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Combined MEG and EEG Source Imaging
by Minimization of Mutual Information

Sylvain Balillet,* Line Garnero, Gildas Marin, and Jean-Paul Hugonin

Abstract—Though very frequently assumed, the necessity to performances when no constraints are enforced within the
operate a joint processing of simultaneous magnetoencephalog-source estimation procedure. EEG is considered as highly
raphy (MEG) and electroencephalography (EEG) recordings for - goqitive to the geometry and the conductivity properties of
functional brain imaging has never been clearly demonstrated. . L .
However, the very last generation of MEG instruments allows (1€ head tissues which is not as much the case for magnetic
the simultaneous recording of brain magnetic fields and electrical fields—though intracranial inhomogeneity such as ventricular
potentials on the scalp. But the general fear regarding the fusion cavities may have strong influence on the field pattern outside
between MEG and EEG data is that the drawbacks from one the head [39]. MEG, however, fails to locate deeper cortical

modality will systematically spoil the performances of the other o\ .oq pecause of the rapid fall of the magnetic field with
one without any consequent improvement. This is the case for

instance for the estimation of deeper or radial sources with MEG. depth [12]. Numerous experiments for interictal spike source
In this paper, we propose a method for a cooperative processing localization with MEG and EEG illustrate this point [43]-[46].
of MEG and EEG in a distributed source model. First, the Furthermore, as head shapes are still extensively modeled with
evaluation of the respective performances of each modality for single or multiple concentric spheres, MEG is unable to locate
the estimation of every dipole in the source pattern is made using led radial h EEG itive t
a conditional entropy criterion. Then, the algorithm operates So-calle r.a 1a _sources,w ereas - seems sensi 'V_e 0 every
a preprocessing of the MEG and EEG gain matrices which SOuUrce orientation. All of these points tend to confirm the
minimizes the mutual information between these two transfer general belief that a cooperative processing of EEG and MEG
functions, by a selective weighting of the MEG and EEG lead sjgnals would improve the solution to the source estimation
fields. This new combined EEG/MEG modality brings major —qpiem [7], [19], [24]. Unfortunately, few studies are dedi-
improvements to the localization of active sources, together with h o . .
reduced sensitivity to perturbations on data. cated to the systematic validation of this assumption. The very

) ] ) ) o recent appearing of devices that offer simultaneous MEG and
Index Terms—Brain functional imaging, distributed sources

models, electroencephalography (EEG), entropy quantification, EEG recordings with large arrays of detectors may explain the

fusion of data, magnetoencephalography (MEG), mutual infor- elatively sparse “fusion”_ Iiteratur_e. o o
mation, source reconstruction. Wood et al. [29] were pioneers in this field with simultane-

ous EEG and single-channel MEG recordings. Suthedira.
have also presented interesting points about a joint analysis of
MEG and EEG data [23]. However, the study was done with
G IVEN a model of the electromagnetic and geometricgingle dipole models, and the “fusion” solution was computed
properties of the head tissues (basically the cortex, cefeom the average of MEG’s and EEG’s. These first works
brospinal fluid (CSF), skull, and scalp), magnetoencephalogtid not introduce any joint processing of a common data set
phy (MEG) and electroencephalography (EEG) source imagrade of both EEG and MEG. Sta al. have shown in [22]
ing consists in finding the current dipole(s) that best explain(at source estimation with 21 EEG channels and 21 MEG's
the data in accordance with the experimental protocol.  produces “slightly better” results than with solely 21 EEG's
But as time resolution is the strongest asset of EEG/ME§ 21 MEG's. However this result can be mainly attributed to
brain functional imaging, it has been commonly assumefe increase of the number of sensors (from 21 to 42 on the
that both of these two modalities offer poor Iocalizatioqvho|e)_ Dale and Sereno [5] and, more recently, Phillips [18]
have confirmed these primary results, with distributed source
Manuscript received July 8, 1997 revised October 22, 198@erisk models on realisti_c cortical anatomy. These_ simulation studies
indicates corresponding author demonstrate the improvement of the spatial accuracy of the
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The method described hereinafter is an attempt to go furttmmnect sources to the sensors owing to the following system
than the simple combination of MEG and EEG data amf equations:
gain matrices. The main question we want to address is the M=GJ+b 1)
following: What kind of optimizationin the combination of o

simultaneous MEG and EEG signals can be applied to improy@ere G stands for the so-called gain matrix which columns
the localization of the brain sources underneath? are the MEG or EEG lead fields associated with each source.

The basic idea that will be developed here consists fi contains global information about the head model, the
preprocessing every lead field associated with a given digurce pattern (source orientations and positions), and sensor
tributed source pattern so as to minimize the redundancy gisitions;b is a perturbation vector that stands for perturba-
information between the MEG and EEG models. As a gatibns.
matrix can be considered as a transfer operator between th@perating fusion between EEG and MEG data consists in
neural sources and the sensors, we then propose a methodghgtering them in a unique set of measurements, so as to solve
selectively weights every lead field of each of the modality single inverse problem for simultaneous electromagnetic
by minimization of mutual information (MI) between thesgecordings. In a distributed source model with a single fusion
two transfer functions. This procedure goes further than tg@in matrix, the main issue here consists in avoiding any
global weighting technique which consists in equilibrating thgollution of a given modality by the other one. For instance
rows and the columns of the MEG-EEG matrix to balandet us consider the case of radial dipoles in a spherical head
both the sensitivity of the sensors and the dipole COﬂtribUtiQﬁode|; or even with realistic models, sources pointing toward
to the sensor array ([10], [16]). The latter will be hereinaftahe head surface still produce small magnetic fields outside the
denoted as “raw” fusion. head. Deeper sources in both spherical and realistic geometry

The present article is divided as follows. The presentatigénd to be MEG silent in the sense that they weakly contribute
of the MEG-EEG combination method by minimization oo data. Thus, their corresponding lead fields have much
mutual information (CMMI) is in Section II. In Section I, smaller norms than superficial or tangential sources. Further,
the practical implementation of the method is discusseUseveral of these sources are distributed along the cortical
first in the general context of source estimation witBurface, as they have similar smeared contributions across
regularization. Then as an example, we will stress on thige sensors, their lead fields are almost collinear. Therefore,
adaptation of the nonlinear source estimator we developgstimating their amplitudes with MEG only is a very ill posed
for the inverse problem in a distributed source model: thfoblem. Then, the source estimation algorithm has to rely on
ST-MAP method [1]. Simulation studies in Section IV usg¢he EEG data only, i.e., on measurements with also a very
various source configurations with both spherical and reghooth spatial pattern on the scalp. Practically, combining
head models to discuss extensively the questions above 4Qrof these lead-fields in a global linear operator generates
the validation of the new method proposed here. a gain matrix that is ill conditioned [31]. Consequently, this
contributes to the ill-posed nature of the MEG-EEG fusion
inverse problem.

Il conditioning of the linear operator generates solutions
to the associated linear system, which are very sensitive to
roundoff errors during computation and to small perturbation
on data. Row and column equilibration of the linear operator is

MEG/EEG source estimation may be seen as a true imagihg simplest way to cure to badly scaled systems. We first recall
problem. Indeed, it is possible to distribute some dipoldehat the condition number of a matrix according to the two-
through the whole brain volume at fixed locations and toeorm, is the ratio of its biggest singular value to its smallest
estimate their magnitudes according to data and some rét]. It can be shown that row or column normalization is a
ularization priors—like the constraint of smoothness on theay to approach the minimum value for the condition number
intensity gradient or Laplacian [16]. To go further into thef an operator when linearly operating on its rows or its
refinement of the source model, dipoles may be constrainedamumns. Actually, it can be shown that equalizing the two-
the surface of the cortex—maybe on some restricted corticedrm of the rows of theG matrix produces a new linear
regions—with orientations perpendicular to the cortical surfacgerator which condition number is no more than a factor
[4], [5], [18], [26]. This model descends from the fact that/N,, away from the smallest condition number that can be
neurons in cortical layers are organized in macro columashieved with a linear transformation & [30]. A similar
oriented perpendicularly to the surface. As source orientatiotm@orem stands also for column normalization. It is interesting
and locations are fixed, the only remaining degrees of freedamnote that, though matrix equilibration has strong algebraic
are dipole magnitudes. roots, the first motivations to do so in the MEEG inverse

We will see in Section Il how a distributed source modgbroblem were based on physical considerations. The scaling of
can be well suited to take variows priori information into MEG and EEG data (like the normalization of the rows of the
account that contributes to the estimation of the activity @fain matrix, see [18] for instance), and the normalization of the
multiple cortical areas. lead fields were proposed to facilitate the recovering of deeper

If &V dipole amplitudes—gathered in vectdr—are to be sources [16]. More generally, thead hocprocedures based
estimated fromM, a vector of sizeN,,, it is possible to on physical considerations regarding the formation of data can

Il. COMBINATION OF MEG AND EEG BY
MINIMIZATION OF MUTUAL INFORMATION

A. Introduction
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give correct starting points to investigate the enhancement of formation betweemN gz G andNy Gy.. The motivation

the condition of the linear operator as explained by Golub and for the choice of the MI criterion, and the computation of

Van Loan in [9]. The method we propose here is also driven the Cp and Cy- matrices are discussed below.

by such physical considerations. 3) Normalization of the resulting lead fields: this is a scaling
So the issue is the following: it seems very clear in principle step that contributes to the recovery of sources with weak

that EEG and MEG are complementary, but howofiimize lead fields norms [10], [16].

their combination as classical equilibration methods may not

be sufficient for enhanced source estimation (see Section I\)? Normalization of Sensor Responses

Rather than a global lead field equilibration, we investigate In order to scale EEG and MEG. the rows of the MEG and
the possibilit_y to operat_e sele(_:tive_ weighting of the ContribLI':’EG gain matrices are normalized,. This is done owing to two
tions frpm either 'modahty, whichis tWOf(_)Id' ) diagonal matriceN 3 and Ny which diagonal elements are:

1) First for a given source, a preselection processing of thg ; ¢ [1,2, ..., Np]

EEG and the MEG lead field will predict which of these

two modalities is the most appropriate to estimate its

amplitude. Ng(i, i) = |Gp(, )| . (5)
2) Following this preselection, each of the least appropriate

lead fields is then selectively attenuated. The associated hereG n(i. - ds for theth ‘G val
weights are iteratively computed for optimization ac- WhereGs(i, :) stands for théth row of G 5. An equivalent

cording to minimization of MI between the two weighteodeinition stands folNy-. The data are then gatheredd =

EEG and MEG gain matrices. [Ef} - M, and we noté€zz = N Gp andGy = Ny Gy.
B. Combination of the Electromagnetic Data Set D. Local Selective Weighting of MEG and EEG Gain Vectors
According to (1), a common system can be written with We now introduce different weighting coefficients on each
both MEG and EEG column of Gz and Gy. If Cz and Cy are two N x N
BeGoJih diagonal matrices (with real and positive diagonal components
=GpJ+bp calledcg(j) andey (5), respectivelyy € [1, 2, ---, NJ), and
Szamthe @ () andey (j) [ 1
J is the N-row vector of the dipole magnitudes of the G Gp - Cp 6
distributed modelB (respectively,V) is a Ng (respectively, |Gy - Cv | (6)

Ny) row vector containing MEG (respectively, EEG) mea-
surements for a given time sample. Finallyg (respectively,
Gy) is aNg x N (respectively Ny x N) gain matrix. MEG The jth column of G is
and EEG data are corrupted by additive noibes and by,
respectively.

A preliminary phase consists in gathering the EEG and
MEG data in a raw fusion data sl (M = [{]). Thus,
and assuming for simplicity in notations noiseless measures, : x cp(d)
M is involved in the following linear system:

R Gx(:, Gi(Ng, j) )
M=% l5-aJ ©) G(:,j)z{AB( J)}z _B( B‘)\ )
Gy ’ GV( ’ J) GV(la j)
. . . aV(27 J)
The method presented here consists in working on a global . % ey (j)

matrix G- descending from modifications of the original gain
matrix G, in the following way:

-CV(NVaj) / -
G— [NBGBCB} L.

~ |INy Gy Cy (4)

Thus, this writing allows to weight locally (i.e., for each
source of the distributed model) the normalized contribution
The new matrices that are introduced in this formulation ag MEG versus EEG. For instance df (j) > cz(j), the EEG
computed along the three following steps. data set will be considered as more reliable than MEG's for
1) Equalization of EEG and MEG sensor responses: thistie estimation of thejth source (as for a radial source for

equivalent to the classical scaling of EEG and MEG datxample).

[18]. Now the issue consists in finding criteria that will drive this
2) Local selective weighting of each MEG lead-field versuscal selection via the determination of tlg(j) and ¢, ()

EEG for every dipole based on minimization of mutual ineoefficients.
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E. The Choice of Criteria Based on Conditional For clarity, the algorithm is summarized as follows:
Entropy Quantification and MI Minimization 1°) Initialization: Cg andCy- are twoN x N
We first have to address the question of a strategy for the identity matrices.

choice of the diagonal elements 6f and Cy according to ~ 2°) For every source j
some constraints. The latter arise from a pre-evaluation of the 2-3) Estimation of conditional entropy:
respective merits of EEG and MEG to estimate a given source. E(BJ,NJ) fi”d E(Vj|Bj)
A possible criterion is the conditiorEI entropy between ﬁtg glr,'\gﬁlmlzgtlglr. Bi
the two original lead fieldsBj (Bj = Gg(, j)) and Vj (BJ] J)c;(j)(_f 7)
(Vi = Gy(;,9), j € [1--- N]. These vectors can be LT — —
considered efs t\/\?o sets of[realizati]ons of two random variables. evii) = glgl) {(GsCs, GvCv)}

We cgll .E(B‘7|Vf7) and E(V:7|E.’,‘7) the.condltlongl entropy Else if E(Bj|Vj) < E(Vj|Bj)

of Bj given V3, and of Vj given Bj, respectively. The ev(j) =1,

conditional entropyE'(B;|Vj) is known to be a measure of cp(j) = min {I(GpCg, GyCy)}
the amount of uncertainty left iBBj when knowingV; [36], cs ()

[37]. This choice is motivated as low values f8{(Bj|V ), End if

for instance, are achieved when tig lead field has very End MI Minimization

smeared contributions across sensors in comparison'Wjth End for every source

This property fits very well to the discussion in Section |
and is confirmed and illustrated by the studies in Section I¥. Gain Vector Normalization at Each Source Location

Hence, for a given sourcgof the distributed model, we first  Finally the diagonal matrif is computed to equilibrate the

estimate the respective conditional entropy of the associat@lumns of G. Forj €[l,2, -+, N]
MEG and EEG gain vector€/(Bj|Vj) and E(Vj|Bj) (see . 1
the Appendix for practical implementation). The one with L(j, ) = ‘G(h J’)H (8)

higher conditional entropy is designated as the best modalit R 3 is the th col (e
to evaluate the source amplitude. w lter_e G(h" ) ist gﬂt. co K/mﬂ N Ctrh g q

This step is used to introduce some constraints on tBe IS Shown In Section TV how this procedure: produces
¢ and ¢, coefficients that are going to be computed ir]etter-eqwhbrated gain matrices with especially no depen-
b v

o . dency on the source orientation.
the optimization procedure described further below. As an |, the next section, the discussion regarding the practical

example, ifE(B;|Vj) > E(Vj|Bj), the global optimization resolution of the new linear system will take place in the

procedure consists in setting(j) = 1 and findingev(7) < general framework of the regularization of ill-posed inverse
cg(j) in [0, 1] according to the following global criterion ONproblems, in which most of the source estimation methods

the modified gain matrices. from distributed source models can be written.
Following this preselection step, the basic idea consists in

reducing the degree of redundancy or similarity between the . THE CMMI METHOD AND THE

two transfer functions. As discussed above, such a redundancy SOURCE ESTIMATION PROBLEM

betwggn several lead fields is in part responsible for th.e badSource Estimation and RegularizatioRegularization is a
condition of the global operator. If we considgb, gv), apair - general framework for the estimation of source amplitudes as
of elements of the MEG and EEG matrices as realizatiojspecessitates the resolution of a linear system with an ill-
of two random variablessB and GV, mutual information conditioned operator [31]. Solving this kind of linear system
I(GB, GV)is ameasure of the degree of dependence betwegithout eliminating the oscillatory modes generated by the
these two variables/(GB, GV') can also be seen as thevectors associated with the smallest singular values produces
amount of information thatB (respectively,GV) contains source images with spurious sharp intensity gradients and large
aboutGV [respectivelyGB, asI(GB, GV) = I(GV, GB)]. dipole amplitudes, which explain extremely well the data,
Previous works have used MI maximization to estimate thwt have no physiological sense [1]. Regularizing the inverse
best geometric transformation for multimodality image regigroblem consists in attenuating or eliminating this behavior
tration [37], [38]. Here, our goal is at the opposite of imagBy introducing supplementary ardpriori information on the
registration. Hence, minimizing(GB, GV) by tuning some Sources to be estimated..Many articles and .books describe the
registration parameters [here the(j) andcp(j) coefficients] different approaches available here (see for instance [25], [33],
increases the global information content of the final fusiodnd [??4])' ) ]

matrix owing to the reduction of redundancy between the two Basically, the source estimate can be considered as an
original modalities. Thus, we propose to scan all the lead fiel§ge"9Y function m|n|r:n|zer

(G(:, 7), 7 =1 --- N) one after the other in order to find the J= m}n (I (9)

best corresponding weights that will minimize M| between the

modified matricesG z and G (see the Appendix for details W€

of MI computation). UJ)=|M - GJI|% + AL(J). (10)
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R is the variance-covariance matrix when a Gaussian noae white and Gaussian with the same statistics (thus, with
component is assumedl.is a positive scalar that balances th&Rz = Iy, and Ry = Iy,).
respective contributions t&'(J) of the data attachment term At this point, it is essential to note that the transforma-
and the prior term(J). The R-norm is defined as follows: tion from G to G is nonlinear. Thus, the resolution of the
IM—GI|% =(M—GJ) -R-L- (M—-GJ). (11) linear system associateo! with the_MI minimization transform
R ™ : necessitates an appropriate algorithm that we are now going

¢ stands for matrix transposition. to describe. . -
The regularization operatdi(-) can be either quadratic or 1he iterative procedure is based on a rewriting of (3).

not, depending on the nature of the priors that one wishes\ithout any loss in generality, the additive noise components
an be left out from now on. First let’s define some notations: if

take into account. For instance, in the field of neuroimagings" L ;
this operator has been chosen either as the identity op€r{S @ matrix withiV columns, we noté; as thejth column

ator—thus producing source estimates with minimum norff the A matrix andA; as the matrix made of thé/ — 1
priors, which are similar to solutions from pseudo inversioffmaining columns. Then the linear system can be written
of the gain matrix; gradient or weighted Laplacian operator tv e A

9 9 r weig - perato M=GJ=G,J,+G,J,. (14)
[16], or nonquadratic for nonlinear source estimators. In this
latter case, one can choose priors in terms to the L1 normJ)jfis thejth component of the source vector ahgis a vector
the source amplitudes that can avoid some of the smoothigthering the remainingV — 1 source amplitudes.
properties of the L2 norm priors [41], [42]. Further, as exten- The coefficients associated wits;, which have been
sively exposed in [1] and [32], the nonquadratic formulatioBgomputed during MI minimization can now be introduced
of the priors may be linked to very numerous previous works L
in image restoration and reconstruction using Markov random Chj (B - Gpg; Ly Jj) [ij Gp;

Cu; (V - érvj ]:j jj) B Cuj GVj

fields models and associated stochastic algorithms [6]. The }LJ J; (15)

methods used in [1] and [32] consists in introducing exphcit
priori information in order to recover sharp intensity gradien(ﬁ,herecbj = ¢(4) ande,,, = ¢,(j). We recall that according to

in the source image. It is assumed that the source magnitygigselection based on conditional entropy quantification, either
pattern is made of areas with smooth intensity changes thjt or ¢,; is equal to 1.

may be separated by higher jumps in source amplitude: thispjease note that for simplicity, we have not introduced any
situation occurs for instance between adjacent but functionafjgw symbol for the dipole amplitudes despite the column
nonrelatedcortical areas as the ones on both sides of a sulcygrmalization of the gain matrix b. It will then be necessary

First, a system of neighborhood is designed between corti@@lmummy J by L at the end of the iterative estimation for
areas. Then owing to a Bayesian formalism, the priors agrrect scaling. We note

easily integrated in the Gibbs formulation ofaaposteriori

density of probability. And finally the energy functi@i(J) is {Bj}
minimized to produce a maximueposteriori(MAP) estimate Vi
of the source pattern [8].

We will not go further in the general description of the The iterative method estimates evedy component se-
different forms that can be adopted for the) operator. Actu- quentially, while taking the regularization term (which still
ally, the CMMI method can be adapted to many formulatiororresponds to the prior on the global image) and the proper
for L(-). noise statistics into account in the following cost function

B - GpLJ;
V- GVJ'LJ'JJ'

A 2
A. The CMMI Method in the Context of Regularization U@d;) =c, HBj —Gp; L JjH

If we assume additive Gaussian noise on both EEG and

2
MEG channels, the data attachment term in (10) is +HALI). (16)

+ ij HVJ - ij Lj Jj

HM_GJHEQ _ HE_GBJHE 2+HV_GVJ ‘QE (12) At this point, it is interesting to note that the respective
& v data attachment terms of MEG and EEG are modulated by
where the coefficients descended from the MI minimization. For
- f—{; 0 instance, if the local selective weighting coefficiept is close
= { 0 ﬁ;1:| (13)  to zero (hence,,; = 1), the estimation of the amplitudg; will

be mainly driven by EEG data. Zeroing the first derivative of
Ry andRp are the variance/covariance matrices of the EEG(J;), we obtain

and MEG noise, respectively [after row normalization by the, A ) RN

N and Ny matrices, see (5)]. Hence, as it appears very; LjGp;Bj +c;; Ly Gy; V5

clearly in (12), MEG and EEG data attachment terms are 2 2 oyt

selectively weighted relatively to the different noise properties. — (Cw Gh; Gaj— ¢, Gy GW) LjJi =X
Though these statistics might be driven from the data set, as

proposed by Greenblatt [11] with the processing of prestimulagd finally, asc?, L; G5, Gpj L+ ¢}, L; Gy Gy Ly = 1
signals, we will for clarity consider both MEG and EEG noisefpecause of the normalization of the columns@f(4)], we

AL(J)
203,

17)



BAILLET et al: COMBINED MEG AND EEG SOURCE IMAGING

obtain the following equation:

OLQ) _
J]—)\28Jj =D, (18)
where
Dj = ij Lj G%J Bj + C?j Lj Gtvj \A/vj (19)

Now let us consider different forms of the prior teth{J).
1) L(J) can be quadratic, with general fori(J) =
ICJ||%, wherel can take various forms. A& J|* =
- o~ 2
‘F]’Jj +Fij , then
(OL(3)/283;) = T* Fij4—fjjj).AndfMaHythe
estimate ofJ; according to (18) is

. D, —-T{I'J;
Jj=L; — L7 (20)
L+ ALl

This estimation is done sequentially for every dipolagonvergence of thd
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Dipole scanning at steg produces the following first
derivative for L(J) with respect toJ;

AL(J)
28],

where
@' (V3I,
F:diag< ( '”)>, v e[l N,

=V;IVI=ViIV,;3; +ViIV;J;  (23)

2 VI,

and @’ is the first derivative of theb-function.

Then the estimation of; is computed iteratively ag’
depends onJ; [we can then writel' as I'(J;)]. At each
iteration stepk, we compute the following [see (18)]:
i . D —AVED(J )Y

I ’ 1+)‘V3 F(lek—l)vj
is the estimation ofJ; at thekth iteration. After
estimate, then the algorithm proceeds

(24)

whereJ |,

Il

source. Dipole scanning is repeated until convergengige same way fof = j+1. Finally, the dipole scanning restarts
by continuous updating of the dipole moments with thgom ;j = 1 on as described above for the quadratic case.

new estimated values.

2) If L(J) is nonquadratic, no useful formula fdr. can be

IV. RESULTS

given, as it would strongly depends on the formulation Simulations with both EEG and MEG have been carried

of L(J). Thus, as an example, we will stress in the nexjut in spherical and realistic head models. These latter have

subsection on the adaptation of the ST-MAP estimatidseen designed from MRI segmented images, and the boundary

method. element method (BEM—number of elements; scalp: 3180,

Implementation of CMMI for the ST-MAP Source Estimasuter skull: 2018, inner skull: 1332 triangles). In the first

tion: As shown in [1], temporal regularization guidelines arset of simulations, we stress the validation of the CMMI in
powerful to enhance the results while processing data tiraevery simple source model. We investigate the immunity
series; however, we will not write them down here, as we waat the method in presence of additive noise and we also
to emphasize the formulation of the multimodality operatiortheck its ability to recover source patterns that EEG or
So L(J) consists only in the spatial prior term, written as thMMEG does not have (and especially radial sources). In the
sum of locally defined potential functions in terms of intensitgecond set of simulations, the source configuration is more

gradients

N,
L@)=>"2,(VI},). (21)
v=1

realistic. The source space is a piece of a segmented cortical
surface, and here we investigate the ability of the CMMI
method to recover more complex source configurations where
simultaneous sources with various orientations are active.

We denoteV as the gradient operator over the dlpol%\_ Influence of the Noise and of the Source Orientations

amplitudes ¥V € Ry, n, WhereN, = N - N,, and N, is
the number of neighbors for each sourge VJ, is the vth
element of the spatial gradient vector. We use

Two whole-head arrays with 68 EEG and 68 MEG sensors
(axial gradiometers) have been used for these simulations. The

w2 fusion data set is made of 34 equally spaced EEG sensors
—_— (22) among the 68, and 34 MEG sensors.
1+ <i> We have chosen a rather simple cruciform anatomical model
K, of the calcarine sulcus made of eight planes on which 64 dipole
whereu = VJ|, and K, plays the role of a local detectionsources have been distributed [15] (eight dipoles per planes).
threshold of intensity jumps in the source pattern. Actually fae have voluntarily chosen a smaller number of sources than
small gradients the local cost is quadratic, thus producing areéhs number of sensors for not dealing with an underdetermined
with smooth spatial changes in intensity, whereas for highproblem for this first step in the validation, and so as to stress
gradients, the associated cost is finité+£w) ~ K,—thus on the respective merits of all four modalities (EEG, MEG, raw
allowing the preservation of discontinuities in the source imadesion, and CMMI) in a simple case. Each plane is a square
despite the needs for regularization. patch of 1.5< 1.5 cm with 8-mm distance between two parallel
The value given to the threshold where intensity jumps aptanes, and the cruciform model is located at about 6 cm below
not likely is much highef K, = K;) than the one where therethe scalp, which is rather deep. The dipoles on each plane are

b, (u) =

area priori functional edges on the cortical surfadé (= K>,
with K; > K5). We chooseK; = 100 x K, with K> = 0.1

supposed to be functionally dependent (dipole amplitudes on
the same plane are likely to be in the same range of intensity),

nA.m (see [1] for further discussion on the choice of thresholdhereas dipoles on two different planes are assumed to be

values).

uncorrelated (high intensity jumps are expected).
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Fig. 1. Two extreme orientations of the cruciform: left 0°—active dipoles are tangential, right 90°—where many dipoles are almost radial (dipoles
on plane #2 and on planes parallel to this plane).

TABLE |
SUMMARY OF THE RESPECTIVE SCORES OFEVERY MODALITY WITH THE ROTATING CRUCIFORM SIMULATIONS. THE AVERAGE
ERROR AND STANDARD ERROR ARE COMPUTED ON ALL TEN ANGLES OF ROTATION. Min AND Max ARE, RESPECTIVELY, THE
MINIMUM AND MAXIMUM VALUES TAKEN BY THE ERROR CRITERION ON THE 25 REALIZATIONS OF THE PSEUDORANDOM NOISE

Spherical geometry Realistic geometry
N P Fusion with N P Fusion with
EEG MEG Raw" fusion CMMI EEG MEG Raw" fusion CMMI
Average error (%) 27.5 15.3 10 1.8 15 3.2 8.3 1.7
Min (%) 103 104 0.2 0.2 0.5 108 0.1 0.1
Max (%) 100 100 60.7 31.8 100 91.2 59 30
Average standard error (%) +7.6 +4.8 +2.9 +0.4 +6.7 +1.4 +3 +0.4

The cruciform model is then rotated just as if it were followbelow the respective merits of the ST-MAP algorithm when it
ing the circumvolutions of the sulcus from & @ference angle deals with the four available modalities.
to 9C° in ten equally spaced steps (Fig. 1). These simulations2) CMMI Versus the Classical Combination Methodle
are simple enough to illustrate the respective performanceshafve first replaced th€Cgz and Cy- matrices by identity
the different modalities both for: matrices, thus no MI minimization is achieved. The associated

« multiple source orientations in a distributed model; ~ simulation results, both with the spherical and the realistic

« the ability for spatial discrimination between dipoles witthead models are displayed in Fig. 2(a) and (b), respectively.

same orientation on two close areas (distance betwdérappears clearly that the combination of MEG and EEG
plane 1 and 2 is 8 mm, for instance). without CMMI is much more sensitive to noise (please note

1) Initial Source Configuration:Dipoles on plane 2 are the larger standard errors in Table 1) with poorer performances
then set to magnitude 1 (arbitrary units) for each of th@_th? spatial discrimination between closely Iocat.e.d planes).
orientation angle. At these dipoles are tangentially oriented! NiS is no more the case when the MI coefficients are
whereas for 99 they may be considered as radial. introduced as modulations between MEG and EEG. One can

As shown in (12), both MEG and EEG noise characteristié®tice the higher sensitivity to source orientation of the “raw”
can be taken into account for the processing of a real ddusion method, especially in the spherical head model. Similar
set. Nevertheless and for simplicity, we will assume thesults have been obtained when for MEG/EEG fusion without
same additive white Gaussian noise added to the data. TH¥MI, the iterative procedure—which is useless whe'g
signal-to-noise ratio (SNR) is defined from the mean variané@d Cy- are identity operators—has been replaced by the
of the data, when the cruciform structure is turned in tH&andard regularized solution described in [1].
ten directions. This ratio has been set to 20% for all the3) Comparison Between EEG, MEG, and CMMResults
experiments. are discussed according to three criteria.

As shown in [1], classical linear estimators fail to recover a) The dependence of the condition numbers of the three
sharp edges in the initial source configuration presented here, gain matrices (EEG, MEG, fusion) on the orienta-
whatever the source orientation may be. We then only discuss  tion angle. These numbers are presented as qualita-
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Fig. 3. Condition numbers of gain matrices plotted versus the sources
orientations. The condition number of a matrix, according to the two-norm
is the ratio of its largest singular value to its smallest: (a) with the spherical

0-90 head model and (b) with the realistic head model.

(b)

Fig. 2. Average reconstruction errors (in %) for the “raw” fusion modality
(i.e., with equilibration of the rows and the columns of the gain matrix) and

CMMI over 25 realizations of the pseudorandom noise. Error bars indicate
the standard fluctuation around the average error: (a) spherical model and (b)

realistic head model.

c)

tive indexes of the stability of the respective inverse
problems, though the CMMI solution is computed
iteratively with sequential introduction of the, and

¢, coefficients.

b) The evolution of the respective average of theand

cp weights with the orientation angle. These weights
are computed relatively in percent of the supn+cp,

100 x (HJtrue - Jestimated”/HJtrue||)y and the stan-
dard error of the fluctuations of the estimate will be
indicated with error bars. This error quantification is
severe, as small differences between sources will create
large error values. For instance, a 50% error indicates
that the estimated activity is spread over both the
original active zone and “phantom ones” which are
close in location and orientation; 100% error denotes
source estimates in which the active plane is not even
partly recovered. The regularization parameter is tuned
for every noise realization so as to get the smallest
error on the dipole sources.

for every angle. It will appear clearly that the respective 4) Results with the Spherical Head Model:

merit of EEG versus MEG determined by CMMI
slowly increases when the source pattern is rotated.

The average reconstruction error on dipoles over 25
realizations of the pseudorandom noise, defined as:

a) Gain matrix condition numbers are shown in Fig. 3(a).

For each source orientation, the condition humbers
of the EEG, MEG, and the combined gain matrices are
computed. Whereas EEG condition does not depend
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shows the relative faith accorded by the Ml criterion to one modality in regard

to the other. For each angle, the weights are averaged over those affectinggl‘ﬁe :
64 sources: (a) spherical model and (b) realistic model.

b)

on orientation, MEG'’s significantly increase fromi 0
to 9C° orientation as it was expected. MEG-EEG com-
bination with classical equilibration as proposed in [5]
and [18] produces gain matrices with better condition,
on the order of one size order relatively to MEG on
the average. Finally, fusion with CMMI brings addi-
tional improvement on gain matrix condition for every
orientation (up to five orders of magnitude toward
EEG).

The relative average weighting of MEG versus EEG
is plotted on Fig. 4(a). It is clear that whereas MEG
is still relatively favored in comparison to EEG for

Average reconstruction errors (in %) with the three modalities (MEG,

EG, and CMMI) over 25 realizations of the pseudorandom noise. Error bars
indicate the standard error: (a) spherical model and (b) realistic head model.

c) Fig. 5(a) shows the reconstruction performances of

the three modalities. This plot illustrates perfectly
MEG's failure when more sources are becoming ra-
dial in the spherical model (90of orientation). The
EEG curve indicates error values that reflect its poor
spatial resolution. More regularization would increase
the reconstruction error, whereas more confidence to
data leads to increased instability. Fusion succeeds
in locating faithfully the active area for every source
orientation, with less than 1.7% of error on the average
(see full scores in Table I).

most the most tangential source orientations, EEG is5) Results with the Realistic Head Model:

selected as “the best” modality for the last four angles.
For these latter, more and more sources tend to become
almost radial. This result show that preselection with
conditional entropy makes the correct choice of the
favorite modality.

a) Condition numbers of all the three modalities are

slightly improved in this source configuration when
using the realistic head model [Fig. 3(b)]. This may
be due to the breaking of symmetry in the conductor
geometry that tended to produce almost collinear lead
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Fig. 6. Source estimations using the realistic head and cortical geometry. (a) The original source configuration with 22 dipoles set to value one. The
black frame indicates the global source space of 242 sources; top: inner view of the right hemisphere, bottom, top view, (b) EEG source estimate, (c)
MEG source estimate, and (d) CMMI source estimate.

fields in some source configurations. MEG for instance c) Despite the increase in MEG performances, the error

has gain matrices with constant condition for every curves on Fig. 5(b) still clearly show the superiority

orientation. Nevertheless, the fusion modality is still of the fusion modality both in correct localization and

better conditioned, by up to two orders of magnitude robustness. Note that for 9rientation, MEG still

in comparison to MEG. fails because of the pseudoradial orientation of half of
b) The relative weights still depend on the orientation in the source pattern (Table ).

the same way as for the spherical head model [see

Fig. 4(b)]. This is explained by the fact that previou$. Simulations with a Realistic Cortical Geometry

radial sources are now sources normal to the headro|lowing these studies on small source configurations, we
surface, which is sufficient to be considered as quagiow discuss the ability of the CMMI method to discriminate
radial sources [28], [39]. This is especially the casgome source patterns distributed along a realistic cortical
for dipoles located at the back of the head whergeometry with a larger source space. In this purpose, 242
the spherical model is a good approximation of theources are distributed normally to a piece of cortical surface
actual head anatomy. Furthermore, the entropy analysis the right hemisphere [see Fig. 6(a)]. These source are
of EEG and MEG matrices reveals the weakness dfstributed among 11 families made of 22 dipoles each,
MEG for the three last angles, whereas the study @fhich will be considered as functionally independent from
the condition numbers is not sufficient to give thigach other (just as if they were some different planes from
conclusion. the previous cruciform model). The ST-MAP prior model
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explicitly takes this partition into account. It should be notedvaluate the limits of this approach (with a real skull phantom
that more sophisticated systems of anatomical and functiofiat instance [35]), before it could be used as genuine brain
neighborhood should be taken into account to process réahctional imaging in cognitive neuroscience experiments [47].
data sets.

The original active sources consist in 22 dipoles belonging
to the same family with their amplitude set to one. The other APPENDIX
dipole magnitudes are set to zero. Ten of these dipoles can $@NDITIONAL ENTROPY QUANTIFICATION OF GAIN VECTORS
considered as pseudoradial when considering their orientations ANP THE COMPUTATION OF MUTUAL INFORMATION
pointing toward a normal to the scalp surface. They are
located at various depths ranging from 3.6 to 6.6 cm from. Conditional Entropy Quantification of Gain Vectors

the scalp surface (4.7 cm on the average). The MEG datgzpiropy quantification of a continuous random variable (RV)

are simulated on the 143 MEG sensor array of the CTF In¢om a limited set of data (here the elements of B¢ and

whole head system (axial gradiometers). The 143 EEG sensQis yain vectors are considered as the realization of continuous
are simulated electrodes which locations correspond 10 s defined below) necessitates the definition of a discrete

projection of the MEG sensors on the scalp. The fusion sens@gyje [36]. Thus, each of the MEG and EEG lead fields are first
are made of 72 MEG and 71 EEG from the original Iocatlonﬁneany scaled on the set of discrete values [1,-2, 7], with

covering the whole head. The simulated data are corrupted
with white and Gaussian noise, with 20% standard deviation.
The original source pattern is represented in Fig. 6(a).

. Results of EEG and MEG. source estimation are dlsplayg_g. (respectively, o5 ) is the standard deviation of the

in Fig. 6(b) and (c), respectively. It appears very clearly tha; * Vs .

) . - ._normalized lead fieldB; (respectively, V;), and M =

the EEG solution contains the original sources but combmclemx{N Nyt
k B, Vy .

W|th.spur|ous activity gll along a large ex.tensmn of thé E(Bj|V;j) [respectively, E(Vj|Bj)] is the conditional
hemisphere. The extension of the MEG solution on the cortex T . ' . .
. . entropy of RV'sBj versusVj (respectively,Vj versusBj)
is smaller than in EEG, but the deepest sources and those o ) .

. . : . : which realizations are the elements of the respective gain
with pseudoradial orientation are not properly estimated. These

. . _vectors

complementary behaviors cooperate extremely well in the

n=2 M- round(og , o5,) (A1)

CMMI estimation with ST-MAP [Fig. 6(d)] that recovers o o pB;v; (bj, vj)
successfully the original source pattern with few scatteringEZ(Bi[Vi) = = > ppjv; (bj; vj) log W
on the cortical surface. bi, vj I
(A2)
p— o peivi(bl, vg)
V. CONCLUSIONS AND PERSPECTIVES E(VjBj) = - bz' pi;v; (bj, vj) log )
j, i
A method for a joint EEG and MEG brain imaging modality (A3)

has been described in this paper. This routine is based on a

preprocessing of the EEG and MEG gain matrices. In a given 7 -y andp (w4 are the mardinal. ang. . (bi. v1) the
distributed source model, a linear system of equation reIaEB’( 7) andpy;(vJ) ginal, andks;. v, (bj. vj)

_ Biht probability distributions of, respectivelyz; and V';.
the source amplitudes to the sensor array. Due to @) EEGo|aase note that whetVy # Ny (like in the second

sensitivity to h(_ead tissue geometry and conductivity_ Propertiess of simulations presented here), this computation is done
and b) MEG blindness toward deeply located or radial sourceg;ng jinearly interpolated lead-fields in order that they finally

solving this linear system is an ill-posed problem. From the, e the same number of elements. Hence, quantities such as

algebraic point of view, it means that the gain matrices aﬁ%»v»(bj vj) can be estimated
ivi(bj, )

numerically rank deficient, as some sources possess almMoStyaqe probability distributions can be estimated by normal-
the same lead-fields. ization of the joint histogramh(bj, vj), of the leadBj and

A p.arallel. bet\./veen. algebraic consideratipns and mul j fields. This histogram is computed by binning the pairs of
modality registration with Ml led us to the design of a memogalues(bj vj) along the two gain vectors. Then

that operates selective weighting of the MEG and EEG lead-

fields so that each of these modified gain vectors contributes o h(bj, vj)

to the minimization of Ml between the gain matrices. This pBjv;(bj, vj) = ~ .. . (A4)
preprocessing of the fusion global gain matrix produces a Z'h(bj’ vj)

better conditioned inverse problem, which is solved owing to b, v

a regularized iterative procedure that can take various type&d
of priors into account. It results in stability improvemen
and smaller reconstruction errors in the dipole amplitude
estimation. Most important is the immunity of the fusion
modality in regard to source orientation.

This first exploration step is promising and further exper- pe;(bj) = Z pB; v;i(bj, vj). (A6)
iments with increasing realism will be carried out to better vJ

pvi(vi) = pBjvi(bj, vh) (A5)
b
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B. Computation of Mutual Information [5]

In a very similar way, Ml between the two RV’s GB and GV
associated with the gain matric€g; andG+ also necessitates [6]
a preliminary scaling of the matrices to the range [1,-2, n],
with 7]

n=2-M- round<max(0§j, ij)> (A7)

J

where og, (respectively, ov, ) is the standard deviation of (8]
the normalized lead field; (respectively,V;), and M =
max{Np, Ny }. El

As for the B; and'Vj gain vectors above, both of tHap
andGy matrices are seen as an ensemble of realizations of (Eﬂl
and GV, respectively, with margingbgs(gb) andpgyv (gv),
and joint,pc s av (gb, gv), probability distributions. The mu- [11]
tual information between these two RV’s is:

I(GB, GV) Z pa,av(gh, gv) 12
gb, gv
log pcB,cv(gh, gv) (Ag) [13]

pas(gb) - pav(gv)

An estimation of MI can be computed when the two matrit4]

ces are considered as two intensity images to be superimposed.

From these pseudoimages, it is possible to compute a jojrd)
histogramh(gb, gv) where gb (respectively,gv) can take all
the values of the rescaldég (respectively G+) matrix [37].
The joint histogramh(gb, gv) is calculated by binning the
intensity pairs(gb, gv) along the different element positions
of the gain matrices. (7]

Then, in a similar manner as for conditional entropy quan-
tification

[16]

h(gb, (18]
paB,av(gh, gv) = M (A9)
>~ higb, gv) (19]
gb, gu
and
[20]
pavigv) = paB,av(gh, gv) (A10)
gv
pea(gb) = > pos,avigh, gv). (A1) [21]
gu

Once again, whemlVz # Ny (like in the second set of [22]
simulations presented here), this computation is done using
linearly interpolated lead-fields in order that both matricegs)
finally have the same number of rows.
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