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Combined MEG and EEG Source Imaging
by Minimization of Mutual Information

Sylvain Baillet,* Line Garnero, Gildas Marin, and Jean-Paul Hugonin

Abstract—Though very frequently assumed, the necessity to
operate a joint processing of simultaneous magnetoencephalog-
raphy (MEG) and electroencephalography (EEG) recordings for
functional brain imaging has never been clearly demonstrated.
However, the very last generation of MEG instruments allows
the simultaneous recording of brain magnetic fields and electrical
potentials on the scalp. But the general fear regarding the fusion
between MEG and EEG data is that the drawbacks from one
modality will systematically spoil the performances of the other
one without any consequent improvement. This is the case for
instance for the estimation of deeper or radial sources with MEG.

In this paper, we propose a method for a cooperative processing
of MEG and EEG in a distributed source model. First, the
evaluation of the respective performances of each modality for
the estimation of every dipole in the source pattern is made using
a conditional entropy criterion. Then, the algorithm operates
a preprocessing of the MEG and EEG gain matrices which
minimizes the mutual information between these two transfer
functions, by a selective weighting of the MEG and EEG lead
fields. This new combined EEG/MEG modality brings major
improvements to the localization of active sources, together with
reduced sensitivity to perturbations on data.

Index Terms—Brain functional imaging, distributed sources
models, electroencephalography (EEG), entropy quantification,
fusion of data, magnetoencephalography (MEG), mutual infor-
mation, source reconstruction.

I. INTRODUCTION

GIVEN a model of the electromagnetic and geometrical
properties of the head tissues (basically the cortex, cere-

brospinal fluid (CSF), skull, and scalp), magnetoencephalogra-
phy (MEG) and electroencephalography (EEG) source imag-
ing consists in finding the current dipole(s) that best explain(s)
the data in accordance with the experimental protocol.

But as time resolution is the strongest asset of EEG/MEG
brain functional imaging, it has been commonly assumed
that both of these two modalities offer poor localization
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performances when no constraints are enforced within the
source estimation procedure. EEG is considered as highly
sensitive to the geometry and the conductivity properties of
the head tissues which is not as much the case for magnetic
fields—though intracranial inhomogeneity such as ventricular
cavities may have strong influence on the field pattern outside
the head [39]. MEG, however, fails to locate deeper cortical
sources because of the rapid fall of the magnetic field with
depth [12]. Numerous experiments for interictal spike source
localization with MEG and EEG illustrate this point [43]–[46].
Furthermore, as head shapes are still extensively modeled with
single or multiple concentric spheres, MEG is unable to locate
so-called radial sources, whereas EEG seems sensitive to every
source orientation. All of these points tend to confirm the
general belief that a cooperative processing of EEG and MEG
signals would improve the solution to the source estimation
problem [7], [19], [24]. Unfortunately, few studies are dedi-
cated to the systematic validation of this assumption. The very
recent appearing of devices that offer simultaneous MEG and
EEG recordings with large arrays of detectors may explain the
relatively sparse “fusion” literature.

Woodet al. [29] were pioneers in this field with simultane-
ous EEG and single-channel MEG recordings. Sutherlinget al.
have also presented interesting points about a joint analysis of
MEG and EEG data [23]. However, the study was done with
single dipole models, and the “fusion” solution was computed
from the average of MEG’s and EEG’s. These first works
did not introduce any joint processing of a common data set
made of both EEG and MEG. Stoket al. have shown in [22]
that source estimation with 21 EEG channels and 21 MEG’s
produces “slightly better” results than with solely 21 EEG’s
or 21 MEG’s. However this result can be mainly attributed to
the increase of the number of sensors (from 21 to 42 on the
whole). Dale and Sereno [5] and, more recently, Phillips [18]
have confirmed these primary results, with distributed source
models on realistic cortical anatomy. These simulation studies
demonstrate the improvement of the spatial accuracy of the
reconstruction methods when MEG and EEG data are gathered
in a global data set (122 MEG magnetometers and 133 EEG
electrodes in [18]). Very separate works by Pfliegeret al. on
the quantification of the information content of simultaneous
EEG and MEG recordings describe them as “super-additive”
in comparison to original EEG or MEG data [17]. This is
another positive result in favor of the idea to operate a joint
treatment of the two raw data sets for solving a common
inverse problem.
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The method described hereinafter is an attempt to go further
than the simple combination of MEG and EEG data and
gain matrices. The main question we want to address is the
following: What kind of optimization in the combination of
simultaneous MEG and EEG signals can be applied to improve
the localization of the brain sources underneath?

The basic idea that will be developed here consists in
preprocessing every lead field associated with a given dis-
tributed source pattern so as to minimize the redundancy of
information between the MEG and EEG models. As a gain
matrix can be considered as a transfer operator between the
neural sources and the sensors, we then propose a method that
selectively weights every lead field of each of the modality
by minimization of mutual information (MI) between these
two transfer functions. This procedure goes further than the
global weighting technique which consists in equilibrating the
rows and the columns of the MEG-EEG matrix to balance
both the sensitivity of the sensors and the dipole contribution
to the sensor array ([10], [16]). The latter will be hereinafter
denoted as “raw” fusion.

The present article is divided as follows. The presentation
of the MEG-EEG combination method by minimization of
mutual information (CMMI) is in Section II. In Section III,
the practical implementation of the method is discussed
first in the general context of source estimation with
regularization. Then as an example, we will stress on the
adaptation of the nonlinear source estimator we developed
for the inverse problem in a distributed source model: the
ST-MAP method [1]. Simulation studies in Section IV use
various source configurations with both spherical and real
head models to discuss extensively the questions above for
the validation of the new method proposed here.

II. COMBINATION OF MEG AND EEG BY

MINIMIZATION OF MUTUAL INFORMATION

A. Introduction

MEG/EEG source estimation may be seen as a true imaging
problem. Indeed, it is possible to distribute some dipoles
through the whole brain volume at fixed locations and to
estimate their magnitudes according to data and some reg-
ularization priors—like the constraint of smoothness on the
intensity gradient or Laplacian [16]. To go further into the
refinement of the source model, dipoles may be constrained on
the surface of the cortex—maybe on some restricted cortical
regions—with orientations perpendicular to the cortical surface
[4], [5], [18], [26]. This model descends from the fact that
neurons in cortical layers are organized in macro columns
oriented perpendicularly to the surface. As source orientations
and locations are fixed, the only remaining degrees of freedom
are dipole magnitudes.

We will see in Section III how a distributed source model
can be well suited to take variousa priori information into
account that contributes to the estimation of the activity of
multiple cortical areas.

If dipole amplitudes—gathered in vector—are to be
estimated from , a vector of size , it is possible to

connect sources to the sensors owing to the following system
of equations:

(1)

where stands for the so-called gain matrix which columns
are the MEG or EEG lead fields associated with each source.
It contains global information about the head model, the
source pattern (source orientations and positions), and sensor
positions; is a perturbation vector that stands for perturba-
tions.

Operating fusion between EEG and MEG data consists in
gathering them in a unique set of measurements, so as to solve
a single inverse problem for simultaneous electromagnetic
recordings. In a distributed source model with a single fusion
gain matrix, the main issue here consists in avoiding any
pollution of a given modality by the other one. For instance
let us consider the case of radial dipoles in a spherical head
model; or even with realistic models, sources pointing toward
the head surface still produce small magnetic fields outside the
head. Deeper sources in both spherical and realistic geometry
tend to be MEG silent in the sense that they weakly contribute
to data. Thus, their corresponding lead fields have much
smaller norms than superficial or tangential sources. Further,
if several of these sources are distributed along the cortical
surface, as they have similar smeared contributions across
the sensors, their lead fields are almost collinear. Therefore,
estimating their amplitudes with MEG only is a very ill posed
problem. Then, the source estimation algorithm has to rely on
the EEG data only, i.e., on measurements with also a very
smooth spatial pattern on the scalp. Practically, combining
all of these lead-fields in a global linear operator generates
a gain matrix that is ill conditioned [31]. Consequently, this
contributes to the ill-posed nature of the MEG-EEG fusion
inverse problem.

Ill conditioning of the linear operator generates solutions
to the associated linear system, which are very sensitive to
roundoff errors during computation and to small perturbation
on data. Row and column equilibration of the linear operator is
the simplest way to cure to badly scaled systems. We first recall
that the condition number of a matrix according to the two-
norm, is the ratio of its biggest singular value to its smallest
[31]. It can be shown that row or column normalization is a
way to approach the minimum value for the condition number
of an operator when linearly operating on its rows or its
columns. Actually, it can be shown that equalizing the two-
norm of the rows of the matrix produces a new linear
operator which condition number is no more than a factor

away from the smallest condition number that can be
achieved with a linear transformation of [30]. A similar
theorem stands also for column normalization. It is interesting
to note that, though matrix equilibration has strong algebraic
roots, the first motivations to do so in the MEEG inverse
problem were based on physical considerations. The scaling of
MEG and EEG data (like the normalization of the rows of the
gain matrix, see [18] for instance), and the normalization of the
lead fields were proposed to facilitate the recovering of deeper
sources [16]. More generally, thesead hocprocedures based
on physical considerations regarding the formation of data can
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give correct starting points to investigate the enhancement of
the condition of the linear operator as explained by Golub and
Van Loan in [9]. The method we propose here is also driven
by such physical considerations.

So the issue is the following: it seems very clear in principle
that EEG and MEG are complementary, but how tooptimize
their combination as classical equilibration methods may not
be sufficient for enhanced source estimation (see Section IV)?

Rather than a global lead field equilibration, we investigate
the possibility to operate selective weighting of the contribu-
tions from either modality, which is twofold.

1) First for a given source, a preselection processing of the
EEG and the MEG lead field will predict which of these
two modalities is the most appropriate to estimate its
amplitude.

2) Following this preselection, each of the least appropriate
lead fields is then selectively attenuated. The associated
weights are iteratively computed for optimization ac-
cording to minimization of MI between the two weighted
EEG and MEG gain matrices.

B. Combination of the Electromagnetic Data Set

According to (1), a common system can be written with
both MEG and EEG

(2)

is the -row vector of the dipole magnitudes of the
distributed model; (respectively, ) is a (respectively,

) row vector containing MEG (respectively, EEG) mea-
surements for a given time sample. Finally, (respectively,

) is a (respectively, ) gain matrix. MEG
and EEG data are corrupted by additive noises and ,
respectively.

A preliminary phase consists in gathering the EEG and
MEG data in a raw fusion data set ( ). Thus,
and assuming for simplicity in notations noiseless measures,

is involved in the following linear system:

(3)

The method presented here consists in working on a global
matrix descending from modifications of the original gain
matrix , in the following way:

(4)

The new matrices that are introduced in this formulation are
computed along the three following steps.

1) Equalization of EEG and MEG sensor responses: this is
equivalent to the classical scaling of EEG and MEG data
[18].

2) Local selective weighting of each MEG lead-field versus
EEG for every dipole based on minimization of mutual in-

formation between and . The motivation
for the choice of the MI criterion, and the computation of
the and matrices are discussed below.

3) Normalization of the resulting lead fields: this is a scaling
step that contributes to the recovery of sources with weak
lead fields norms [10], [16].

C. Normalization of Sensor Responses

In order to scale EEG and MEG, the rows of the MEG and
EEG gain matrices are normalized. This is done owing to two
diagonal matrices and which diagonal elements are:
for

(5)

Where stands for theth row of . An equivalent
definition stands for . The data are then gathered in

, and we note and .

D. Local Selective Weighting of MEG and EEG Gain Vectors

We now introduce different weighting coefficients on each
column of and . If and are two
diagonal matrices (with real and positive diagonal components
called and , respectively, ), and

(6)

The th column of is

...

...

...

...

(7)

Thus, this writing allows to weight locally (i.e., for each
source of the distributed model) the normalized contribution
of MEG versus EEG. For instance, if , the EEG
data set will be considered as more reliable than MEG’s for
the estimation of the th source (as for a radial source for
example).

Now the issue consists in finding criteria that will drive this
local selection via the determination of the and
coefficients.
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E. The Choice of Criteria Based on Conditional
Entropy Quantification and MI Minimization

We first have to address the question of a strategy for the
choice of the diagonal elements of and according to
some constraints. The latter arise from a pre-evaluation of the
respective merits of EEG and MEG to estimate a given source.

A possible criterion is the conditional entropy between
the two original lead fields ( ) and V
( ), . These vectors can be
considered as two sets of realizations of two random variables.
We call and the conditional entropy
of given , and of given , respectively. The
conditional entropy is known to be a measure of
the amount of uncertainty left in when knowing [36],
[37]. This choice is motivated as low values for ,
for instance, are achieved when the lead field has very
smeared contributions across sensors in comparison with.
This property fits very well to the discussion in Section I
and is confirmed and illustrated by the studies in Section IV.
Hence, for a given sourceof the distributed model, we first
estimate the respective conditional entropy of the associated
MEG and EEG gain vectors, and (see
the Appendix for practical implementation). The one with
higher conditional entropy is designated as the best modality
to evaluate the source amplitude.

This step is used to introduce some constraints on the
and coefficients that are going to be computed in

the optimization procedure described further below. As an
example, if , the global optimization
procedure consists in setting and finding

in [0, 1] according to the following global criterion on
the modified gain matrices.

Following this preselection step, the basic idea consists in
reducing the degree of redundancy or similarity between the
two transfer functions. As discussed above, such a redundancy
between several lead fields is in part responsible for the bad
condition of the global operator. If we consider , a pair
of elements of the MEG and EEG matrices as realizations
of two random variables and , mutual information

is a measure of the degree of dependence between
these two variables. can also be seen as the
amount of information that (respectively, ) contains
about [respectively, , as ].
Previous works have used MI maximization to estimate the
best geometric transformation for multimodality image regis-
tration [37], [38]. Here, our goal is at the opposite of image
registration. Hence, minimizing by tuning some
registration parameters [here the and coefficients]
increases the global information content of the final fusion
matrix owing to the reduction of redundancy between the two
original modalities. Thus, we propose to scan all the lead fields
( , ) one after the other in order to find the
best corresponding weights that will minimize MI between the
modified matrices, and (see the Appendix for details
of MI computation).

For clarity, the algorithm is summarized as follows:

1 ) Initialization: C andC are two
identity matrices.

2 ) For every source j
2-a) Estimation of conditional entropy:

and
2-b) MI Minimization
If

I

Else if

I

End if
End MI Minimization

End for every source

F. Gain Vector Normalization at Each Source Location

Finally the diagonal matrix is computed to equilibrate the
columns of . For

(8)

where is the th column of .
It is shown in Section IV how this procedure produces

better-equilibrated gain matrices with especially no depen-
dency on the source orientation.

In the next section, the discussion regarding the practical
resolution of the new linear system will take place in the
general framework of the regularization of ill-posed inverse
problems, in which most of the source estimation methods
from distributed source models can be written.

III. T HE CMMI M ETHOD AND THE

SOURCE ESTIMATION PROBLEM

Source Estimation and Regularization:Regularization is a
general framework for the estimation of source amplitudes as
it necessitates the resolution of a linear system with an ill-
conditioned operator [31]. Solving this kind of linear system
without eliminating the oscillatory modes generated by the
vectors associated with the smallest singular values produces
source images with spurious sharp intensity gradients and large
dipole amplitudes, which explain extremely well the data,
but have no physiological sense [1]. Regularizing the inverse
problem consists in attenuating or eliminating this behavior
by introducing supplementary anda priori information on the
sources to be estimated. Many articles and books describe the
different approaches available here (see for instance [25], [33],
and [34]).

Basically, the source estimate can be considered as an
energy function minimizer

(9)

where

(10)



526 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 46, NO. 5, MAY 1999

is the variance-covariance matrix when a Gaussian noise
component is assumed.is a positive scalar that balances the
respective contributions to of the data attachment term
and the prior term . The -norm is defined as follows:

(11)

stands for matrix transposition.
The regularization operator can be either quadratic or

not, depending on the nature of the priors that one wishes to
take into account. For instance, in the field of neuroimaging,
this operator has been chosen either as the identity oper-
ator—thus producing source estimates with minimum norm
priors, which are similar to solutions from pseudo inversion
of the gain matrix; gradient or weighted Laplacian operator
[16], or nonquadratic for nonlinear source estimators. In this
latter case, one can choose priors in terms to the L1 norm of
the source amplitudes that can avoid some of the smoothing
properties of the L2 norm priors [41], [42]. Further, as exten-
sively exposed in [1] and [32], the nonquadratic formulation
of the priors may be linked to very numerous previous works
in image restoration and reconstruction using Markov random
fields models and associated stochastic algorithms [6]. The
methods used in [1] and [32] consists in introducing explicita
priori information in order to recover sharp intensity gradients
in the source image. It is assumed that the source magnitude
pattern is made of areas with smooth intensity changes that
may be separated by higher jumps in source amplitude: this
situation occurs for instance between adjacent but functionally
nonrelatedcortical areas as the ones on both sides of a sulcus.

First, a system of neighborhood is designed between cortical
areas. Then owing to a Bayesian formalism, the priors are
easily integrated in the Gibbs formulation of aa posteriori
density of probability. And finally the energy function is
minimized to produce a maximuma posteriori(MAP) estimate
of the source pattern [8].

We will not go further in the general description of the
different forms that can be adopted for the operator. Actu-
ally, the CMMI method can be adapted to many formulations
for .

A. The CMMI Method in the Context of Regularization

If we assume additive Gaussian noise on both EEG and
MEG channels, the data attachment term in (10) is

(12)

where

(13)

and are the variance/covariance matrices of the EEG
and MEG noise, respectively [after row normalization by the

and matrices, see (5)]. Hence, as it appears very
clearly in (12), MEG and EEG data attachment terms are
selectively weighted relatively to the different noise properties.
Though these statistics might be driven from the data set, as
proposed by Greenblatt [11] with the processing of prestimulus
signals, we will for clarity consider both MEG and EEG noises

as white and Gaussian with the same statistics (thus, with
and ).

At this point, it is essential to note that the transforma-
tion from to is nonlinear. Thus, the resolution of the
linear system associated with the MI minimization transform
necessitates an appropriate algorithm that we are now going
to describe.

The iterative procedure is based on a rewriting of (3).
Without any loss in generality, the additive noise components
can be left out from now on. First let’s define some notations: if

is a matrix with columns, we note as the th column
of the matrix and as the matrix made of the
remaining columns. Then the linear system can be written

(14)

is the th component of the source vector andis a vector
gathering the remaining source amplitudes.

The coefficients associated with , which have been
computed during MI minimization can now be introduced

(15)

where and . We recall that according to
preselection based on conditional entropy quantification, either

or is equal to 1.
Please note that for simplicity, we have not introduced any

new symbol for the dipole amplitudes despite the column
normalization of the gain matrix by. It will then be necessary
to multiply by at the end of the iterative estimation for
correct scaling. We note

The iterative method estimates every component se-
quentially, while taking the regularization term (which still
corresponds to the prior on the global image) and the proper
noise statistics into account in the following cost function

(16)

At this point, it is interesting to note that the respective
data attachment terms of MEG and EEG are modulated by
the coefficients descended from the MI minimization. For
instance, if the local selective weighting coefficient is close
to zero (hence ), the estimation of the amplitude will
be mainly driven by EEG data. Zeroing the first derivative of

, we obtain

(17)

and finally, as

[because of the normalization of the columns of(4)], we
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obtain the following equation:

(18)

where

(19)

Now let us consider different forms of the prior term .

1) can be quadratic, with general form
, where can take various forms. As

, then

. And finally the
estimate of according to (18) is

(20)

This estimation is done sequentially for every dipolar
source. Dipole scanning is repeated until convergence
by continuous updating of the dipole moments with the
new estimated values.

2) If is nonquadratic, no useful formula for can be
given, as it would strongly depends on the formulation
of . Thus, as an example, we will stress in the next
subsection on the adaptation of the ST-MAP estimation
method.

Implementation of CMMI for the ST-MAP Source Estima-
tion: As shown in [1], temporal regularization guidelines are
powerful to enhance the results while processing data time
series; however, we will not write them down here, as we want
to emphasize the formulation of the multimodality operation.
So consists only in the spatial prior term, written as the
sum of locally defined potential functions in terms of intensity
gradients

(21)

We denote as the gradient operator over the dipole
amplitudes ( , where , and is
the number of neighbors for each source), is the th
element of the spatial gradient vector. We use

(22)

where and plays the role of a local detection
threshold of intensity jumps in the source pattern. Actually for
small gradients the local cost is quadratic, thus producing areas
with smooth spatial changes in intensity, whereas for higher
gradients, the associated cost is finite— —thus
allowing the preservation of discontinuities in the source image
despite the needs for regularization.

The value given to the threshold where intensity jumps are
not likely is much higher than the one where there
area priori functional edges on the cortical surface ( ,
with ). We choose , with
nA.m (see [1] for further discussion on the choice of threshold
values).

Dipole scanning at step produces the following first
derivative for with respect to

(23)

where

diag

and is the first derivative of the -function.
Then the estimation of is computed iteratively as

depends on [we can then write as ]. At each
iteration step , we compute the following [see (18)]:

(24)

where is the estimation of at the th iteration. After
convergence of the estimate, then the algorithm proceeds
the same way for . Finally, the dipole scanning restarts
from on as described above for the quadratic case.

IV. RESULTS

Simulations with both EEG and MEG have been carried
out in spherical and realistic head models. These latter have
been designed from MRI segmented images, and the boundary
element method (BEM—number of elements; scalp: 3180,
outer skull: 2018, inner skull: 1332 triangles). In the first
set of simulations, we stress the validation of the CMMI in
a very simple source model. We investigate the immunity
of the method in presence of additive noise and we also
check its ability to recover source patterns that EEG or
MEG does not have (and especially radial sources). In the
second set of simulations, the source configuration is more
realistic. The source space is a piece of a segmented cortical
surface, and here we investigate the ability of the CMMI
method to recover more complex source configurations where
simultaneous sources with various orientations are active.

A. Influence of the Noise and of the Source Orientations

Two whole-head arrays with 68 EEG and 68 MEG sensors
(axial gradiometers) have been used for these simulations. The
fusion data set is made of 34 equally spaced EEG sensors
among the 68, and 34 MEG sensors.

We have chosen a rather simple cruciform anatomical model
of the calcarine sulcus made of eight planes on which 64 dipole
sources have been distributed [15] (eight dipoles per planes).
We have voluntarily chosen a smaller number of sources than
the number of sensors for not dealing with an underdetermined
problem for this first step in the validation, and so as to stress
on the respective merits of all four modalities (EEG, MEG, raw
fusion, and CMMI) in a simple case. Each plane is a square
patch of 1.5 1.5 cm with 8-mm distance between two parallel
planes, and the cruciform model is located at about 6 cm below
the scalp, which is rather deep. The dipoles on each plane are
supposed to be functionally dependent (dipole amplitudes on
the same plane are likely to be in the same range of intensity),
whereas dipoles on two different planes are assumed to be
uncorrelated (high intensity jumps are expected).
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Fig. 1. Two extreme orientations of the cruciform: left= 0�—active dipoles are tangential, right= 90�—where many dipoles are almost radial (dipoles
on plane #2 and on planes parallel to this plane).

TABLE I
SUMMARY OF THE RESPECTIVE SCORES OFEVERY MODALITY WITH THE ROTATING CRUCIFORM SIMULATIONS. THE AVERAGE

ERROR AND STANDARD ERROR ARE COMPUTED ON ALL TEN ANGLES OF ROTATION. Min AND Max ARE, RESPECTIVELY, THE

MINIMUM AND MAXIMUM VALUES TAKEN BY THE ERROR CRITERION ON THE 25 REALIZATIONS OF THE PSEUDORANDOM NOISE

Spherical geometry Realistic geometry

EEG MEG "Raw" fusion Fusion with
CMMI

EEG MEG "Raw" fusion Fusion with
CMMI

Average error (%) 27.5 15.3 10 1.8 15 3.2 8.3 1.7
Min (%) 10-3 10-4 0.2 0.2 0.5 10-3 0.1 0.1
Max (%) 100 100 60.7 31.8 100 91.2 59 30

Average standard error (%) ±7.6 ±4.8 ±2.9 ±0.4 ±6.7 ±1.4 ±3 ±0.4

The cruciform model is then rotated just as if it were follow-
ing the circumvolutions of the sulcus from a 0reference angle
to 90 in ten equally spaced steps (Fig. 1). These simulations
are simple enough to illustrate the respective performances of
the different modalities both for:

• multiple source orientations in a distributed model;
• the ability for spatial discrimination between dipoles with

same orientation on two close areas (distance between
plane 1 and 2 is 8 mm, for instance).

1) Initial Source Configuration:Dipoles on plane 2 are
then set to magnitude 1 (arbitrary units) for each of the
orientation angle. At 0, these dipoles are tangentially oriented,
whereas for 90 they may be considered as radial.

As shown in (12), both MEG and EEG noise characteristics
can be taken into account for the processing of a real data
set. Nevertheless and for simplicity, we will assume the
same additive white Gaussian noise added to the data. The
signal-to-noise ratio (SNR) is defined from the mean variance
of the data, when the cruciform structure is turned in the
ten directions. This ratio has been set to 20% for all the
experiments.

As shown in [1], classical linear estimators fail to recover
sharp edges in the initial source configuration presented here,
whatever the source orientation may be. We then only discuss

below the respective merits of the ST-MAP algorithm when it
deals with the four available modalities.

2) CMMI Versus the Classical Combination Method:We
have first replaced the and matrices by identity
matrices, thus no MI minimization is achieved. The associated
simulation results, both with the spherical and the realistic
head models are displayed in Fig. 2(a) and (b), respectively.
It appears clearly that the combination of MEG and EEG
without CMMI is much more sensitive to noise (please note
the larger standard errors in Table I) with poorer performances
(in the spatial discrimination between closely located planes).
This is no more the case when the MI coefficients are
introduced as modulations between MEG and EEG. One can
notice the higher sensitivity to source orientation of the “raw”
fusion method, especially in the spherical head model. Similar
results have been obtained when for MEG/EEG fusion without
CMMI, the iterative procedure—which is useless when
and are identity operators—has been replaced by the
standard regularized solution described in [1].

3) Comparison Between EEG, MEG, and CMMI:Results
are discussed according to three criteria.

a) The dependence of the condition numbers of the three
gain matrices (EEG, MEG, fusion) on the orienta-
tion angle. These numbers are presented as qualita-
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(a)

(b)

Fig. 2. Average reconstruction errors (in %) for the “raw” fusion modality
(i.e., with equilibration of the rows and the columns of the gain matrix) and
CMMI over 25 realizations of the pseudorandom noise. Error bars indicate
the standard fluctuation around the average error: (a) spherical model and (b)
realistic head model.

tive indexes of the stability of the respective inverse
problems, though the CMMI solution is computed
iteratively with sequential introduction of the and

coefficients.
b) The evolution of the respective average of theand

weights with the orientation angle. These weights
are computed relatively in percent of the sum ,
for every angle. It will appear clearly that the respective
merit of EEG versus MEG determined by CMMI
slowly increases when the source pattern is rotated.

c) The average reconstruction error on dipoles over 25
realizations of the pseudorandom noise, defined as:

(a)

(b)

Fig. 3. Condition numbers of gain matrices plotted versus the sources
orientations. The condition number of a matrix, according to the two-norm
is the ratio of its largest singular value to its smallest: (a) with the spherical
head model and (b) with the realistic head model.

, and the stan-
dard error of the fluctuations of the estimate will be
indicated with error bars. This error quantification is
severe, as small differences between sources will create
large error values. For instance, a 50% error indicates
that the estimated activity is spread over both the
original active zone and “phantom ones” which are
close in location and orientation; 100% error denotes
source estimates in which the active plane is not even
partly recovered. The regularization parameter is tuned
for every noise realization so as to get the smallest
error on the dipole sources.

4) Results with the Spherical Head Model:

a) Gain matrix condition numbers are shown in Fig. 3(a).
For each source orientation, the condition numbers

of the EEG, MEG, and the combined gain matrices are
computed. Whereas EEG condition does not depend
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(a)

(b)

Fig. 4. MEG and EEG relative weights versus the orientation. This plot
shows the relative faith accorded by the MI criterion to one modality in regard
to the other. For each angle, the weights are averaged over those affecting the
64 sources: (a) spherical model and (b) realistic model.

on orientation, MEG’s significantly increase from 0
to 90 orientation as it was expected. MEG-EEG com-
bination with classical equilibration as proposed in [5]
and [18] produces gain matrices with better condition,
on the order of one size order relatively to MEG on
the average. Finally, fusion with CMMI brings addi-
tional improvement on gain matrix condition for every
orientation (up to five orders of magnitude toward
EEG).

b) The relative average weighting of MEG versus EEG
is plotted on Fig. 4(a). It is clear that whereas MEG
is still relatively favored in comparison to EEG for
most the most tangential source orientations, EEG is
selected as “the best” modality for the last four angles.
For these latter, more and more sources tend to become
almost radial. This result show that preselection with
conditional entropy makes the correct choice of the
favorite modality.

(a)

(b)

Fig. 5. Average reconstruction errors (in %) with the three modalities (MEG,
EEG, and CMMI) over 25 realizations of the pseudorandom noise. Error bars
indicate the standard error: (a) spherical model and (b) realistic head model.

c) Fig. 5(a) shows the reconstruction performances of
the three modalities. This plot illustrates perfectly
MEG’s failure when more sources are becoming ra-
dial in the spherical model (90of orientation). The
EEG curve indicates error values that reflect its poor
spatial resolution. More regularization would increase
the reconstruction error, whereas more confidence to
data leads to increased instability. Fusion succeeds
in locating faithfully the active area for every source
orientation, with less than 1.7% of error on the average
(see full scores in Table I).

5) Results with the Realistic Head Model:

a) Condition numbers of all the three modalities are
slightly improved in this source configuration when
using the realistic head model [Fig. 3(b)]. This may
be due to the breaking of symmetry in the conductor
geometry that tended to produce almost collinear lead
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(a) (b)

(c) (d)

Fig. 6. Source estimations using the realistic head and cortical geometry. (a) The original source configuration with 22 dipoles set to value one. The
black frame indicates the global source space of 242 sources; top: inner view of the right hemisphere, bottom, top view, (b) EEG source estimate, (c)
MEG source estimate, and (d) CMMI source estimate.

fields in some source configurations. MEG for instance
has gain matrices with constant condition for every
orientation. Nevertheless, the fusion modality is still
better conditioned, by up to two orders of magnitude
in comparison to MEG.

b) The relative weights still depend on the orientation in
the same way as for the spherical head model [see
Fig. 4(b)]. This is explained by the fact that previous
radial sources are now sources normal to the head
surface, which is sufficient to be considered as quasi-
radial sources [28], [39]. This is especially the case
for dipoles located at the back of the head where
the spherical model is a good approximation of the
actual head anatomy. Furthermore, the entropy analysis
of EEG and MEG matrices reveals the weakness of
MEG for the three last angles, whereas the study of
the condition numbers is not sufficient to give this
conclusion.

c) Despite the increase in MEG performances, the error
curves on Fig. 5(b) still clearly show the superiority
of the fusion modality both in correct localization and
robustness. Note that for 90orientation, MEG still
fails because of the pseudoradial orientation of half of
the source pattern (Table I).

B. Simulations with a Realistic Cortical Geometry

Following these studies on small source configurations, we
now discuss the ability of the CMMI method to discriminate
some source patterns distributed along a realistic cortical
geometry with a larger source space. In this purpose, 242
sources are distributed normally to a piece of cortical surface
of the right hemisphere [see Fig. 6(a)]. These source are
distributed among 11 families made of 22 dipoles each,
which will be considered as functionally independent from
each other (just as if they were some different planes from
the previous cruciform model). The ST-MAP prior model
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explicitly takes this partition into account. It should be noted
that more sophisticated systems of anatomical and functional
neighborhood should be taken into account to process real
data sets.

The original active sources consist in 22 dipoles belonging
to the same family with their amplitude set to one. The other
dipole magnitudes are set to zero. Ten of these dipoles can be
considered as pseudoradial when considering their orientations
pointing toward a normal to the scalp surface. They are
located at various depths ranging from 3.6 to 6.6 cm from
the scalp surface (4.7 cm on the average). The MEG data
are simulated on the 143 MEG sensor array of the CTF Inc.
whole head system (axial gradiometers). The 143 EEG sensors
are simulated electrodes which locations correspond to the
projection of the MEG sensors on the scalp. The fusion sensors
are made of 72 MEG and 71 EEG from the original locations,
covering the whole head. The simulated data are corrupted
with white and Gaussian noise, with 20% standard deviation.
The original source pattern is represented in Fig. 6(a).

Results of EEG and MEG source estimation are displayed
in Fig. 6(b) and (c), respectively. It appears very clearly that
the EEG solution contains the original sources but combined
with spurious activity all along a large extension of the
hemisphere. The extension of the MEG solution on the cortex
is smaller than in EEG, but the deepest sources and those
with pseudoradial orientation are not properly estimated. These
complementary behaviors cooperate extremely well in the
CMMI estimation with ST-MAP [Fig. 6(d)] that recovers
successfully the original source pattern with few scattering
on the cortical surface.

V. CONCLUSIONS AND PERSPECTIVES

A method for a joint EEG and MEG brain imaging modality
has been described in this paper. This routine is based on a
preprocessing of the EEG and MEG gain matrices. In a given
distributed source model, a linear system of equation relates
the source amplitudes to the sensor array. Due to a) EEG
sensitivity to head tissue geometry and conductivity properties
and b) MEG blindness toward deeply located or radial sources;
solving this linear system is an ill-posed problem. From the
algebraic point of view, it means that the gain matrices are
numerically rank deficient, as some sources possess almost
the same lead-fields.

A parallel between algebraic considerations and multi-
modality registration with MI led us to the design of a method
that operates selective weighting of the MEG and EEG lead-
fields so that each of these modified gain vectors contributes
to the minimization of MI between the gain matrices. This
preprocessing of the fusion global gain matrix produces a
better conditioned inverse problem, which is solved owing to
a regularized iterative procedure that can take various types
of priors into account. It results in stability improvement
and smaller reconstruction errors in the dipole amplitude
estimation. Most important is the immunity of the fusion
modality in regard to source orientation.

This first exploration step is promising and further exper-
iments with increasing realism will be carried out to better

evaluate the limits of this approach (with a real skull phantom
for instance [35]), before it could be used as genuine brain
functional imaging in cognitive neuroscience experiments [47].

APPENDIX

CONDITIONAL ENTROPY QUANTIFICATION OF GAIN VECTORS

AND THE COMPUTATION OF MUTUAL INFORMATION

A. Conditional Entropy Quantification of Gain Vectors

Entropy quantification of a continuous random variable (RV)
from a limited set of data (here the elements of the and

gain vectors are considered as the realization of continuous
RV’s defined below) necessitates the definition of a discrete
code [36]. Thus, each of the MEG and EEG lead fields are first
linearly scaled on the set of discrete values [1, 2, ], with

(A1)

(respectively, ) is the standard deviation of the
normalized lead field (respectively, ), and

.
[respectively, ] is the conditional

entropy of RV’s versus (respectively, versus )
which realizations are the elements of the respective gain
vectors

(A2)

(A3)

and are the marginal, and the
joint probability distributions of, respectively, and .

Please note that when (like in the second
set of simulations presented here), this computation is done
using linearly interpolated lead-fields in order that they finally
have the same number of elements. Hence, quantities such as

can be estimated.
These probability distributions can be estimated by normal-

ization of the joint histogram , of the lead and
fields. This histogram is computed by binning the pairs of

values along the two gain vectors. Then

(A4)

and

(A5)

(A6)
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B. Computation of Mutual Information

In a very similar way, MI between the two RV’s GB and GV
associated with the gain matrices and also necessitates
a preliminary scaling of the matrices to the range [1, 2, ],
with

round (A7)

where (respectively, ) is the standard deviation of
the normalized lead field (respectively, ), and

.
As for the and gain vectors above, both of the

and matrices are seen as an ensemble of realizations of GB
and GV, respectively, with marginal, and ,
and joint, , probability distributions. The mu-
tual information between these two RV’s is:

(A8)

An estimation of MI can be computed when the two matri-
ces are considered as two intensity images to be superimposed.
From these pseudoimages, it is possible to compute a joint
histogram where (respectively, ) can take all
the values of the rescaled (respectively, ) matrix [37].
The joint histogram is calculated by binning the
intensity pairs along the different element positions
of the gain matrices.

Then, in a similar manner as for conditional entropy quan-
tification

(A9)

and

(A10)

(A11)

Once again, when (like in the second set of
simulations presented here), this computation is done using
linearly interpolated lead-fields in order that both matrices
finally have the same number of rows.
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