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Intergranular Crack Nucleation 
in Bicrystalline Materials • 
Under Fatigue 
During cyclic deformation of polycrystalline materials, as substantiated by many 
experimental observations, due to existence of high stress concentration at the inter
faces the preferential site of crack nucleation is intercrystalline. Accordingly, it is 
assumed that the highly localized cyclic deformation persistent slip band (PSB) 
occurs along the grain boundary (GB) which results in intergranular crack initiation. 
In the present work the irreversible accumulation of dislocations are used to charac
terize PSB by means of double pile-up which are composed of vacancy and interstitial 
dipoles. We shall give the mechanism and a quantitative remedy of ratcheting of 
plastic deformation peculiar to fatigue deformation. In a manner conceptually analo
gous to Griffith theory (1921), the critical number of cycles to failure and hence the 
S-N curves for crack initiation is obtained by considering the free energy of the 
system. The Gibbs free energy change AG increases with the fatigue cycle number 
due to cyclic increment of elastic strain energy which in turn stems from cyclic pile-
up of dislocations along the slip planes. The Gibbs free energy change attains its 
maximum value at a critical cycle number beyond which the state of dislocation 
dipole accumulation becomes energetically unstable. In our theory we postulate that 
this critical state is the onset of crack initiation. We shall give a quantitative value 
for the fatigue limit and analyze the dependence of the S-N curve on several important 
physical parameters such as grain size; surface energy; yield strength; width of the 
PSB; and the ratio of the shear modulus of the bicrystalline material. 

1 Introduction 
Deformation of bicrystalline materials is greatly affected by the 

presence of grain boundaries (GBs). To date, many experimental 
observations have confirmed that surfaces and interfaces such as 
GBs and twin boundaries are common sites for crack initiation. 
Westwood (1961) and Johnston et al. (1962), in their experimen
tal studies reported the role of the GB in Magnesium Oxide 
bicrystals under compression. Johnston et al. studied the behavior 
of bicrystalls with wide range of misorientations in some details. 
In this paper, we shall consider, as an element of a bicrystalline 
material two perfectly bonded crystals with compatible GB that 
are free of any microscopic inhomogeneities such as impurities 
and voids. Figure 1 depicts two situations where crystals A and 
B are the constituents of bicrystalline materials. In Fig. 1(b), 
crystal A is totally surrounded by crystal B. 

Forsyth (1953) was the first to predict and observe extrusion 
phenomena in the fatigue of aluminium-copper alloy. Later, as 
pointed out in the review articles of Grosskreutz (1971), Laird 
and Duquette (1972), and the references therein, the extrusion 
phenomena was also observed in a wide variety of materials 
including most of the f.c.c, b.c.c, and some h.c.p metals. The 
mechanism of crack nucleation, particularly under low strain 
amplitude fatigue, is primarily due to extrusion and intrusion 
from striations in grains adjacent to the free surface. Subse
quently, this mechanism roughens the free surface, which are 
stress raisers on the surface and hence lead to crack initiation. 
Among other types of crack nucleation we should mention the 
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Zener-Stroh crack, which occurs in coalescence of edge disloca
tions in a pile-up against an obstacle such as a GB. However, the 
latter is not commonly observed during fatigue experimentation. 
Fatigue processes is usually accompanied by narrow bands of 
highly localized cyclic strain, namely persistant slip bands 
(PSBs). In contrast to the Zener-Stroh crack, numerous experi
mental observations reveal that, for most materials, formation 
of cracks at GBs is the consequence of pile-up and coalescence 
of edge dislocation on two closely spaced layers with a band 
width much smaller than the length of the layer. This is a 
manifestation of existence of high tensile stress over a small 
area between the slip planes. Note that under fatigue, the mate
rial within the band becomes soft compared to the matrix and 
subsequent cyclic loading causes an accumulation of damage 
or equivalent ratcheting of plastic deformation inside the PSBs. 

The preferred site of crack nucleation in bicrystalline materi
als, particularly under high strain amplitude fatigue, is intergran
ular or transgranular crack initiation at the GB. This is due to 
the high resolved shear stress concentration which exists there. 
At elevated temperatures, GBs serve as a crack nucleus, regard
less of strain amplitude. At high plastic strain amplitude, Aepl, 
and high cyclic plastic strain rate, epl, Mughrabi et al. (1981) 
attributed the nonoccurance of fatigue cracks in slip bands and 
the preferential intercrystalline crack initiation in polycrystal
line a-iron to incompatible shape changes resulting from asym
metric slip in neighboring grains at the surface. On the other 
hand, under the same Aept but low epl, the slip bands become 
more prominent and the mode of crack nucleation is predomi
nantly transgranular (Mughrabi, 1975; Mughrabi et al., 1981). 
Nevertheless, in our theoretical model we shall assume that, the 
formation of PSB along the GB eventually leads to intercrystal
line crack initiation. The dislocation dipole model has been used 
to simulate PSB and nucieation of microvoids at the interface 
between a thin film and a substrate (Mura, 1994; Qin et al. 
1991). We shall use vacancy and interstitial dipoles to model 
PSBs. As illustrated in Figs. 2 (a ) , (b), and (c) we predict 
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Fig. 1 (b) 

Fig. 1 Two examples of bicrystalline materials 

three distinct possibilities for the formation of PSB with respect 
to the interface, with points O and O' indicating the internal 
dislocation sources, such as the Frank-Reed type source. Figure 
3 shows the applied cyclic loading with rmax and T^n as the 
maximum and minimum shear stresses, respectively, with load
ing amplitude, A T = rmax — Train. We assume that, before 
loading, the crystals are free of any dislocations. When first 
loading to point 1, as shown in Fig. 3, the source O is activated 
emitting dislocation pairs of positive and negative signs along 
layer / . Similarly upon reversal of loading to point 2, the internal 
source O' emits dislocation pairs of both signs along layer / / . 
The presence of some strong obstacles on either side of the 
internal sources in the path of layers / and / / allow for the 
double pile-up of dislocations against the obstacles along these 
layers. Continued cyclic loading increases the dislocation den
sity in the pile-up. Consequently, high density of vacancy di-
poles at one end and high density of interstitial dipoles at the 
other end is equivalent to the movement of the material from 
the high density region of vaccancy dipoles across 00' toward 
the high density region of interstitial dipoles. Eventually, this 
process results in microvoid nucleation in the region with a 
high density of vacancy dipoles, and hillock formation in the 
region of high interstitial dipoles. 

The criteria used for obtaining the critical cycle number for 
fatigue life and subsequently obtaining the S-N (S: applied 
stress amplitude, N: number of cycles to crack initiation) curve 
is adopted from Mura and Nakasone (1990) and is similar to 
Griffith theory (1921). The energy of a Griffith crack under a 
fixed applied stress continues to increase with crack length up 
to the (unstable) equilibrium crack length at which the total 
free energy attains its maximum. Similarly for the fatigue prob
lem, for a given stress amplitude A T , the Gibbs free-energy 
change AG is expressed as a function of cycle number n (Fig. 
4) . This free energy change increases with the fatigue cycle 
number due to the increase in elastic strain energy and becomes 
maximum at a critical cycle number beyond which the initial 
state of dislocation dipole accumulation becomes energetically 
unstable. The energy of this state will be released by annihila
tion of dislocation dipoles of vacancy type followed by forma
tion of intergranular fatigue crack. Using these concepts we 
shall analyze the effect of several important physical parameters 
such as grain size; surface energy; yield strength; width of the 
PSB; and the ratio of the shear modulus of the crystals on the 
fatigue life of the bicrystal and give the corresponding S-N 
curves. One of the important features of these S-N curves that 
we gain in applying our theory is the fatigue limit, which indi
cates the threshold stress amplitude, below which cracks cannot 
be nucleated regardless of the number of cycles. 

2 Mathemat ica l Formula t ion of Dislocation Dipole 
Model 

2.1 Equilibrium of Peach-Koehler Force and the Gov
erning Integral Equation. Consider two perfectly bonded 
semi-infinite domains to represent an element of a bicrystalline 
material with three distinct situations, where slip planes are 
parallel to the interface, as depicted in Fig. 2. In this paper we 
focus on the case shown in Fig. 2(a). The remaining cases can 
be treated in a similar fashion. The material under consideration 
is elastic-perfectly plastic, so that the frictional stress rf, which 
is the stress necessary for moving a dislocation inside the crystal 
lattice is constant. At stage 1 of loading cycle (Fig. 3) the 
maximum applied shear stress Tmax is greater than ry and hence 
results in dislocation distribution on layer / . At the onset of 
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Fig. 2 Dislocation dipole model of the PSB at the GB, slip plane // is (a) 
at the GB (ft) inside region 1 and (c) inside region 2 
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Fig. 3 Cyclic shear stress pattern acting on the slip planes versus time 

plastic flow, the equilibrium of Peach-Koehler force on the 
piled-up dislocations along the slip plane / yields 

+ T„ Tf> (1) 

where r f is the back stress (dislocation stress) due to the dislo
cation distribution on layer I at stage 1 of the loading cycle. 
While the dislocation stress T ? is positive on layer 7, it con
tributes a negative back stress, but nearly equal magnitude on 
layer 77, which is located very close to layer 7. The magnitude 
of the back stress r ° decreases with distance from layer 7. 
Therefore, in view of the above and the assumption that disloca
tion motion is irreversible, it is reasonable that, upon unloading, 
the reverse slip occurs very close to layer 7. On the other hand, 
in order to avoid annihilation of dislocations, the minimum 
distance between layers I and 77 must be of dislocation cell size. 
Ad hoc the distance between the two layers is negligible as 
compared to the length of the pile-up. 

Load reversal to point 2 of the loading cycle, with the corre
sponding minimum applied shear stress Tmin, gives rise to the 
dislocation stress T ? due to new generation of dislocation distri
bution along layer II. The equilibrium of Peach-Koehler force 
on the piled-up dislocation along the newly formed slip plane 
II is given by 

T? + T? + Tmin = -Tf. (2) 

As it appears from Eq. (2) , the reverse plastic flow on layer II 
is indeed assisted by the back stress rf. In this manner, ratch
eting of plastic deformation is incorporated into our theoretical 
model. The mechanism of the build up of large local plastic 
strains with cyclic loading within two closely located thin slices 
was described by Lin and Ito (1969); however, their study did 
not consider dislocations, which play a fundamental role. 

Combining Eqs. (1) and (2) and utilizing A T = rmilx — rmin, 

T°2 AT - IT,. ( 3 ) 

It follows that at stage 2 of loading cycle, A T must be greater 
than 2ry in order to create new dislocations along layer 77. 
Noting that the back stress T2 is positive on layer 7, we see 
how this aids the formation of new dislocation distribution along 
the layer with dislocation stress r f at stage 3 of loading cycle 
and results in the equilibrium condition 

+ Tmax + T2 Tf- (4) 

Reversal of loading reactivates the dislocation source O', emit
ting additional dislocation pairs along layer II. The equilibrium 
condition along layer 77 and at stage 4 of the loading cycle is 

+ T% (5) 

where r° is the back stress due to the dislocation distribution 
on layer 77. At this point the trend of acceleration of the damage 
with each loading cycle is clearly seen from Eqs. (1) , (2) , 

(4) , and (5), in which the current applied back stress is the 
accumulation of all the previous ones. With the aid of Eqs. (1) 
and (3), Eq. (4) may be rewritten as 

r f - r f = - ( A T - 2 T / ) . . (6) 

Similarly, Eqs. (4) and (5) yield 

r? - r ? = A T - 27-,. (7) 

Following the above pattern, after n loading cycles, the equilib
rium of the Peach-Koehler force on the piled-up dislocations 
yield 

'2n+l T2,,-i = — ( A T — 2 T 7 ) , on layer I, x = h, 

T2„ - T2„-2 = A T - 2rf, on layer II, x = 0. 

However, for a large cycle number n of fatigue loading and 
unloading, r f In -> 0, so that 

2«+l i ~ « ( A r — 2r / ) , on layer 7, x = h, (8) 

T2„ = « ( A T - 2 T / ) , on layer II, x = 0. (9) 

Equations (8) and (9) yield at once 

T2,+ ,O0 - -rg,(v). 

That is, after a large cycle number of fatigue, the dislocation 
stresses, and consequently the dislocation distribution densities 
on the two layers, are approximately equal, but are of opposite 
signs. Hence 

£>2„+1(y) ~ -D2„(y), 

where the dislocation density distribution D2„+i(y) on layer I 
is obtained from the following integral equation: 

s: D2n+l(V)Txy(h, y; h, v)dV = ~ « ( A T - 2 T 7 ) , (10) 

where Txy{h,y; h, 77) is the shear stress field at (h, y) due to 
an edge dislocation at (h, 77). rly is given in the following 
subsection. 

2.2 Stress Field of an Edge Dislocation Near the Grain 
Boundary. The problems of the interaction of dislocations 
and boundaries, and edge dislocations in inhomogeneous media 
were first studied by Head (1953a, b ) . Consider two perfectly 
bonded elastic half-spaces with shear moduli ^ , /j,2 and Pois-

AG AT = 1000 MPa 

200 300 400 
Number of cycles 

Fig. 4 Typical plot of Gibbs free-energy change versus cycle number. 
Critical cycle number occurs when AG attains its maximum. 
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grain boundary 

Fig. 5 An edge dislocation near an interface lacated at (£, rj) in region 1 

son's ratios vlt v2. As depicted in Fig. 5, a single edge disloca
tion is located at (£, 77) in region 1 of the two joined half-spaces 
with its Burgers vector parallel to the interface. The coordinates 
and the geometrical location of the edge dislocation, with re
spect to its image at ( — £, 77) and the field point (x, v) are also 
shown in Fig. 5. When an edge dislocation is located at (£, 0) 
in region 1 with its Burgers vector parallel to the interface, the 
Airy stress functions for the two regions are given by (Dundurs, 
1969) 

X1 
2fiiby 

7T(K, + 1)(1 - P2) 
(1 - P2)(n log r,) cos 

+ (a + P2)(r2logr2)cos62 

- (1 + a)pr262 sin 92 - (a - P)(l - P) 

cos 82 

>-2 

X £ 2 log r2 - cos 282 + 2£ • (11) 

X 
(2) 

2ji1by{\ + a) 
[(r, log r{) cos (9, 

7T(K, + 1)(1 -P2) 

+ p(rx8x sin 0, + li log r , ) } , (12) 

where &3, is the Burgers vector, a and P are Dundurs constants 

_ r ( / c , + 1) -(K2+ 1) 

/9 

r(K, + i ) + K2 + 1 

r(#c, - 1) - (;c2 - 1) 

r(;c, + 1) + K2 + 1 

with r = fjL2/fit, Ki = 3 — Aui and K2 = 3 — 4^2. Employing 
the Airy stress function given by Eq. (11) and noting that Txy(x, 
y> £> v) = Txy(x, y — 77; £, 0) it follows that 

T^(^ ,y; £,»?) 

- d 

2^,^, 
*•(*, + 1)(1 - p2) 

sin #1 cos 26*, 

, . , . sin 82 cos 292 „ „ „ sin (92 cos2 

(a + P2) : + 2/3(1 + a ) 
r2 

e(a- /3)( l -/3) -
2 sin 26>2 2 sin 4f32 

r\ n 
4^ sin 6>2(4 cos26>2 - 1) 

r 3 
r 2 

(13) 

In Eq. (13), ru r2, #1, and 82 are redefined according to Fig. 
5. Combination of Eqs. (10) and (13) yield 

- - T g 2 " + ' ( 7 ? ) dr, - - f" fc(y,77)JD2„+1(7?)rf7?=A, (14) 
•K J-a T] — y TV J-„ 

with 

k(y, v) 

n(K, + l ) ( A r - 2T / ) 

a + 

8/7(1 -

a + 

4h(l -

P2 

- P 2 ) 

P 
~ P) 

2fi,by 

sin 482 

cos2 82 sin 2#2 

a - P 
-1- — sin 

4/i(l + /3) 

' 

402 cos 

(15) 

(16) 

where —a == (y, 77) s a. The first term in Eq. (14) has a 
Cauchy-type singularity l/(y — 77) and the asterisk (*) on the 
upper left corner of the integral sign means that the integral 
exists in the sense of a Cauchy principal value only. Equation 
(14) is a Fredholm integral equation of the first kind, with a 
generalized Cauchy type kernel ll(y — 77) and a bounded 
Fredholm kernel k(y, 77) and is solved when subjected to the 
condition 

£ D2n+x{r))dr) = 0. (17) 

This additional condition assures the uniqueness of the solution, 
and states that the net Burgers vector of the dislocation density 
distribution on the slip planes equals to zero. Due to the singular 
behavior of the integral Eq. (14) and its complicated Fredholm 
kernel, an analytical solution of Eq. (14), when subjected to 
the constraint Eq. (17), is difficult to obtain. To circumvent this 
difficulty, and to preserve the nature of the power singularity 
of the dislocation density distribution, we employ a special 
numerical scheme which we describe in the following section. 

3 Dislocation Density Distribution 
The type of singular integral equation which we described in 

the previous section requires the use of an appropriate quadra
ture scheme. In particular, the Gauss-Jacobi integration tech
nique, which has been extended by Erdogan and Gupta (1972), 
provides a powerful scheme suitable for the singular integral 
equations of the type developed herein. To employ this scheme, 
we shall make use of a proper transformations of variables y 
and 77, such that the integration limits (—a, a) of Eqs. (14) 
and (17) are transformed to the normalized interval ( —1, 1). 
Subsequently, discritization of Eqs. (14) and (17) leads to the 
following system of linear algebraic equations in dislocation 
density distribution 

X 1 mi) 1 
+ -K%{t',, tj) 

j = 1,2, ...,m - 1, (18) 
m 

1nf,) = Q. (19) 

The right-hand side A and the function % are Holder continuous 
in - 1 < (r', t) < 1 

%{t', t) = - -k(t', t), 
7T 
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Fig. 6 Dislocation density distribution along the slip plane / 

with 82 redefined as 

tan 
_, a{t - t') 

2h 

*I)(t') is a bounded function and is related to D2n+l{t') through 

D2„+i(t') 
H)(f) 

w(t') 

where the weight function w (t ') has the same type of singularity 
at the end points of the interval — 1 < t' < 1 as D2„+i(t') and 
is defined by 

w(t') 
1 

vr 
Furthermore, 

( 2 i - DTT . 
cos , i = 1, 2, 

2m 

cos — , j = 1, 2, . . . , m 
m 

1. 

Figure 6 shows the graph of a typical dislocation density 
distribution along normalized distance on layer / , which was 
obtained for a pile-up with half-length equal to 10 /J,m. As 
shown in Fig. 6, the dislocation density distribution is equal to 
zero at the center of the slip plane and varies gradually away 
from it; near the tips of the slip plane, however, it varies rather 
abruptly and eventually becomes infinite right at the tips. 

4 Gibbs Free-Energy Change and the S-N curves 
The increase in Gibbs free-energy change AG with the fa

tigue cycle number is due to cyclic increments of elastic strain 
energy, which in turn stems from cyclic pile-up of dislocations 
along the slip planes. The Gibbs free-energy change, from a 
state of dislocation dipole accumulation (Fig. 2(a)) to the state 
of crack initiation of size c (Fig. 7) , is 

AG = -Wi - W2 + 2cys, (20) 

where ys is the surface energy, Wt is the elastic strain energy 
release associated with the vacancy type dislocation dipoles, 
and W2 is the mechanical energy release due to the opening up 
of a crack embryo of size c. The stored energies Wi and W2 

will be released when a crack is nucleated, while 2cys is the 
energy necessary to create the two faces of the microvoid of 
size c 

c = byN(a) 

= by D2n+1(rj)dri, 
Jo 

where N(a) is the total number of positive dislocations on layer 
/, equivalently in terms of the normalized variable introduced 
in previous section 

ab, f D2„+l 
Jo 

(t')dt'. (21) 

Since the mechanical energy release is much less than the elastic 
strain energy release, we shall discount W2. The expression that 
relates elastic strain energy release to the self and interaction 
energies is given in the following subsection. 

4.1 Elastic Strain Energy; Relation to Interaction and 
Self Energies. The stored elastic strain energy due to disloca
tion dipole accumulation may be written as 

W, I I „Dr,D , 
= j <J,jU,jl 

Jn 
V, (22) 

where a ° and ufj are the dislocation stress and elastic distortion, 
respectively. dV is an elemental volume within the entire do
main fi. When we employing the divergence theorem and note 
cfijj = 0 in fi, Eq. (22) becomes 

W, I tjfjitfrijdS, 
J an 

(23) 

where dS is a surface element on the boundary 5fl with outer 
unit normal n,. Since the slip takes place only along layers / 
and // , with nonzero tractions, Eq. (23) yields 

W, = -j" Tg,+ 1(A,y)[«?(y)],dy 

(0,y)[u?(y)]ndy, (24) 
/ : 

where T2ll+1(h, y) and T ° , + 1 ( 0 , y) are the dislocation stresses 
caused by dislocation distribution along layer / . However, 
T2„+i(h,y) is acting along layer / whereas T2II+1(0, y) is acting 
on layer // . The slip distance [u2 (y)]i at a point y on layer / 
is given by 

[K2OO]/ = (M?+(y))/ - (K? - ( y ) ) / 

b,{N(a) - N{\y\)} 

= fo, f D2„+](r])dri, 

for large enough cycle number n of fatigue loading and un
loading the slip distance along layer //, [if?(y)] ; ; « 

Region 2 

c=byN(a) 

Fig. 7 Annihilation of dislocation dipoles of vacancy type followed by 
formation of intergranular crack embryo of size c 
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Fig. 8 Slip distance along the slip plane / 

~~ [«?()')];• Using the transformation of variables which we 
introduced in Section 3 

[u1(t)}, = aby f D2n+I(t')dt'. (25) 
J \ i \ 

Recall that dislocation density distribution is antisymmetric 
(Fig. 6), whereas in Fig. 8, the slip distance versus normalized 
distance along the slip plane is symmetric. 

The first and second terms on the right-hand side of Eq. (24) 
are the self and the interaction energies, respectively. We denote 
the self energy by Wxlf and those of interaction energy by WiM, 
thus we may rewrite Eq. (24) as 

W, = 2(Wself+ Wint). (26) 

With the aid of the transformation of the variables introduced 
in Section 3, the self and interaction energies for layer /becomes 

Wsc 

Win, = 

\ a J r S , + , ( A , 0 [ « ? ( 0 ] / * . (27) 

aj rg1 + I(0, f) [«?(*)]//*. (28) 

Since [u%h ra - [«?]; and T£, « - T £ , + 1 , it turns out that Wsel{ 

and Wim for layers / and / / are approximately equal, thus the 
factor 2 in Eq. (26) accounts for both layers. 

4.2 CrackNucleation. FromEqs. (18) and(19) wehave 

D2„+1(t ') = fti(AT - 2 r / ) * " 1 ( t ' , t ) T , (29) 

where *,„x„, is the coefficient matrix, T„,xl = {1, 1, . . . , 1, 
0 } T and the constant 6 contains some materials parameters. It 
follows that 

AG = CI>I2(AT - 2rf)
2 + c2n(Ar - 2rf)ys, 

where the constants c, and c2 contain information pertinent to 
material properties and geometry. The Gibbs free energy change 
AG attains its maximum at a critical cycle number n„, beyond 
which the initial state of dislocation dipole accumulation be
comes energetically unstable 

ClJs 

2 d ( A r - 2T / ) ' 
(30) 

hence the S-N curves for fatigue crack initiation can be obtained. 
In plotting the S-N curves, ncr = «,- determines the number of 
cycles to fatigue crack initiation. We assume that the embryonic 
crack of length c, which is created by the loading cycle number 
rii becomes the unstable Griffith crack, which in turn extends 
to infinitely long crack, resulting in the fatigue failure. The 
plotting of Gibbs free-energy change AG versus the number of 
cycles for different applied shear stress amplitudes are shown 

400 600 

Number of cycies 

Fig. 9 Computed Gibbs free-energy change versus number of cycles 
for different applied shear stress amplitudes 

in Fig. 9; we see that the critical cycle number increases with 
decreasing applied shear stress amplitude. The fact that the 
maximum Gibbs free energy change becomes less pronounced 
at lower applied shear stresses suggests a wider variation of 
fatigue life expectancy. It is interesting to note that the surface 
energy varies linearly with the critical cycle number, and has a 
square root dependence on the maximum Gibbs free-energy 
change. 

5 Results and Discussion 
According to the criteria set forth herein for obtaining the 

critical cycle number to fatigue life, we examine the effect of 
several important physical parameters on the S-N curves. As it 
appears in Eq. (30), our theory predicts that the threshold stress 
amplitude (fatigue limit) below which cracks cannot be nucle
ated is twice the frictional stress for the dislocation motion. 
Since the failure mechanism is the one by slip along the PSBs, 
materials with higher frictional stress naturally exhibit a higher 
yield strength, which results in higher fatigue life, in agreement 
with our findings. The phenomenon of dependence of the S-N 
curve on the frictional stress is illustrated in Fig. 10, where for 
a given A T , we observe higher fatigue strength to crack initia
tion in the materials with higher 77. In Fig. 10 the difference 
in the fatigue limits as the applied shear stress approaches 1TS 

is clearly demonstrated. 
The effect of the surface energy on the S-N curve is shown 

in Fig. 11, where an increase in ys results in higher fatigue 
resistance. As expected, the higher the surface energy the higher 
the number of cycles to failure and consequently higher energy 
is required for creation of two faces of a crack embryo, which 
further substantiates our theoretical results. 

One of the important parameters considered in this study is 
the length of the slip plane which is representative of a grain 
size. From Fig. 12, we observe that materials with larger grain 

100 1000 10000 100000 400000 
Cycles to failure, n. 

Fig. 10 Dependence of the S-N curve and the corresponding fatigue 
limit on the frictional stress 
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Fig. 12 Effect of the grain size on the fatigue life
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size are stronger and have higher fatigue resistance. This is in
agreement with experimental observations. Nakai et al. (1981)
studied the effects of grain size on near-threshold fatigue crack
propagation in low-carbon steel. The experimental results of
~akai et al:, which is shown in Fig. 14, reveals that larger grain
SIze matenals correspond to higher threshold stress intensity
range, and consequently have higher fatigue life. This phenom
ena was also confirmed by Gray et al. (1983). The microfracto
graphic studies offracture surfaces on the 7075 alloy in vacuum,
whIch were perfonnedby Petit (1983), indicate that the thresh
old fatigue crack growth rate is analagous to the fatigue crack
initiation rate. This particular result of his experiment is shown
in Fig. 15. Figure 13 depicts the soluti()n of system of Eqs. (18)
and (19) for the dislocation density distribution emitted from
a single dislocation source for a fixed appliedshear stress range

Fig. 15 Microfractographic view of fracture surface on the 7075 alloy in
vacuum (Petit, 1983)

!::>.r = I Gpa and for slip planes of half length equal to 10, 50,
100, and 500 /l>m, which correspond to the S-N curves shown
in Fig. 12.

Under cyclic deformation, mutual annihilations of disloca
tions play an important role during glide. Essmann and Mugh
rabi (1979) studied the critical height of the dislocation dipoles
of vacancy type of 1.6 nm for copper below which the annihila
tion of edge dislocations occurs. In weak beam TEM study
of fatigued copper single crystals, Antonopoulos et al. (1976)
reported edge-dislocation dipole widths from 2 to 5 nm with a
mean of 3.5 nm. As depicted in Fig. 16, we considered a range
of PSB widths h equal to 0.5, 1, 2.5 and 5 nm in order to
demonstrate the qualitative effect of PSB width on the S-N
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Fig. 13 Dislocation density distribution versus normalized distance
alon~ the slip plane. Dislocation pile-up shown for different half-length
of slip planes correspond to the S-N curves shown in Fig. 12 .
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Fig. 16 Dependence of the S-N curve on the width of the PSB
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Fig. 17 Effect of ratio of the shear modulus of crystal 2 to those of 
crystal 1 ( r = fi^/fi,-,) on the fatigue life of the bicrystalline material 

curves. We infer that, among the coexisting dislocation dipoles 
of various widths, which are shown in Fig. 16, for the largest 
band width h = 5 nm it takes the least number of loading cycles 
to crack initiation. 

The dependence of the S-N curves on the mismatch of the 
shear modulus is shown in Figs. 17; we conclude that larger 
mismatch of the shear modulus of grains results in lower fatigue 
resistance. In other words, we can say that the homogeneous 
materials have higher fatigue resistance to crack initiation. We 
close this section by noting that Figs. 11, 12, 16, and 17 were 
all obtained for the same value of friction stress 77 = 25 Mpa; 
therefore the same fatigue limit of 50 Mpa prevails for these 
cases. 

6 Conclusions 
Based on the existing studies, we proposed a model for dislo

cation dipole pile-up peculiar to intergranular fatigue crack initi
ation in bicrystalline materials. The phenomena of ratcheting 
of plastic deformation within two closely located thin slices or 
equivalently within the so-called PSBs, and acceleration of the 
damage with each loading cycle, were incorporated in our theo
retical formulation through consideration of back stress. 

We have shown that the dislocation density distribution along 
the slip plane is minimal away from the tip of the pile-up and 
becomes infinite right at the tip. The maximum Gibbs free-
energy change corresponds to a critical cycle number, beyond 
which crack initiates at the tip of the pile-up of vacancy dipoles. 
We thoroughly analyzed the effect of the grain size, surface 
energy, yield strength, width of the PSB and the ratio of the 
shear modulus of the bicrystalline material on its fatigue life 
and calculated the corresponding S-N curves. Finally, based on 
our theory presented herein, we were able to obtain the fatigue 
limit, an important feature of the S-N curves. 
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A P P E N D I X 
In this appendix we shall give an alternative derivations of 

Eqs. (8) and (9). Consider the arbitrary stages 2/' — 2, 2/' — 
1, 2 j and 2 j + 1 of the loading cycles, then the corresponding 
equilibrium of Peach-Koehler force on the pile-up dislocations 

TD 4- TD 

~ 2 j - l + ~ 2j-2 

TZ + T 

2/+1 + T £ + T„ 

+ i~max — Tf, on layer / , stage 2j — 1, (Al) 

= —Tf, on layer//, stage 2/', (A2) 

Tf, on layer/, stage 2j + 1, (A3) 
+ T„ 

from which we obtain 

2 / - 2 = AT - 277, 

2 / - 1 = - ( A r - 2 r / ) . 

(A4) 

(A5) 

That is the net increment in the back stress between two consec
utive even numbered stages (i.e., loading from Tmin to Tmax 

followed by unloading to rmin) and those of odd numbered 
stages (i.e., unloading from Tm„x to rmin followed by loading to 
7"max) are equal to A T — 2T> and — ( A T — 2rf), respectively. 
Hence, the net increments are invariant of the cycle number. In 
view of the above, it takes n increments for the even numbered 
stages to reach to stage 2M, and starting from stage 1 it takes 
n increments for the odd numbered stages to reach to stage 2ra 
+ 1. After large enough cycle number r ? will be negligible 
and we obtain 

T°I+I «* — H ( A T — 2rf), on layer / , stage 2» + 1, (A6) 

T°„ = « ( A T — IT/), on layer //, stage In, (Al) 

which are Eqs. (8) and (9) given in Subsection 2.1. 
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