
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 3, MARCH 2002 673

Minimum Mean Squared Error Equalization
UsingA Priori Information
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Abstract—A number of important advances have been made
in the area of joint equalization and decoding of data transmitted
over intersymbol interference (ISI) channels. Turbo equalization
is an iterative approach to this problem, in which a maximum a
posteriori probability (MAP) equalizer and a MAP decoder ex-
change soft information in the form of prior probabilities over the
transmitted symbols. A number of reduced-complexity methods
for turbo equalization have recently been introduced in which
MAP equalization is replaced with suboptimal, low-complexity
approaches. In this paper, we explore a number of low-complexity
soft-input/soft-output (SISO) equalization algorithms based
on the minimum mean square error (MMSE) criterion. This
includes the extension of existing approaches to general signal
constellations and the derivation of a novel approach requiring
less complexity than the MMSE-optimal solution. All approaches
are qualitatively analyzed by observing the mean-square error
averaged over a sequence of equalized data. We show that for the
turbo equalization application, the MMSE-based SISO equalizers
perform well compared with a MAP equalizer while providing a
tremendous complexity reduction.

Index Terms—Equalization, iterative decoding, low complexity,
minimum mean square error.

I. INTRODUCTION

I N MANY practical communication systems, data is trans-
mitted over a channel with intersymbol interference (ISI).

At the transmitter, the data is often protected by the addition
of a controlled amount of redundancy using forward error cor-
rection or an error-correction code (ECC). It is then the task of
the receiver to exploit both the structure of the transmit symbol
constellation (as viewed at the output of the channel) and the
structure of the code to detect and decode the transmitted data
sequence. Methods that exploit the structure of the transmitted
symbol constellation are referred to as equalization, whereas
those that exploit the structure of the code are termed decoding.
A number of important advances have been made in the area of
joint equalization and decoding in which traditional equaliza-
tion methods and decoding methods exchange information in
an iterative fashion until convergence is achieved. In its original
form, turbo equalization [1] employed maximuma posteriori
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probability (MAP) equalization and decoding methods in such
an iterative scheme. In this paper, we consider an approach to
minimum mean square error (MMSE)-based equalization that
enables significant reduction in the computational complexity
of such turbo-equalization methods.

We will assume a coherent symbol-spaced receiver front-end,
as well as precise knowledge of the signal phase and symbol
timing, such that the channel can be approximated by an equiv-
alent, discrete-time, baseband model, where the transmit filter,
the channel, and the receive filter, are represented by a dis-
crete-time linear filter, with finite-length impulse response

of length . The coefficients are assumed to be time-in-
variant and known to the receiver.

In a typical receiver, the data received from the channel is pro-
cessed with an equalizer to mitigate the effects of ISI. The equal-
izer then produces estimates of the data, which are passed onto
the decoder for the ECC. For complexity reasons, the equaliza-
tion task typically consists of linear processing of the received
channel output [linear equalizer (LE)] and possibly past symbol
estimates [decision feedback equalizer (DFE)] [2], [3]. The pa-
rameters of these filters can be designed according to a variety
of different optimization criteria, such as the zero forcing (ZF)
or MMSE criteria [2], [3]. Optimal equalization methods for
minimizing the bit error rate (BER) and the sequence error rate
are also nonlinear and are based on maximum likelihood (ML)
estimation, which turns into MAP estimation in presence ofa
priori information about the transmitted data. Reasonably effi-
cient algorithms exist for MAP/ML sequence estimation, e.g.,
the Viterbi algorithm (VA) [2], [4], [5] and MAP/ML symbol
estimation, e.g., the BCJR algorithm [6]. We refer to these esti-
mation methods as MAP/ML equalization.

When the data has been protected with a convolutional code,
improvements in the BER can be easily obtained through the use
of a soft-input convolutional decoder, with negligible increase
in computational complexity. There is an increase in hardware
complexity, however, since these symbol estimates (soft infor-
mation) must be passed to the decoder and will require higher
precision than the quanitized (discrete-alphabet) symbol con-
stellation points. Most practical communication systems also
insert an interleaver after the encoder (in the transmitter) and a
deinterleaver before the decoder (in the receiver) [7], [8]. The
process of interleaving permutes the symbols within a given
block of data and, therefore, tends to decorrelate error events
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introduced by the equalizer between neighboring symbols. Con-
volutional decoders are often troubled by such error “bursts” if
left unpermuted.

A BER-optimal receiver that jointly addresses equalization
and decoding is usually impractically complex, in particular, in
the presence of an interleaver. However, a number of iterative
receiver algorithms have been developed that achieve near-op-
timal performance by repeating the equalization and decoding
tasks on the same set of received data, using feedback informa-
tion from the decoder in the equalization process. This method,
which is called turbo equalization, was originally developed for
concatenated convolutional codes (turbo coding [9]) and is now
adapted to various communication problems, such as trellis-
coded modulation (TCM) [10], [11] and code division multiple
access (CDMA) [12]. We refer to standard references [13]–[15]
for an overview of turbo coding. Turbo equalization systems
were first proposed in [1] and developed further by a number
of others [16], [17]. In each of these systems, MAP-based tech-
niques, most often a soft-output Viterbi algorithm [18], are used
exclusively for both equalization and decoding [1], [16]. The
slightly more complex BCJR algorithm [6] was implemented
in [16]. Combined turbo coding and equalization [19], [20] can
include three or more layers, with two or more coding layers
as in conventional turbo coding applications and an additional
equalizer.

For channels with large delay spreads (long duration impulse
responses) and for large constellation sizes, MAP/ML-based
equalization suffers from impractically high computational
complexity. This situation is only exacerbated in the context of
turbo equalization, with the need to perform equalization and
decoding several times for each block of data. An important
area of active research is the development of low-complexity
alternatives to such MAP/ML equalization methods for use in
joint equalization and decoding. Ariyavisitakul and Li [21] pro-
posed a joint approach that is distinct from turbo equalization,
working with convolutional coding and a DFE. Here, within
the DFE, soft information from the DFE forward filter and
tentative (hard) decisions from the decoder using the VA are fed
back. Wang and Poor [12] proposed a turbo equalization-like
system as part of a multiuser detector for coded CDMA.
This iterative scheme is based on turbo equalization using an
LE to reduce ISI and MAP decoding. The MAP equalizer is
thus replaced with a LE, whose filter parameters are updated
for every output symbol of the equalizer. In [22], the MAP
equalizer in the turbo equalization framework is exchanged
with a soft interference canceler based on linear filters with
low computational complexity, whose coefficients are obtained
using a least-mean-square (LMS)-based update algorithm.
This idea is enhanced in [23], where the filter coefficients are
obtained using the LMS algorithm to match the output of a
MAP equalizer. For various signal-to-noise ratios (SNRs) and
feedback information states, a linear estimate of the MAP
equalizer is stored in a table and used for equalization in the
receiver. The approach in [24] is similar to that of [22] but
assumes a (known) impulse response of a partial response
channel occurring in magnetic recording applications. The
equalizer filter output is assigned a reliability measure enabling
the receiver to decide whether the linear algorithm should be

used instead of MAP equalization. Another common technique
to decrease the complexity of the MAP equalizer is to reduce
the number of states in the underlying trellis, which was applied
to turbo equalization in [25]. The approaches in [22]–[24], and
those proposed in this paper, address a major shortcoming of
the classical turbo equalization scheme [1], [16], [17], which
is the exponentially increasing complexity of the equalizer for
channels with a long impulse response or large signal alphabets.

In this paper, we replace the MAP equalizer with a linear
equalizer, where the filter parameters are updated using the
MMSE criterion. This differs from conventional MMSE-based
equalization methods in that the MMSE criterion is evaluated
over both the distribution of the noise as well as the distribution
over the symbols. In the context of turbo equalization, the
symbol distribution is no longer independent and identically
distributed (i.i.d.), as is typically assumed for MMSE-based
equalization, due to the information fed back to the equalizer
from the error correction decoder. We show that, as a result, the
coefficients of the equalizer change as a function of time and
must be recomputed for each data symbol to be estimated. We
address the additional computational complexity by developing
a recursive algorithm for computing the equalizer coefficients,
as well as a number of suboptimal, low-complexity methods
whose performance is nearly as good as the MMSE-optimal ap-
proach. The performance of the derived algorithms is analyzed
by observing the time averaged mean squared error (MSE) and
verified by simulation results.

II. BASICS

For the derivations of the algorithms, we consider the data
transmission system depicted in Fig. 1. Length sequences

, partitioned into length subsequences
, of bits , are subject

to transmission over an ISI channel. We assume that the
are independent and distributed according to thea priori
information defined as the log-likelihood ratio (LLR)

For the turbo equalization application, the are the inter-
leaved code bits from the encoder for the ECC, and the
are the feedback information from the decoder for the ECC.
Since neither the are independent nor the are true
a priori information on the , it is the task of the interleaver
to assure that the two assumptionsapproximatelyhold at least
locally and for several iterations.

The modulator maps each to a symbol from the
-ary symbol alphabet , where

corresponds to the bit pattern ,
, and denotes the complex numbers. We require

that the alphabet has zero mean and unit energy

. To illustrate the algorithms to be derived,
we consider the three alphabets in Table I.

The sequence , is transmitted. The
receiving process is disturbed by complex-valued additive white
Gaussian noise (AWGN), i.e., the noise samplesare i.i.d.
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Fig. 1. Soft-in soft-out equalization usinga priori information.

TABLE I
THREE SYMBOL ALPHABETS OVER THE COMPLEX NUMBERS ({ DENOTES

p
�1)

with the probability density function (PDF) defined
by

The variance of the real and the imaginary part of is
. The receiver observes the length sequence

which, together with thea priori information for each
, is input to the SISO equalizer.

A MAP-based equalizer computes thea posterioriprobabil-
ities , , or thea posterioriLLR

(1)

respectively, which can be broken up into the sum

except

except

The first term represents the information about contained
in (channel information) and in the bits , for all
except , . Despite the independence assumption
on the , knowledge about the improves the informa-
tion about since the ISI is reduced, and thus, the channel
information is improved. Estimates of the trans-
mitted bits are obtained from the sign of . When there
is a further receiver component, e.g., a decoder of an ECC, the
soft information should be delivered instead of .
This can improve the performance of the decoder tremendously.

Rather than computing (1), which may be computationally
expensive, the proposed SISO equalizer in Fig. 1 first com-
putes estimates of the transmitted symbols using a linear
filter, whose coefficients are determined with the MMSE crite-
rion and, next,a posterioriLLRs

(2)

with respect to . These LLR’s, which can be viewed as an
approximation of , can be broken up into the sum

We emphasize that the LLR , which is a function of
and thea priori LLRs , for all should not

depend on , which is added separately. Therefore, we
require that does not depend on , ,
which affects the derivation of the MMSE equalization algo-
rithms. Using this restriction on , only one has to be com-
puted to obtain for all .

For the sequel, some frequently used notation is introduced.
Vectors are written in bold letters, and matrices are written in
bold capital letters. Time-varying quantities are augmented with
a time index, e.g., , as subscript. The matrix con-
tains all ones, and contains all zeros. The matrix is
an identity matrix. The operator is the expectation
over the PDF of the noise and that of the transmitted sym-
bols , taking into account thea priori information .

The covariance operator is given by Cov
, where is the Hermitian operator. A condi-

tioned expectation is over the corresponding conditioned PDFs
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and is denoted . The operator diag to be ap-
plied to a length vector returns an square matrix with the
vector elements along the diagonal.

III. L INEAR EQUALIZATION USING A PRIORI INFORMATION

A. MMSE Equalization

A linear estimate of the transmitted symbol using the
observation of

received symbols is given by

where , are the
coefficients of the estimator. The parametersand specify
the length of the noncausal and the causal part of the estimator
filter, respectively, and is the overall filter length. When we
allow both and to vary with , we find that the choice

Cov Cov

minimizes the cost [26], the MSE, and that

Cov Cov

We call this the MMSE solution. The observationis given by

where , and is
the channel convolution matrix

...

Given the i.i.d. noise samples , we find that

Cov Cov

Cov Cov

It follows from the independence of the bits that the sym-
bols are independent and that Cov for all ,

. The entries of the covariance matrix Cov are,
therefore, nonzero only on the main diagonal. To compute
and , the mean and the variance

Cov

of the transmitted symbols are required, which are functions
of thea priori information since

where

Table II presents these functions for the three considered symbol
alphabets. Using and to define

Cov diag

Cov

the estimate is given by

where . This equation is equivalent to filtering
the difference with a linear filter with coefficients

, given by

(3)

multiplying the result with and adding

(4)

However, depends on via and . In order that
is independent from , for all , we set ,

, to 0 while computing , yielding and
. This changes (3) and (4) to

(5)

We can express as scaled version of using the matrix in-
version lemma [27]

Finally, the estimates are computed as

(6)

where .
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We assume that the PDFs ,
are Gaussian with the mean

and the variance

Cov

(7)

This assumption, which is also made in [12], tremendously sim-
plifies the computation of the LLRs in (2). The per-
formance degradation is negligible since (7) is applied to derive
a mapping between and only, and we found that
receiver components using or were very
robust to small-scale deviations in this mapping. The statistics

and of are given by

Cov

yielding

(8)

where

Table III shows that computing , ,
from becomes rather simple for the symbol alphabets
considered.

Without the existence ofa priori information, i.e.,
, for all , the coefficient vector would be fixed, i.e., not

change with time. From and , for all , under
this condition, it follows that is equal to

which is the usual solution for linear MMSE equalization [2].
The subscript denotes “noa priori information.” However,

has to be computed for eachsince in general, the
a priori information vary with . A direct implemen-
tation of this operation requires an order of complexity that is
cubic in . We exploit the structured time dependence ofon

TABLE II
CONVERSIONFROM L(c ) TO x = E(x ) AND v = Cov(x ; x )

TABLE III
CONVERSION FROM THE LINEAR FILTER OUTPUT TOL (c ) FOR

THE MMSE SOLUTION

the LLRs to develop a fast recursive solution to com-
pute that requires an order of complexity that is . There are
a number of related fast algorithms in the adaptive filtering liter-
ature [27]–[31] that develop recursive update strategies similar
in spirit to the one developed in this paper. Many of these ap-
proaches exploit the existence of common submatrices within a
partitioned covariance matrix, using either the matrix inversion
lemma, or other structured inversions of partitioned matrices.
These algorithms typically focus on time- or order-recursive (or
both) least-squares methods. The time-recursive update algo-
rithm introduced here uses the following partitioning scheme:

(9)

where the , are matrices, the
are length column vectors, and the are scalars. The
subscript denotes quantities at the “present” time stepand

at the “next” time step . A similar partitioning scheme
is introduced for the inverses of and :

(10)
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where we use the relationship that the inverse of a Hermitian
matrix is also Hermitian. The derivation of an efficient algo-
rithm arises from noting that the submatrices and are
identical.

diag

where is a channel convolution matrix.
Based on this fact, the recursive algorithm computes first
from , sets , and computes from .

The inverse of the submatrix of is expressed in
terms of components of by solving using (9)
and (10):

(11)

By solving , we express , , and in
terms of , , and :

where we ordered the equations to optimize the computation by
using the intermediate vector . The matrix is equal to

and the quantities and are computed using (3) and
(9):

(12)

Assembling from , , and completes the recur-
sive algorithm. The LLRs , are
given by (8) after is computed.

To bootstrap the time-recursive update algorithm, an initial-
ization of at the starting time step is required, e.g.,
by computing . This operation can
be trivial when the block of transmitted symbols starts with
a preamble of at least symbols known to the receiver,
yielding , and therefore, .

The complete algorithm processing a sequence of received
symbols anda priori information to output
LLRs is summarized in Table IV.

B. Low-Complexity Approximate MMSE Equalization

To further reduce the computational burden, we seek filter
coefficients , which are not varying
with . Instead of using (5) to obtain the estimates, which
requires computation of for each time
step , we propose a low-complexity approximate solution to
MMSE equalization, where the coefficients are computed using
the time average of the expression :

TABLE IV
SISO EQUALIZER ALGORITHM: MMSE SOLUTION

where , and . Similar
to (5), the estimates are given by

(13)

We call this the low-complexity (LC) solution. Even though this
approach isad hoc, we justify its use by referring to the analyt-
ical results in Section IV and the simulation results in Section V.
Defining the vector

is expressed in terms of as it was done for and in
Section III-A:

(14)
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The mean and the variance of are accordingly

Cov

where , yielding

The LLRs are computed as in (8).
The term can be approximated by , which we

found does not degrade the performance of the SISO equalizer
substantially, in particular for large. This simplifies the com-
putation of to

The same can be said about approximating with

The MMSE and the LC solution coincide whenever all
are constant, yielding , e.g., if const, for all

. Table V shows how , is com-
puted from the estimator filter output for the symbol alphabets
considered using the exact with the coefficient vector.

The complete algorithm processing a sequence of received
symbols anda priori information to output
LLRs is summarized in Table VI.

IV. A NALYSIS

We observe the time averaged MSE

of a length sequence of estimates to show that the incorpo-
ration ofa priori information improves the performance of the
equalizer. The MMSE and LC solutions, yielding the average
costs and , respectively, are compared with usual
MMSE equalization without the use ofa priori information.
For the latter approach, the parameter vectoris computed,
assuming that for all , yielding , as
shown at the end of Section III-A. In order to have an unbiased
estimator, we set to , yielding

TABLE V
CONVERSION FROM THE LINEAR FILTER OUTPUT TO L (c )

FOR THELC SOLUTION

TABLE VI
SISO EQUALIZER ALGORITHM: LC SOLUTION

Imposing the independence constraint for computing(
, ) results in

(15)
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Fig. 2. Application of equalization usinga priori information: turbo equalization.

We call this the noa priori information (NA) solution. Using
, the MSE for all three algorithms [MMSE

(5), LC (13), and NA (15) solution] is given by

(16)

where for the MMSE, for the LC, and
for the NA solution. We also used that is al-

ways real and that . The average MSE of
the NA solution is denoted . We show that for anya priori
information constellation

holds. From (5) and (16), it follows that for the MMSE solution

The average MSE is given by

where and

. Since the transmitted symbols
are assumed to be equally likely in the
sequence, the average symbol energyapproaches 1 for a
sufficiently large , and thus

From (14) and (16), it follows that for the LC solution

Since the MMSE solution is optimal in the MMSE sense, we
always have . Equality holds whenever all
are constant over. From (15) and (16), it follows that for the
NA solution

Using , the proof showing
that is

Equality holds only for , which is true for
, i.e., noa priori information is available,

, and , for all .

V. RESULTS

As mentioned in the introduction, the major motivation
for developing algorithms for MMSE equalization usinga
priori information was to find low-complexity equalization
techniques feasible to process and output soft information.
Turbo equalization, or iterative equalization and decoding, is
an application where such a scenario occurs. Fig. 2 depicts a
system performing turbo equalization in the receiver [1], [32].

Binary data is encoded to code bits using a convolutional
ECC, which are permuted with an interleaver to bits

. The interleaved code bits are mapped tosymbols
from . We chose a rate , memory 2 ECC with gen-
erator , , a random interleaver
[15], and the 8-PSK symbol alphabet from Table I. The re-
ceiver performs turbo equalization, i.e., after an initial equal-
ization step yielding LLRs , where ,
for all , decoding and equalization steps are repeated on
the same received data while using the decoder feedback as
a priori information . The input to the decoder must
be the difference when a
linear equalizer is used or when a MAP



TÜCHLER et al.: MINIMUM MEAN SQUARED ERROR EQUALIZATION 681

Fig. 3. BER performance of MMSE equalization usinga priori information.

equalizer is used [1], [32]. We considered two ISI channels
with the impulse responses

causing severe and mild ISI, respectively, taken from [2] and
[22]. The channel characteristics are precisely known to the
receiver. The filter length parameters were set to and

. The noise variance is determined according to
the SNR

MAP equalization or MMSE equalization using the MMSE
or the LC solution and MAP decoding are applied in the
receiver.

Fig. 3 shows the BER performance with respect to the en-
coded information bits of the three considered receiver algo-
rithms for both channels after initial equalization and decoding
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and after one, two, or five iterations. References provided are
the BER of one-time MMSE equalization and decoding, where
no a priori information is used, and the BER of bit-interleaved
coded modulation (BICM) at the same SNR. The latter approach
corresponds to a system in Fig. 2, where no ISI is present, i.e.,

, and its performance is a lower bound for the sys-
tems investigated here.

For transmission over channel I, one-time MMSE equaliza-
tion and decoding achieves a BER of 10at 33 dB .
After five iterations, turbo equalization using the MMSE solu-
tion achieves that BER at 9 dB and the LC solution at 9.5 dB

. The gain is thus 24 or 23.5 dB, respectively. Using a
BER-optimal MAP equalizer yields an extra 2-dB gain. The
BICM system representing the ISI-free case achieves a BER of
10 at 4.3 dB. The BICM lower bound is not attained by the
systems transmitting over channel I. This likely stems from the
relatively short block length , which limits the performance
improvement over the iterations, as observed in [32].

For transmission over channel II, the system using one-time
MMSE equalization and decoding achieves a BER of 10at
14 dB . After five iterations, the MMSE and the LC so-
lution achieve that BER at 4.3 dB . The gain is thus 9.7
dB, which is not increased using MAP equalization. The BICM
lower bound is attained for larger then 2 dB since the
BICM system achieves no better performance.

VI. CONCLUSION AND DISCUSSION

Several algorithms were proposed for linear MMSE equal-
ization of symbols disturbed during transmission over an ISI
channel. The introduced equalizers improve their performance
by incorporatinga priori information on these symbols, which
was shown by observing the average MSE of the symbol esti-
mates. Two instances of such algorithms are proposed: an exact
and a low-complexity approximate approach to MMSE equal-
ization usinga priori information. Turbo equalization is an ap-
plication where such equalizers can be used successfully. Sim-
ulation results show that the performance improvement is sub-
stantial. Moreover, the exact and the approximate solution show
similar performance, i.e., the performance degradation is small
even for channels with severe ISI.

Encouraged by the promising performance results, further re-
search could extend the proposed algorithms to scenarios with
unknown channel characteristics, e.g., combined channel esti-
mation and equalization usinga priori information. The qual-
itative MSE analysis could be extended to a quantitative anal-
ysis for givena priori information distributions occurring, e.g.,
in turbo equalization.
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