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Abstract
Introduction The identification and graphical representation
of process design space are critical in locating not only
feasible but also optimum operating variable ranges and
design configurations. In this work, the mapping of the
design space of pharmaceutical processes is achieved using
the ideas of process operability and flexibility under
uncertainty.
Methods For this purpose, three approaches are proposed
which are based on different data-driven modeling tech-
niques: response surface methodology, high-dimensional
model representation, and kriging methodology. Using
these approaches, models that describe the behavior of the
process at different design configurations are generated
using solely experimental data. The models are utilized in
mixed integer non-linear programming formulations, where
the optimum designs are identified for different combina-
tions of input parameters within the operating parameter
and material property ranges.
Results Based on this idea, by defining a desirable output
range, the corresponding range of input variables that result
to acceptable performance can be accurately calculated and
graphically represented.
Conclusions The main advantages of the methodologies
used in this work are, firstly, that there is no restriction by
the lack of first-principle models that describe the investi-
gated process and, secondly, that the models developed are
computationally inexpensive. This work can also be used
for the comparative analysis of the use of different

surrogate-based methodologies for the identification of
pharmaceutical process Design Space.
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Introduction

Definition of Design Space in Pharmaceutical Engineering

The concept of design space was formally introduced in
2005 [1, 2] by the International Society of Pharmaceutical
Engineering as one of the fundamental building blocks of
the Product Quality Lifecycle Implementation (PQLI)
initiative. In simple terms, it is the area of the parametric
space within which acceptable product can be produced.
The use of risk-based analyses to determine design
constraints and then determine appropriate controls has
been a popular research area in many other industries.
Lately, it has been pointed out that the use of such practices
has not been formally applied in the pharmaceutical
industry. Working towards an ideal maximum level of
quality assurance and performance in the pharmaceutical
industry, the design space is directly linked to a well-
defined control strategy [3] and criticality assessment [4]. A
process variable, material property, process, or step is
defined as critical if it causes significant variability in the
product quality or process performance within a range of
values of the variable that is likely to occur if the variable is
not properly controlled. Criticality is highly connected to
the results of risk assessment, from which the critical
process parameters and quality attributes are identified, and
these are the only ones included in the design space.
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Finally, a successful control strategy uses the knowledge
derived from the criticality assessment and the design space
to assure that the process operates within the design space.

Sources for accurately defining the design space of a
process include the available literature, experience, and
knowledge of the process, first principles, experimental
data, empirical models or—most often—some combination
of all these methods. However, the choice of the tools used
to characterize the design space depends on the availability
of these resources. For example, when the science
underlying a process is known and well developed, the
design space can be obtained by predictive first-principle
models. On the other hand, if a process is new and its
scientific principles are not well understood, it can be
treated as a black-box process. Consequently, the design
space is dynamic, since, as additional knowledge and
information about a process is obtained (or as new raw
materials, evolving specifications, and new technology
become available), one can be more certain of its structure
and form. Clearly, there is no unique approach for defining
a design space of a process, but a general guidance and a
series of steps are outlined in [1]. Once the methodology
and tools that define the design space are chosen, the design
space has to be presented efficiently, in a way that can be
easily interpreted.

Figure 1 is a very common representation of the design
space, used to explain graphically its relationship to the
knowledge space and the normal operating ranges. The
larger knowledge space contains all the information about
all regions of the process that have been investigated.
Subsequently, the difference between the knowledge and
design space can be defined as the region of the knowledge
space that generates unacceptable product.

Several examples of specific experimental procedures to
define the design space of pharmaceutical processes are

found in the literature. For example, in [5], the operating
window for the process of a fluidized bed granulation has
been identified by assessing the impact of critical param-
eters, such as inlet air humidity, on fluidization behavior
and granule size. A similar procedure was followed in [6] in
order to define the confidence zone of chromatographic
analytical methods. In the present work, three different
data-based methodologies are used to generate the graphical
representation of the region in which acceptable perfor-
mance of unit black-box processes can be ensured. The
efficiency of these approaches is compared through two
pharmaceutical case studies: predicting the design space of
a continuous powder mixer and a loss-in-weight feeder of a
continuous tablet manufacturing process. The proposed
approaches can be considered as building blocks of a
general methodology for defining the design space of
black-box processes, which operate under uncertainty and
for which the only available information is a design of
experiment (DOE)-derived experimental data set. The next
section of the introduction contains a brief literature review
of previous work done in areas of design, optimization, and
control of processes under uncertainty, which are used in
the present work for defining the design space.

Optimization Approaches to Defining the Design Space

In this work, the construction of the Design Space is
considered as the problem of determining the boundaries of
a process where feasible, profitable, and acceptable perfor-
mance of the process is guaranteed. For many years, this has
been considered as a major concern in many process
industries and a substantial amount of work has been done
in order to define concepts such as “operability,” “feasibility,”
and “flexibility” of processes that contain uncertain param-
eters. Uncertainty can occur for a variety of reasons, most
commonly among them is the variability of certain process
parameters during plant operation.

Optimal process design under uncertainty was defined as
a rigorous formulation in the 1980s [7], where the effects of
parameters that contain considerable uncertainty on the
optimality and feasibility of a chemical plant were studied.
The objective of solving such problems was to ensure
optimality and feasibility of operation for a given range of
uncertain parameter values, by identifying a measure of the
size of the feasible region of operation. According to the
methodology introduced in this work, the problem was
represented as a max–min–max formulation, where, for a
given design and fixed values of the uncertain parameters,
the feasible region was calculated. In [8], the flexibility of
such processes was defined and quantified by the flexibility
index, which represented the maximum allowed deviation
of uncertain parameters from their nominal values, such
that feasible operation could be guaranteed by changing the

Fig. 1 Link between knowledge space, design space and normal
operating ranges
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control variables. A series of papers dealing with flexibility
analysis and the formulation and optimization of processes
under uncertainty were published in the following years;
most of them, however, required known process models
and rely on particular convexity assumptions [9–12].

More recently, the advantages and the need of integrating
process design and control have been recognized for
ensuring both optimality and controllability of a process
[13, 14]. Specifically, the ability of a process to move from
one steady state to another is quantified in order to avoid
unacceptable disturbances and minimize unnecessary vari-
ability in the final product. Firstly, the desired outputs and
the possible expected disturbances are taken into account
and then the operability of a process is defined. Operability
can be assured by controlling the set of input parameters,
while identifying the optimum out of possibly multiple
competing designs. The applications of operability analysis
can be classified into linear or non-linear and also steady
state or dynamic models [15–17]. In [18], an interested
reader can find a systematic comparison of the terms of
operability and flexibility and their applications in real-life
steady-state case problems.

Working in the context of modeling and designing under
uncertainty, the recently proposed approach by Banerjee et
al. [19] is independent of the mathematical complexity of a
process model or any type of convexity assumptions. High-
dimensional model representation (HDMR) is used as a
method of input–output mapping of black-box processes,
and this method is used to model the effect of parameter
uncertainty on process design and consequently identify the
feasible operation of the process. In [20], the authors extend
their work to handle more complex cases where the
variability of the optimal solution of mixed integer non-
linear programming (MINLP) models with parameter
uncertainty is captured through the use of HDMR.

It is by now very common in all areas of science and
engineering to utilize mathematical programming techniques.
MINLP refers to optimization models that contain both
discrete and continuous variables as well as nonlinearities in
the problem constraints and objective function. In general, the
objective function to be optimized is representative of the
performance criteria of the process that is being optimized,
for example minimization of cost and output variability or
maximization of profit [21]. The solution of an MINLP
problem is a set of optimal values of the discrete and
continuous variables that simultaneously minimize/maxi-
mize the objective(s) and satisfy the constraints.

The following sections are organized as follows. “Data-
Driven Modeling Methodologies” consists of a concise
description of the surrogate modeling techniques used to
model the behavior of processes, for which first principles
are not yet available. “Modeling with Discrete Design
Variables” clarifies the difficulties of modeling with

discrete design variables. The detailed description of the
proposed methodologies for constructing the graphical
representation of the design space is discussed in “Proposed
Approaches,” and their applications and results are exem-
plified with the use of three pharmaceutical case studies in
“Case Studies.” Small differences in the calculated design
spaces are further verified by experimental validation
described in “Experimental Validation.”

Data-Driven Modeling Methodologies

Three different techniques for mapping the behavior of
systems for which first-principle models are not available
are used in this work. In a previous work, it has been shown
that kriging and response surface methodology (RSM) can
be used to produce predictive steady-state models for
pharmaceutical unit processes even if some of the experi-
mental data are noisy or missing [22, 23]. The theoretical
background of the surrogate-based methodologies is briefly
discussed in this section—while available literature is cited.

High-Dimensional Model Representations

High-dimensional model representation methodology was
introduced to deal with the exploration of the effect of a
high-dimensional input variable space to the output
behavior of a system [24–29]. Li et al. [30, 31] have used
this method to model chemical laboratory experimental
processes. The output f(x) of a process is considered as a
finite hierarchical correlated function expansion, in terms of
the independent and cooperative forms of input variables
x ¼ x1; x2; . . . ; xnf g. Specifically:

f ðxÞ ¼ f0 þ
X

fi xið Þþ
X

fij xi; xj
� �þ � � � þ

X
f12...n x1; x2; . . . ; xnð Þ

ð1Þ
where f0 is a constant;

P
fi xið Þrepresents the independent

contribution of the different inputs to the value of the out-
put;

P
fij xi;xj
� �

represents the sum of the pair-correlated
contributions and

P
f12::n x1; x2; . . . ; xnð Þ represents the sum

of nth correlated contributions; n is equal to the number of
variables. This expansion is always finite and exact, and
most importantly the output is assumed to be well-defined in
terms of the input variables. However, the number of terms
can be prohibitively large, and it increases rapidly as the
input variables increase. This limitation can be overcome
since in real typical problems it is observed that interactions
of order higher than two are either very small or not
statistically significant. Thus, Eq. 1 can be approximated by:

f ðxÞ � f0 þ
X

fi xið Þ þ
X

fij xi; xj
� � ð2Þ
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Thus, HDMR can be used as a fast algorithm that
would circumvent the exponential difficulty of the high-
dimensional mapping problem [27]. The HDMR compo-
nent functions are optimally tailored to each particular f(x)
over the entire domain of x. In other words, each component
function is obtained by solving an optimization problem—in
which the minimum functional under specific orthogonality
conditions is calculated.

In the literature, two different types of HDMR expan-
sions have been introduced: cut and random sampling (RS)
HDMR [24–29]. In the cut-HDMR, the values of the
component functions depend on a chosen reference point in
terms of which the expansion is written, while RS-HDMR
functions depend on the average value of f(x) over the entire
domain. In the present study, cut-HDMR is employed. RS-
HDMR is more computationally expensive, since it requires
the calculation of N-dimensional integrals for the constant
terms. Cut-HDMR, however, minimizes the computational
cost since it requires evaluations of functions at sample
points, which we have readily available from the experi-
mental data. Initially, a combination of set-point input
variables is chosen as a nominal point, and the output of the
process at these operating conditions is the constant term f0.
Higher-order component functions are calculated as cuts
(axes, planes, etc.) through the nominal point. For example,
the first-order term fi(xi) is evaluated for xi while all other
input variables are kept at their nominal values. Next, look-
up tables are constructed for the component functions so
that component functions at any given arbitrary xi can be
interpolated and added up to obtain the final output. The
main advantage of this methodology is that the number of
required model runs in order to construct a look-up table
grows in a polynomial rate as the number of inputs
increases, instead of exponentially (traditional sampling).
A more detailed description of the steps of the algorithm of
the interpolation technique is included in Appendix 3.

Response Surface Methodology

RSM was first introduced by Box and Wilson in 1951 [32]
and is a tool that has been widely employed for the
optimization of noisy processes. RSM is a local optimiza-
tion technique whereby an optimum is found after
sequential optimization of localized sampling-based models
[33]. There are three basic steps to the algorithm: (1)
specification of a sampling set within the local region,
usually accomplished with DOE tools, (2) construction of a
local model centered at a nominal sampling point, and (3)
model optimization with respect to the local region in order
to determine the location at which process improvement is
maximized. There are two major questions associated with
model construction, namely (1) spatial location of sampling
points and (2) quantification of model uncertainty. In order

to address the first issue, DOE tools are applied. The
experimental design is defined as the specification of a
number of treatment levels for each input variable, the
experimental units by which responses are measured, and
the mechanism by which treatments are assigned to units.

For a problem containing n continuous input variables,
an n-dimensional quadratic polynomial is used as the local
model since quadratic behavior describes the mathematical
geometry in the neighborhood of an optimum. Model
accuracy can be improved if bilinear terms capturing the
interaction effects between two inputs are also incorporated
into the local model. A general second-order response
surface model has the following form:

z ¼ b0 þ
X
j

bjxj þ
X
i<j

bijxixj þ
X
j

bjjx
2
j ð3Þ

where xj are input variables, β0 βj, βij, and βjj are model
coefficients, and z represents the response that describes the
predicted output behavior.

Kriging Methodology

Kriging was first developed as an inverse distance weight-
ing method to describe the spatial distribution of mineral
deposits [34, 35]. This method has attracted a lot of
attention recently due to its capability of modeling complex
functions with also providing error estimates [22]. The
prediction fpred is expressed as a weighted sum of the
observed function values at sampling points that fall within
a set interval around the point that is predicted. The basic
idea of kriging methodology is that a function value for a
sampling point located close to the test point is generally
weighted more heavily in contrast to the function value
corresponding to a sampling point located farther away.
Lower weight is placed on function values whose sampling
points are clustered together in order to minimize the
possibility of generating biased estimates. Since a variance
for each test point is also calculated, regions where
subsequent sampling is required can be linked to a high
variance at the regional points.

The first step of the kriging methodology is the determi-
nation of variogram coefficients from an experimental
sampling set consisting of N sampling points. The variogram
is a quantitative descriptive statistic that graphically charac-
terizes data set roughness (and the information obtained
complements that which is obtained using histograms and
other common descriptive statistics). The variogram coef-
ficients are determined by fitting an optimum variogram
model to the data. Data smoothing is often used to improve
the fit by replacing clustered scatter points falling within an
interval with average values defined as semivariances.
Variogram model coefficients are then obtained from
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regression of the semivariance scatter points to one of the
five elementary types: spherical, Gaussian, exponential,
power, or linear. It is considered that the one that captures
the trend of the semivariance best is the one whose least
square error is the lowest. The covariance function which is
a complementary function of the semivariance is used to
calculate the kriging weights (wi) by solving the following
system:

Covðd1;1Þ � � � Covðd1;M Þ 1

..

. . .
. ..

. ..
.

CovðdM ;1Þ � � � CovðdM ;M Þ 1
1 � � � 1 0

26664
37775�

w1

..

.

wM

l

26664
37775 ¼

Covðd1;kÞ
..
.

CovðdM ;kÞ
1

26664
37775

ð4Þ

where dij is the distance between sampling point xi and
sampling point xj and dik is the distance between sampling
point xi and test point xk. Similarly, Cov(dij) and Cov(dik)
represent the modeled covariances between sampled func-
tion data whose corresponding input vectors are a distance
xi–xj or xi–xk apart, respectively. The kriging prediction fk is
then evaluated by the following form:

fk ¼
XM
i¼1

wifi ð5Þ

where wi and fi represent the weight and observed value at
sampling point i, respectively. For each test point xk, a
variance σk is also obtained as follows:

s2
k ¼ s2

max �
X

M
i¼1wiCovðdikÞ � l ð6Þ

where Cov (dik) corresponds to the right-hand side of Eq. 4.
Through this procedure, it is suggested that additional

experiments are conducted at test points which have any of
the following characteristics: (1) high variance, (2) high
difference between kriging predictions for consecutive
iterations, and (3) minimum prediction values, or the set
of points in which the model estimate is lower than the
corresponding estimates obtained for model predictions at a
set of nearest-neighbor sampling vectors. The kriging
procedure stops when the average kriging prediction values
for the current iteration do not change significantly relative
to the average kriging value for the previous iteration. A
more detailed description of the steps of the algorithm of
the interpolation technique is included in Appendix 3.

Modeling with Discrete Design Variables

Solving process design problems often involves two
different types of decisions: (1) selection of components
such as processes, type of equipment, etc. which are

represented by discrete variables and (2) selection and
determination of the operating conditions [20, 36] which
are usually defined by continuous variables. Thus, process
design is usually formulated as MINLP problem, where
discrete/binary variables are introduced for representing
existence of units and composing different design config-
urations. Modeling and optimization of pharmaceutical unit
operations often includes modeling with discrete—sometimes
even non-numerical—input variables. These parameters often
represent design variables such as the use, size, or configu-
ration of a specific part of a piece of equipment (e.g., screw
size of a feeder, design of a nozzle). Up to now, however, data-
driven modeling of pharmaceutical processes not often treats
these types of variables as integer decision variables.
Conversely, discrete or non- numerical variables are usually
represented in a multivariate data set by coded values based
onwhich the final response surface is fitted [37, 38]. Based on
the methodologies proposed in the present work, individual
models are produced for alternative process designs, which
are complemented by the assignment of a decision variable
for each design. A statistical analysis of the design variables
is always performed initially to identify the variables that are
statistically significant. Once variables are found to be
significant, using the proposed modeling approach enables
the formulation of the mathematical optimization problem
that can lead to the optimum design for different values of
operating conditions. This is the basic advantage of the
proposed method since this cannot be achieved if the design
is modeled as an additional input variable. Consequently, the
design space can be constructed separately and more
accurately for each different design configuration while the
optimum design is identified for each combination of
operating conditions.

Proposed Approaches

The purpose of this work is to develop a general methodology
that will construct a graphical representation of the region
bounded by the limits within which acceptable product or
process performance is achieved. For this purpose, the only
available knowledge on the system consists of a multivariate
experimental data set of a desired output measured at
different operating conditions for different design configu-
rations. This is very often the problem faced in processes for
which a physics- based model does not exist. The goal of
designed experiments is to collect the necessary data in order
to define relationships between input and output variables.
The three surrogate-based modeling approaches described in
“Data-Driven Modeling Methodologies” are used to model
the effects of the input parameters on the output and the
Design Spaces produced by each methodology are
compared.
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Mapping the Design Space Using RSM

The processes that are considered in this work have two
shared characteristics: the absence of a reliable first-
principle model and the existence of discrete type variables.
Thus, in order to identify the Design Space using RSM, the
following procedure is proposed:

Step 1: Second-order quadratic functions (Eq. 3) are fitted
to the data of each design configuration using
Response Surface methodology, producing k
models; where k represents the total number of
competing designs.

Step 2: The Knowledge Space of continuous input variables
is discretized within their investigated ranges.

Step 3: For each combination of input variables, the optimum
design and output are calculated. The existence of
discrete type variables introduces a certain amount of
complexity in the process of Design Space Mapping
because for each combination of operating conditions
and material properties, a different design configura-
tion might be identified as optimal. Thus, a set of k
binary variables is introduced in the objective
functions which are associated with each design.
Moreover, an additional constraint must ensure that
only one design can be chosen for each combination
of operating parameters.

Step 4: Finally, an acceptable range is set for the value of the
output in order to identify the corresponding feasible
operating ranges and material properties which
assure the output is kept within these limits.

The detailed formulation of this concept is illustrated
through its application to the case studies in the next
section. It is clear that this procedure might create a
discontinuous Design Space if for different values of
operating conditions there is a change in the optimum
value of the discrete input variable. The implementation of
the described algorithm is achieved by the link between
GAMS and MATLAB software [39].

Mapping the Design Space Using Cut-HDMR

In this proposed method, HDMR (“High-Dimensional
Model Representations (HDMR)”) methodology is used
for modeling the behavior of the process.

Step 1: A nominal point for each design configuration is
chosen. Next, for each of the k competing designs,
second-order HDMR component functions are
calculated, resulting to the production of k HDMR
look-up tables.

Step 2: The Knowledge Space of continuous input variables
is discretized within their investigated ranges.

Step 3: The output of each function at a specific combina-
tion of input variables is calculated by interpolating
the corresponding component functions and adding
them up to the second-order term.

Step 4: For each of the k calculated outputs, the optimum is
identified by simply comparing the value of each
design and storing the minimum or maximum-
depending on the objective. The next step com-
prises of identifying the optimum operating con-
ditions and design configurations within the entire
range of the available knowledge space of input
variables.

Step 5: An acceptable range is set for the value of the output
in order to identify the corresponding feasible
operating ranges and material properties which
assure that the output is kept within the tolerable
limits.

The main difference of this method from the RSM-based
methodology is that there is no need to pre-postulate the
response surface (i.e., quadratic form). The only assumption
made is that second-order interactions of input variables are
sufficient to predict the desired output. The described
algorithm is implemented using MATLAB.

Kriging-Based Approach for Mapping the Design Space

This approach is based on the kriging algorithm (“Kriging
Methodology”) which—similar to HDMR—is an inter-
polating methodology. The steps of this proposed approach
are the following:

Step 1: The Knowledge Space of continuous input vari-
ables is discretized within their investigated ranges.

Step 2: At each combination of operating conditions if
output variable is experimentally measured, this
measurement is used as an output. Otherwise the
Kriging algorithm is called having as an input
sampling set the entire experimental data set.
The test set is simply the single point that is
being handled in the current iteration. This
procedure is continued iteratively until the
output is measured for all possible combinations
of operating conditions and material properties.
This set of iterations is performed for each of the k
competing designs.

Step 3: For each of the k calculated outputs, the optimum
is identified by simply comparing the value of each
design and storing the minimum or maximum—
depending on the objective. The next step com-
prises of identifying the optimum operating con-
ditions and design configurations within the entire
range of the available knowledge space of input
variables.
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Step 4: Finally, an acceptable range is set for the value of
the output in order to identify the corresponding
feasible operating ranges and material properties
which guarantees that the output is kept within the
tolerable limits.

Steps 3–4 are identical to the HDMR-based methodology.
The basic difference here is the interpolation technique, since
each predicted point is calculated as a weighted function of
the available experimental data points. For each predicted
point, a variance is calculated—which provides a measure of
prediction quality. The described algorithm is also imple-
mented in MATLAB.

Case Studies

Continuous Mixer

In this case study, the performance of a commercial
continuous powder mixer (Gericke GCM 250) is studied as
a function of operating parameters and design variables. The
parameters that have been identified as significant—through
preliminary statistical analysis of variance (ANOVA)—
involve the impeller rotation rate, the powder flow rate, and
the design variables are the different Blade configurations
(“All forward” and “Alternate Blades”). Forward direction
imposes a forward flow along the axis of the mixer; backward
direction imposes powder flow in the opposite direction. The
first two variables are continuous whereas the last one has to
be represented as a discrete variable. A detailed description of
the experimental setup can be found in [40], while specifica-
tions of the equipment design can be found in Appendix 1.

The output measured to characterize the performance of
the mixer is the relative standard deviation (RSD) of the
concentration of the active pharmaceutical ingredient (API),
which is in this case acetaminophen. Initially, pure
acetaminophen (API) was pre-blended with a small amount
of silicon dioxide (0.25%) in a V-blender and finally Avicel
PH-200 was blended with acetaminophen (APAP). The
RSD measurements are a result of the ratio of the SD of
acetaminophen concentration over the average concentra-
tion of a large number of samples (Eq. 7). To determine the
homogeneity of the stream coming out of the mixer, samples
were retrieved from the outlet stream and the RSD, which is
the most common mixing index used in industry, was
computed based on Eq. 7. For each experimental run, 20
samples were collected from the outlet. Concentration of
acetaminophen in each sample was measured using a NIR
spectroscopy analytical method.

RSD ¼ s

C
¼ Standard deviation

Average concentration
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
1 Ci � C
� �2
N � 1

s
ð7Þ

In Eq. 4, C is the average concentration of the total
samples (N) collected in each mixing run and Ci is the
concentration of each sample. s is the standard deviation
between the sample concentrations. The RSD index
characterizes the uniformity of any mixture. In the context
of continuous blenders, variability in the feeding rate of the
materials often contributes significantly to the variability of
the final mixture. For further details of the experimental
procedure, refer to [40].

Firstly, the experimental data is used to produce different
regression models for the two different design configu-
rations (k=2): “All-Forward Blades” and “Alternate
Blades”, which result in the following equations:

All-forward blades:

RSDf ¼ aof þ a1f fr þ a2f rr þ a11f fr
2 þ a22f rr

2 þ a12f fr � rr
ð8Þ

Alternate blades:

RSDa ¼ aoa þ a1afr þ a2arr þ a11afr
2 þ a22arr

2 þ a12afr � rr
ð9Þ

Where fr is the powder flow rate kg
hr

� �
and rr is the impeller

rotation rate (RPM).
The investigated operating space of different impeller

rotation rates and powder flow rates is discretized and the
minimum output is calculated at each node within this
mesh, by solving the following MINLP problem:

min yfRSDf þ yaRSDa

s:t yf þ ya ¼ 1
frmin � fr � frmax

rrmin � rr � rrmax

where frmin, rrmin, frmax, and rrmax represent the minimum
and maximum values of the input variables (flow rate and
rotation rate) in their experimentally investigated range
(Knowledge Space). Discrete variables yf and ya can only
take values of either 0 or 1 (binary variables) and are linked
to the two different design configurations: all-forward and
alternate blade configuration, respectively. Based on the
formulation of the problem, a value of 1 indicates the use of
the corresponding design. For example if yf is equal to 1,
then the all-forward design configuration is the optimum
design for the specific conditions.

Using the kriging methodology, the experimental data
set is used each time to estimate the output at the same
combinations of design and operating variables. Look-up
tables are produced for the two designs—using the HDMR-
based method—from which the optimum output and design
is also calculated within the created mesh.

Using all the above approaches, the calculated outputs
within the knowledge space are compared in Fig. 2. Setting
the upper limit threshold of RSDmax of output acetaminophen
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concentration to be 10%, the acceptable design spaces
calculated using all methods are mapped in Fig. 3. As a side
note, we mention that the relatively high value of the RSD
mentioned here (the usual acceptability limit for powder
blends is 5%) is an artifact of the on-line spectroscopic

technique used to quantify composition; RSD’s measured by
dissolving tablets generated by the process range around 2.5%.

Comparing the predicted values in Fig. 2, the similarity
of the results of the three methods can be observed. As
expected the RSM predictions result in smooth regions
(Fig. 1d) due to the quadratic nature of the proposed model
in this case. In the same Figure, the two sharp points of the
kriging response are sampled points since kriging is an
interpolating technique that uses the actual experimental
values, when they are sampled. The form of the response
predicted between the two sampled points using kriging
depends highly on the number of nearby sampled points
used in the weighted function. This is one parameter that
can be tuned according to the nature of the response that is
being modeled. In general, kriging has shown its best
performance when space-filling designs are used, but
factorial design samples were available in this case. The
scope of the work, however, is to compare the performance
when the same data are available. As shown in Fig. 3,
which compares the Design Spaces, all three methods
predict similar feasible operating ranges. It is clear that a
feasible operation can be achieved for the entire range of

Fig. 2 Estimated output RSD within the range of investigated flow
rate and impeller rotation rate values (a) predicted by RSM approach,
(b) predicted by Kriging approach, (c) predicted by HDMR approach,

and (d) predicted by RSM, Kriging, and HDMR approaches projected
in 2D for a flow rate of 30 kg/h

Fig. 3 Design space (flow rate and impeller rotation rate ranges) of
continuous mixer for achieving RSDmax=10%
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flow rates, but only for a mid-range of the impeller rotation
rates. The outer dashed lines represent the limits of the
investigated Knowledge Space.

The results obtained by the three data-driven methodolo-
gies agree with the expected results based on the existing
knowledge of mixing process. In general, rotation rate is an
important factor in continuous mixing [40]. Increasing the
rotation rate leads to a higher degree of dispersion of powder
in the mixer. However, higher impeller rotation rate also
decreases the time available for mixing (lower residence
time). Understanding these opposing effects is the key to
achieving optimal mixing and can explain the fact that
lowest RSD is achieved in mid-range rotation rates.

In contrast, flow rate is found to be the least significant
factor through ANOVA (see Appendix 2) and this can
explain the fact that for the investigated rotation rates,
feasible operation can be achieved for all flow rates in the
range of 30–45 kg/h. However, this variable must be included
in the design space since it is a significant factor for feeder
performance. Specifically, increasing the flow rate can
decrease the output flow variability of the feeder. The fact
that this variable does not affect the variability in concentra-
tion of this specific case study implies that the mixer can
efficiently filter out the feeder variability, but this might not
be the case for other feeding–mixing integrated systems.

Finally, in order to compare the effect of the different
design configurations, the best design must be identified.
This is an advantage of the proposed approaches, since for
each combination of operating parameters, the design that
can result in better performance can be identified (Fig. 4).
For almost the entire design space, all three methods predict
better performance when using the “Alternate Blades”
configuration, while for high flow rates and low rotation
rates, the “All-forward” design results to better mixing
performance. This feature of the proposed approaches can
be used in order to identify the best design configuration for
a given set of operating parameters.

The efficiency of the three methods can be tested by
setting a stricter lower output limit RSDmax=9% where the
calculated design spaces are compared in Fig. 5. The
shape of the design space changes significantly with this
slight modification of the acceptable output range, but all
three methods result in very similar design spaces. Large
differences in the acceptable operating range when the
performance criterion becomes more demanding (lower
RSD), illustrates the sensitivity of the response to the
changes in the input variables. More specifically, based on
the models developed here, a small change in the acceptable
variability significantly limits the design space area.

The comparison of different methodologies in this work
aims at identifying areas where there is higher certainty that
the output is within the acceptable ranges, and these are the
regions for which all the methodologies jointly predict.

Loss-in-Weight Feeder Case Study

In this case study, the performance of a Gericke Loss-in-
Weight feeder is investigated. This piece of equipment is
typically the first unit operation of an integrated system for

Fig. 4 Design space produced by (a) RSM approach, (b) Kriging
approach, (c) HDMR approach showing the optimum design config-
urations for each point
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continuous manufacturing of pharmaceutical products (e.g.,
tablets) and its purpose is the feeding of APIs, excipients
and lubricants, all of them powder materials, into the mixer.
As it is common in many powder-based manufacturing
processes, the knowledge of the physics that the material
undergoes inside the feeder is not enough to conduct first-
principles design, thus its performance can be characterized
by data- driven models [22]. The significant input variables
that affect the performance of this type of powder feeder are
identified through ANOVA (see Appendix 2) as: Screw
Speed inside the feeder (RPM), Screw size (sizes “2”, “3”,
and “4”), Open or Closed Helix configuration (see
Appendix 1) and the material property of Flow Index of
the processed powder mixture. The property of Flow Index
is connected to the flowability of the powder mixtures,
where a high value can be translated to a poorly flowing
powder [41]. The output established to characterize and
quantify the performance of this process is the flow rate
RSD, defined once again as the standard deviation of the
output flow rate (quantified through a suitable “moving
window” average) divided by the mean flow rate at the exit
of the feeder. This measurement is chosen because it
embodies the variability of the flow rate at the output of
the feeder, which is important to be minimized since it
will be transferred to the next process operations and
consequently into the final product performance. This
measurement is the RSD of the output flow and will be
represented as RSDfeed for differentiation from the previous
case study.

Following the RSM-based approach; the experimental
data is used to generate different regression models for each
design configuration (k=6): “Open size2”, “Open size3”,
“Open size4”, “Closed size2”, “Closed size3” and “Closed
size4”. Details and specifications of these designs are
included in Appendix 1. The investigated operating space

of different Screw Speeds and Flow Indexes is discretized,
and the optimum (minimum) output is calculated for each
possible combination. In this case study, six quadratic
models are generated (similar to Eqs. 7 and 8) and
consequently, the MINLP formulation contains six binary
variables from which only one can be equal to 1 for each
point. Using all the proposed approaches, the calculated
outputs are graphically represented in Fig. 6. By setting the
upper threshold of acceptable output to be: RSDfeed=1.5%
(arbitrary since it depends on the width of the moving
window), the design spaces calculated using all three
methods are mapped in Fig. 7.

Figure 6a shows that the calculated output of the feeder
for different designs and within the Knowledge Space is
similar when calculated with the three methods. However,
there is a differentiation of the kriging predicted output
variability, especially in the mid ranges of flow index and
screw speed, which needs further investigation (“Experimental
Validation”). In Fig. 6b the predicted RSD of the three
methodologies is projected in two dimensions for a
constant screw speed. In Fig. 7 different designs are
represented by different symbols in order to highlight the
advantage of the proposed approaches to identify the
optimum design for a set of operating parameters and
material properties. The calculated design spaces obtained
when the acceptance limits of output variability is lowered
to 0.014 are shown in Fig. 8. Large differences in the
acceptable operating range when the performance criterion
becomes more demanding (lower RSD), signifies the
sensitivity of the response to the changes in the input
variables. More specifically, based on the models devel-
oped here, a small change in the acceptable variability
significantly limits the design space area.

In this case study, differences in the design spaces
calculated with different approaches are observed. All
methods, predict that screw sizes must be either 3 or 4 while
size 2 screws always result to higher output variability. In
both Figs. 7 and 8, size 2 screw is not included in the design
space because it was not found to be optimal in any region
within the feasible operating region. This illustrates that the
larger size screws always give lower output variability
when they are compared with smaller size screws. This
conclusion is considered advantageous since by using a
larger screw size (larger diameter, see Appendix 1) can
result to higher flow rates. The fact that all methods predict
performance at lower flow indexes is expected since higher
flow index implies a poor flowability of the powder mixture
[41]. The proposed approaches, however, have the advan-
tage of identifying the optimal design configuration and
screw speed ranges if a specific powder mixture must be
processed. In order to validate the different approaches two
additional experiments described in the next section were
performed.

Fig. 5 Design space (flow rate and impeller rotation rate ranges) of
continuous mixer for achieving RSDmax=9%
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Experimental Validation

The results of the feeder case study show that there are some
differences in the predicted design spaces when using different
methodologies. This ambiguity can be eliminated through

experimental validation of the results. Experiments were
carried out at the following operating conditions and a constant
design configuration of Open Screw size 4. The powder used
has a flow index of 27.8 and the two screw speeds investigated
are: Screw Speed1=70 rpm and Screw Speed2=140 rpm.

Fig. 6 Predicted output variability (RSDfeed) of a loss- in weight feeder within the investigated ranges of Flow Index and Screw Speed (RPM) (a)
predicted by RSM, Kriging and HDMR approach and (b) predicted by RSM, Kriging and HDMR projected in 2D for Screw Speed 46RPM
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The two different experimental conditions were chosen
in order to compare the accuracy of the three methodologies
used (Fig. 8). Specifically operating at Screw Speed1 can
verify the results of kriging approach, compared with the
other two methods. Operating at Screw Speed2 can
similarly compare the results of HDMR to the results of
the remaining two approaches. The measured RSDfeed at
Screw Speed 1 is 2.95% (>1.4%) which suggests that
kriging is successful in not predicting feasible operation.
Operation at Screw Speed 2 has a resulting Rsdfeed of 1%
(<1.4%). This result proves that the HDMR predicted
design space is again not validated; on the contrary RSM
and kriging approaches are proven to be more accurate.

The experimental validation procedure used in this case
study serves as a method for identifying the differences
between traditional quadratic surface fitted functions, based
on Design of Experiment theories (i.e., RSM) and stochastic
interpolating techniques (i.e., kriging). It has been previously
shown in the literature [42] that quadratic surfaces can fail to
identify global optima of more complex, non-smooth
functions. Regression techniques, such as RSM, focus
entirely on the estimation of the regression coefficients while
making simplistic assumptions about the errors (indepen-

Fig. 8 Design space (flow index and screw speed ranges) of a loss-in-
weight feeder for acceptable output RSDfeed_max=1.4%

Fig. 7 Design space (flow index and screw speed ranges) of a loss-in-
Weight feeder for acceptable output RSDfeed_max=1.5%
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dence, normality). They also require a predefined form of the
response surface on which the regressors are fitted. On the
other hand, interpolating methods such as kriging focus more
on the correlation structure of the errors. Using such
approaches also provides an estimate of prediction accuracy.
In fact, a point which is close to a sampled point (with
prediction uncertainty equal to zero) has a small variance
value. If a point is far from a sampled point, its variance will
be high. Comparing kriging and HDMR methodologies is
interesting, since they are both not based on a predefined
model; they are both interpolating techniques. The only
difference is that in the kriging approach the predicted output
is calculated as a weighted sum of Euclidean distances from
nearby sampling points. On the other hand, in HDMR,
component function values are calculated and simple linear
interpolation is used to calculate the output at intermediate
operating conditions.

Furthermore, one of the aforementioned advantages of
the kriging algorithm is the calculation of the uncertainty
(variance) for each estimated point. This represents the

range within which the estimated point may lie with a
certain probability, and it can identify areas with high
variance that more experimentation is needed. These
variances are plotted in Fig. 9 for both case studies
described in the previous section. In this Figure, it is clear
that the variances are higher in the feeder case study.
Specifically, as the predicted point is further away from the
points where there exists an experimental measurement, the
variances are higher. These regions can be identified as
high uncertainty regions where possibly further experimen-
tation is necessary. This can be considered as the reason for
which the results in case study 2 are not consistent between
the different methodologies; as opposed to case study 1,
where the calculated design spaces are very similar.

Conclusions and Future Work

In this work, three different approaches are used to
graphically map the Design Space of pharmaceutical

Fig. 9 Kriging variances (a) for feeder case study and (b) for mixer case study plotted in 3D and projected in 2D
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process unit operations in order to identify the ranges of the
continuous input variables as well as the design config-
urations that result to an output that satisfies certain
qualitative or quantitative constraints. The methodologies
used are not restricted by the lack of first-principle models
that characterize the performance of a process and can be
used for any black-box process operation. In [1], the steps
of the procedure of design space identification—right from
the initial drug conceptualization stage, to the final
commercialization of the product—are described. This
work aims to propose a set of tools and enabling
technologies to simultaneously identify desirable operating
regions and optimal design configurations of black-box
pharmaceutical processes. More specifically, three different
methodologies are proposed as the means to extract useful
information from an experimental data set of a process in
order to be able to operate in regions which result to desired
performance with confidence. The novelty lies in the use of

optimization programming techniques to compare perfor-
mance of different possible designs within the normal
operating ranges.

Response Surface Methodology is shown to produce a
good representation of the design space when it is used to
generate models for different design configurations which
jointly form an objective function of a mixed integer
optimization problem. High-Dimensional Model Represen-
tation second-order function look-up tables are also used
for interpolation of the desired output at any given
combination of input variables and it is shown to produce
similar design space representations. Both methodologies,
however, do not provide a measure of prediction
uncertainty. On the contrary, when kriging is used to model
the effects of input parameters to the output of the process,
not only a design space representation is produced
(comparable to the ones produced from the aforementioned
approaches) but also a prediction variance is calculated for

Fig. 9 (continued)
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each predicted point. This additional information can help
identify regions in which additional sampling is required.
Experimental validation of the results in uncertain areas
proves that the kriging-based approach is more accurate in
predicting the design space. Additionally, all three method-
ologies are shown to be responsive to changes in the
desirable output ranges—always following the same trends.
In this work, the differences are assessed between the three
methods, given the same experimental data, which is
obtained from a common design of experiment sampling
procedure. In the mixer case study, all three methods show
good agreement. In the feeder case study however, some
differences are observed between the results of the different
methods. This fact increases the uncertainty in the results and
this is why further experimental validation is performed. The
kriging error, which is a function of the distance between
sampled areas, illustrates the benefit of this technique to
identify regions of high uncertainty as candidate regions for
further experimentation. In the literature, kriging has shown
to have a better performance when space-filling designs are
used for sampling. Future work will include investigating the
effects of sampling and the minimization of the necessary
sampling for accurate results, since this will also lead to
minimization of sampling cost.

Future work will also focus on employing the proposed
methods to integrated process systems (e.g., continuous

tablet manufacturing process consisting of feeders, mixer,
tablet press etc.) so that the design space will include
parameters from all unit operations while the specified
output will be connected to acceptable final product
properties. Current work addresses the use of the proposed
methodologies for modeling and defining the design space
of dynamic systems. All the above will provide a general
framework for mapping the design space of any process
operation for which first-principle models are not yet
available.
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Appendix 1—Equipment Specifications

Gericke GCM 250 Mixer Specifications

Length 0.3 m
Diameter 0.1 m
Impeller 12 triangular equally spaced shaped blades
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Gericke Loss-in-Weight Feeder Specifications

The following picture shows (from left to right) the main
agitator piece that is used for all screws, the size 2 screw
dependant agitator piece, open helix screw and closed auger
screw, followed by sizes 3 and 4 sets.

The following is a picture of the feeder with the tooling
before the nozzle plate is attached.

Appendix 2—Experimental Data and Analysis
of Variance (ANOVA)

Table 1 Continuous mixer case study

Flow rate (kg/h) Blade configuration
(all forward=1,
alternate=2)

Impeller
rotation rate
(RPM)

RSD

30 1 39 0.131324

30 1 100 0.103559

30 1 162 0.103234

30 1 254 0.179275

Table 1 (continued)

Flow rate (kg/h) Blade configuration
(all forward=1,
alternate=2)

Impeller
rotation rate
(RPM)

RSD

30 1 39 0.138515

30 1 100 0.112030

30 1 162 0.098612

30 1 254 0.160198

30 2 39 0.137095

30 2 100 0.090748

30 2 162 0.094803

30 2 254 0.146097

30 2 39 0.122224

30 2 100 0.065687

30 2 162 0.063477

30 2 254 0.098588

45 1 39 0.098759

45 1 100 0.073322

45 1 162 0.119089

45 1 254 0.180556

45 1 39 0.123905

45 1 100 0.080957

45 1 162 0.103170

45 1 254 0.191361

45 2 39 0.132929

45 2 100 0.099215

45 2 162 0.084938

45 2 254 0.096425

45 2 39 0.125567

45 2 100 0.096007

45 2 162 0.108194

45 2 254 0.110720

Table 2 ANOVA table for continuous mixer case study

Source df SS MS F P

Flow rate 1 0.0000129 0.0000129 0.03 0.868

Blade
configuration

1 0.0033038 0.0033038 7.15 0.013

Impeller rotation
rate

3 0.0159447 0.0053149 11.50 0.000

Error 26 0.0120158 0.0004621

Total 31 0.0312773

S=0.0214976; R2 =61.58%; R2 (adj)=54.20%
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Appendix 3—Interpolation Techniques

A. High-Dimensional Model Representation Algorithm

The HDMR algorithm steps are the following:

1. Obtain input- output data g (x1, x2,...,xn) for n input
variables. (Appendix 2)

2. Choose nominal point conditions xN ¼ xN1 ; . . . ; x
N
n

� �
to

calculate f0 term as:

f0 ¼ g xN1 ; . . . ; x
N
n

� � ð3A� 1Þ

3. Calculate the first-order component function fi (xi)
values by keeping all other input variables at their
nominal values only varying xi, and always subtracting
f0. The number of component function values computed
are equal to the experimentally sampled conditions
along the xi axes.

fi xið Þ ¼ g xi; x
N
j

� �
� f0; i 6¼ j ð3A� 2Þ

4. Calculate the second-order component functions fi,j (xi, xj)
values by keeping all other variables other than xi, xj at
their nominal values and subtracting the corresponding
lower order function values based on the following
equation:

fi; j xi; xj
� � ¼ g xi; xj; x

N
k

� �� fi xið Þ � fj xj
� �� f0; k 6¼ i; j

ð3A� 3Þ

Table 3 Loss-in-weight feeder case study

RPM Flow Index Open/closed Size SD/Mean

46 38 O 2 0.037529295

113 38 O 2 0.024045867

179 38 O 2 0.020045903

46 38 C 2 0.039382739

113 38 C 2 0.022863443

179 38 C 2 0.015842134

46 38 O 3 0.026314162

113 38 O 3 0.018842017

179 38 O 3 0.015267703

46 38 C 3 0.022191219

113 38 C 3 0.014792139

179 38 C 3 0.012924242

46 38 O 4 0.020567412

113 38 O 4 0.023541078

179 38 O 4 0.017691507

46 38 C 4 0.01966698

113 38 C 4 0.014381375

179 38 C 4 0.021190405

46 27.8 O 2 0.020769979

113 27.8 O 2 0.011146501

179 27.8 O 2 0.012334908

46 27.8 C 2 0.03079855

113 27.8 C 2 0.020359721

179 27.8 C 2 0.018491395

46 27.8 O 3 0.015730878

113 27.8 O 3 0.011410378

179 27.8 O 3 0.008650336

46 27.8 C 3 0.016490942

113 27.8 C 3 0.011924303

179 27.8 C 3 0.013519275

46 27.8 O 4 0.014521154

113 27.8 O 4 0.010099635

179 27.8 O 4 0.00593691

46 27.8 C 4 0.013643659

113 27.8 C 4 0.014780312

179 27.8 C 4 0.017804938

46 49.2 O 2 0.044822316

113 49.2 O 2 0.028094832

179 49.2 O 2 0.019076613

46 49.2 C 2 0.0376905

113 49.2 C 2 0.017728798

179 49.2 C 2 0.013834081

46 49.2 O 3 0.026672266

113 49.2 O 3 0.014458669

179 49.2 O 3 0.022003755

46 49.2 C 3 0.027508537

113 49.2 C 3 0.022332606

179 49.2 C 3 0.02316389

46 49.2 O 4 0.024397465

Table 4 ANOVA table for feeder case study

Source df SS MS F P

Screw Speed 2 0.00085605 0.00042802 17.27 0.000

Flow Index 2 0.00065948 0.00032974 13.30 0.000

Screw Type 1 0.00000050 0.00000050 0.02 0.888

Screw size 2 0.00052281 0.00026141 10.55 0.000

Error 46 0.00114023 0.00002479

Total 53 0.00317906

S=0.00497871; R2 =64.13%; R2 (adj)=58.68%

Table 3 (continued)

RPM Flow Index Open/closed Size SD/Mean

113 49.2 O 4 0.020911612

179 49.2 O 4 0.021890465

46 49.2 C 4 0.017947927

113 49.2 C 4 0.015328795

179 49.2 C 4 0.015000022
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5. Create a look-up table of component functions based on
at different values of input variables. Once the look-up
tables are created, the HDMR predicted output can be
calculated as the sum of component functions up to the
second-order term (Eq. 3A-4). If the output at an
unsampled position needs to be calculated, linear
interpolation is performed for each component function
and finally the predicted value is calculated based on
the sum of all terms from Eq. 3A-4.

fHDMR x1; . . . ; xnð Þ ¼ f0 þ
X

n
i¼1 fiðxiÞ þ

X
1�i� j�n fi; jðxi; xjÞ

ð3A� 4Þ

B. Kriging Algorithm

The Kriging Algorithm steps are the Following:

1. Obtain input – output data (Appendix 2) f (xi) for N
sampling points xi

2. For any combination of a pair of sampling points xi - xj,
calculate the distance between them as:

di; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1;i � x1; j
� �2 þ � � � þ xn;i � xn; j

� �2q
for

i; j ¼ 1; :::;N ; i 6¼ j

ð3B� 1Þ
In total there will be N(N–1)/2 sampling pairs xi−xj.

3. For all sampling pairs, the squared difference between
the corresponding output values is calculated next as:

f 2i; j ¼ ð f xið Þ � f ðxjÞÞ2 ð3B� 2Þ

4. The next step is to plot the corresponding squared
differences (Eq. 3B-2) with respect to their distances
(Eq. 3B-1) to form a scatterplot that will give us the
semivariogram function g(h). A function that best
describes the scattered data is fitted out of the following
possible functions: exponential, Gaussian, spherical,
linear and power models. The semivariogram model is
necessary for the computation of the kriging weights. If
needed, data smoothing is first applied to the Scatterplot
before the semivariogram fitting. The best model is
identified as the one that has the minimum least squares
error.

5. The peak value of the chosen semivariogram model
is identified as s2

max and it is used to calculate the
covariance function which -based on definition- is
given by:

CovðhÞ ¼ s2
max � gðhÞ ð3B� 3Þ

6. Based on Eq. 3B-3, the covariance between any pair of
sampling points xi−xj can be obtained. Given a new

unsampled point, first a number of sampled points that
will affect the predicted value of the test point are
chosen. In this algorithm, the seven closest points to the
test point are always chosen. The kriging prediction of
the unsampled point is expressed as a weighted sum of
the kriging weights multiplied by their corresponding
sampled point output values (Eq. 3B-4). The kriging
weights depend on the covariances between sampling
point pairs as well as the covariances between sampling
points and test point and are given by the solution of
the system of equations given by Eq. 5. The sum of the
weights for any test point must be equal to 1.

ef xkð Þ ¼
X

7
i¼1wif ðxiÞ ð3B� 4Þ

7. The final step is the calculation of the variance estimate
of the test point which is given by Eq. 6.
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