842E—03 4.56911E—03 4.09478E—05 4.09497E—05
3 2.15568E—02 2.20182E—-02 3.82729E—-04 3.82895E—-04
4 2.35866E—02 2.41398E—02 2.15964E—04 2.16007E—04
5 3.26772E—02 3.37287E—02 2.95202E—-04 2.95279E—04
6 4.18417E—-02 4.35635E—02 7.44680E—04 7.45259E—-04
7 6.74957E—02 7.15778E—02 1.38201E—03 1.38409E—03
8 7.98171E—02 8.46410E—02 1.62173E—03 1.62523E—03
9 1.28520E—01 1.45496E—01 1.67370E—03 1.67619E—03

The eigensolutions A; and (¢p); satisfy the following relations
((p)iTM((p)j =4;; foriandj=1,2,...,N, (2a)
((P),TK((P)J :)‘jéij for i andj =1,2,...,N, (2b)

where §;; is the Kronecker delta (§;; = 1 if i = j, otherwise §;; = 0). Egs. (2a) and (2b) are called “mass-
orthonormality” and “stiffness-orthogonality”, respectively.
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Fig. 3. Exact and estimated relative eigenvalue errors in the rectangular plate problem. (a) 18 nodes and (b) 42 nodes.

In the DOFs based reduction method, we retain the dominant DOFs and the others are eliminated. Irons named these
as “master” and “slave” DOFs [2,3], which are denoted here using subscripts 1 and 2, respectively. After eliminating
the slave DOFs, a reduced eigenvalue problem with only master DOFs is obtained

Ki(@)i = AMi(@));, i=1,2,...,N;j, withu; = ®,qq, (3a)
M; = T'MT, K, = TTKT, (3b)

in which %; and (¢p,); are the eigenvalue and eigenvector obtained from the reduced mass and stiffness matrices
denoted by M and K, respectively. Here, M| and K; can be defined by the transformation matrix T constructed
by eliminating the slave DOFs. Nj is the number of DOFs in the reduced model, which is much smaller than N
(N1 < N), and the reduced displacement vector u; can be expressed by the reduced eigenvector matrix ®; and its
generalized coordinate vector q. Note that an overbar (-) denotes approximated quantities.

In Eq. (3), A; and (¢, ); also satisfy the mass-orthonormality and stiffness-orthogonality conditions with the reduced
mass and stiffness matrices:

(@) Mi(9)); =8 foriandj=1,2,...,Ni, (4a)
(@] Ki(9)); =A;8;; foriandj=1,2,...,Nj. (4b)
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Fig. 4. Cylindrical panel problem (L = 0.8 m, R = 0.5 m, 2 = 0.005 m, E = 69 GPa, v = 0.35 and p; = 2700 kg/m3).

Note that the approximated original eigenvector (¢); can be obtained with (¢;);. While the formulation details
differ among various DOFs based reduction methods, the general framework is similar.

2.2. Original formulation of Guyan reduction

Guyan reduction was developed using a reduction technique of the stiffness matrix in static analysis [27]. The
linear static equations of the original structural model are

Ku = f, (5)
in which, considering the master and slave DOFs, the stiffness matrix and displacement and force vectors are decom-
posed as

K1 Kpp u; f;
K= , u= , f= . 6
[K21 K> u f, (6)

Assuming that the slave force vector f; is zero in Eq. (6), the slave displacement vector u, can be represented by
the master displacement vector uj

w = K, Koy, (7
and, using Egs. (6) and (7) in Eq. (5), the reduced stiffness matrix is obtained

Ki =K — KpK5, Koy 3
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Fig. 5. Selected nodes in the cylindrical panel problem. (a) 35 nodes and (b) 59 nodes. At each selected node, all DOFs are considered as master
DOFs.

Selected node

Then, the original displacement vector u is approximated by the master displacement vector u;
T To—| I ©)
where T is the original transformation matrix of Guyan reduction and I is an identity matrix.
Using T in Eq. (9), the reduced matrices are defined by

M; = TEMTG, Ky = TLKTG. (10)

Using Eq. (6) in Eq. (10), we can obtain the same reduced stiffness matrix K; defined in Eq. (8). Similarly, M is also
partitioned

M1 Mip
M= , 11
|:M21 M22:| an

and the reduced mass matrix M is obtained as
M; = Mj; — KoK, Moy — MoKS) Ko + KoK, Moo K5, Koy (12)

The reduced mass and stiffness matrices are used in the reduced eigenvalue problem in Eq. (3a). Using the ith
calculated eigenvector (¢;); and the transformation matrix T, the original eigenvector (¢); is approximated

(@i ~ ()i = Tg(g))i. 13)

2.3. Kidder’s transformation matrix

In the original Guyan reduction process, the transformation matrix T is obtained considering only the stiffness
matrix. To reduce errors due to the static condensation procedure in the original Guyan reduction, Kidder proposed a
different derivation procedure for Guyan reduction [4].
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Fig. 6. Exact and estimated relative eigenvalue errors in the cylindrical panel problem. (a) 35 nodes and (b) 59 nodes.

Using the partitioned matrices in Egs. (6) and (11), the original eigenvalue problem can be written as
Kii Kipf|w My M| |w
= . 14
|:K21 Ko [ |u2 My My | |w (14
Using the second row in Eq. (14), the slave displacement vector u; is defined by

w = [K»n — AMa] ™! [AMy; — Koy ] ;. (15)

Note that Eq. (15) is the exact form of uy, see Eq. (7) for comparison.
Using Eq. (15) in the first row of Eq. (14), we obtain

{Kn — AM; — [Ki2 — AMp2] [K2 — AMpo] 7! Koy — )»le]} u; =0, (16)

which is the exactly reduced eigenvalue problem. However, because A is unknown, Eq. (16) can be solved using an
iterative solution technique, and the inverse of [Kyy — AMjpy] needs to be calculated during each iteration step. To
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Fig. 7. Cylindrical panel problem with a distorted mesh (L = 0.8 m, R = 0.5 m, & = 0.005 m, E = 69 GPa, v = 0.35 and p; = 2700 kg/m3).
reduce the computational cost, the inverse term can be expanded as
(K22 — WMn] " = K5 + 4K MKy + 0 (32) +0 (3%) + . a7

Substituting Eq. (17) into Eq. (16) and neglecting the higher order terms of A (more than 2nd order), the following
reduced equations are obtained

[K; — AMi]u; =0, (18)
and also
w = [K5,) + 1K) MoK A Moy — Koy Tuy, (19

in which the obtained reduced matrices M and K are identical to those in the original Guyan reduction process, see
Egs. (8) and (12). That is, the final reduced eigenvalue problem by Kidder’s approach is identical to that of the original
Guyan reduction process.

However, the slave displacement vector u, in Eq. (19) is more accurately calculated than the original one in
Eq. (7). The original displacement vector u is then approximated by

I
u~u=Tgu, Tg= |:|:K2_21 + )\,K2_21M22K2_21] [AMp; — K21]i| ’ (20)

where Tk is Kidder’s transformation matrix, which is an enhanced form of the original transformation matrix T¢.
The transformation matrix Tk can be expressed by the sum of the original transformation matrix T and the residual
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Fig. 8. Selected nodes in the cylindrical panel problem with a distorted mesh. (a) 25 nodes and (b) 41 nodes. At each selected node, all DOFs are
considered as master DOFs.

matrix denoted by T,

0
Tx =Tg+T,, T,= - - - - - . 21
K G r r [)\’ [K221M21 _ K221M22K221 K21:| + )\,2K221M22K221M21:| ( )

Note that, unlike the transformation matrix T in the original Guyan reduction, the term of 22 is contained in Kid-
der’s transformation matrix T . For this reason, using Kidder’s transformation matrix T, the ith original eigenvector
(¢); is more accurately approximated by

(@) = (@) =Tk ()i = (Tg +Ty)a(egy);. (22)

It is important to note that the two approaches produce the same reduced matrices M and K;, and thus the same
eigensolutions (X;, (¢);) are obtained from Eq. (3a).

3. Derivation of the error estimator

To evaluate the accuracy of the approximated eigensolutions for the reduced eigenvalue problem, the following
relative eigenvalue error is generally used

Moy 23
& = v (23)

in which &; denotes the ith relative eigenvalue error and A; is the ith exact eigenvalue of the original model obtained
from the original eigenvalue problem in Eq. (1).

In this section, we introduce a method to estimate the relative eigenvalue error in Eq. (23) without knowing the exact
eigenvalue A;. The similar derivation procedure has been recently employed for the Craig—-Bampton method [28].

Since A; and (¢); are the eigensolutions of the original eigenvalue problem in Eq. (1), the following equation
should be satisfied

1
;(cp),-T K(@); = ()] M(¢);. (24)
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Fig. 9. Exact and estimated relative eigenvalue errors in the cylindrical panel problem with a distorted mesh. (a) 25 nodes and (b) 41 nodes.

The original eigenvector (¢p); can be expressed as the approximated and error parts as

(@) = (@)i + (3);, (25)

in which (8¢); is an error in the approximated eigenvector.
Substituting Eq. (25) into Eq. (24), we obtain four scalar terms

iva()—CTM--—lSYka 4 (S@) M@g); =0 26
A,-(')" @) — (9); M(¢), M(fp)i 6@); + (5¢); M(S¢g); =0. (26)
Using Eq. (22) in Eq. (26), we obtain

1

;wmfnc+anwc+LM%»—mmfwc+nﬂMmb+nM%»

1
—;w@hK—MMum»=a 27)
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Fig. 10. Hyperboloid panel problem (H = 4 m, # = 0.005m, E = 69 GPa, v = 0.35 and p; = 2700 kg/m3).
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After expanding Eq. (27) and applying the mass-orthonormality and stiffness-orthogonality conditions for the

reduced eigenvalue problem in Eq. (4), the following equation is obtained
1

1
[M - ;K] T ()i + ()] T} [M - ;K] Tr (@i
(28)

L1 =2 TE

> |2

1
1
+ (6@ K= AM] (g),
L
in which the left-hand side is the relative eigenvalue error in Eq. (23).
When the approximated original eigenvectors (¢p); are close enough to the exact original eigenvectors (¢p); (that is,
(29a)

()i = (@);), it is possible to assume that
I _ro 1 _ro 1 T
k—(tp),- K(g); ~1 and A—((P)i K(g); > A—(BCP),- K(@q);,
i i i

(29b)

@OIM@); ~1 and (@ M(@); > S@)! M(Sq);.
(30)

Under the assumption in Eq. (29a), we neglect the last term on the right-hand side of Eq. (28)

1
[M - ;K] T, (@) + (@)] T, [M ;K] Tr(@n)i.

>

L1 ()] T

1

>
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Fig. 11. Selected nodes in the hyperboloid panel problem. (a) 35 nodes and (b) 59 nodes. At each selected node, all DOFs are considered as master
DOFs.

— 1

Finally, we propose an error estimator 7; for the ith relative eigenvalue error

1 1
ni =2(¢)); Tg; [M - X_K} T, ()i + (9! T] [M - TK] T, (@) @D

i

with

0
T, = |:)-¥z [K2_21 My — K2_21M22K2_21 K21:| + )_LI-ZKZ_ZIMQQK;; M21:| ’ (32)
in which, to approximate A; contained in Eq. (21), we use the ith approximated eigenvalue A; calculated from the
reduced eigenvalue problem instead of A;.

In general, reduced models more accurately approximate lower modes than higher modes. Therefore, the assump-
tion in Eq. (29) would not be well applied to the estimation of relative eigenvalue errors corresponding to higher
modes. For this reason, the proposed error estimator 1; will give a more accurate estimation for relative eigenvalue
errors corresponding to lower modes.

It should be also noted that the sign of the last term on the right-hand side of Eq. (28) varies depending on the mode
number. For this reason, it is not easy to theoretically identify whether the proposed error estimator »; is an upper or
lower bound for a specific relative eigenvalue error &;. This issue will be discussed in more detail in the following
section.

In Egs. (31) and (32), we can easily identify the fact that the computational cost of the error estimator 7; is low.
In those equations, we reuse the matrix K2_21 previously calculated in Eq. (9), and the required matrix operations are
merely simple additions and multiplications.

4. Numerical examples

In this section, we present the performance of the proposed error estimator n;. Four structural problems are con-
sidered: rectangular plate, cylindrical panel, hyperboloid panel, and shaft—shaft interaction problems. For the finite
element modeling, we use the well-known 4-node MITC shell finite elements, in which shear locking is effectively
alleviated [29-33].
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Fig. 12. Exact and estimated relative eigenvalue errors in the hyperboloid panel problem. (a) 35 nodes and (b) 59 nodes.

As mentioned in Introduction, there is no previous error estimator that can provide relative eigenvalue errors. There-
fore, we simply show the performance of the proposed error estimator without comparisons in the following sections.

4.1. Rectangular plate problem

Let us consider a rectangular plate with free boundary, see Fig. 1. Length L is 3 m, width B is 2 m, and thickness
h is 0.008 m. Young’s modulus E is 69 GPa, Poisson’s ratio v is 0.35, and density p, is 2700 kg/m?>. In the model,
we use a uniform 12x8 mesh of shell finite elements, in which 117 nodes, 96 elements and 351 DOFs are contained.
We consider two numerical cases with different master DOFs selected. The master DOFs are selected as shown in
Fig. 2(a) and (b).

We first calculate the exact and estimated relative eigenvalue errors from the lowest eigenvalue. As shown in Fig. 3,
the results show the excellent performance of the proposed error estimator. The exact and estimated relative eigenvalue
errors are specifically listed in Table 1. As expected in the previous section, more accurate error estimation results are
obtained for the relative eigenvalue errors corresponding to lower modes, and the present error estimator »; acts like
an upper bound of the relative eigenvalue error &; in the numerical cases considered.
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Fig. 13. Selected nodes in the hyperboloid panel problem. (a) 16 nodes selected by the DOFs selection criterion [21,22] and (b) 16 nodes selected
badly. At each selected node, all DOFs are considered as master DOFs.

We additionally calculate the approximated eigenvalues and their relative errors when the shift and invert spectral
transformation (SI) is used in the reduced model [34]. The shifts are performed from the 4th and 10th modes in the
cases in Fig. 2(a) and (b), respectively. The error estimation performance is still good, see Fig. 3.

4.2. Cylindrical panel problem

We here apply the proposed error estimator to a cylindrical panel with free boundary, see Fig. 4. Length L is 0.8
m, radius R is 0.5 m, and thickness % is 0.005 m. Young’s modulus E is 69 GPa, Poisson’s ratio v is 0.35, and density
ps s 2700 kg/m?>. The cylindrical panel is modeled by a 24 x 16 uniform mesh of shell finite elements (2125 DOFs).

Two cases of master DOFs selection are considered as shown in Fig. 5. Fig. 6 shows that the proposed error
estimator very accurately estimates the exact relative eigenvalue errors. The exact and estimated relative eigenvalue
errors are listed in Table 2. It is observed that the error estimator n; generally acts likes an upper bound for the relative
eigenvalue error &; except for the 13th mode in the case of 35 nodes selected.

The performance of the proposed error estimator is also tested in a distorted mesh case, see Fig. 7. The cylindrical
panel is modeled by a 16x 16 distorted mesh of shell finite elements [33]. Two numerical cases with differently
selected master DOFs are considered as shown in Fig. 8(a) and (b). Fig. 9 shows that the present error estimator
performs well in the distorted mesh.

4.3. Hyperboloid panel problem

We consider a hyperboloid panel of height H = 4 m and thickness # = 0.005 m. The mid-surface of the shell
structure is described by

x4y =247% ze[-2,2]. (33)

No boundary condition is imposed. Young’s modulus E is 69 GPa, Poisson’s ratio v is 0.35, and density p; is
2700 kg/m>. A 24 x 16 mesh of shell finite elements is used, see Fig. 10.

Two numerical cases with differently selected master DOFs are considered as shown in Fig. 11(a) and (b). The
excellent performance of the proposed error estimator is observed in Fig. 12 for the two numerical cases.



J.-G. Kim, PSS. Lee / Comput. Methods Appl. Mech. Engrg. 278 (2014) 1-19 15

a
10° 1
S
5]
g
3 10°f I
c
[0
(=]
©
[0
=
©
e 10°¢ 1
—FB— Exact
—+— Estimated
10* i i i i i i i
0 2 4 6 8 10 12 14 16
Mode number
b
10° 1
S
]
S
1 0
g 10 | .
c
(0]
2
(0]
(O]
=
(]
° 10} 1
—H— Exact
—+— Estimated
10-4 i i i i i i i
0 2 4 6 8 10 12 14 16

Mode number

Fig. 14. Exact and estimated relative eigenvalue errors in the hyperboloid panel problem. (a) 16 nodes selected by the DOFs selection criterion
[21,22] and (b) 16 nodes selected badly.

In Section 3, the assumption based on (¢); ~ (¢); in Eq. (31) is used to derive the proposed error estimator.
Therefore, the performance of the error estimator depends on how well the master DOFs are selected. To investigate
the effect of the master DOFs selection, only 16 master nodes are selected using two different ways:

e Case (a): A well-known DOFs selection criterion based on the ratio of the diagonal terms of mass and stiffness
matrices (K;; /M;;) is employed [18,19], see Fig. 13(a).

e Case (b): To exemplify a badly selected case, the master nodes are selected as shown in Fig. 13(b). Therefore, in
Case (b), the condition (¢); ~ (¢p); is less satisfied than in Case (a).

Fig. 14 shows that the overall error estimation accuracy is better in Case (a) and, of course, the accuracy of
eigensolution is also better in Case (a). Therefore, when the master DOFs are badly selected, the proposed error
estimator should be carefully used.

4.4. Shaft—shaft interaction problem

We consider two cylindrical shafts connected with fillets with a radius 0.002 m and no boundary condition is
imposed, see Fig. 15. Height H is 0.08 m and thickness % is 0.0005 m. The radii Ry and R, are 0.01m and 0.0075 m,
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Fig. 15. Shaft-shaft interaction problem (H = 0.08 m, # = 0.0005m, Ry = 0.0l m, R, = 0.0075m, E = 207 GPa, v = 0.29 and
ps = 2700 kg/m3).

Table 2

Exact and estimated eigenvalue errors in the cylindrical panel problem.

Mode number (a) Case of 35 nodes selected (b) Case of 59 nodes selected
Exact Estimated Exact Estimated

1 1.12350E—03 1.12483E—03 1.56297E—04 1.56322E—04

2 7.23810E—03 7.29471E—03 1.01049E—03 1.01154E—-03

3 1.22849E—02 1.24491E—-02 1.68794E—03 1.69086E—03

4 2.33257E—-02 2.38409E—02 3.45928E—03 3.47110E-03

5 2.67692E—02 2.74654E—02 3.73763E—03 3.75156E—03

6 4.85401E—02 5.11211E-02 7.73819E—03 7.80110E—03

7 5.73569E—02 6.09591E—02 9.19521E—-03 9.28327E—03

8 6.49595E—02 6.78828E—02 1.11228E—02 1.12428E—02

9 7.68949E—02 8.07779E—02 1.32702E—02 1.34415E—02

10 9.11205E—-02 1.00272E—-01 1.62110E—02 1.64882E—02
11 4.11632E—02 4.35197E—02 2.15578E—02 2.20170E—-02
12 3.36082E—02 3.54133E—-02 2.22282E—-02 2.27205E-02
13 1.37641E—01 9.61562E—02 2.94087E—02 3.03196E—02
14 1.06411E—01 1.81928E—01 2.39770E—02 2.45508E—02
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Fig. 16. Selected nodes of the shaft—shaft interaction problem. (a) 39 nodes and (b) 70 nodes. At each selected node, all DOFs are considered as
master DOFs.

respectively. Young’s modulus E is 207 GPa, Poisson’s ratio v is 0.29, and density p is 2700 kg/m>. In this problem,
534 shell finite elements and 555 nodes are used.

We consider two differently selected master DOFs in Fig. 16. The exact and estimated eigenvalue errors are
compared in Fig. 17. The proposed error estimator consistently shows the excellent performance.

In this paper, only undamped structural models are considered, but the proposed error estimator would be also
employed for model reductions of damped structural models [35].

5. Conclusions

In this paper, we developed an accurate error estimator for Guyan reduction which can estimate relative eigenvalue
errors in reduced models. Therefore, the error estimator can provide the reliability of models reduced by Guyan
reduction. The proposed error estimator is derived from the original eigenvalue problem using Kidder’s transformation
matrix. The resulting error estimator is simple and computationally inexpensive. The excellent performance of the
proposed error estimator was demonstrated through various numerical examples.

It is important to note that, using a similar derivation procedure, error estimators could be developed for other DOFs
based reduction methods such as the improved reduced system (IRS) method. Then, such error estimators could be
utilized together with DOFs selection methods [18-22] and iterative procedures (i.e., the iterative IRS method and the
iterative order reduction (IOR) method [9,10,12]) to develop more effective DOFs based reduction methods.
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