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Minimum Mean Squared Error Equalization
Using A Priori Information

Michael Tuchler, Andrew C. SingeMember, IEEEand Ralf KoetterMember, IEEE

Abstract—A number of important advances have been made probability (MAP) equalization and decoding methods in such
in the area of joint equalization and decoding of data transmitted gn iterative scheme. In this paper, we consider an approach to
over intersymbol interference (ISI) channels. Turbo equalization minimum mean square error (MMSE)-based equalization that

is an iterative approach to this problem, in which a maximuma Lo L . .
posteriori probability (MAP) equalizer and a MAP decoder ex- enables significant reduction in the computational complexity

change soft information in the form of prior probabilities over the ~ Of such turbo-equalization methods.

transmitted symbols. A number of reduced-complexity methods  We will assume a coherent symbol-spaced receiver front-end,
for turbo equalization have recently been introduced in which a5 well as precise knowledge of the signal phase and symbol
MAP equalization is replaced with suboptimal, low-complexity timing, such that the channel can be approximated by an equiv-

approaches. In this paper, we explore a number of low-complexit; . . o
ngpt)-input/SOﬂ-OUtlpUE: p(S|Swo) xepqualizatiL:)n algorit\tlwvms tl?as)gdy alent, discrete-time, baseband model, where the transmit filter,

on the minimum mean square error (MMSE) criterion. This the channel, and the receive filter, are represented by a dis-
includes the extension of existing approaches to general signalcrete-time linear filter, with finite-length impulse response
constellations and the derivation of a novel approach requiring

less complexity than the MMSE-optimal solution. All approaches

are qualitatively analyzed by observing the mean-square error M—1
averaged over a sequence of equalized data. We show that for the hn] = Z hy 8[n — K]
turbo equalization application, the MMSE-based SISO equalizers =

perform well compared with a MAP equalizer while providing a

tremendous complexity reduction. of length M. The coefficientsh,. are assumed to be time-in-
Index Terms—Equalization, iterative decoding, low complexity, variant and known to the receiver.

minimum mean square error. In atypical receiver, the data received from the channel is pro-
cessed with an equalizer to mitigate the effects of ISI. The equal-
|. INTRODUCTION izer then produces estimates of the data, which are passed onto
. L : the decoder for the ECC. For complexity reasons, the equaliza-
N MANY practical communication systems, data is transf . . - . .
fion task typically consists of linear processing of the received

mitted over a channel with intersymbol interference (IS ‘hannel output [linear equalizer (LE)] and possibly past symbol

At the transmitter, the data is often protected by the additiop.. L .
) estimates [decision feedback equalizer (DFE)] [2], [3]. The pa-

of a controlled amount of redundancy using forward error cor- ) . ; :
rTmeters of these filters can be designed according to a variety

rection or an error-correction code (ECC). Itis then the task8 different optimization criteria, such as the zero forcing (ZF)

the receiver to exploit both the structure of the transmit symbg oo : I
constellation (as viewed at the output of the channel) and t EMMSE criteria [2], [3]. Optimal equalization methods for

structure of the code to detect and decode the transmitted dg{glmlzmg th_e bit error rate (BER) and th_e sequence error rate
ar& also nonlinear and are based on maximum likelihood (ML)

sequence. Methods that exploit the structure of the transmitted. =~ . : L
. - estimation, which turns into MAP estimation in presenceof
symbol constellation are referred to as equalization, whereas_ . . . . i
: priori information about the transmitted data. Reasonably effi-
those that exploit the structure of the code are termed decodihg, . ; o
C tnt algorithms exist for MAP/ML sequence estimation, e.g.,

A number of important advances have been made in the area of , ., =, . .
joint equalization and decoding in which traditional equalizz?rle Viterbi algorithm (VA) [2], 4], [5] and MAP/ML symbol

tion methods and decoding methods exchange informationelﬁtlma“on' €.g., the BCJR algorithm [6]. We refer to these est-

. . . ) . . . . —._mation methods as MAP/ML equalization.
an iterative fashion until convergence is achieved. In its origina . .
o . - When the data has been protected with a convolutional code,
form, turbo equalization [1] employed maximuanposteriori

improvements in the BER can be easily obtained through the use
of a soft-input convolutional decoder, with negligible increase
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introduced by the equalizer between neighboring symbols. Carsed instead of MAP equalization. Another common technique
volutional decoders are often troubled by such error “bursts”tid decrease the complexity of the MAP equalizer is to reduce
left unpermuted. the number of states in the underlying trellis, which was applied
A BER-optimal receiver that jointly addresses equalizatiaio turbo equalization in [25]. The approaches in [22]-[24], and
and decoding is usually impractically complex, in particular, ithose proposed in this paper, address a major shortcoming of
the presence of an interleaver. However, a number of iteratiee classical turbo equalization scheme [1], [16], [17], which
receiver algorithms have been developed that achieve near-sthe exponentially increasing complexity of the equalizer for
timal performance by repeating the equalization and decodiolgannels with a long impulse response or large signal alphabets.
tasks on the same set of received data, using feedback informdn this paper, we replace the MAP equalizer with a linear
tion from the decoder in the equalization process. This methajualizer, where the filter parameters are updated using the
which is called turbo equalization, was originally developed faMSE criterion. This differs from conventional MMSE-based
concatenated convolutional codes (turbo coding [9]) and is n@gualization methods in that the MMSE criterion is evaluated
adapted to various communication problems, such as trell@ser both the distribution of the noise as well as the distribution
coded modulation (TCM) [10], [11] and code division multipleover the symbols. In the context of turbo equalization, the
access (CDMA) [12]. We refer to standard references [13]-[15ymbol distribution is no longer independent and identically
for an overview of turbo coding. Turbo equalization systentdistributed (i.i.d.), as is typically assumed for MMSE-based
were first proposed in [1] and developed further by a numbequalization, due to the information fed back to the equalizer
of others [16], [17]. In each of these systems, MAP-based tedhem the error correction decoder. We show that, as a result, the
nigues, most often a soft-output Viterbi algorithm [18], are usambefficients of the equalizer change as a function of time and
exclusively for both equalization and decoding [1], [16]. Thenust be recomputed for each data symbol to be estimated. We
slightly more complex BCJR algorithm [6] was implementedddress the additional computational complexity by developing
in [16]. Combined turbo coding and equalization [19], [20] caa recursive algorithm for computing the equalizer coefficients,
include three or more layers, with two or more coding layemss well as a number of suboptimal, low-complexity methods
as in conventional turbo coding applications and an additionahose performance is nearly as good as the MMSE-optimal ap-
equalizer. proach. The performance of the derived algorithms is analyzed
For channels with large delay spreads (long duration impulbg observing the time averaged mean squared error (MSE) and
responses) and for large constellation sizes, MAP/ML-baseerified by simulation results.
equalization suffers from impractically high computational
complexity. This situation is only exacerbated in the context of Il. BASICS
turbo equalization, with the need to perform equalization and o ) )
decoding several times for each block of data. An importantFor the derivations of the algorithms, we consider the data
area of active research is the development of low-complextphismission system depicted in Fig. 1. Length? sequences
alternatives to such MAP/ML equalization methods for use i = [c1 c2---cr], partitioned into length@ subsequences
joint equalization and decoding. Ariyavisitakul and Li[21] proc,, 2 [¢n,1 Cn, 2" cn ), Of bitsc, ; € {0, 1}, are subject
posed a joint approach that is distinct from turbo equalizatiot transmission over an ISI channel. We assume that,the
working with convolutional coding and a DFE. Here, withirare independent and distributed according to ¢hepriori
the DFE, soft information from the DFE forward filter andinformationL(c,, ;) defined as the log-likelihood ratio (LLR)
tentative (hard) decisions from the decoder using the VA are fed
back. Wang and Poor [12] proposed a turbo equalization-like
system as part of a multiuser detector for coded CDMA.

This iterative scheme is based on turbo equalization using_rggr the turbo equalization application, thg ; are the inter-

LE to reduce ISl and MAP decoding. The MAP equalizer I8, aved code bits from the encoder for the ECC, andihs, ;)

thus replaced with a LE, whose filter p arameters are updatg the feedback information from the decoder for the ECC.
for every output symbol of the equalizer. In [22], the MAPS'nce neither the,, ; are independent nor thigc.,. ;) are true

equalizer in the turbo equalization framework is exchang riori information on the:,_;, itis the task of the interleaver

}N'th a softtlrtl_terfelrence lca_r:celer: based f(?n_ I|ntear f||tetr)f W' assure that the two assumptiamproximatelyhold at least
ow computational complexity, whose coefficients are obtaing cally and for several iterations.

using a least-mean-square (LMS)-based update algorithmopyo ooy ator maps eacti, to a symbolxz, from the
This idea is enhanced in [23], where the filter coefficients arg,) _

. : . -ary symbol alphabetS = {oq, ag, ..., e}, where
obtained using the LMS algorithm to match the output of a C d he bi A
MAP equalizer. For various signal-to-noise ratios (SNRs) afd € co;respodncsétot € 'rt] pattespl_ [si.1 ‘ZZF? : .\./\(I%Q]’ _
feedback information states, a linear estimate of the MAP:7 € {0, 1}, an enotest € compiexnum ers._ e require
equalizer is stored in a table and used for equalization in tHet the alphabet has zero meglf_, «; = 0 and unit energy
receiver. The approach in [24] is similar to that of [22] bu2~® 37", |a;|? = 1. To illustrate the algorithms to be derived,
assumes a (known) impulse response of a partial respomseconsider the three alphabets in Table .
channel occurring in magnetic recording applications. The The sequence = [x; z2 - -z L], z, € Sistransmitted. The
equalizer filter output is assigned a reliability measure enablingceiving process is disturbed by complex-valued additive white
the receiver to decide whether the linear algorithm should Kaussian noise (AWGN), i.e., the noise samplgsare i.i.d.

L(cn,;) 2 W[P(ca,; = 0)/P(ca,; = 1)].
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W, 17 ______________ -
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Fig. 1. Soft-in soft-out equalization usiregpriori information.

TABLE |
THREE SYMBOL ALPHABETS OVER THE COMPLEX NUMBERS (Z DENOTES/ —1)
[ 1 2 i 1 2 3 4
BPSK: [5, 0 | 1 QPSK: |58z 00 10 01 1T
o [+1[-1 a; (F1+0)/V2 | (C1+9/V2 [ (+1-9/vV2 [ (-1-1)/V2
i 1 2 3 4 5 6 7 8
8-PSK: | 115253 000 100 | 010 110 001 101 D11 111
a; (“1+9)/vV2| - v | (+1-0)/V2 | -1 [(-1-2)/v2 | (+1+1)/V2] +1

with the probability density function (PDF)o .= (w) defined Rather than computing (1), which may be computationally
by expensive, the proposed SISO equalizer in Fig. 1 first com-
A . putes estimates,, of the transmitted symbols, using a linear
P, o2 (w) =1/ (wa?) eI/ ne €, o €RY. filter, whose coefficients are determined with the MMSE crite-
rion and, nexta posterioriLLRs

P(ij = 0|-/1A7n)
P(cn.; = 1|2n)

The variance of the real and the imaginary partwaf is
o2 /2. The receiver observes the length+ M sequence

zZ = [21 Z - ZL+J\471]

M—1 Znlen)Ple,
é< >+wn > el

L(en,j|#n) = In

Z M Tk

Ve iey, ;=0
— =In — = 2
k=0 -
which, together with the priori informationL(c,, ;) for each Venicn, =1

cn, j, IS input to the SISO equalizer.
A MAP-based equalizer computes th@osterioriprobabil-
ities P(c,,, ; = c|z), ¢ € {0, 1}, or thea posterioriLLR

with respect toz,,. These LLR’s, which can be viewed as an
approximation ofZ.(c¢,, ,|z), can be broken up into the sum

A, P(c,;=0lz) > planlen) [ Plens)
L(Cn J|Z) = hl Y TR v . =0 Gl esl AL
’ Plcn; = 1lz) A el +L(cn ;).
Y pzle)P(e) S plaales) [[ Plens)
VY cicp,, ;=0 Vepicn,j=1 Vi g
=In i (1) “
> plzle)P(c) Le(en. ;)
Veien.g=1 We emphasize that the LLR.(c,, ;), which is a function of
respectively, which can be broken up into the sum i, and thea priori LLRs L(c,, ;), for all j* # j should not
depend onL(c,, ;), which is added separately. Therefore, we
Z p(z|c) H Plcy ) require that,, does not depend ab(c,, ;),j =1,2, ---, Q,
Veien, ;=0 V', j) @XCEPY =j, ' =n which affects the derivation of the MMSE equalization algo-
. > plzle) 11 Plew ;) +L(cn,j)-  rithms. Using this restriction ofy,, only onez,, has to be com-
pleie o’ J" puted to obtairL.(c, ;) for all ;.
Veie,, ;=1 v, 5 eXCepl’ =4, n'=n ’

For the sequel, some frequently used notation is introduced.

The first term represents the information abeyt; contained Vectors are written in bold letters, and matrices are written in
in z (channel information) and in the bits,_ ;, for all »/, ;7 bold capital letters. Time-varying quantities are augmented with
exceptj’ = j, n’ = n. Despite the independence assumptiod time index, e.g., as subscript. The x j matrix 1;,.; con-

on thec,, ;, knowledge about the, ; improves the informa- tains all ones, an®;; contains all zeros. The matrik is

tion aboutc,, ; since the ISI is reduced, and thus, the chann@D ¢ x ¢ identity matrix. The operatok(-) is the expectation
information is improved. Estimates ; € {0, 1} of the trans- Over the PDF of the noise,, and that of the transmitted sym-
mitted bits are obtained from the signbfc,, ,|z). When there Dols ., taking into account tha priori information L(c, ;).

is a further receiver component, e.g., a decoder of an ECC, fffee covariance operator is given by Gayy) 2 E(xyt) —

soft informationL(c,, ,|z) should be delivered instead &f ;. E(x)E(y"), where ()" is the Hermitian operator. A condi-
This can improve the performance of the decoder tremendousigned expectation is over the corresponding conditioned PDFs
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and is denoted(- | condition). The operator diag) to be ap- of the transmitted symbols, are required, which are functions
plied to a length vector returns an x ¢ square matrix with the of thea priori informationL(c,, ;) since
vector elements along the diagonal.

Q
P(.Tn :ai) = P(ij ISZ‘J)
ll. LINEAR EQUALIZATION USING A PRIORIINFORMATION et
A. MMSE Equalization Q
A linear estimatet,, of the transmitted symbal,, using the - 1—[1 1/2- (145, - tanh (L(cn, j/2))
observatiorg,, 2 [Zne NoZneNot1 - Znan, T OfF N = Ny + =
N; + 1 received symbols,, is given by where
. H b 5, é +1, s,;,=0
a:n—anzn—i— " R —1, Si,j:]-'

wherea é[a* @ o eat 1T an g, by € Carethe Table Il presents these functions for the three considered symbol
n n, No %n, No— n, —N1 s Y, ky Un . .
coefficients of the estimator. The parametdfisand.V, specify alphabets. Using,, andv;, to define

the length of the noncausal and the causal part of the estimator M—1
filter, respectively, andV is the overall filter length. When we Zn 2 E(z,) = Z R Tk
allow botha,, andb,, to vary withn, we find that the choice b—0
_ A - _ _ T
n:E n) = |[*n—Ny<n—N. Tt An+4N
a, =CoV(zy, 2,)'CoV(z,,, z,,) i A (en) = [2 1\27- Notdo o Zn]
by, :E(.Z‘n) — as E(Zn) Vo = COV(X"’ Xn) = dlaqvn—JW—Nz-l-l o 'UTH-Nl]

113

H [0y, (ny+r—1) 1 Oy |*

N a2
minimizes the cosk(|z,, — 2, |°) [26], the MSE, and that 5. 2 Cov(z, 2,) = 021y + HV, HY

L

& = E(xn) + COV(wp, 2,)COM2Zn, 2,) (2, —E(2,)).  the estimatet,, is given by

No

-/i'n =Tn+ ag(zn - En) =Tn+ Z An, k- (Zn—k - zn—k)
k=—N;

We call this the MMSE solution. The observatnis given by

T
Zy = Hxn + [wn,—l\’g Wpn—Ny4+1 """ wn—l—/\H]

R wherea,, = v, X.'s. This equation is equivalent to filtering
wherex,, = (2, N, M+1 Tn-N, M+2 - Tnin, | T, andHis the differencez, — z, with a linear filter with N coefficients

the N x (N + M — 1) channel convolution matrix fa ek =—Ni,1— Ny, ---, Ny given by
* * * A —
Hé fn:[fn,szn,Ngfl"'fn,le]T:Enls (3)
hy—1 hy—2 -+ ho 0 0

multiplying the result withv,, and addingz,,
0 hy—1 hy—2 -+ ho 0 -+ 0 .
Tn =T+ vy £ (2, — Zn). (4)

However,#,, depends orl(c, ;) viaZ, andw,. In order that
0 v 0 hayo1 ha_a - ho &, is independent frond(c,, ;), for all j, we setl(c,_ ;),j =
1, ---, Q, to 0 while computing:,,, yieldingz,, = 0 andwv,, =

Given the i.i.d. noise samples,, we find that 1. This changes (3) and (4) to

E(z,) =HE(x,) f £ fl, -1 = (En +(1—wn) ssH)_1 s

COMn, 2n) = COW(an, @) [Oix(Nobar—1) T Orxv, JH" B =041z, — 7, + (F, — 0)s). (5)
CoV(z,, z,) = o2 In + HCOV(x,,, x, ) HY.
We can expres§, as scaled version df, using the matrix in-
It follows from the independence of the bits ; that the sym- Version lemma [27]
bolsz,, are independentand that Gay,, x,,) = Oforalln, m, , A _ _ 1 Heael v =1 fHaot
n # m. The entries of the covariance matrix Gay, x,,) are, f. = (E" = 3s (1 —wn) ™! +8720s) TSt ) s
therefore, nonzero only on the main diagonal. To compiite —f —f, ((1 o)t 4 f};ls)71 £
andb,,, the mean and the variance Ho~—1
:(1+(1—Un) fn S) fn~

_ A
T2 E(wn) = Y - Pla, =) Finally, the estimates,, are computed as
;€S
T, = K, - fg(zn —Zn+Tns) (6)
Up = CO(Zy, Tp) = |047|2 “Plz, =) | — |f,,|2 )
<(§€:5 wherekK,, 2 (1+ (1 —v,)fls)~",
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We assume that the PDB&%,, |c,, = s;) = p(@n |2, = o), TABLE I R

i _ 1,2, -, 2Q are Gaussian with the mean CONVERSIONFROM L(¢y,, ;) TOE, = E(2,,) AND v,, = COM2 4, Z4,)
A N .

Pn,i = E(Zn|zn = «;) and the variance BPSK:
o2 2 CO(@n, dn|tn = ;) Zn = tanh(L(cn,1)/2),

’ vy =1-— Iii'nlza

p(ﬁ:n|cn = Si) ~ d)ﬂn,i:”i 7(.’i'n) (7)
: QPSK:

This assumption, which is also made in [12], tremendously sim- Fn =1/v2- (tanh(L(ca,1)/2) + tanh(L(cp 2)/2) 1),
plifies the computation of the LLR&.(c,, ;) in (2). The per- vp = 1= |Z,)%,

formance degradation is negligible since (7) is applied to derive

a mapping betweets,, and L.(c,, ;) only, and we found that l; = tanh(L(cn)/2), j=1,2,3

receiver components using.(c,, ;) or L(c, ;|#,) were very n'v]n _ ((1+\/§;{J- 1)}4 0 _’(1’+’\/§+Z)/4‘l2
robust to small-scale deviations in this mapping. The statistics Hy - (A=vZ+1)/4- I + 1+ (V2=1)0)/4 - 1),
fin,i ando? ; of i, are given by vp = 1— |Eal2.

8-PSK:

pin,i = Ky - £ (E(znlen = ) — Zn +Tp s) TABLE Il

=Ko fTI;I(H E(xu|en = i) = 2, + Tns) CONVERSION FROM THE LINEAR FILTER OUTPUT TO L. (¢, ;) FOR
= - - tHg THE MMSE SoLuTION
— 4in 7 n
afm :KTQL .fTI;ICOV(zn, Zn|Tn = oy)f, BPSK:
=K2-f1 (3, —v,ss") £ Le(cn1) =4/(1=va87£,) - Re(f (2 — Zn +Z08)),
= K2 (ff's — v, fllss"f,) QPSK:
o Le(cn,1)=v8/(1—vns™fn) - Re(£] (2 — 2 +Fns)),
yietding Le(en,2) =V8/ (1=, s"f,) - Im(£F (25~ Zn + Fu8)),
Lelen,) 8-PSK:
Z p(-/i'n|cn = Si) H P(Cn,J/ = 87‘,7]'/) ;]1=—L2(/(1;/'U2n S]ffn)]i %egfs(zn—in-{-a—:ns)a;), 3 = 1, PN ’8’
U 2 j = LiCn,j y J=4,4,9,
—ln Vs;is;, ;=0 Vgl £ (c )"]ln e(,71+l2+l:a +6113—12+13 +eq5+lg—13 +eq7—12_13
> —— S — o - e\lnl) = 2 +lz2+3 qa—l2+13 g6+12—13 gs—l2—1I3"
Z p(Znle, =s;) H Pcpjr = sijr) ettt 4 U7 TS 4 el 4 e
i85 = T Le{ y=1 e +e +e te
Vs =1 Vgl #d e\Cn,2) = In BTt +eQ4—h+la + T th—ls +eq8-1,~13 ,
e‘l1+l1+lz +eqz—ll+lg +eq3+z,_12 +€q‘_l'_12
Z Z L ) Le(cns) =In BTN Hl2 | to—TiHz 3 @7 ¥hi—T2 | oga—Ti—l2°
exp| —on;: + 8y L(cn i 2
Vs;is;, ;=0 Vi - |
=t the LLRs L(c,, ;) to develop a fast recursive solution to com-
Z expl —o,: + Z Gy L{cns) /| 2 putef,, that requires an order of complexity that¥$. There are
v 1 Pl Vi “ "l a number of related fast algorithms in the adaptive filtering liter-
8ii8i = 73 #d

ature [27]—-[31] that develop recursive update strategies similar
(®) in spirit to the one developed in this paper. Many of these ap-

where proaches exploit the existence of common submatrices within a

partitioned covariance matrix, using either the matrix inversion

— 12 H ] = _ . FH|2 A A . .
2 [Zn _2“"ﬂ| _ 1 (zn - Zn T anS) _ a; f's| ) lemma, or other structured inversions of partitioned matrices.
’ i fi's — v £ls st e, These algorithms typically focus on time- or order-recursive (or
Table Il shows that computind. (c,.;), j = 1,2, -, Q, both) least-squares methods. The time-recursive update algo-

from g,..; becomes rather simple for the symbol alphabe[ghm introduced here uses the following partitioning scheme:

considered. A [op ol A [N on
Without the existence @ priori information, i.e..L(c, ;) = .= |:UP EJ ’ Tnt1 = |:0H ON} ©)
N

0, for all n, j, the coefficient vectof,, would be fixed, i.e., not
change with time. Fror,, = 0 andwv,, = 1, for all n, under wherethe¥;,i € {P, N} are(N—1)x (N —1) matrices, the;

this condition, it follows thaf,, is equal to are length N — 1) column vectors, and the; are scalars. The
A ag ) " subscriptP denotes quantities at the “present” time steand
fva = E00s|, Ly, = (cuIv +HHY) s N at the “next” time step: + 1. A similar partitioning scheme

which is the usual solution for linear MMSE equalization [2]'.S introduced for the inverses &, andi1:

The subscripNA denotes “na priori information.” However, N A [up ub

f, = 3 1s has to be computed for eaehsince in general, the 3, =Un= [u U }

a priori information L{c,, ;) vary withn. A direct implemen- v v

tation of this operation requires an order of complexity that is 51 Ay A Un uy (10)
cubic inN. We exploit the structured time dependenc&agfon ntl nl ull  uy
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where we use the relationship that the inverse of a Hermitian TABLE IV
matrix is also Hermitian. The derivation of an efficient algo- SISO EQUALIZER ALGORITHM: MMSE SOLUTION
rithm arises from noting that the submatric€s and Xy are INPUT:
identical. - signal constellation S={a;,--- ,a3e},
- estimator filter parameters N; and N,
- channel characteristics hg, k=0,--- , M —1, and o2,
i — — i i, - received symbols z,, n=1—-Np,--+ L+ Ny,
whereH’ is a(N —1) x (N+M —2) channel convolution matrix. : )
. . . _ - ap. inf. L(cn;), n=1-No—M+1,--- |\ L+ Ny, j=1,---,Q,
Based on this fact, the recursive algorithm computes Elsf
from U, setsS,! = B!, and compute®J,,; from =t INITIALIZATION:
The inverseZ);1 of the submatri_xgp of X, is expre_ssed iN . define variables f=0y, U=0nxn, U=0(n_1)x(N-1):
terms of components dfl,, by solving3:,, U,, = Iy using (9) u=u'=0y_i, z=u=p=p;=0,4=1,---,29,
and (10): - compute Z, and v,, n=1—-Ny—M+1,--- , L+ Ny,
- - compute Zy, n=1-N,,--- , L+ Ny,
YpUp+opup =Iy_ - compute U = (62 1y + HV,HY) 1,

Ypup +opup =0x5_1

2 H H
Sp=Xn= O',wINfl + H/dlaqvn,]w,]\rz_f_g s Un+N1]H/

1 - EQUALIZATION ALGORITHM:

— X5 =Up — upup /up. (11)  FoRn=1T0 L DO

f =Us,

p="fs,

z =f(z, — 2,) + Zn gty
FOR i=1 TO 2;3 DO
oi=lr—oip —p?),
ux = 1/(ox — allate) ol | B*/(p—p?)
FOR j=1 TO Q DO

By solving 3, 11U, 41 = Iy, we expresy, un, anduy in
terms ofXy, on, andoy:

A o
/ 1
oN =Xy oN

uNy =— —UN 0’3\1 Z Z
R /s H exp(—o; + & L(cn)/2)
UN - EN + UN ONON I (C ) —1In Va;:8: ;=0 Vgl
where we ordered the equations to optimize the computation o > exp(-ei+ Y diyLen)/2)
using the intermediate vectet,. The matrixElg1 is equal to Vsi:si =] Vg #Eg
E;l and the quantitieey andoy are computed using (3) and END
9): IF n < L THEN
’ U u] _ .0,
H - ’
oN On—1 On_ usou
[ } = [ ) } +HV, HY [ 1\1 1} . (12) U =U—-uul/y,
ON Tw [u] _ [01\]2_1] +HV +1HH |:0N_.1]
AssemblingU,,;; from Uy, un, anduy completes the recur- u, -G Ow 1
sive algorithm. The LLR.(¢py1.5), 5 = 1,2, ---, Q are ‘; - 1/(‘;’_‘1,{‘1,)
given by (8) afterf, 11 = 3;,1,s is computed. u=—uu, ’

H

To bootstrap the time-recursive update algorithm, an initia U=U-+uu o

ization of U,, at the starting time step = 1 is required, e.g., . w uf
by computingU; = (o2 Iy +HV;H)~1. This operation can U= {u U]’
be trivial when the block of transmitted symbals starts with END

a preamble of at leas¥ 4+ A symbols known to the receiver, _END
yielding V; = 0, and thereforeU; = o ?Iy.

The complete algorithm processing a sequence of received __ A I A I .
symbolsz, anda priori information L(c,, ;) to outputL - ¢ Wherev.= (1/L) 3,1 Vi, @ndv = (1/L) 32, _; v Similar

n=1
LLRs L.(c, ;) is summarized in Table IV. to (5), the estimates,, are given by

B. Low-Complexity Approximate MMSE Equalization &, = (2, — 2, + T, 8). (13)

To further reduce the computational burden, we seek filter ) ] ) )
coefficientsf 2 [ fo - £~ 1%, which are not varying We callth|§the Iow—co.mpl_ex[ty (LC) solutlon.. Even though this
with n. Instead o?asi];izg_](LS) to_o]t\jltain the estimaies which @PProach isd hog we justify its use by referring to the analyt-
requirés computation 4, + (1 —v,) ss%)~s for éach time ical results in Section IV and the simulation results in Section V.

. . . Defining the vector
stepn, we propose a low-complexity approximate solution to

MMSE equalization, where the coefficients are computed using N iy 1
the time average of the expressiBp + (1 — v,,) ss': £= (opIy +HVHY) s

! f’ is expressed in terms df as it was done fof/ andf,, in

L
1
<f 221 3, 4+ (1 - vn)ssH’y> s Section III-A:

= (ooIn + HVH" 4y + (1 - 7) ss”)‘1 s ' = (1+(1-7)f"s)7'f. (14)

>

f/
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The mean.,,,; and the variance? ; of z,, are accordingly TABLE V
’ CONVERSION FROM THE LINEAR FILTER OUTPUT TO L.(¢x, ;)

- - FOR THELC SOLUTION
pn i =K - £ (E(zp|2n =) — 2, +Tps) = K -, - f7s

2 2 eH BPSK:
o . =K* - t"Covz,, z,|t, = a;)f > R e .
n,t , . V( i3] n|Hn z) u___st’ p=HHf, Kf'—‘fo, IE=fH(Zn—in+i'nS),
=K (B0 — onssTE Le(cnn) = 4- o~ Re(@) /(03 K1 +P"Vap—vn i),

QPSK:

= f'Hs, P= HHf', Ky = f'Hf', T = f'H(zn—-2n+2’:ns),
Le(enn)= V8- B Re(a:)/(a?qu +PanP_Un |/1'|2)a
Le(cn2)= V8- p-Im(z) /(0% K5 +P"Vap—vn [uf?),

whereK 2 (1 + (1 — 7)s''f)~!, yielding

o ItY(z, — 2, +Tns) — a; fs|?
ni = FH 52Ty + HV,HY — v, sst)

8-PSK:
The LLRsL.(cy, ;) are computed as in (8). p=fis p=HUF, K; = fif, z = ?H(zn—zn+ins),
The termV can be approximated byIy 1, Which we ¢=-2-u- Re(zaf)/( ZKf+pHVnp un lpl?), i=1,---,8,

found does not degrade the performance of the SISO equali {; = L(an)/2 J+l—+} ,2,3, . et .
e(Il 2 3+eq‘3_2 3+eq5 2— 3+e7“2 3

subs'ganhally, in particular for largk. This simplifies the com-  L.(c,;1) = e"2+’2+’3 T o T o g T o
pl'Itatlon off to f11+l1+ls + eﬂ2—11+ls + e(ls+l1—ls + eqs—ll—ls

Le(c"'2) =In¢ qa+11+la + 604—11+13 + 7 =13 + eqs—h—ls 4

& A 2 _ oy —1 _ eq1+l1+lz + eqz—ll-Hz + 693+11—12 + 604—11—12

£= (O’LUIN +vHH ) 5. Le(c"'3) =In e415+l1-l~l2 + eqe—h+12 + ed7thi—t2 + ets—hi—l2

The same can be said about approximating with
TABLE VI

_ — SISO KQUALIZER ALGORITHM: LC SOLUTION

It(z,, — 2, +Tpns) — a; fHs|? =

fH (a,LQUIN +HVHY — ESSH) f INPUT:

fH — - A 12 - signal constellation S={ay,--- ,ase},
|f (20 =2+ Tn8) — @i f7s| - estimator filter parameters N; and Ns,
T fn (021y +v(HHH — ssfl)) f - channel characteristics hg, k=0,--- ,M~1, and o2,

- received symbols z,, n=1—Ns,-+- ,L+ Ny,
- a-p. inf. L(cp,;), n=1-No—=M+1,--- | L+Ny, j=1,---,Q,

_ |fH(zn —Z, +Tns) — st|2
fHg (1-— st) )
INITIALIZATION:
The MMSE and the LC solution coincide wheneverg]l - define variables f=p=0y,

. . 0 i Q
are constant, yielding,, = 7, e.g., if | L{c,,. ; :const, forall *=U=K=p=0;=0,i=1,---,2°,
y 9 =7, €9, if|L(cn, ;)] - compute ZF, and v,, n=1— Ng—M+1,--~ ,L+Nyp,

n, j. Table V shows howL. (¢, ;),j = 1,2, ---, @iscom- _ compute Z,, n=1—Nag,--+ . L+N;
puted from the estimator filter output for the symbol alphabet_ compute ’ ’ ’
considered using the exagt ; with the coefficient vectof. p=1 Zn—

The complete algorithm processing a sequence of receiv f = ( 21N + vHHH) ~1g
symbolsz, anda priori information L{c,, ;) to outputL - @ p = HEf,
LLRs L.(c,, ;) is summarized in Table VI. u = fHs,

K =0, f f,
IV. ANALYSIS EQUALIZATION ALGORITHM:
We observe the time averaged MSE 2 E(|z, — 4,|?) FOR n =1 T0 L DO

z = (2, — Z,) + Tn 4,
FOR i =1 T0 29 DO

L L
742 2 _ a2 0i = |z — a; p* /(K + P Voup — vaps?),
_LZ LZ (len = 2al%) END
n=l n=1 FOR j=1 TO Q DO
of a lengthL sequence of estimatég to show that the incorpo- Z exp(—ei + Z 8ig Lien,i7)/2)
. .. . . Vs;:8;, ;=0 Vi3 #5
ration ofa priori information improves the performance of the  L.(c, ;) =In . — .
equalizer. The MMSE and LC solutions, yielding the averag y > leXp(_"i + V.Z;é 81,4 L(cn,7)/2)
5185, 7= 33 #3

costsJvmse andJrc, respectively, are compared with usual END
MMSE equalization without the use @af priori information.  gyp

For the latter approach, the parameter veeatpiis computed,
assuming thalL(c, ;) = 0 for all n, j, yieldinga,, = fna, as
shown at the end of Section IlI-A. In order to have an unbiaséahposing the independence constraint for computipndz, —
estimator, we sét, to E(z,,) — allE(z,,), yielding 0, v, = 1) results in

Bp = Tp + Ton(Zn — Zn). & = Ths(Zn — Zp + T S). (15)
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i| Si % L(cny)
data—s- Encoder | 0ter~ | 5| Signal | 2| ISI SISO | Le(nj

Yy
leaver mapper channel equalizer
|—. data
L I_ estimate
Inter— SISO Deinter—
Ly leaver || decoder ™ teaver [

Fig. 2. Application of equalization usirg priori information: turbo equalization.

We call this the naa priori information (NA) solution. Using Since the MMSE solution is optimal in the MMSE sense, we
z), =z, — 2, + T,s, the MSE for all three algorithms [MMSE always have/yuse < Jrc. Equality holds whenever all,,

(5), LC (13), and NA (15) solution] is given by are constant oves. From (15) and (16), it follows that for the
NA solution
T, =E(|z,, — allz] |?) _ o -
= B(Ja ) - Re(al B }) 4 2Bz o, TN TSRS
= E(|e, (1 - 2alis) +al (S, + [z *ssa,  (16) +Ha (ouly + HVET S (m - D)ss) fa

=1-2f,s+ 1, (cLIy + HVH" 4 (1 — 9)ss") fya.

Wherean = f/ for the MMSE,a,, = {’ for the LC, and N o
= fna for the NA solution. We also used thafls is al- UsingX = (o2 Iy +HVH" +(1-7) s s"), the proof showing

Ways real and thd(|z,.|?) = v, +|7..|2. The average MSE of thatJic < Jna is

the NA solution is denotedy ». We show that for ang priori

information constellation

Jrc < Jxa
B o 1-s85 s <1 2ff s+ £, S,
Jamse £ Jre £ Ina 2fll s <sUS s 4 £, Sy
IS s 1 sHE S, <sUS s 4 L, T8 ' Sia
holds. From (5) and (16), it follows that for the MMSE solution 0< (st — £, ) i_l(s — S fua).
Jn = (1= 1s) (F11s (1 = E(|z, ) + E(|za %)) - Equallty holds only fors = Xfys, which is true for

3 = 021y + HHY, i.e., noa priori information is available,
_ o L(c,w) =0, andv,, = 1, forall n, j.
The average MSH yvsr iS given by

V. RESULTS

JNMSE = (1 —f’—}‘}s) (@(1 —m)+m) As mentioned in the introduction, the major motivation
for developing algorithms for MMSE equalization usirg
priori information was to find low-complexity equalization

where i) 2 (1/L) 25:1 E(|z,[%) and techniques feasible to process and output soft information.

s A (1/L)>>E_ £'Ms. Since the transmitted symbais, Turbo e_qua_llization, or iterative equglization and_ decoding, is
are assumed to be equally likely,, as, - --, ape in the @0 application where such a scenario occurs. Fig. 2 depicts a
7 7 7

sequence, the average symbol enefgyapproaches 1 for a SyStém performing turbo equalization in the receiver [1], [32].
sufficiently largeL, and thus Binary data is encoded to code bits using a convolutional

ECC, which are permuted with an interleaver ko ¢ bits
cn,j. The interleaved code bits are mappediteymbolsz,,
from S. We chose a rat® = 1/2, memory 2 ECC with gen-
erator(1 + D? 1+ D + D?), L = 4048, a random interleaver
[15], and the 8-PSK symbol alphabet from Table I. The re-
ceiver performs turbo equalization, i.e., after an initial equal-
From (14) and (16), it follows that for the LC solution ization step yieldingL LLRs L.(c, ;), where L(c,, ;) = 0,
for all n, j, decoding and equalization steps are repeated on
- _ — o the same received data while using the decoder feedback as
o =m(1=20"e)+1" (o Iy + HVH + (M-2)ss") ' priori information L(c,, ;). The input to the decoder must
=1-t's be the differencel(c,, ;|%.) — L(c,, j) = Le(cn, ;) When a
=1-s" (o, Iy + HVH" + (1 -7) ss”)_1 s. linear equalizer is used di(c,, ;|z) — L(c,, ;) when a MAP

L
7MMSE =1- f’rl;IS =1- Z 2 + 1 —Un)SSH) ls.
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channel | channel Il

one-time equalization and decoding one-time equalization and decoding

BER
BER

10— : i ' i 10— ; i i
4 6 8 10 12 -2 0 2 4 6
E/N, in dB E/N,indB
after one iteration o after one iteration

BER

4 6 8 10 12 -2 0 2 4 6
Eb/N0 in dB Eb/N0 indB
after two iterations after two iterations

BER
BER

107 . : : : : . :
4 6 8 10 12 -2 0 2 4 6
Eh/N0 in dB Eb/N0 in dB
o after five iterations 0 after five iterations

BER
BER

10°

4 6 8 10 12 -2 0 2 4 6
Eb/ND indB Eb/No,ln dB

— MAP equalization

—k— one-time MMSE equaliz. and decoding
—- MMSE equalization (exact solution)
—6— MMSE equalization (LC solution)

— - bit-interleaved coded modulation

Fig. 3. BER performance of MMSE equalization usegriori information.

equalizer is used [1], [32]. We considered two ISI channel$, = 5. The noise variance? is determined according to
with the impulse responses the SNR

hi[n] =0.2276[n] + 0.466[n — 1] 4+ 0.6886[n — 2]
+0.466[n — 3] + 0.2278[n — 4]
hit[n] = (2 4 0.42)6[n] + (1.5 4 1.8)8[n — 1] + 6[n — 2]

M-1
By a E; E(lzn]*)

D I
_ k=0

No  NoRlog,(|S)) ~ NoQR ~ 202QR

+ (1.2 = 1.3)6[n — 3] 4 (0.8 4 1.62)6[n — 4] MAP equalization or MMSE equalization using the MMSE
or the LC solution and MAP decoding are applied in the
receiver.

causing severe and mild ISI, respectively, taken from [2] and Fig. 3 shows the BER performance with respect to the en-
[22]. The channel characteristics are precisely known to tkheded information bits of the three considered receiver algo-
receiver. The filter length parameters were seto= 9 and rithms for both channels after initial equalization and decoding
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and after one, two, or five iterations. References provided args)
the BER of one-time MMSE equalization and decoding, where

no a priori information is used, and the BER of bit-interleaved 6

coded modulation (BICM) at the same SNR. The latter approach
corresponds to a system in Fig. 2, where no IS| is present, i.e.

h[n] = 8[n], and its performance is a lower bound for the sys- t

tems investigated here.

For transmission over channel I, one-time MMSE equaliza- [8]

tion and decoding achieves a BER of Z0at 33 dBE),/Ny.

After five iterations, turbo equalization using the MMSE solu- g
tion achieves that BER at 9 dB and the LC solution at 9.5 dB

L, /Ny. The gain is thus 24 or 23.5 dB, respectively. Using
BER-optimal MAP equalizer yields an extra 2-dB gain. The

10]

BICM system representing the ISI-free case achieves a BER of

10~* at 4.3 dB. The BICM lower bound is not attained by the [11]
systems transmitting over channel |. This likely stems from tthlZ]
relatively short block lengti, which limits the performance

improvement over the iterations, as observed in [32].

For transmission over channel I, the system using one-tim&=!

MMSE equalization and decoding achieves a BER of“at

14 dB E,, /Ny. After five iterations, the MMSE and the LC so- [14]
lution achieve that BER at 4.3 dB, /Ny. The gain is thus 9.7
dB, which is not increased using MAP equalization. The BICMy5

lower bound is attained faoE;, /N, larger then 2 dB since the [16]

BICM system achieves no better performance.

VI. CONCLUSION AND DISCUSSION

. . (18
Several algorithms were proposed for linear MMSE equal-

(17]

ization of symbols disturbed during transmission over an ISl

channel. The introduced equalizers improve their performanc
by incorporatinga priori information on these symbols, which

was shown by observing the average MSE of the symbol est[20]
mates. Two instances of such algorithms are proposed: an exact
and a low-complexity approximate approach to MMSE equalyzy)

ization usinga priori information. Turbo equalization is an ap-
plication where such equalizers can be used successfully. Si
ulation results show that the performance improvement is su

stantial. Moreover, the exact and the approximate solution show
similar performance, i.e., the performance degradation is sma#3l

even for channels with severe ISI.

Encouraged by the promising performance results, further rga4)
search could extend the proposed algorithms to scenarios with
unknown channel characteristics, e.g., combined channel esf—S]

mation and equalization usirgpriori information. The qual-

itative MSE analysis could be extended to a quantitative anal-

ysis for givena priori information distributions occurring, e.g.,

in turbo equalization.
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