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ABSTRACT

For large-scale multi-hop wireless sensor networks, progressive es-
timation and detection algorithms are developed. For progressive
estimation, the classical principles of best linear unbiased estimation
(BLUE) and linear minimum mean square error (LMMSE) estima-
tion are applied. The difference and similarity between the two are
revealed. For progressive detection, a tradeoff between detection
performance and limited decision propagation is studied. The pro-
gressive estimation and detection algorithms are distributed and per-
formed at the application layer of wireless sensor networks, which
are fully adaptive to the operations at the networking and other lower
layers which can be designed for high spectral efficiency.

Index Terms— Progressive estimation and detection, distrib-
uted estimation and detection, wireless sensor networks, large-scale
multi-hop networks

1. INTRODUCTION

The ultimate engineering purpose of wireless sensor networks is to
estimate and detect phenomena of interest. A key feature of wire-
less sensor networks is its spatially distributed sensors which need
to perform not only sensing but also signal processing and commu-
nications. The performance of wireless sensor networks is measured
not only by the accuracy of estimation and detection but also by the
cost associated with it. While the cost of many resources such as
electronic computing devices will most likely continue to decline as
the technology advances, the radio spectrum available to wireless
sensor networks is constrained by the law of physics, which tends to
remain constant. On the other hand, the fundamental theory of esti-
mation and detection points out that a good performance of estima-
tion and detection using wireless sensor networks often needs to be
achieved by utilizing the data gathered from many spatially distrib-
uted sensors. Therefore, a large number of sensors can be involved
in sharing information with each other, and the spectral efficiency of
the communications between these sensors should be kept high due
to limited spectrum. It has been established that for large networks,
the best spectral efficiency of communications between all nodes is
achieved by data transmissions only between neighboring nodes [1],
[2], [3]. This means that for “flat” wireless sensor networks (where
there is no mobile data collector), all large volumes of communica-
tions should be done via multi-hop routing. Also note that a high
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spectral efficiency can also translate into a high efficiency in trans-
mission power.

Much of the past research on distributed estimation and detec-
tion does not take into account the multi-hop nature of wireless sen-
sor networks, e.g., see [4], [5], [6]. In this paper, we present our ef-
fort in developing the theory of progressive estimation and detection
for wireless sensor networks. The concept of progressive estimation
and detection shown in this paper differs from [7], extends from [8],
and has the following features: 1) The routing paths established by
the networking layer is exploited at the application layer where esti-
mation and detection are performed; 2) All local information at each
sensor is exploited locally and optimally. 3) The result of local es-
timation and detection is relayed and progressively improved from
sensor to sensor. 4) Each sensor can terminate the process of esti-
mation and detection when a pre-specified performance criterion is
satisfied.

In Section 2, we present the progressive estimation algorithms
based on BLUE and LMMSE, where an interesting similarity will
be observed. In Section 3, we present the progressive detection al-
gorithms using either estimation propagation or decision propaga-
tion, the latter of which further reduces the communication burden.
In Section 4, we illustrate the performance of progressive estimation
and detection. Concluding remarks are given in Section 5.

2. PROGRESSIVE ESTIMATION

Consider the following model for the data observed at sensor k:

xk = Gku + nk (1)

where xk is the observation data vector, nk is the observation noise
vector of zero mean, Gk is the observation matrix of full column
rank, and u is an unknown vector parameter invariant to the space
(or sensor) index k. The observation matrix Gk depends on the char-
acteristics of sensor k and its location with respect to the unknown
vector u. Since Gk is arbitrary, a simple normalization of (1) can
ensure that the covariance matrix of each noise vector is the identify
matrix I. We assume that only sensor k knows Gk.

We next show two algorithms for progressive estimation: one
is based on the best (minimum variance) linear unbiased estimation
(BLUE) and the other is based on the linear minimum mean square
error (LMMSE) estimation.

2.1. BLUE

We denote an unbiased estimator of u at sensor k by ûk and its
covariance matrix by Ck. We let sensor k − 1 be the upper stream



sensor to sensor k as illustrated in Figure 1. We assume that sensor
k−1 transmits ûk−1 and Ck−1 to sensor k before sensor k computes
ûk and Ck.
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Fig. 1. Portion of a routing path where each sensor has only one
upper stream sensor.

Assume that sensor 1 does not have any upper stream sensor,
then the BLUE estimate of u at sensor 1 is given by

û1 =
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and its covariance matrix is
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Provided that xk and ûk−1 are uncorrelated (which is guaran-
teed if the noises nk and nl are uncorrelated for k �= l), the BLUE
estimate of u at sensor k based on xk and ûk−1 is given by

ûk =
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and the inverse of its covariance matrix is

C−1
k = C−1

k−1 + GH
k Gk (5)

We see that C−1
k is monotonically increasing with k and hence Ck

is monotonically decreasing to zero as k increases. We also see that
the update of C−1

k is much simpler than the update of Ck, which
suggests that sensor k − 1 should transmit C−1

k−1 (instead of Ck−1)
to sensor k. More importantly, the covariance matrix of the progres-
sive estimation error at each sensor k is the same as that if sensor
k performs the centralized estimation using all observations from its
upper stream sensors. For sensor k to collect all observations {xk}
from sensors 1 to k−1, there need to be

�k−1
i=1 = k(k−1)

2
= O(k2)

transmissions in the network, which is in contrast to O(k) trans-
missions required by the progressive estimation. Furthermore, the
centralized estimator also needs to know all the associated observa-
tion matrices {Gk}. Clearly, if a large number of sensors is needed
to meet a required estimation accuracy, the progressive estimation is
more desirable than the centralized estimation. It should be noted
that at each hop of the progressive estimation, either Ck−1 or C−1

k−1

needs to be transmitted along with a local estimate ûk−1 of the un-
known vector u. If the dimension of the unknown vector u ∈ CN×1

is so large that N2 is comparable to K2 where K is the “last” sensor,
the advantage of the progressive estimation may not be realized.

More generally, as illustrated in Figure 2, if sensor k receives
from its upper stream sensors more than one uncorrelated estimates
of u, denoted by ûk−1,i with the corresponding covariance matrices
Ck−1,i where i = 1, ..., Ik, then the BLUE estimate of u at sensor
k is given by
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Fig. 2. Portion of a routing path where each sensor may have more
than one upper stream sensors.

and the corresponding covariance matrix is
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The above progressive estimation algorithm is distributed. Each
sensor uses its locally available information. When the estima-
tion accuracy at a sensor meets a pre-specified requirement, e.g.,
tr(Ck) becomes small enough, this sensor can stop the process of
the progressive estimation and possibly send a message to trigger a
network-wide operation.

2.2. LMMSE

The previous BLUE estimation treats u as an unknown deterministic
vector. For the LMMSE estimation, we will treat u as an unknown
random vector with zero mean and a known covariance matrix. Since
Gk is arbitrary, a simple normalization of (1) can ensure that the
covariance matrix of u and the covariance matrix of the noise nk are
both equal to the identity matrix I.

At sensor 1, the LMMSE estimate of u is given by
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and its mean square error (MSE) matrix is
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Assume that sensor k receives the LMMSE estimate ũk−1 and
the MSE matrix Mk−1 from sensor k − 1. Then, the LMMSE esti-
mate of u at sensor k based on ũk−1 and xk is given by

ũk = Cu,ykC−1
yk,yk

yk (10)

and its MSE matrix is
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where
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We see that like the BLUE estimation, the LMMSE estimation
can also be formulated into a progressive form. Furthermore, one
can verify by using (11) that
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and by using (9), (13) and (14) that
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It is useful to notice the similarity between (17) and (5).
If the covariance matrix Cu,u of u is arbitrary but nonsingular,

we can show that (17) still holds but (16) needs to be replaced by

M−1
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k Gk (18)

In general, we have that Mk < Ck for all finite k, and Mk →
Ck as k becomes large. But if Cu,u is so large that C−1

u,u becomes
negligible from (18), then Mk = Ck for all k, i.e., the performance
of BLUE becomes identical to that of LMMSE. In other words, an
unknown deterministic vector is equivalent to a random vector of a
covariance matrix with all eigenvalues infinitely large.

However, if sensor k receives multiple LMMSE estimates
ũk−1,i and multiple MSE matrices Mk−1,i where i = 1, ..., Ik

from its upper stream sensors (see Figure 2), it does not appear
possible in general to obtain the LMMSE estimate of u from xk,
Gk, ũk−1,i and Mk−1,i, i = 1, ..., Ik. The problem lies with the
fact that sensor k does not have sufficient information to compute
such a cross-correlation matrix Cũk−1,i,ũk−1,j for i �= j. This is a
disadvantage of the LMMSE estimation.

3. PROGRESSIVE DETECTION

At each sensor, the estimate of u obtained by progressive estima-
tion can be used for progressive detection if multiple hypotheses are
associated with different regions of u. The BLUE estimation does
not need any prior knowledge about u while the LMMSE estimation
needs to know the covariance matrix of u.

To understand the performance of the progressive detection, we
now consider a real-valued scalar data model for the observation at
each sensor:

xk = gku + nk (19)

which is simply a scalar version of (1) and the noise nk is Gausssian
with zero mean and unit variance. Furthermore, we treat a binary
hypothesis problem where

u =

�
0 H0

a H1
(20)

and Pr(H0) = Pr(H1) = 0.5.

3.1. Using estimation propagation

If the BLUE estimator ûk with the variance ck is used at sensor k
for detection, the detector with the minimum probability of error
is: Decide H1 if ûk > a/2, or H0 otherwise. The corresponding
probability of error at sensor k is

pe,k = Q
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2
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ck
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where Q(x) =
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If the LMMSE estimator ũk with the MSE mk is used at sensor
k for detection, the decision rule is the same: Decide H1 if ũk >
a/2, or H0 otherwise. The detection error probability is given by
(21) with ck replaced by mk. Note that for u defined in (20), the
variance of u is a2

2
.

3.2. Using decision propagation

For both BLUE and LMMSE shown above, sensor k needs to receive
two real numbers from sensor k − 1. To reduce the communication
burden, let us consider “decision propagation” where sensor k re-
ceives the decision dk−1 (a binary number) and the corresponding
probability of error pe,k−1 (a real number) from sensor k − 1. The
detection at sensor k is solely based on dk−1, pe,k−1, xk and gk.
Define

λk =
P (dk−1|H1)f(xk|H1)

P (dk−1|H0)f(xk|H0)
(22)

where P (·|·) denotes conditional probability and f(·|·) denotes con-
ditional probability density function. The optimal decision rule is:
Decide H1 if λk > 1, or H0 otherwise.

The above decision rule can be simplified into:

• Decide H1 if dk−1 = 1 and xk > a
2
− δk or if dk−1 = 0 and

xk > a
2

+ δk;

• Decide H0 if dk−1 = 1 and xk < a
2
− δk or if dk−1 = 0 and

xk < a
2

+ δk.

Here, the offset δk is given by

δk =
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a
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(23)

which is positive as long as pe,k−1 < 0.5. A quick observation
from the above rule is that a higher hurdle is required if the decision
at sensor k differs from that at sensor k − 1, and a lower hurdle
is required if the decision at sensor k coincides with that at sensor
k − 1. This extra hurdle is determined by δk.

The corresponding probability of error at sensor k is

pe,k = Q
�a

2
− δk

�
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2
+ δk

�
(1 − pe,k−1) (24)

It is not yet proven that pe,k converges to zero as k increases. But
numerical examples suggest that such a convergence property holds,
which is illustrated later. Intuitively, we see that when pe,k−1 be-
comes smaller and hence δk becomes larger, pe,k is dominated by
the first term in (24) and the ratio of pe,k over pe,k−1 is dominated
by Q

�
a
2
− δk



which becomes closer to one.

A further reduction of the communication burden is possible if
we use a finite number B of bits to quantize pe,k−1 nonlinearly for
each k. Specifically, we use p∗

e to denote a desired value of the
probability of error, and ε for a small number such that pe,1 < 0.5−
ε. We then choose ∆ such that ∆2B = log10(0.5 − ε) − log10 p∗

e .
In other words, the number of bits required in terms of p∗

e is given
by

B = log2
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If the conventional linear quantization is used for pe,k−1 for each k,

the number of bits required would be log2
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. At sensor k−1, an



integer lk−1 is chosen such that log10 pe,k−1 ≤ ∆lk−1+log10 p∗
e

.
=

log10 p̂e,k−1. Sensor k only receives dk−1 and lk−1 from sensor
k − 1, and reconstructs p̂e,k−1 from the above formula.

In order for the above strategy to work, we need to show that
with p̂e,k−1, sensor k is able to compute an upper bound p̂′

e,k on
pe,k and hence lk such that log10 pe,k ≤ log10 p̂′

e,k ≤ log10 p̂e,k =
∆lk + log10 p∗

e . Fortunately, such a p̂′
e,k is given by
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In fact, since the detection at sensor k is optimal given dk−1, pe,k−1,
xk and gk, the probability error pe,k as given in (24) must be non-
decreasing function of pe,k−1 as long as pe,k−1 < 0.5. This funda-
mental property implies that p̂′

e,k given in (26) must be no less than
pe,k given in (24) when pe,k−1 ≤ p̂e,k−1 < 0.5.

4. PERFORMANCE ILLUSTRATION

For performance illustration, we use (19) and (20) and further as-
sume that gk = 1 and a = 1. The probability of detection error pe,k

versus the sensor index k is illustrated in Figure 3.
For the case of “estimation propagation”, we used the BLUE

estimation where the real-valued estimate ûk−1 and its real-valued
variance ck−1 are transported from sensor k − 1 to sensor k. As
expected, pe,k converges to zero rapidly.

For the case of “decision propagation - a”, the binary decision
variable dk−1 and the real-valued probability of detection error
pe,k−1 are transported from sensor k − 1 to sensor k. It should be
noted that pe,k apparently converges to zero when k is very large.
(We omitted the portion for k > 200.) But a mathematical proof of
this property is not yet available.

For the case of “decision propagation - b”, four curves are il-
lustrated in this figure. The best (lowest) of the four corresponds to
B = 10 bits used for quantization of each pe,k−1 before the bits are
transported from sensor k − 1 to sensor k. The other three curves
correspond to B = 8, B = 6 and B = 4 bits, respectively. We
see that the performance of “decision propagation - b” has a nonzero
floor when k is beyond a threshold.

5. CONCLUSION

In this brief paper, we have introduced the concept of progressive
estimation and detection (PED) for wireless sensor networks. The
classical estimation principles: BLUE and LMMSE, have been
shown to be naturally embeddable into PED. The progressive de-
tection based on estimation propagation appears promising in both
theory and practice.

While several useful results have been found, PED is still in its
infancy and ready to be further developed rapidly. There are many
open issues for future research. One is the robustness of PED against
unknown errors in the observation matrices. Another is the extension
of PED from the linear model (1) to nonlinear models.
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Fig. 3. The probability of the progressive detection error pe,k versus
the sensor index k. The numbers of bits for quantization shown in
this plot are used to quantize pe,k−1 at sensor k − 1 nonlinearly.
The other parameters used for the quantization are p∗

e = 0.04 and
ε = 0.19.

6. REFERENCES

[1] P. Gupta and P. R. Kumar, “The capacity of wireless networks,”
IEEE Transactions on Information Theory, Vol. 46, pp. 388-404,
Mar 2000.

[2] Y. Hua, Y. Huang and J. J. Garcia-Luna-Aceves, “Maximizing
the throughput of large ad hoc wireless networks,” IEEE Signal
Processing Magazine, Vol. 23, pp. 84-94, Sept 2006.

[3] Y. Yu, Y. Huang, B. Zhao and Y. Hua, “Throughput analysis
of wireless mesh networks,” Proceedings of IEEE ICASSP’2008,
Las Vegas, NV, April 2008.

[4] J.-J. Xiao, S. Cui, Z.-Q. Luo, A. J. Goldsmith, “Power schedul-
ing of universal decentralized estimation in sensor networks,”
IEEE Trans. on Signal Processing, vol. 54, pp. 413-422, Feb.
2006.

[5] P. Venkitasubramaniam, L. Tong, and A. Swami, “Quantization
for maximin ARE in distributed estimation,” IEEE Trans. on Sig-
nal Processing, vol. 55, no. 7, pp. 3596-3605, July 2007.

[6] A. Swami, Q. Zhao, Y.-W. Hong and L. Tong, editors, Wireless
Sensor Networks, Wiley, 2007.

[7] M. G. Rabbat and R. D. Nowak, “Quantized incremental algo-
rithms for distributed optimization,” IEEE Journal on Selected
Areas in Communications, vol. 23, no. 4, Apr. 2005.

[8] Y. Huang and Y. Hua, “Multi-hop progressive decentralized es-
timation in wireless sensor networks,” IEEE Signal Processing
Letters, Vol. 14, No. 12, pp. 1004-1007, Dec 2007.


