THE INTERNET OF THINGS

Mobile Crowdsensing:
Current State and Future Challenges

Raghu K. Ganti, Fan Ye, and Hui Lei, IBM T. J. Watson Research Center

1 The notion that crowd-
sensing spans a spectrum
from participatory to
opportunistic sensing was
suggested by our colleague
Thomas Erickson.

ABSTRACT

An emerging category of devices at the edge
of the Internet are consumer-centric mobile
sensing and computing devices, such as smart-
phones, music players, and in-vehicle sensors.
These devices will fuel the evolution of the
Internet of Things as they feed sensor data to
the Internet at a societal scale. In this article,
we examine a category of applications that we
term mobile crowdsensing, where individuals
with sensing and computing devices collectively
share data and extract information to measure
and map phenomena of common interest. We
present a brief overview of existing mobile
crowdsensing applications, explain their unique
characteristics, illustrate various research chal-
lenges, and discuss possible solutions. Finally, we
argue the need for a unified architecture and
envision the requirements it must satisfy.

INTRODUCTION

The integration of sensing and embedded every-
day computing devices at the edge of the Inter-
net will result in the evolution of an embedded
Internet or the Internet of Things (10T). Typical
IoT devices include physical items tagged/embed-
ded with sensors (e.g., chemical containers with
temperature sensors), scissors with integrated
circuit (IC) tags, and smart meters to remotely
monitor energy consumption. An emerging cate-
gory of edge devices that we believe will result in
the evolution of the IoT are consumer-centric
mobile sensing and computing devices, which are
connected to the Internet. These include smart-
phones (iPhone, Google Nexus), music players
(iPods), sensor embedded gaming systems (Wii,
XboX Kinect), and in-vehicle sensing devices
(GPS, OBD-II). They have become extremely
popular recently and are potentially important
sources of sensor data. They are typically
equipped with various sensing faculties and wire-
less capabilities that allow them to produce data
and upload the data to the Internet. As an exam-
ple, a sample list of mobile devices and their
corresponding sensing capabilities are provided
in Table 1. Future sensing capabilities on smart-
phones include ECG (for medical purposes, e.g.,
ithlete, H’andy Sana), poisonous chemical detec-
tion (e.g., cell-all), and air quality sensors (e.g.,
Intel’s EPIC, Fig. 1).

Different from the “typical” everyday IoT
objects (e.g., coffee machines) that traditionally
lack computing capabilities, these mobile devices
have a variety of sensing, computing, and com-
munication faculties. They can either serve as a
bridge to other everyday objects, or generate
information about the environment themselves.
We believe they will drive a plethora of IoT
applications that elaborate our knowledge of the
physical world.

These applications can be broadly classified
into two categories, personal and community
sensing, based on the type of phenomena being
monitored. In personal sensing applications, the
phenomena pertain to an individual; for exam-
ple, the monitoring of movement patterns (e.g.,
running, walking, exercising) of an individual for
personal record-keeping or healthcare reasons.
Another example of personal sensing is one that
monitors the transportation modes of an individ-
ual to determine his or her carbon footprint.

On the other hand, community sensing per-
tains to the monitoring of large-scale phenome-
na that cannot easily be measured by a single
individual. For example, intelligent transporta-
tion systems may require traffic congestion mon-
itoring and air pollution level monitoring. These
phenomena can be measured accurately only
when many individuals provide speed and air
quality information from their daily commutes,
which are then aggregated spatio-temporally to
determine congestion and pollution levels in
cities.

Community sensing is also popularly called
participatory sensing [1] or opportunistic sensing
[2]. Participatory sensing requires the active
involvement of individuals to contribute sensor
data (e.g., taking a picture, reporting a road clo-
sure) related to a large-scale phenomenon.
Opportunistic sensing is more autonomous, and
user involvement is minimal (e.g., continuous
location sampling without the explicit action of
the user). We take the position that community
sensing spans a wide spectrum of user involve-
ment, with participatory sensing and opportunis-
tic sensing at the two ends. We therefore coin
the term mobile crowdsensing (MCS) to refer to
a broad range of community sensing paradigms.!

In the rest of this article, we survey existing
crowdsensing (both participatory and oppor-
tunistic) applications, identify unique character-
istics of MCS applications, and discuss the
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Device Inertial Compass GPS  Microphone Camera Proximity Light
iPhone 4 v v v v v v v
Nexus S v v v v v v v
Galaxy S Il v v Y v v v v
HTC Sensation v v v v v v v
I(-';:rrg?lt,’l,nner 410 Y v v

Table 1. Sensors on various mobile sensing devices.

Sensors on iPhone 4:
e Camera

* Audio

* Accelerometer

* GPS

* Gyroscope

* Compass

* Proximity

* Ambient light

Figure 1. Sensors on current iPhone 4 and future sensors that will possibly be integrated with mobile phones:

a) sensors on Apple’s iPhone 4; b) Intel’s air quality sensor that communicates with Bluetooth enabled
mobile phones; c) ECG sensor enabled mobile phone, H'andy Sana.

research challenges they face, their solutions and
trade-offs. The research challenges we discuss
include localized analytics; resource limitations;
privacy, security, and data integrity; aggregate ana-
Iytics; and architecture.

MoBILE CROWDSENSING
APPLICATIONS

In this section, we briefly discuss existing mobile
crowdsensing applications, which provide a basis
for illustrating various research challenges in the
rest of this article. We classify MCS applications
into three categories based on the type of phe-
nomenon being measured or mapped. These
include environmental, infrastructure, and social.
In environmental MCS applications, the phe-
nomena are those of the natural environment.
Examples include measuring pollution levels in a
city, water levels in creeks, and monitoring
wildlife habitats. Such applications enable the
mapping of various large-scale environmental
phenomena by involving the common person.
An example prototype deployment for pollution
monitoring is Common Sense [3]. Common
Sense uses specialized handheld air quality sens-
ing devices that communicate with mobile
phones (using Bluetooth) to measure various air
pollutants (e.g., CO,, NO,). These devices, when
deployed across a large population, collectively
measure the air quality of a community or a
large area. Similarly, one can utilize micro-
phones on mobile phones to monitor noise levels
in communities. Another example is CreekWatch

developed by IBM Almaden Research Center. It
monitors water levels and quality in creeks by
aggregating reports from individuals, such as pic-
tures taken at various locations along the creek
or text messages about the amount of trash.
Such information can be used by water control
boards to track pollution levels in water
resources.

Infrastructure applications involve the mea-
surement of large-scale phenomena related to
public infrastructure. Examples include measur-
ing traffic congestion, road conditions, parking
availability, outages of public works (e.g., mal-
functioning fire hydrants, broken traffic lights),
and real-time transit tracking. Early MCS
deployments measured traffic congestion levels
in cities, examples of which include MIT’s Car-
Tel [4] and Microsoft Research’s Nericell [5].
CarTel utilizes specialized devices installed in
cars to measure the location and speed of cars,
and transmit the measured values using public
WiFi hotspots to a central server. This central
server can then be queried to provide informa-
tion such as least delay routes or traffic hotspots.
On the other hand, Nericell utilizes individuals’
mobile phones to not only determine average
speed or traffic delays, but also detect honking
levels (especially in countries like India where
honking is common) and potholes on roads.
Another example is ParkNet [6], an application
that detects available parking spots in cities
using ultrasonic sensing devices installed on cars
combined with smart phones.

Finally, the third category is social applica-
tions, where individuals share sensed informa-

In environmental
MCS applications,
the phenomena are
those of the natural
environment. Exam-
ples include measur-
ing pollution levels in
a city, water levels in
creeks, and monitor-
ing wildlife habitats.
Such applications
enable the mapping
of various large-scale
environmental phe-
nomena by involving
the common person.
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To efficiently support
multiple concurrent
applications, it is crit-
ical to identify com-
mon data needs and
support the reuse of
sensor data across
applications. In con-
trast, a conventional
sensor network is
typically intended for
a single application,
and reuse for vastly
different purposes is
rarely needed.
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Figure 2. Typical functioning of MCS applications. Raw sensor data are collected on devices and processed
by local analytic algorithms to produce consumable data for applications. The data may then be modified
to preserve privacy and is sent to the backend for aggregation and mining.

tion among themselves. As an example, individu-
als can share their exercise data (e.g., how much
time one exercises in a day) and compare their
exercise levels with the rest of the community.
They can use this comparison to help improve
their daily exercise routines. Example deploy-
ments include BikeNet [7] and DietSense [8]. In
BikeNet, individuals measure location and bike
route quality (e.g., CO, content on route, bumpi-
ness of ride), and aggregate the data to obtain
the “most” bikeable routes. In DietSense, indi-
viduals take pictures of what they eat and share
it within a community to compare their eating
habits. A typical use case for this is for a com-
munity of diabetics to watch what other diabetics
eat and control their diet or provide suggestions
to others.

To summarize, the functioning of typical
MCS applications is illustrated in Fig. 2, which
depicts a number of research challenges as func-
tional components.

MCS: UNIQUE CHARACTERISTICS

We first illustrate the unique characteristics of
MCS applications that differentiate them from
traditional mote-class sensor networks. This pro-
vides the reader with an idea of the research
challenges faced by MCS applications.
Compared to traditional mote-class sensor
networks, MCS has a number of unique charac-
teristics that bring both new opportunities and
problems. First, today’s mobile devices have sig-
nificantly more computing, communication, and
storage resources than mote-class sensors, and
are usually equipped with multimodality sensing

capabilities. These will enable many applications
that require resources and sensing modalities
beyond those current mote-class sensors possess.
Second, millions of mobile devices are already
“deployed in the field”: people carry these
devices wherever they go and whatever they do.
By leveraging these devices, we could potentially
build large-scale sensing applications efficiently
(cost and time). For example, instead of
installing roadside cameras and loop detectors,
we can collect traffic data and detect congestion
levels using smartphones carried by drivers. Such
solutions reduce the cost of deployment of spe-
cialized sensing infrastructure.

The dynamic conditions of the set of mobile
devices and the need for data reuse across dif-
ferent applications in MCS are also quite differ-
ent from those of traditional sensor networks. In
MCS, the population of mobile devices, the type
of sensor data each can produce, and the quality
in terms of accuracy, latency, and confidence can
change all the time due to device mobility, varia-
tions in their energy levels and communication
channels, and device owners’ preferences. Identi-
fying the right set of devices to produce the
desired data and instructing them to sense with
proper parameters to ensure the desired quality
is a complex problem. In traditional sensor net-
works, the population and the data they can pro-
duce are mostly known a priori; thus, controlling
the data quality is much easier. The same sensor
data have been used for different purposes in
many existing MCS applications. For example,
accelerometer readings have found usage in
transportation mode identification, pothole
detection, and human activity pattern extraction.
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To efficiently support multiple concurrent appli-
cations, it is critical to identify common data
needs and support the reuse of sensor data
across applications. In contrast, a conventional
sensor network is typically intended for a single
application, and reuse for vastly different pur-
poses is rarely needed.

Because devices are owned and carried by
individual users, humans are usually involved in
the loop. On one hand, the intelligence and
mobility of humans can be leveraged to help
applications collect higher-quality or semantical-
ly complex data that might otherwise require
sophisticated hardware and software. For exam-
ple, humans can easily identify available street
parking spots and report with pictures or text
messages, whereas an ultrasound-based scanning
system not only requires special hardware, but
also sophisticated processing algorithms to
ensure the reliability of data. On the other hand,
humans naturally have privacy concerns and per-
sonal preferences that are not necessarily aligned
with the end goals of the MCS applications. The
user may not want to share sensor data that con-
tains or reveals private and sensitive informa-
tion, such as their current location.

Another important implication for human
involvement is incentive. Participating individu-
als (devices) may incur energy and monetary
costs, or even explicit efforts by the owner of the
device for sensing, processing, and communicat-
ing desired data. Unless there are strong enough
incentives, the owners may not be willing to con-
tribute their resources. For MCS applications to
succeed, there have to be appropriate incentive
mechanisms to recruit, engage, and retain human
participants. Elaboration on incentive mecha-
nisms and other people-oriented tools is beyond
the scope of this article, since our focus is on
system challenges.

LOCALIZED ANALYTICS

Various sensors such as GPS, accelerometer,
microphone and camera are available on mobile
devices. The operating ssytem (OS) allows appli-
cations to access the sensors and extract raw
sensing data from them. However, depending on
the nature of the raw data and the needs of
applications, the physical readings from sensors
may not be suitable for the direct consumption
of applications. Many times, some local analytics
performing certain primitive processing of the
raw data on the device are needed. They pro-
duce intermediate results, which are sent to the
back-end for further processing and consump-
tion. For example, in a pothole detection [5]
application, a local analytic computes spikes
from 3-axis acceleration sensor data to deter-
mine potential potholes.

The motivation of such local analytics are
twofold. First, the kind of processing performed
leads to appropriately summarized data, thus
consuming less energy and bandwidth than trans-
mitting the raw sensor readings. This is a well-
known trade-off in conventional mote-class
sensor networks: using computation to save
energy/bandwidth. Second, it reduces the amount
of processing that the back-end has to perform.
Furthermore, if the mobile devices in a societal-

scale deployment transmit raw sensor data, the
back-end can easily be overwhelmed. Finally,
some applications are delay sensitive, and trans-
mitting raw sensor data on intermittently con-
nected channels can be more time consuming
than sending processed sensor data.

The main challenge in local analytics is find-
ing heuristics and designing algorithms to
achieve the desired function. One category of
functions is data mediation, such as filtering of
outliers, elimination of noise, or filling in data
gaps. For example, GPS samples acquired may
not be accurate or missing (due to lack of line of
sight), in which event outliers need to be elimi-
nated or missing samples extrapolated.

Another common category of functions is
context inference. Examples of context include
transportation mode (whether the user is on a
car, bus, train, or on foot), the kinetic modes of
humans (walking, standing, jogging, running),
the social settings (e.g., in a meeting, on a phone
call, watching TV), or the occurrence of certain
events in the surrounding environments (e.g.,
potholes on the road, stop-and-go traffic, loud
noise levels). The heuristics and algorithms
needed can be quite application-specific. Hence,
the exact algorithm used for context inference
depend on the nature of the application and the
characteristics of the context. The current prac-
tice is to develop analytics solely for one applica-
tion. This could lead to an “explosion” of
analytics when many crowdsensing applications
coexist. Each analytic is working individually,
and there is a possibility that they may access the
same sensor or involve similar computation in
their inference.

RESOURCE LIMITATIONS: ENERGY,
BANDWIDTH, AND COMPUTATION

Even though they possess much more comput-
ing, bandwidth, and energy resources than mote-
class sensors, mobile devices nevertheless face
resource limitations. Resource constraints in tra-
ditional sensor networks have been well studied.
However, MCS applications introduce new
aspects in this regard.

First, the set of devices that are collecting
sensor data are highly dynamic in availability
and capabilities. Due to this highly dynamic
nature, modeling and predicting the energy and
bandwidth requirements to accomplish a particu-
lar task is harder than traditional sensor net-
works. Second, when there are a large number
of available devices with diverse sensing capabili-
ties, identifying and scheduling sensing and com-
munication tasks among them under resource
constraints are more complex.

Another interesting aspect is the interdepen-
dencies between various types of sensory data
due to multimodality sensing capabilities. Differ-
ent types of data can be used for the same pur-
pose, but with different quality and resource
consumption trade-offs. Leveraging these differ-
ences to improve the quality while minimizing
resource consumption is a novel challenge. For
example, location data can be provided using
GPS, WiFi, and GSM, with decreasing levels of
accuracy. Compared to WiFi and GSM, continu-
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Applications per-
forming sensing and
processing activities
independently with-
out understanding
the consequences on
each other will result
in low efficiency on
an already resource-
constrained platform.
There is a high likeli-
hood of duplicating
sensing and process-
ing across multiple
applications.

ous GPS location sampling drains the battery
faster. One approach to this problem uses low
duty cycling to reduce energy consumption of
high-quality sensors (i.e., GPS), and alternates
between high- and low-quality sensors depending
on the energy levels of the device (e.g., sample
WiFi often when battery level is less than 70 per-
cent). This approach trades off data quality and
accuracy for energy.

The existence of multiple concurrent applica-
tions that require data of different types also
complicates resource allocation. A mobile device
can be sampling various sensors (e.g., GPS,
accelerometer, air quality) on behalf of different
applications. The approach proposed by CarTel
prioritizes data collection tasks. Depending on
the priority of the application that requires sen-
sor data, the sampling rate of other sensors can
be reduced (or the sensor completely switched
off). For example, during peak travel times, a
community may be more interested in obtaining
traffic congestion levels as opposed to air or
noise pollution levels. As a result, the air/noise
sensors sample much less frequently or can be
shut down.

A drawback of existing solutions such as low
duty cycling are that they are designed for their
particular application context and do not scale
when many different applications coexist. An
important challenge for large-scale deployment
of MCS applications is that the resource con-
straints need to be addressed in a holistic man-
ner. How do multiple applications on the same
device utilize energy, bandwidth, and computa-
tion resources without significantly affecting the
data quality of each other? How does scheduling
of sensing tasks occur across multiple devices
with diverse sensing capabilities and availabilities
(which can change dynamically)? We believe
that these questions need to be answered before
MCS applications can be deployed on a large
scale.

PRIVACY, SECURITY, AND
DATA INTEGRITY

An important aspect of MCS applications is that
they potentially collect sensitive sensor data per-
taining to individuals. For example, GPS sensor
readings can be utilized to infer private informa-
tion about the individual, such as the routes they
take during their daily commutes,and their home
and work locations [9]. On the other hand, these
GPS sensor measurements (from daily com-
mutes) shared within a larger community can be
used to obtain traffic congestion levels in a given
city [4]. Thus, it is important to preserve the
security and privacy of an individual, but at the
same time enable MCS applications. It is also
necessary to ensure that an individual’s sensor
data is not revealed to untrustworthy third par-
ties. A problem that arises from the opt-in nature
of crowdsensing applications is when malicious
individuals contribute erroneous sensor data
(e.g., falsified GPS readings); hence, maintaining
the integrity of sensor data collected is an impor-
tant problem. In what follows, we briefly touch
on these challenges.

A popular approach to preserving privacy of

data is anonymization [10], which removes any
identifying information from the sensor data
before sharing it with a third party. The draw-
back of such an approach is that anonymized
GPS (or location) sensor measurements can still
be used to infer the frequently visited locations
of an individual and derive their personal details.
Another approach to preserving privacy is secure
multiparty computation [11], where cryptograph-
ic techniques are used to transform the data in
order to preserve privacy. Such cryptographic
techniques are compute intensive and not scal-
able because they require the generation and
maintenance of multiple keys, which also leads
to higher energy consumption. We believe that
data perturbation based approaches, which add
noise to sensor data before sharing it with the
community to preserve the privacy of an individ-
ual, are appropriate. Data perturbation
approaches [12, 13] rely on adding noise in such
a manner that the privacy of an individual is pre-
served, but at the same time it is possible to
compute the statistics of interest with high accu-
racy (due to the nature of the noise being
added). For example, in a weight watchers appli-
cation, it is important to compute the average
weight of the population. Each individual i is
sensitive to revealing his or her weight (w;) and
perturbs it by adding a random number (7;),
which is drawn from a known distribution with
zero mean. Although individual weights are per-
turbed and appear random, when these values
are averaged, the randomized component (Zr,)
vanishes (given a sufficient number of individu-
als), and the average weight of the community
can be computed with a high degree of accuracy.

Data integrity, ensuring the integrity of sen-
sor data generated by individuals, needs to be
addressed by MCS applications. Some approach-
es have been proposed in existing literature [14,
15], which rely on collocated infrastructure as a
witness. Such an approach relies on inputs from
the installation of expensive infrastructure,
which can be prohibitive and unavailable at
times. Another approach is to sign the sensor
data (by trusted hardware installed on mobile
phones). However, this approach is potentially
problematic as the verification has to be done
even in the software. For example, a GPS loca-
tion may be perturbed by adding noise for priva-
cy reasons or audio sensor data may be
processed to conserve energy.

We make a few observations in regard to pri-
vacy, security, and data integrity for MCS appli-
cations. First, we observe that privacy is very
user specific, that is each individual has a differ-
ent perception of privacy. For example, one per-
son may be willing to share his or her location
information continuously, whereas another may
not. Developing privacy techniques that address
variation in individual preferences is needed.
Furthermore, a generic perturbation technique
or a framework of perturbation techniques need
to be developed such that privacy and security
can be achieved in a generic setting independent
of the nature of the data being shared. Finally,
real-world MCS deployments must address the
data integrity problem in order to provide mean-
ingful conclusions from the aggregate sensor
data.
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AGGREGATE ANALYTICS

The local analytics running on mobile devices
only analyze data on the given device. MCS
applications rely on analyzing the data from a
collection of mobile devices, identifying spatio-
temporal patterns. For example, the transporta-
tion authority of a city may be interested in the
spatial distribution of traffic hot spots around
the road network, and how the distribution
evolves over various time scales. Such insight can
help them better coordinate the traffic lights to
ease traffic depending on the time of the day,
and better plan future road expansions in the
long term to reduce congestion. Another exam-
ple is for public works maintenance. Citizens can
report problems in public facilities, such as bro-
ken water pipes and dysfunctional traffic lights.
Such reports can be used by maintenance per-
sonnel to infer (to a certain degree) the impact
and severity of the incident to help prioritize and
schedule the repair resources.

The patterns may also help users build mod-
els and make predictions about the physical or
social phenomena being observed. One exam-
ple is the monitoring of pollutants such as car
exhaust. An important aspect of environment
protection is to build models to understand the
dissemination of pollutants in the air, soil and
water. By collecting large amount of data sam-
ples about air pollutants such as car exhaust,
one can not only monitor the concentration of
pollution, but also detect patterns to model
how the concentration evolves spatially and
temporally as temperature, humidity and wind
change. These models can help the environ-
mental authority forecast and provide alerts to
the public.

The challenge in identifying patterns from
large amounts of data is usually application-spe-
cific and involves certain data mining algorithms.
Depending on the amount of incoming data and
the delay sensitivity of applications, there are
two possible approaches for data mining. One is
a traditional approach where data is stored in a
database first, and then one can apply various
mining algorithms against the database to detect
patterns. However, if the amount of continuous
data input is too much for storage, or the appli-
cation requires fast detection of patterns, stream
data mining algorithms may be required. Such
algorithms take as input continuous data streams
and identify patterns, without the need to first
store the data. Data mining algorithms are
domain-specific, and the exact algorithms will be
closely related to the application and are out of
scope of this article.

ARCHITECTURE

In this section, we illustrate the current state of
the architecture of existing MCS applications
and point out its drawbacks. Currently, a typical
MCS application has two application specific
components, one on the device (for sensor data
collection and propagation) and the second in
the backend (or cloud) for the analysis of the
sensor data to drive the MCS application. This
architecture is depicted in Fig. 3. We refer to
this as application silos because each application

App 1

App k

App 1

App 2

App k

Figure 3. Existing MCS applications take an “application silo” approach where
each application is built from scratch without any common component even
though they face many common challenges. Such an architecture hinders the
development of new MCS applications and we envision a unifying architecture

should addpress its limitations.

is built ground-up and independent from each
other. There is no common component even
though each application faces a number of com-
mon challenges in data collection, resource allo-
cation and energy conservation.

Such an architecture hinders the development
and deployment of MCS applications in several
ways. First, it is hard to program an application.
To write a new application, the developer has to
address challenges in energy, privacy, and data
quality in an ad hoc manner, reinventing the
wheel all the time. Further, he may need to
develop different variants of local analytics if he
wants to run the application on heterogeneous
devices using different OSes. Second, this
approach is inefficient. Applications performing
sensing and processing activities independently
without understanding the consequences on each
other will result in low efficiency on an already
resource constrained platform. There is a high
likelihood of duplicating sensing and processing
across multiple applications. For example, traffic
sensing, air and noise pollution all require loca-
tion information, but these applications would
each do its own sampling without reusing the
same data samples. Furthermore, there is no col-
laboration or coordination across devices.
Devices may not all be needed (e.g., traffic sens-
ing in a given location), especially when the
device population is dense. Finally, the current
architecture is not scalable. Only a small number
of applications can be accommodated on each
device (e.g., limitations imposed by the device
operating system, human capacity to keep track
of a large number of applications). Also, the
data gathered from societal-scale sensing may
overwhelm network and back-end server capaci-
ties, thus making the current architecture non-
scalable.

We envision that a unifying architecture
could address the current limitations of how
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Further Reading

As such, extensive research has been conducted in each of the above addressed problems, and we provide some further readings in this

breakout box.

Localized Analytics
* A. Thiagarajan et al., “Cooperative Transit Tracking Using GPS-Enabled Smart-Phones,” Proc. SenSys 2010, pp. 85-98.

* E. Miluzzo et al., “Sensing Meets Mobile Social Networks: The Design, Implementation, and Evaluation of the CenceMe Application,”

Proc. SenSys 2008, pp. 337-50.

Resource Limitations
* A. Thiagarajan et al., “Accurate, Low-Energy Trajectory Mapping for Mobile Devices,” Proc. NSDI 2011.
* Moo-Ryong Ra et al., “Energy-Delay Tradeoffs in Smartphone Applications,” Proc. MobiSys 2010, pp. 255-70.
* A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting Mobile 3G Using WiFi: Measurement, Design, and
Implementation,” Proc. MobiSys 2010, pp. 209-22.

Privacy, Security, and Data Integrity
e S. Saroiu and A. Wolman, “lI Am A Sensor, and | Approve This Message,” Proc. HotMobile 2010, pp. 37-42.
* P. Gilbert et al., “Toward Trustworthy Mobile Sensing,” Proc. HotMobile 2010, pp. 31-36.
* A. Kapadia, D. Kotz, and N. Triandopoulos, “Opportunistic Sensing: Security Challenges for the New Paradigm,” Proc. COMSNETS
2009, pp. 127-36.

Aggregate Analytics
e Z. Li et al., "MoveMine: Mining Moving Object Data for Discovery of Animal Movement Patterns,” ACM Trans. Intelligent Systems

and Technology, Aug. 2010.
* M. Demirbas et al., “iMap: Indirect Measurement of Air Pollution with Cellphones,” Proc. PerCom, 2009, pp. 1-6.

Architecture

* D. Trossen and D. Pavel, “NORS: An Open Source Platform to Facilitate Participatory Sensing with Mobile Phones,” Proc.
MobiQuitous 2007, pp. 1-8.
* M. Mun et al., “PEIR, the Personal Environmental Impact Report, As A Platform for Participatory Sensing Systems Research,” Proc.
MobiSys 2009, pp. 55-68.
* B. Demchak et al., “A Rich Services Approach to CoCoME,” LNCS, vol. 5153, Aug. 2008, pp. 85-115.

MCS applications are developed and deployed.
It will satisfy the common needs for multiple dif-
ferent applications. First, it should allow applica-
tion developers to specify their data needs in a
high-level language. It should identify common
data needs across applications to avoid duplicate
sensing and processing activities on devices. Sec-
ond, it should automatically identify the set of
devices that can provide the desired data, and
produce instructions to configure the sensing
activities on devices properly. When dynamic
changes happen, it should adapt the set of cho-
sen devices and sensing instructions to ensure
the desired data quality. Finally, to avoid writing
different versions of local analytics on heteroge-
neous devices, a layer that can shield the differ-
ences in physical sensor access application
programming interfaces (APIs) and provide the
same API upward is necessary. This makes it
possible to reuse the same local analytics across
different device platforms, assuming these plat-
forms all support a common programming lan-
guage such as Java.

CONCLUSIONS AND FUTURE WORK

In conclusion, we have identified a category of
IoT applications that rely on data collection
from large number of mobile sensing devices
such as smartphones, which we termed mobile
crowdsensing (MCS). We have presented several
MCS applications, such as CarTel, Nericell,
ParkNet, BikeNet, and DietSense. We have
identified the unique characteristics of MCS,
presented several research challenges of MCS,
and discussed their solutions briefly. We also
note that due to space limitations, we have not
presented all of the existing work (in terms of

applications as well as the individual research
challenges). We are currently exploring a unified
architecture for collecting and processing sensor
data from mobile sensing devices at a societal
scale.
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