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Abstract

Aircraft engine sensor fault diagnosis is closely related technology that assists operators in managing the health of gas

turbine engine assets. As all gas turbine engines will exhibit performance changes due to usage, the on-board engine

model built up initially will no longer track the engine over the course of the engine’s life, and then the model-based

method for sensor fault diagnosis tends to be failure. This necessitates the study of the sensor fault diagnosis techniques

due to usage over its operating life. Based on our recent results, an integrated approach based on nonlinear on-board

model is developed for the gas turbine engine sensor fault diagnostics in this paper. The architecture is mainly composed

of dual nonlinear engine models; one is a nonlinear real-time adaptive performance model and the other a nonlinear on-

board baseline model. The extended Kalman filter estimator in the nonlinear real-time adaptive performance model is

used to obtain the real-time estimates of component performance, and the nonlinear on-board baseline model with

performance periodically update to provide the nominal reference in flight. The novel update strategy to sensor fault

threshold based on the model errors and noise level is also presented. Important results are obtained on step fault and

pulse fault behavior of the engine sensor. The proposed approach is easy to design and tune with long-term engine health

degradation. Finally, experiment studies are provided to validate the benefit of the engine sensor fault diagnostics.
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Introduction

In-flight sensor fault diagnosis is critical to maintain-
ing aircraft engine operation reliably. The engine is
operated at demanded conditions by the full authority
digital electronic control (FADEC) system, which
computes control commands based on sensor meas-
urements.1 Because most sensors for FADEC work in
the harsh environment, high temperature, and strong
vibration, they are easy to be failure, and any unde-
tected sensor faults may result in an undesirable con-
dition.2,3 It is crucial to diagnose the sensor fault as
soon as possible to avoid hazard scenarios, and an in-
flight sensor fault diagnosis system with high reliabil-
ity is essential to enhance flight safety.4

Sensor fault diagnostics for aircraft engine has
received considerable attention and many works
have been reported.5–10 Wallhagen and Arpasi11 pro-
posed using analytical redundancy sensor technology
to improve the reliability of the engine control system

in 1974. Spang and Corley12 discussed the fault indi-
cation and correction action system for sensor diag-
nosis, and then it is applied in the FADEC plan of
T700, JTDE, and F404 but cannot detect soft failures.
Merrill and coworkers4,13 developed a detection, iso-
lation, and accommodation program via analytical
redundancy, and determined the minimum detectable
levels of sensor failures for an F100 turbofan engine.
NASA developed an analytical redundancy design for
engine reliability improvement.14,15 Bettocchi and
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Spina16 presented a method based on analytical
redundancy techniques for sensor fault detection in
gas turbines, and I/O linear models are used for resi-
duals generation permitting the identification of pos-
sible sensor faults. The fault indices are usually the
thresholds of amplitude and slope, and built-in-test
technology is also used for sensor fault diagnosis in
engineering. Simani et al.17 designed an improved
observer for sensor fault diagnosis for a power
plant. Kobayashi18 developed a fault detection and
isolation (FDI) system that utilizes a bank of
Kalman filters for aircraft engine sensor and actuator
FDI in conjunction with the detection of component
faults. The approaches to diagnose the sensor faults
discussed above are mainly based on engine model,
while the novel data-based ones rapidly developed
with the intelligent computing methods emerging in
large number in the past 20 years. Ogaji et al.19

reported multiple-sensor fault-diagnoses for a
two-shaft stationary gas turbine. Mattern et al.20,21

presented the results of applying neural network to
validate sensor on a simulation platform of a turbofan
engine. Randal et al.22 presented neural networks and
multiple failures assumption methods for fault diag-
nosis of sensors and actuators. Zhernakov23 described
diagnostics and checking of gas-turbine engines par-
ameters by hybrid expert systems. Aretakis et al.24

discussed identification of sensor faults on turbofan
engines using pattern recognition techniques.

In short, the research studies on aircraft engine
sensor fault diagnosis mainly include the data-based
methods and the model-based methods. The latter
ones fulfill the functions via several types of aircraft
engine model, such as linear model, nonlinear model,
and so on. The on-board engine models are usually
built up with aircraft engine component characteris-
tics and pneumatic thermodynamic equations. There
is no need of a priori knowledge of aircraft engine or
sensor fault modes, being less sensitive to measure-
ments than that of data-based approaches.25–27 The
main idea of model-based one is that the sensor falls
to failure when the residual between the sensor meas-
urement and the model output violates its threshold.
The aircraft engine model is initially built up at a
nominal condition, and there is no health degrad-
ation. Nevertheless, the real engine performance
degrades with usage, and the on-board model does
not track the sensed engine outputs over time.28

Then, engine model cannot be always taken as the
reference baseline during the whole lifetime, and the
in-flight diagnostic systems will lose their effectiveness
after the certain cycle numbers.

To address this issue, one method that the engine
health condition is estimated off-line by steady-state
data recorded during flight, and then used to update
the health parameters of the on-board baseline model
is discussed.29–31 The shortcomings of the off-line esti-
mate include the post-flight processing of a small
number of the measurements collected each flight

and only available in ground-station. Kobayashi and
Simon32,33 developed a baseline system and an
enhanced system for aircraft engine on-line diagnos-
tics, while they are focused on the dual-channel sensor
measurements. References 34,35 present an enhanced
on-board architecture for trend monitoring and gas
path fault diagnosis and provide advanced on-board
model-based estimation capabilities. The architecture
contains real-time adaptive performance model
(RTAPM) and performance baseline model (PBM),
both of which are built up with piecewise-linear
dynamic scheduled models. The linear model is
derived from the engine component level model
(CLM), linearization errors are introduced in the
modeling process that will decrease the accuracy of
performance estimation.36,37 The linear Kalman
filter (LKF) for health estimate is effective only
within a limited linearized range, and the constant
threshold tends to be failure to diagnose the sensor
faults because of the model errors change over the
engine lifetime.

For the reasons described above, an integrated
approach that utilizes dual nonlinear on-board
engine model is developed for aircraft engine in-
flight sensor fault diagnostics, and the benefit of this
integration is investigated in the experiments and ana-
lysis in this paper. The proposed integrated nonlinear
architecture with the sensor fault diagnostic logic is
applicable to diagnose aircraft engine sensor failures
while the engine experiences continuously gradual
degeneration over the course of the engine’s life.
The self-tuning real-time performance model, includ-
ing the nonlinear engine model and the extended
Kalman filter (EKF) filter, is referred to real-time per-
formance estimation. A piecewise predictor is used to
obtain the real-time performance update values for
the baseline model. The baseline model, whose
health parameters are updated with the soft update
strategy, produces the sensor reference outputs on-
line. The sensor fault threshold, used in the sensor
fault diagnosis logic, is tuned with the model
update. As a consequence, considering an aircraft
engine is a complicated thermo-mechanical system
and its performance degenerates with usage; this inev-
itably necessitates the employment of the fused model
update mechanism from nonlinear systems theory to
the engine sensor fault diagnosis. This paper is an
attempt toward the above idea.

This paper is organized is as follows. In section
‘‘Turbofan engine model and health estimation,’’ non-
linear aircraft engine model and its performance esti-
mation approach are discussed; the integrated
nonlinear architecture is developed, and then the non-
linear real-time adaptive performance model, non-
linear on-board baseline model (NBM), and the
sensor fault diagnostic module are present in details
in section ‘‘Nonlinear integrated architecture for
sensor fault diagnosis.’’ Section ‘‘Experiments and
analysis’’ provides experiments and analysis for the
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validation of the developed integrated nonlinear
approach and the next section presents the discussion
and analysis on the two-update strategy, and finally
our work is summarized in the last section.

Turbofan engine model and health

estimation

Turbofan engine nonlinear model

A high bypass ratio turbofan engine is depicted in
Figure 1. The airflow is driven into the fan after
through an inlet. Air is separated into two streams
before the compressor: one stream passes through
the annular bypass duct and then leaves the engine
core, and the other one through the engine core.
The air through the core moves ordinal through boos-
ter and high-pressure compressor (HPC). Fuel is
sprayed into the combustor, mixed with air, and
burned to produce hot gas to drive the turbines.
There are two rotating shafts, through which the
high-pressure turbine (HPT) drives the HPC and the
low-pressure turbine (LPT) drives both the fan and
the booster. The gas leaves the LPT and then is
guided into the nozzle, and it has a variable
throttle area.

The turbofan engine mathematical model studied
includes several individual components, denoted as
CLM, and each component requires input thermo-
dynamics variables and produces corresponding
outlet variables. The model consists of mathematical
equations, characteristic maps, operating parameter
tables, etc., which describes the thermodynamic rela-
tionships of various variables for each component.
The turbofan engine CLM is built up with the follow-
ing assumption, no combustion delay, the component
characteristics unchanged with the Reynolds number,
and zero-dimension flow. The component thermo-
dynamic variables in cross-sections, such as total pres-
sure, the total temperature, efficiency, and flow
capacity, can be computed as in ref.38–40 The
common operations of the turbofan engine CLM

that follow flow capacity balance are expressed as
follows:

W22 �W21 ¼ 0

W24 �W23 ¼ 0

W41 �WAcool �WBcool �W4 ¼ 0

W42 �W41 ¼ 0

W9 �W5 ¼ 0

W19 �W16 ¼ 0

8>>>>>>>><
>>>>>>>>:

ð1Þ

The acronyms of the equation above are detailed in
Table 1. Overall characteristic maps are used to
represent the performance of rotary component
which are good enough for real-time simulation.
The map value of corrected flow capacity Wi,cor

and efficiency SEi for each component are com-
puted from bivariate functions of the component
pressure ratio �i, and the component corrected
speed ni,cor as follows:

Wi,cor ¼ fW,i �i, ni,cor
� �

SEi ¼ fSE,i �i, ni,cor
� �

ni,cor ¼ ni=ni,d
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ti=Ti,d

� �q

Wi ¼Wi,cor Pi=Pi,d

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti=Ti,d

� �q
ð2Þ

where the subscript d means the design point and i
represents corresponding rotary component. The
flow capacity balance equations are implicit functions
of the pressure ratios �Ft,�Fr,�B,�C,�HT,�LT and
can be represented as the following six equations:

gj �Ft,�Fr,�B,�C,�HT,�LTð Þ ¼ 0 j ¼ 1, 2, . . . , 6

ð3Þ

The engine CLM in dynamics must also account for
the effects of rotor inertia, which are used to calculate
the flow capacities in cross-sections with the compo-
nent performance map and the six guess variables,

Figure 1. Diagrammatic sketch of a high bypass ratio turbofan engine.
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�Ft,�Fr,�B,�C,�HT,�LT. The current shaft speeds,
nL, nH, are computed via the last step speeds and the
shaft accelerations from equation (4).

30

�

� �2
1

JHnH
NHT�Hspool �NC �NT

� 	
¼

dnH
dt

30

�

� �2
1

JLnL
NLT�Lspool �NF �NB

� 	
¼

dnL
dt

8>>><
>>>:

ð4Þ

The common operating expressions of the turbofan
engine CLM follow the flow capacity balance as same
as the dynamic ones in equation (1) and the two shaft
acceleration _nL, _nH equal zero in steady state. Then,
the spool power balance is satisfied and equation (4)
can be written as follows:

NHT�Hspool �NC �NT ¼ 0
NLT�Lspool �NF �NB ¼ 0



ð5Þ

There are eight guess variables, �Ft, �Fr, �B, �C,
�HT, �LT, nL, nH, for the engine CLM in steady
state, and its operating equations can be represented
as the following nonlinear expression:

gj nL, nH,�Ft,�Fr,�B,�C,�HT,�LTð Þ ¼ 0,

j ¼ 1, 2, . . . , 8 ð6Þ

Both the common operating equations of the steady
state (equation (4)) and the dynamics (equation (6))
are solved via the Newton–Raphson method, and
iterative process for the roots in each step stops
once one of the following conditions is satisfied: the
iteration error no more than 0.001 or the maximum
iteration number to 40. The rotating component effi-
ciency, SE, and flow capacity, W, are usually used to

indicate turbofan engine gas path performance, and
their deteriorated valves are denoted as health
parameters.

�SEi ¼
SEi

SEi,r
� 1 i ¼ 1, 2, 3, 4

�SWj ¼
Wj

Wj,r
� 1 j ¼ 1, 2, 3 ð7Þ

where the subscript r means to the operating point.
There are seven health parameters of rotor compo-
nents considered in this paper: fan efficiency �SE1,
fan flow capacity �SW1, HPC efficiency �SE2, HPC
flow capacity �SW2, HPT efficiency �SE3, HPT flow
capacity �SW3, and HPT efficiency �SE4. The health
parameter equals 0 when the component operates with
no degeneration in initial cycle number.

The turbofan engine CLM is programmed by C
language and packaged with dynamic link library
(DLL) for calling in MATLAB environment.41–43

The DLL of the engine CLM runs the steady state
at the first step and then runs dynamics. The function
outputs in DLL are the measurements y, and the
inputs consist of flight condition c, control variables
u, and health parameters �h. The speeds are used to
the state vector x conventionally, and the health par-
ameters �h are augmented into the state vector in the
nonlinear model here, denoted as xaug,k.

38,42,43 Then,
the discretized time invariant nonlinear model of the
turbofan engine from the CLM can be summarized as
follows:

xaug,kþ1¼
xkþ1

�hkþ1

� �
¼

f xk,�hk,uk,condð Þ

�hk

� �
þ

wk

nk

� �

yk¼ h xk,�hk,ukð Þþvk ð8Þ

Table 1. Turbofan engine CLM thermodynamic parameters.

Acronyms Augment state Acronyms Augment state

W21 Fan outlet to the core duct flow capacity NHT Power produced by the HPT

W22 Booster inlet flow capacity NLT Power produced by the LPT

W23 Booster outlet flow capacity NC Power used for the HPC

W24 HPC inlet flow capacity NT Power used for the accessories

W4 Combustor outlet flow capacity NB Power used for the booster

W41 HPT outlet flow capacity NF Power used for the fan

W42 LPT inlet flow capacity �Ft Fan blade tip pressure ratio

W5 LPT outlet flow capacity �Fr Fan blade root pressure ratio

W9 Nozzle core duct outlet flow capacity �B Booster pressure ratio

W16 Fan bypass duct outlet flow capacity �C HPC pressure ratio

W19 Nozzle bypass duct outlet flow capacity �HT HPT pressure ratio

WAcool Flow capacity to cool the turbine inlet guide vane �LT LPT pressure ratio

WBcool Flow capacity to cool the turbine blade tip JH High-pressure spool inertia

�Hspool High-pressure spool efficiency JL Low-pressure spool inertia

�Lspool Low-pressure spool efficiency

CLM: component level model; HPC: high-pressure compressor; LPT: low-pressure turbine; HPT: high-pressure turbine.
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where u ¼ Wf,A8½ �
T is the two-element control vector,

x ¼ ½nL, nH�
T the two-element state vector, �h ¼

½�SE1,�SW1,�SE2,�SW2,�SE3,�SW3, �SE4�
T,

and c ¼ ½H,Ma�T the two-element environmental
vector. wkf g and nkf g are separately the process noise
sequences, vkf g is the measurement noise sequences,
and they are uncorrelated zero mean Gaussian noises.

Engine model health parameters estimate

To prevent the engine model deficiencies from being
absorbed into the tuners (efficiencies, flow capacities,
etc.), it is necessary to create an engine model to track
the engine performance changes with enough accur-
ate. As depicted in equation (8), the health parameters
augmented into the model state vector is an effective
way to improve the accurate model over its lifetime.
The LKF is used to estimate the health parameters in
the state vector model, and it makes the engine model
match much better the sensed outputs by tuning the
health parameters.5,31–35

The LKF is designed to off-line linearize the non-
linear system around a nominal state trajectory. The
errors are inevitably brought in the model lineariza-
tion process, and it will directly influence the estima-
tion accuracy. Two nonlinear state estimation
algorithms, the unscented Kalman filter (UKF) and
the EKF, then emerged and are used in the aircraft
engine application.33,36,37 Kobayashi and Simon33

have indicated that the aircraft engine nonlinearities
are mild enough so that the UKF does not provide
much better performance than the EKF but have
more computational effort. Therefore, the EKF is
selected to estimate the augmented state vector in
the nonlinear system of equation (8). Taylor series
is used to expand the nonlinear model around the
operating point. We assume that the following stand-
ard conditions are satisfied.

E xaug,0
� 	

¼ �xaug,0

E waug,k

� 	
¼ 0

E vk½ � ¼ 0

E xaug,0 � �xaug,0
� �

xaug,0 � �xaug,0
� �Th i

¼ Pþ0

E waug,kw
k
aug,m

h i
¼ Q�km

E vkv
k
m

� 	
¼ R�km

E waug,kv
k
m

� 	
¼ 0 ð9Þ

where E[ ] is the expect operator in the statistics. The
delta function �km equals 1 when k¼m, otherwise to
0. The matrices P, Q, and R are the covariance of
state errors, process noise, and measurement noise,
respectively. Assume that the control is known so
that �uk ¼ 0. The EKF for the nonlinear engine

model starts with the following time update
equations.

Pk ¼ FPþk�1F
T þQ

x̂aug,k ¼ f x̂þk�1, ĥ
þ
k�1, uk�1

� �
ð10Þ

where the Jacobian F in the preceding equation is
given as

F ¼
@f x̂þk�1, ĥ

þ
k�1, uk�1

� �
@xaug

ð11Þ

Then the EKF performs the following measure-
ment update equations:

Kk ¼ PkH
T HPkH

T þ R
� ��1

x̂þaug,k ¼ x̂aug,k þ Kk yk � h x̂aug,k
� �� 	

Pþk ¼ I� KkHð ÞPk ð12Þ

where the Jacobian H in the measurement equation is
given as

H ¼
@h x̂aug,k
� �
@xaug

ð13Þ

Nonlinear integrated architecture
for sensor fault diagnosis

A linear integrated architecture for trend monitoring
and gas-path diagnostics is discussed in Refs34,35, and
in the architecture aircraft engine linear model is
taken as the performance baseline, and the LKF esti-
mator is used for health estimate. As known in Ref.36,
the EKF outperforms the LKF on health parameter
estimate for gas turbine engine, and therefore the inte-
grated architecture based on the nonlinear model and
the EKF estimator is introduced to aircraft engine
sensor fault diagnostics in-flight during the engine
whole lifetime. The strategies of model update and
sensor fault threshold update for the integrated
approach are improved and designed in this paper.

An overview of the integrated nonlinear architec-
ture is present in Figure 2. The architecture includes
two on-board real-time nonlinear engine models oper-
ating in parallel and one sensor fault diagnostic
module. The first engine model, referred to as the
nonlinear real-time adaptive performance model
(NRAPM), implements an EKF estimator to provide
real-time unmeasured performance estimates for
tracking engine component performance during the
engine health degradation. The second model,
referred to as the independent nonlinear baseline
model (NBM), utilizes in-flight health parameter esti-
mates to produce the reference of sensed measure-
ments for sensor fault diagnostics. The sensor fault

Lu et al. 5
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diagnosis module implements sensor fault threshold
periodical update, and the sensor operating report is
obtained by the sensor FDD logic. The detailed mod-
ules in the architecture are described in the following
section.

Nonlinear real-time adaptive performance model

The purpose of the NRAPM is to provide a continu-
ous assessment of aircraft engine health condition. It
consists of a nonlinear on-board real-time model and
an associated tracking filter that on-line tunes the
model track the performance changes of the physical
engine by the feedback sensed measurements. Health
parameters are used as a measure of engine health
degradation and reflect the effects of performance
deterioration on sensed engine variables. The EKF
is applied to capture gradual engine performance
deterioration and produces real-time estimates of the
engine’s augment state variables x̂aug. The EKF esti-
mator receives the residuals between the sensed meas-
urements and the engine model outputs to estimate
the variables x̂aug, including the state variable x̂ and
health parameters �ĥ, which are provided as inputs to
the nonlinear on-board real-time model. This process
allows the model-produced estimates ŷ to track the
sensed measurements throughout, no matter whether
the sensed values are actual engine outputs.

Nonlinear on-board baseline model

The NBM incorporates an independent version of the
same nonlinear on-board engine model, and the
inputs of the NBM mainly include the commands u
and the estimated health parameters �ĥ in the NBM.

When the NBM runs on-board, it continuously
accepts commands u, flight condition c, and periodic-
ally updated health parameter estimates �ĥ. The ini-
tial state variable x in the NBM is calculated by the
corrected control variable u with the interpolation
map. The periodic update of the health parameters
allows the NBM adapt to normal performance deteri-
oration that occurs gradually over time. Aircraft
engine health degradation is only assumed to be grad-
ual in the architecture. The NBM provides a baseline
to the sensed measurements within the recent operat-
ing cycle.

A piecewise performance predictor which is applied
to capture dynamics periodically updated the NBM
health parameters to incorporate the effects of engine
health degradation, and the estimated health param-
eters from the NRAPM are flowed into the predictor
by the performance update switch. As sensor faults
are expected to manifest themselves as sudden shifts,
the real-time health parameter estimates generated by
the NRAPM’s EKF will immediately absorb sensor
faults. Nevertheless, the health parameters employed
by the NBM are updated only periodically, and the
sensor fault will not be reflected in the health param-
eter inputs to the NBM, resulting in a measurable
divergence of actual sensor values from respective
NBM estimates.

The health parameters �ĥ0 used for the nonlinear
on-board baseline model in the NBM come from a
piecewise performance predictor but not directly
from the periodic health parameters �ĥ. Therefore,
the frequency of the periodic health parameters �ĥ
update from the NRAPM is user-specified but is typ-
ically not needed to be once per flight as in Ref.31

As we know that the health parameters can be

u

Nonlinear on-board 
real �me model

Nonlinear on-board 
baseline model

Extended Kalman 
filterĥΔ

+

−

−ŷ

y

xΔ ˆ

+

NRAPM

A piecewise health 
predictor

NBM

Sensor FDD logic

Periodical 
update N

Fault 
threshold 

computa�on Periodical 
update N

Sensor fault diagnosis module

Sensor 
opera-

�ng
report

ˆ 'hΔ

Figure 2. An integrated nonlinear architecture for turbofan engine sensor fault diagnostics.

NRAPM: nonlinear real-time adaptive performance model; NBM: nonlinear on-board baseline model.
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updated every N cycle, and before the next update the
health parameters are constant, the differences
between the NBM and the real engine will increase
with the use. Shortening the update period is one
way to decrease the model errors; however, it will
observably result in the manual, material, and cost
consuming. Therefore, a new strategy to update
health parameters called soft update strategy is dis-
cussed. Assume that the update period is N, and the
piecewise performance predictor in the NBM is as
follows.

h0ðnÞ ¼

hð0Þ n5N
hðNÞ � hð0Þ

N
nþ hð0Þ N4n5 2N

f nð Þ n52N

8><
>: ð14Þ

From equation (14), we can see that the NBM
health parameters �h0 are initialized to the periodic
health parameter �ĥð0Þ from the NRAPM when the
cycle number is less than N, and then the parameters
�h0 satisfy the linear function passing through the fol-
lowing two points (0,�h(0)),(N,�h(N)), and after the
second update period 2N it can be fitted with the func-
tion f �ð Þ. Engine components will be consumed over
thousands of repeated operating cycles while being
subjected to a broad range of operating loads and con-
ditions, including extreme temperature environ-
ments.35 Weighting the pros and cons of the sensor
fault diagnostic accuracy and the operating costs, the
health parameters used for the NBM are updated each
cycle by equation (14), and it is so-called piecewise
performance predictor of the soft update strategy.

The health parameter deterioration of the gas path
component in aircraft engine usually follows the
quadratic function with the cycle number;31 therefore,
the function f �ð Þ is assumed as the quadratic function
that is followed with the series of periodical estimated
health parameter �h kTð Þ, k ¼ 0, . . . ,K.

Sensor fault diagnostics module

The estimated NBM outputs ŷ and the sensed engine
measurements y are designed to be used by a fault
detection and diagnostic (FDD) logic for the sensor
fault diagnosis on-line in sensor fault diagnostic
module. As discussed in Ref.,27 the keys to the
model-based sensor fault diagnosis are the baseline
model accuracy and sensor fault threshold selection.
The former has been discussed in section ‘‘Nonlinear
on-board baseline model,’’ and we propose the peri-
odical update to compute fault threshold for the latter
in this section. The threshold is determined by the
statistical characteristics of sensor measurement
noises and the model errors. The engine variable mea-
sured by sensor is expressed as follows:

yk ¼ ~yk þ�yk þ vk ð15Þ

The parameters ~yk and �yk separately represent
the engine sensed measurement and the modeling
error. The parameter vk is the zero mean, normally
distributed white noise that corrupts the measure-
ments, denoted as vk�N(0,�2). For each measured
parameter, the analytical residual is defined as
follows:

ri ¼
j yi � ~yij

�i
¼

vþ�y
 

�i
ð16Þ

where �i indicates the standard deviation of the ith
sensor measurement uncertainty. The NBM generates
the expected output values under the condition with-
out any sensor faults. The analytical residual com-
puted for each sensor is compared against the
threshold �ni at the nth cycle. If an analytical residual
ri exceeds a threshold �ni, it indicates the existence of
an anomaly and the ith sensor fault.

Considering the random variable vk/� follows the
standard normal distribution, and 3� criterion, the
threshold �ni can be calculated by the following
equation:

�ni ¼
�y

�i


þ 3 ð17Þ

As previously mentioned, engine performance is
generally deteriorated, and then the modeling errors
will be changed with usage. Therefore, the sensor fault
thresholds need to be updated periodically with the
baseline model errors. The threshold update rate is
the same as the health parameter update frequency,
equaling to N.

Experiments and analysis

The experiments are carried out in the hardware-in-
loop (HIL) system, and the sensor fault diagnosis
approach proposed above is designed and down-
loaded into the NI CompactRIO (cRIO), high-
performance programmable automation controller
(PCA) hardware. The NI cRIO-9024 and the NI
cRIO 9014 are used to build up the cRIO PCA. The
NI cRIO-9024 embedded real-time controller features
an industrial 800MHz real-time Freescale processor
for deterministic, reliable real-time applications and
contains 512MB of DDR2 RAM and 4GB of non-
volatile storage for holding programs and logging
data. In the HIL system, the turbofan engine CLM
has taken the place of the actual engine, and it experi-
ences the gradual deterioration in order to represent
the aircraft engine used in the real environment. The
NI cRIO-9014 eight-slot, reconfigurable embedded
chassis is part of the cRIO PCA platform. The
engine CLM balances flow capacity (power) equations
of the system are calculated at a rate of 200Hz, and
the sampling frequency used for the nonlinear model
sensor fault diagnostics is 50Hz. The EKF estimates
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health parameters and tracks the engine health condi-
tion at each sample point. The covariances of process
noise and measurement noise are separately obtained
from the standard deviation in Tables 2 and 3. Sensor
dynamics are assumed to be of high enough band-
width that they can be ignored in the dynamic
equations.

Considering the engine works at the cruise in the
most time, the experiments of sensor fault diagnosis
for the engine are carried out at this operating point,
and the referred parameters can be seen in Tables 2
and 3. The proposed approach based on nonlinear
integrated model is evaluated to the capability of
sensor fault diagnostics in flight over the course of
lifetime.

Health parameter estimate over the lifetime

Engine component performance gradual deterior-
ations are injected into all seven turbofan engine
health parameters. The deterioration profile that the
engine model will undergo is starting from initial
normal condition, then drifting following quadratic
function, and at the end of the sequence (6000 cycle

number) the health parameters is as follows: �2.85%
on SE1, �3.65% on SW1, �9.4% on SE2, �14.1%
on SW2, �3.81% on SE3, 2.57% on SW3, and
�1.08% on SE4. The deterioration profile specifies a
unique health condition at each sample point. Every
400 cycle number the health parameters are stored
and updated both for the predictor model during
the whole 6000 cycles, and the estimated parameters
are on-line generated by the state estimators.

Figure 3 shows the responses to 2% fan speed (nL)
sensor step fault both on the NRAPM and the NBM
at the 3000 cycle number. The estimated value via the
NRAPM tracked the sensor nL value well (in
Figure 3(a)) with the health parameters real-time
tuning (in Figure 3(b)). If the NRAPM is taken as
the reference baseline, we cannot obtain 2% sensor
nL step fault, and at the same time the estimated
health parameters cannot reflect the engine actual
health status. The 2% sensor nL step fault is repre-
sented in Figure 3(c) by the residuals between the nL
estimated value via the NBM and the actual
sensed one.

As can be seen from Figure 3, the NRAPM outputs
are able to track the sensed engine values closely,

Table 3. Turbofan engine CLM measurements at the cruise.

Variables Acronyms Operating point Standard deviation

Fuel flow Wf 2.5 kg/s

Variable nozzle area A8 0.54 m2

Low-pressure rotor speed nL 3799 r/min 0.0015

High-pressure rotor speed nH 11341 r/min 0.0015

Fan exit pressure P13 175677 Pa 0.0015

HPC inlet pressure P25 321039 Pa 0.0015

HPC inlet temperature T25 698 K 0.002

HPC exit pressure P3 3266005 Pa 0.0015

HPC exit temperature T3 1122 K 0.002

LPT exit pressure P5 181377 Pa 0.0015

LPT exit temperature T5 1053 K 0.002

CLM: component level model; HPC: high-pressure compressor; LPT: low-pressure turbine; HPT: high-pressure turbine.

Table 2. Turbofan engine CLM health parameter, operating point, standard deviation and degeneration maximum.

Augment state Acronyms

Operating

point

Standard

deviation

Deteriorate

maximum (%)

Fan efficiency SE1 1 0.0005 �2.85

Fan airflow capacity SW1 1 0.0005 �3.65

HPC efficiency SE2 1 0.0005 �9.4

HPC airflow capacity SW2 1 0.0005 �14.1

HPT efficiency SE3 1 0.0005 �3.81

HPT airflow capacity SW3 1 0.0005 2.57

LPT efficiency SE4 1 0.0005 �1.08

CLM: component level model; HPC: high-pressure compressor; LPT: low-pressure turbine; HPT: high-pressure turbine.
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and the post-fault residuals between the on-board
model and actual engine are minimal since the EKF
provides continuous tuning to the health parameters;
therefore, the NRAPM cannot be taken as the base-
line for sensor fault diagnosis purpose alone.
Conversely, the health parameters for the NBM are
held constant before the one cycle over no matter
whether the sensor fault happens. The residuals
between the NBM estimated value and the sensed
one are clearly discernible, which can be used for
sensor fault diagnostics. The key difference of the
two on-board nonlinear models is the health param-
eters update strategy.

Sensor fault threshold update

The conventional in-flight sensor fault diagnosis
system will eventually lose its effectiveness as the
engine is normally deteriorated over time. This hap-
pens because the baseline model output values will not
reflect the sensed engine ones. To keep the capability
of sensor fault diagnostics within the lifetime, the
health parameters of the NBM must be updated.
This soft update is completed by the following two
processes of feeding the estimated health condition
values: the piecewise predictor model periodical
update from the variables �h and the NBM perform-
ance real-time update with the variables �h0. The esti-
mates of sensor nL, P3, and T5 by the two on-board
baseline models with different update strategies are
represented in Figure 4, where the gas turbine
engine is subject to the specific health deterioration
profile over its lifetime of 6000 cycles discussed in sec-
tion ‘‘Health parameter estimate over the lifetime.’’
The physical parameters y in the following figures
have been normalized.

In the experiment, the health status of the baseline
is updated each 400 cycle numbers. In Figure 4, the
black line denotes the engine actual sensed value, the
red line denotes the output of nonlinear baseline
model with no update (marked I), the blue line
denotes the output of linear baseline model with peri-
odical update (marked II), and the pink line denotes
the output of the nonlinear baseline model with the
soft update strategy (marked III). As can be seen from
Figure 4, if the baseline is not updated from the nom-
inal condition, the residuals between the baseline
values and the actual sensed measurements will
increase with the operational cycle number. The on-
board performance baselines, updated by the two
update approaches, produced the outputs that could
track the engine actual sensed values. Compared with
the PBM, the NBM has less estimated errors to the
actual performance changes.

As discussed in section ‘‘Sensor fault diagnostics
module,’’ the threshold of the analytic residual is
determined not only by the measurement noise but
also by the modeling error. After we have obtained
the modeling errors at the cruise, the analytic thresh-
old for each sensor can be computed as equation
(17). Table 4 shows the computational results of
modeling errors and thresholds at the 3000 cycle
number and the 4200 cycle number for the three
baselines. As can be seen from Table 4, the modeling
error of sensor nL by the III at the 3000 cycle
number equals �0.06, provided the standard devi-
ation of sensor nL measurement noise equals 0.15%
in Table 3, then the fault threshold of the sensor can
be calculated to 3.40. We can see that the threshold
decreases with the absolute of the modeling error,
and the updated nonlinear model is corresponding
to the smallest threshold.

Figure 3. Comparison of the NRAPM and the NBM responses to 2% sensor nL step fault at the 3000 cycle number: (a) sensor nL

estimates by the NRAPM; (b) performance estimates �h by the NRAPM; (c) sensor nL estimates by the NBM; and (d) outputs of the

piecewise performance predictor �h0 for the NBM.

NRAPM: nonlinear real-time adaptive performance model; NBM: nonlinear on-board baseline model.
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Sensor fault diagnostics in flight

In order to verify the capability of the nonlinear inte-
grated model-based approach to diagnose sensor
faults, experiments on three fault diagnostics struc-
tures with step fault and pulse fault to sensed outputs
are carried out. The structures are as follows: non-
linear approach without any update, the linear
approach with periodical baseline update,35 and the
nonlinear approach with periodical baseline and
threshold update.

The magnitude of 1%, 2%, and 5% step fault was
separately injected into the sensor nL at 10 s of the 3000
cycle number at the cruise as shown in Figure 5(a). The
sensor nL fault thresholds at the 3000 cycle number by
the three approach have been calculated in Table 4,
which are 10.53, 6.47, and 3.40 as depicted in
Figure 5(b)–(d), respectively. The analytic residuals
rnL by the nonlinear without update are not exceeding
its threshold s3000 nL under 1% and 2% step faults at

10 s, except 5% step faults in Figure 5(b). As can be
seen from Figure 5(c) and (d), the analytic residuals
grow obviously at 10 s, and all of them violate their
thresholds under three step faults with three magni-
tudes. According to the above results, we can see that
both the linear approach with model update and the
nonlinear approach with model and threshold update
could be used to discriminate the sensor nL step fault at
the 3000 cycle number, while the approach with no
update is only effective to large magnitude step fault.

The results of the sensor nL with a pulse fault are
illustrated in Figure 6. As shown in Figure 6(b), the
rnL grows higher than the threshold s3000nL when the
fault magnitude is 5%. However, the rnL value is only
bigger than the threshold in part when the downward
pulse with 1% or 2% magnitude, thus the upward
pulse with 1% or 2% magnitude is undetectable at
the 3000 cycle number through the nonlinear
approach without update. The rnL value is below its
threshold s3000nL as upward pulse with 1% magnitude,

Figure 4. The baseline model output values with the performance deterioration over time: (a) nL; (b) P3; and (c) T5.

Table 4. Gas turbine engine sensor fault thresholds.

nL at the 3000 cycle T25 at the 4200 cycle

I II III I II III

Modeling errors �y (%) �1.13 0.52 �0.06 0.70 �0.84 0.34

Threshold �n
i 10.53 6.47 3.40 6.50 7.20 4.70
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while analytic residuals under the remaining magni-
tude violate their threshold by the linear approach
with model update in Figure 6(c). Each residual
exceeds its threshold no matter what magnitude and
direction pulse fault in Figure 6(d), and it is consistent

with the truth and the no misdiagnosis is produced by
the proposed nonlinear integrated model-based
approach.

From the experiment to the sensor nL above, it
seems that compared with the model update

Figure 5. Comparison of the sensor nL step faults at the 3000 cycle number: (a) signal of sensor nL with step faults; (b) nonlinear

approach without any update; (c) the linear approach with periodical baseline update; and (d) the nonlinear approach with both of

baseline and threshold periodical update.

Figure 6. Comparison of the sensor pulse faults at the 3000 cycle number: (a) signal of sensor nL with pulse faults; (b) nonlinear

approach without any update; (c) the linear approach with periodical baseline update; and (d) the nonlinear approach with both of

baseline and threshold periodical update.
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approach, the misdiagnosis is much easier to happen
by the one without update. And it is true in the most
scenarios except to the sensor T25 through the experi-
ments. The results of the sensor T25 with step fault
and pulse fault at the 4200 cycle number are described

in Figures 7 and 8, respectively. The magnitudes of
the sensor fault are 1%, 1.5%, and 5%, and the
sensor T25 fault threshold at the 4200 cycle number
can be referred to the Table 3. As shown in Figure
7(c), the analytic residuals rT25 are still below the

Figure 7. Comparison of the sensor T25 step faults at the 4200 cycle number: (a) signal of sensor T25 with step faults; (b) nonlinear

approach without any update; (c) the linear approach with periodical baseline update; and (d) the nonlinear approach with both of

baseline and threshold periodical update.

Figure 8. Comparison of the sensor T25 pulse faults at the 4200 cycle number: (a) signal of sensor T25 with pulse faults; (b) nonlinear

approach without any update; (c) the linear approach with periodical baseline update; and (d) the nonlinear approach with both of

baseline and threshold periodical update.
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threshold s4200T25 after the step fault with the magni-
tude 1% and 1.5% happens at 10 s, thus the linear
approach with model update fails in these scenarios.
However, the other two methods do well in three mag-
nitudes of step fault. The pulse fault with the magni-
tude 1.5% and 5% can be detected by the nonlinear
approach without update, but it does nothing to the
downward pulse fault with magnitude 1% in Figure
8(b). The linear approach with model update loses its
sensor fault detection ability to the upward pulse fault
with both magnitude 1% and 1.5%. The proposed
nonlinear approach maintains its effective capability
to the all three pulse faults.

Table 5 shows the sensor fault diagnostic results to
the scenario of each sensor 2% step fault at the 200
cycle number, the 3000 cycle number, and the 5800
cycle number of the whole lifetime by the conventional
linear approach with model update (denoted as IV)
and the proposed approach (denoted as V). Both of
these two methods could diagnose all nine sensors
well at 200 cycle number, while sensor T25 is misdiag-
nosed by the IV at the 3000 cycle number. With the use
of the engine, the baseline model errors will increase.
From Table 5, we can see that there are four sensor
misdiagnose (nL, P13, T25, and T3) happening by the IV
at the 5800 cycle number, while the proposed approach
still has satisfactory diagnostic effectiveness.

Discussion

The study in this paper reveals the benefit of the
model-based integrated nonlinear approach to gas
turbine engine sensor fault diagnostics in flight.
Through this integrated architecture, the NBM is
able to maintain its diagnostic effectiveness as the
gas turbine engine health degrades over its lifetime.
However, the integration of the two nonlinear
models with different update strategies is not a trivial
step. In this section, more detailed discussion and ana-
lysis about the integration are presented.

One issue that influences the integrated approach is
the two-updated strategy involved in the health par-
ameters calculation of the on-board engine model. If
the health parameters of the on-board model are
updated real time, the model estimated variables will
track well the sensed measurements by the health

parameters self-tuning no matter whether sensor fail-
ure happens. These model output values cannot be
taken as the references to the sensed engine values.
On the other hand, the model without performance
update will be gradually away from the actual engine
because of the engine health degradation with usage.
Then, it is difficult to determine the abnormal caused
by the modeling errors or sensor failures when the
residual violates its threshold after operating several
cycle numbers. It is desirable to draw out the advan-
tages of the two model-based approaches with differ-
ent performance update rate. In the case of the
integrated architecture, the two performance update
strategies are developed and combined to update the
integrated models. The on-board adaptive model
based on the EKF provides the unmeasured health
parameters and tunes its performance real time,
while the independent baseline model utilizes the
soft update strategy to produce expected estimates
of engine sensor measurements for the purposes of
sensor fault diagnosis. These two on-board models
used for the integrated architecture have different per-
formance update periods in essence. Because the base-
line model in the proposed architecture can track the
actual engine well with usage, it is well suited for
sensor fault diagnostics over time.

Another issue that influences the integrated
approach is the application of the nonlinear model
and the EKF algorithm. If the on-board adaptive
model involves a linear model and piecewise LKF,
such as the case for the bank of Kalman filter
approach,19 the modeling errors are inevitably pro-
duced in the model linearization process.
Furthermore, the LKF algorithm design needs to be
piecewise from the idle to the maximum operating
condition for the gas turbine engine, and it increases
the complexity to application.

Sensor fault threshold selection is also one of the
important aspects to effectiveness of the sensor fault
diagnosis. In order to make the system easy to detect
the sensor fault with little amplitude changes, the
threshold range needs to be set much smaller. In gen-
eral, the fault threshold is obtained by the experiential
data and is usually to be constant. In that case, no
matter whether the model error changes, the threshold
is always invariable. The model error will change with

Table 5. Sensor fault diagnostic results under the sensor step fault at the 200 cycle number, at the 3000 cycle number, and at the

5800 cycle number.

nL nH P13 T25 P25 T3 P3 T5 P5

200 cycle number IV 3 3 3 3 3 3 3 3 3

V 3 3 3 3 3 3 3 3 3

3000 cycle number IV 3 3 3 7 3 3 3 3 3

V 3 3 3 3 3 3 3 3 3

5800 cycle number IV 7 3 7 7 3 7 3 3 3

V 3 3 3 3 3 3 3 3 3
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the increased cycle number, and then the residual
between the model and the actual engine is no
longer the same as the initial cycle number under
the scenarios of no sensor failure. The changed resi-
dual and the fixed threshold during the lifetime will
unavoidably result in misdiagnosis. Therefore, a
rational threshold selection is necessary for improving
the accuracy of sensor fault diagnosis, and in the
paper the model errors are taken into account to cal-
culate the fault threshold.

In summary, the referred model accuracy and the
fault threshold are the most important factors of the
model-based approaches to sensor fault diagnosis. In
this paper, the integrated architecture based on the
nonlinear model is designed to improve the model
accuracy, and the fault threshold is calculated by the
statistical characteristics of sensor measurement noise
and the model errors.

The problem of sensor fault diagnosis over the
entire engine operating envelope also needs to be
addressed. The proposed approach is mainly focused
on the ground in the standard atmospheric pressure,
and the experiments are carried out in this condition.
A whole flight envelope approach to diagnose the
sensor failure is necessary to engineering application,
and optimal partitioning the whole envelope into
regimes to correct the sensed parameters might be of
significance to further study.

Conclusion

A model-based nonlinear integrated approach has
been proposed to improve gas turbine engine sensor
in-flight fault diagnostic accuracy over the course of
engine lifetime. The designed architecture includes
dual nonlinear on-board engine models and a sensor
fault diagnostic module. The model with the two-
update strategy is implemented to produce the base-
line for the sensor fault diagnosis, and the sensor fault
threshold is calculated by the modeling errors at the
same time. Important theoretical and experimental
results have been obtained on sensor fault diagnostics
for turbofan engine. The theoretical results have also
been validated by the experiment and analysis, which
has shown good performance for both step fault and
pulse fault to the sensor when the engine performance
deteriorates with usage. The proposed method is easy
to design and tuning with a promising potential appli-
cation to gas turbine sensor fault diagnostics, due to
its possibility to accommodate long-term engine
health degradation.
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