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Eigenvector Algorithm for Blind MA System Identi�cation�Dieter Boss, Bj�orn Jelonnek, Karl-Dirk KammeyerUniversity of Bremen, FB-1, Dept of Telecommunications, P.O. Box 330440, D-28334 Bremen, Germany,Tel.: +(49)-421/218-3356, Fax: -3341, E-mail: boss@comm.uni-bremen.de, http://www.comm.uni-bremen.deAbstractWe present a novel approach to the blind estimation of a linear time-invariant possibly mixed-phase movingaverage (MA) system (channel) based on second and fourth order statistics of the stationary received signal. Asthe algorithm incorporates the solution of an eigenvector problem, it is termed EVI standing for EigenVectorapproach to blind Identification. One of EVI's main features is its ability to obtain reliable estimatesof the channel's MA parameters on the basis of very short records of received data samples. It is also robustwith respect to an overestimation of the channel order. Furthermore, we demonstrate that, if independentadditive white Gaussian noise is present, the degradation of the MA parameter estimates is minor even at lowsignal-to-noise ratios. By simulation results, we �nally show the potential applicability of EVI to mobile radiocommunication channels under time-invariance conditions typically assumed in GSM receivers.ZusammenfassungIn diesem Artikel wird ein neuartiger Ansatz zur blinden Identi�kation eines linearen, zeitinvarianten, evtl.gemischtphasigen \Moving Average"-(MA)-Modelles (�Ubertragungskanals) vorgestellt, der auf den Statistikenzweiter und vierter Ordnung des station�aren Empfangssignals basiert. Da hierzu die L�osung eines Eigenvek-torproblems erforderlich ist, wird dieser Ansatz EigenVektor-Algorithmus zur blinden Identifikation(EVI) genannt. Eines der Hauptmerkmale von EVI ist seine F�ahigkeit, die MA-Parameter des Kanals aufder Basis von sehr wenigen Abtastwerten des Empfangssignals zuverl�assig zu sch�atzen. EVI ist auch gegen�Ubersch�atzungen des Kanalgrades robust. Au�erdem wird gezeigt, da� sich das Sch�atzergebnis selbst bei niedri-gen Signal-Rausch-Verh�altnissen nur unwesentlich unter dem Einu� von unabh�angigem, additivem, wei�emgau�verteiltem Rauschen verschlechtert. Durch Simulationsergebnisse wird schlie�lich dargelegt, da� EVI unterGSM-Zeitinvarianzannahmen auch auf Mobilfunkkan�ale angewendet werden kann.R�esum�eDans cette communication nous proposons une nouvelle approche d'identi�cation aveugle de mod�eles MA(canaux) �a phase mixte, bas�ee sur l'utilisation conjointe des statistiques d'ordre deux et quatre du signalr�e�cu stationnaire. Comme cette approche incorpore la solution d'un probl�eme de vecteurs propres, elle estappel�ee EigenVector approach to blind Identification (EVI). Un des int�erêts principaux de EVI est sacapacit�e d'estimer de mani�ere �able les coe�cients MA du canal �a partir d'un tr�es faible nombre d'�echantillons.La m�ethode propos�ee est aussi robuste vis-�a-vis de la surestimation de l'ordre du mod�ele. Par ailleurs, nousd�emontrons que si un bruit ind�ependant, additif, blanc Gaussien est pr�esent, la d�egradation des estim�ees dumod�ele est n�egligeable même pour un faible rapport signal �a bruit. Grâce �a des simulations, nous montrons �nale-ment que EVI peut tout �a fait s'appliquer aux canaux de communications mobiles sous l'hypoth�ese d'invariancetemporelle habituellement faite dans les r�ecepteurs GSM.�This work is supported by the German National Science Foundation (DFG-contracts Ka 841/1 and /2).



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 21 IntroductionOptimum receivers in digital communicationsystems require the knowledge of the trans-mission channel's impulse response. Since thisknowledge usually is not available, the problemof channel estimation arises. From the point ofview of systems theory, channel estimation is aparticular form of (linear) system identi�cationwhich, in our case, is complicated by three mainproperties of the radio channel: (i) it consistsof multiple propagation paths and is thereforefrequency-selective, (ii) its discrete-time equiva-lent baseband impulse response may be mixed-phase and (iii) in a mobile environment, it istime-variant . As for the latter property, time-variance is relatively slow in many applicationswhen compared with the symbol period so thatthe channel can be estimated repeatedly in pe-riods of time where it can be assumed time-invariant (piecewise or quasi time-invariant).Within such a period of time-invariance, state-of-the-art mobile communication systems trans-mit training sequences to assist the receiverin estimating the channel impulse response.For this purpose, the cross-correlation betweenthe received (corrupted) and the stored (ideal)training sequences is calculated. However, de-pending on the degree of time-variance, the re-peated transmission of training sequences leavesthe communication system with an overhead,which, in the case of the Global System for Mo-bile communications (GSM), amounts to 22:4%[28]. This overhead capacity could be used forother purposes such as channel coding (thusenhancing overall system performance), if thechannel estimation problem was solved blindly .Blind system identi�cationThe fundamental idea of blind channel estima-tion is to derive the channel characteristics fromthe received signal only, i.e. without access tothe channel input signal by means of training se-quences. Depending on the di�erent ways to ex-

tract information from the received signal, twoclasses of algorithms can be distinguished1:� Class HOS: When the received signalis sampled at symbol-rate, the resultingsequence is (quasi) stationary. Since sec-ond order statistics of a stationary sig-nal are inadequate for the identi�cation ofthe complete channel characteristics (in-cluding phase information), class HOS ap-proaches are based either explicitly or im-plicitly on Higher Order Statistics. Higherorder cumulants contain the complete in-formation on the channel's magnitude andphase provided that the distribution ofthe channel input signal is non-Gaussian(which is true for applications in digitalcommunications). Excellent overviews onHOS and their applications can be foundin [30, 27, 29, 2].� Class SOCS: When the sampling periodis a fraction of the symbol period (time di-versity), or alternatively, the symbol-ratesampled signals received by several sen-sors are interleaved (antenna diversity),the resulting received sequence is (quasi)cyclostationary provided that some ex-cess bandwidth is available. Generally,Second Order Cyclostationary Statistics(SOCS) are su�cient to retrieve the com-plete channel characteristics, but thereare \singular" channel classes which cannot be identi�ed this way. They includechannels with common subsystems in allpolyphase subchannels (refer to [36, 42, 11]for details).Implications of the mobile channelIn a mobile propagation environment, the chan-nel assumes an arbitrary impulse response in anyinstant of time. Particularly, \singular", \criti-1For the following statements, a stationary channel inputsequence is assumed.



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 3cal"2, and mixed-phase channels can not be pre-vented from occurring. Furthermore, from theabove quasi time-invariance assumption, it fol-lows that the received signal can only be ob-served in a (short) period of time. In summary,a blind channel estimation algorithm for an ap-plication in mobile communications should sat-isfy the following requirements:R1: Reliable estimates of the complex channelimpulse response must be obtained fromfew samples of the received signal (hun-dreds rather than thousands of symbol pe-riods).R2: This should apply to arbitrary channels(whether or not they are \singular", \crit-ical", mixed-phase etc.).R3: As the e�ective channel order usually isunknown (and just quasi time-invariant),an overestimation must not represent aproblem.R4: The estimates should be as robust as pos-sible with respect to stationary additivewhite Gaussian noise at low signal-to-noiseratios.The algorithm we present in this paper meetsthe above requirements. It is a class HOS ap-proach based on fourth (and second) order sta-tionary statistics. SOCS-based methods are notconsidered because they violate requirement R2:For two algorithms proposed by Tong et al. [37]and Schell et al. [32], we have demonstrated in[7] and [3], respectively, that \singular" chan-nels represent a severe limitation because theirchannel estimation performance from few sam-ples is heavily a�ected even if subchannel zerosare just \close" to each other (rather than beingidentical).Although our algorithm is devoted to the blindidenti�cation of �nite impulse response (FIR)systems, it can also be applied to estimate the2Channels with zeros `on' or `close to' the unit circle ofthe complex z-plane are called \critical".

moving average (MA) parameters of an autore-gressive moving average (ARMA) model usingthe residual time series, i.e. the AR compen-sated received signal [14, 4]. Together with Men-del's Double MA algorithm [27], it can alsobe utilized to determine both the autoregres-sive (AR) and MA parameters of a non-causalARMA model.Drawbacks of existing approachesOn the particular problem of blind MA systemidenti�cation, a large number of HOS-based al-gorithms has been proposed, e.g. [14, 35, 13, 38,24, 39, 21, 1, 12, 40, 43, 41]. The deriva-tion of many approaches is based on third orderstatistics and/or real-valued signals and systems[14, 35, 38, 39, 1, 12]. Alas, both assumptionsdo not apply to applications in digital commu-nications. Extending the existing algorithms tofourth order statistics and complex signals andsystems quite frequently results in a poor per-formance: For a given number of received datasamples, they yield high values of estimationvariance and/or bias, or equivalently, they re-quire a very large block of received data sam-ples for a satisfactory estimation of the channel'simpulse response (thus violating R1). Besides,knowledge of the system order, which is not usu-ally available, is of utmost importance [38, 1, 12],because many algorithms (e.g. [14, 35, 38, 39, 1])are extremely sensitive to a mis-assumption ofthe channel order (cf. R3). However, the robustorder estimation remains a di�cult task, espe-cially in noisy and/or time-variant environments(refer to [15, 44, 26], e.g.).Purpose and organization of paperThe purpose of this paper is to derive a fast3 al-gorithm for blind MA system identi�cation froman approach to blind linear equalization. Note,however, the two principal di�erences betweenchannel equalization and identi�cation:3where \fast" is meant in the sense \requiring small datablocks for a satisfactory channel estimation".



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 4� To equalize a �rst order \critical" MAchannel, we would require a high order(symbol-rate) FIR equalizer, e.g., whereasfor system identi�cation, a single param-eter needs to be estimated. This is whymany identi�cation approaches ([10], e.g.)using a linear equalization result deliverunsatisfactory estimates of critical chan-nels.� Noisy case: In contrast to the channel es-timate, which is supposed to be insensitiveto noise, the equalizer coe�cients must beadjusted di�erently if noise is present inorder to ensure optimum equalization tak-ing into account both intersymbol interfer-ence and noise.These di�erences represent the principal ob-stacles when deriving an identi�cation algo-rithm from an existing approach to equaliza-tion. While avoiding these obstacles, we showin this paper how to derive a sophisticated blindidenti�cation algorithm from the EigenVec-tor Algorithm for blind equalization(EVA) published recently [20].In the following section, we state the assump-tions we make in this paper. For convenience,a brief review of EVA is given, while detailscan be found in [22, 23, 20]. The novel algo-rithm is derived in section 3 from the EVA solu-tion. It is termed EigenVector approachto blind Identification (EVI) and repre-sents a genuine identi�cation approach (deliver-ing low error channel estimates) while retainingthe bene�ts of an equalizer algorithm (insensi-tivity to order overestimation). In section 4, theperformance of EVI is illustrated by simulationresults. We demonstrate the excellent qualityof EVI's estimates (i) in terms of the numberof received data samples (cf. requirement R1),(ii) with mis-assumptions for the channel order(R3), and (iii) in presence of additive noise (R4).With the help of a realistic mobile radio channelexample, we investigate whether or not the fourrequirements R1 to R4 can be satis�ed at thesame time.

2 Assumptions and review ofthe EigenVector Algorithmfor blind equalization (EVA)2.1 AssumptionsFig. 1 shows an equivalent discrete-time base-band model of a digital communication sys-tem. The transmitted data d(k) are an inde-pendent, identically distributed (i.i.d.) sequenceof random variables with zero mean, variance�2d, skewness4 d3 and kurtosis4 d4 . Each sym-bol period T , d(k) takes a (possibly complex)value from a �nite set. For this reason, thechannel input random process clearly is non-Gaussian with a non-zero kurtosis (d4 6= 0),while its skewness vanishes (d3 = 0) due tothe even probability density function of typicaldigital modulation signals such as Phase ShiftKeying (PSK), Quadrature Amplitude Modula-tion (QAM) or Amplitude Shift Keying (ASK).
⊕
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FIR-( )Fig. 1: Equivalent symbol-rate baseband modelof a digital communication system (including alinear equalizer and a \reference system")For the unknown composite channel, we assumethe Equivalent Discrete-Time White-Noise Fil-ter model [31] comprising the physical transmis-sion channel, the transmit and receive �lters,the symbol-rate sampler and the noise whiten-ing �lter. We suppose the composite channel tobe (at least short time) time-invariant. It is de-scribed by the causal possibly mixed-phase �nite4de�ned as d3 �= Ef(d(k))3g and d4 �= Efjd(k)j4g �2�4d � jEfd2(k)gj2, where Ef�g denotes statistical ex-pectation.



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 5impulse response h(k) = h(0); � � � ; h(q), whereq denotes the (e�ective) order, and will simplybe termed \channel". Apart from linear distor-tions, the (quasi) stationary received sequencev(k) is corrupted by independent stationary zeromean additive white Gaussian noise n(k).In the receiver, an FIR-(`) equalizer with im-pulse response e(k) = e(0); � � � ; e(`) and an FIR�lter f(k) of the same order are introduced.As f(k) will be used to generate an implicitsequence of training (reference) data for thesubsequent iteration of the iterative approachto be explained, it is termed \reference sys-tem". For now, however, assume its coe�cientsf(0); � � � ; f(`) to be �xed (arbitrarily). The out-put sequences of the equalizer and the referencesystem shall be termed x(k) and y(k), respec-tively.All signals and systems are assumed to be com-plex-valued due to the equivalent baseband rep-resentation of the corresponding bandpass com-munication system. Notice that the assump-tions mentioned so far are valid throughout thepaper while the scope of the following equaliza-tion objective is limited to section 2.2.2 Linear equalization objectiveAdjust the ` + 1 coe�cients e(k) so that theequalized sequence x(k) is as close as possibleto the delayed transmitted data d(k�k0) in theMSE (mean square error) senseMSE(e; k0) �= Efjx(k) � d(k � k0)j2g!= min ; (1)where the vector e = [e(0); � � � ; e(`)]T is used tosimplify notation. For each order ` and delayk0, the equalizer minimising (1) is called Mini-mum Mean Square Error equalizer. In brief, itis referred to as MMSE-(`; k0) equalizer.2.3 Non-blind solutionIf both the received sequence v(k) and sometransmitted data d(k) (training sequence) are

given, the MMSE-(`; k0) equalizer coe�cientscan be calculated using the well-known normalequation [17] eMMSE(k0) = R�1vv rvd (2)with rvd �= Efvk �d(k � k0)gRvv �= Efvkv�kg ; (3)where rvd and Rvv denote the cross-correlationvector and the non-singular (`+1)�(`+1) Her-mitian Toeplitz autocorrelation matrix, respec-tively, and the vectors vk and v�k are de�ned asvk �= [v�(k); v�(k � 1); � � � ; v�(k � `)]Tv�k �= [v(k); v(k � 1); � � � ; v(k � `)] (4)(conjugate transpose form). The MMSE-(`; k0)equalizereMMSE(k0) �= [eMMSE(0); � � � ; eMMSE(`)]T (5)according to (2) is used as a reference in this pa-per. In the noiseless case, it approximates thechannel's inverse system (deconvolution, zeroforcing) in order to minimize intersymbol inter-ference (ISI). If additive noise is present, how-ever, its coe�cients are adjusted di�erently soas to minimize the total MSE in the equalizedsequence x(k) due to ISI and noise.2.4 Blind \EVA solution"With blind equalization, the objective is to de-termine the MMSE-(`; k0) equalizer coe�cientswithout access to the transmitted data, i.e. fromthe received sequence v(k) only. Similar toShalvi and Weinstein's maximum kurtosis cri-terion [33, 34], the EVA solution to blind equal-ization is based on a maximum \cross-kurtosis"quality function. We have demonstrated in [23]that5cxy4 (0; 0; 0) =Efjx(k)j2 jy(k)j2g �Efjx(k)j2gEfjy(k)j2g�jEfx�(k) y(k)gj2 � jEfx(k) y(k)gj2 ; (6)5For notational simplicity, just two superscript indicesare used in cxy4 (�). They represent two occurrences ofboth x(k) and y(k).



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 6i.e. the cross-kurtosis between x(k) and y(k),can be used as a measure for equalization qual-ity:maximize jcxy4 (0; 0; 0)j � subject torxx(0) = �2d : (7)Rather than referring to the equalizer outputx(k), this scalar quality function can easily beexpressed in terms of the equalizer input v(k)by replacing x(k) in equation (6) withx(k) = v(k) � e(k) = v�ke ; (8)where \�" denotes the convolution operator. Inthis way, we obtain from (7)maximize je�Cyv4 ej � subject toe�Rvve = �2d ; (9)where the Hermitian (` + 1) � (` + 1) cross-cumulant matrixCyv4 �= Efjy(k)j2vkv�kg�Efjy(k)j2gEfvkv�kg�Efy(k)vkgEfy�(k)v�kg�Efy�(k)vkgEfy(k)v�kg (10)contains the fourth order cross-cumulant[Cyv4 ]i1;i2 = cyv4 (�i1; 0;�i2) (11)in row i1 and column i2 withi1; i2 2f0; 1; � � � ; `g.The quality function (9) is quadratic in theequalizer coe�cients. Its optimization leads toa closed-form expression in guise of the general-ized eigenvector problem [23]Cyv4 eEVA = �RvveEVA \EVA equation"(12)which we term \EVA equation". The coe�cientvectoreEVA �= [eEVA(0); � � � ; eEVA(`)]T (13)obtained by choosing the eigenvector of R�1vv Cyv4associated with the maximum magnitude eigen-value � is called the \EVA-(`) solution" to

the problem of blind equalization. Apart fromthe obvious ambiguity by a complex factor, thissolution is unique if the quality function (7) hasa single global maximum. In [22, 23], we haveproven that this is the case if and only if themagnitude of the combined impulse responsew(k) �= h(k) � f(k) (14)adopts its maximum value wm �= maxfjw(k)jgonly once, i.e.jw(k)j = wm if k = kmjw(k)j < wm otherwise : (15)2.5 EigenVector Algorithmfor blind equalization (EVA)Of course, condition (15) can not be guaran-teed since the channel impulse response h(k) andthus w(k) are unknown. However, the e�ects ofan \unlucky guess" of f(k) resulting in a vio-lation of (15) can be overcome by an iterativeadjustment of the reference system's coe�cients[22, 20]. This iterative approach makes use ofthe following relation between the EVA-(`) so-lution and the desired MMSE-(`; km) equalizer(see [20] for details and [23] for a proof):� The EVA-(`) solution eEVA can be de-composed into a weighted sum of MMSE-(`; k) equalizers eMMSE(k) according to (2)with di�erent delay times k around thevalue km. Each MMSE-(`; k) equalizer isweighted mainly by jw(k)j2. Thus, thequicker jw(k)j2 decays as its index k de-parts from lag km, the closer eEVA will beto the MMSE-(`; km) equalizer eMMSE(km){ provided that uniqueness is ensured. Forthis reason, if jw(k)j had a distinct peakvaluejw(km)j � jw(k)j for k 6= km ; (16)eEVA would closely approach eMMSE(km).



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 7� It also follows from the above that if thereference system f(k) was set such that6w(k) = w(km) � �(k � km) (17)with jw(km)j 6= 0, eEVA would even beidentical to eMMSE(km). Note that bothequation (17) and (16) would obviously en-sure the uniqueness condition (15).In other words: The better the reference sys-tem deconvolves the channel (see eq. (17) and(16)), the better the resulting EVA solution willbe (in the MMSE sense). For this reason, aniterative procedure to adjust the reference sys-tem's coe�cients was suggested where f(k) isloaded with the equalizer impulse response cal-culated in the previous iteration [22, 20]. Af-ter some iterations (based on the same block ofreceived data samples), both the reference sys-tem and the equalizer will have the same im-pulse response being very close to the MMSE-(`; km) equalizer. An improved convergence ratecan be obtained by a stepwise increase of theequalizer order ` during the iteration procedure.The resulting overall algorithm was termed EVAstanding for EigenVector Algorithm forblind equalization [20].

6Remark: If (17) holds, y(k) is proportional to d(k�km),i.e. the matrix Cyv4 in (12) refers to a training se-quence and EVA becomes a non-blind approach usingcxd4 (0; 0; 0) as a quality criterion. In this case, f(k) gen-erates a sequence of reference data within the receiver.Hence its designation as \reference system".

3 Eigenvector algorithm forblind system identi�cation(EVI)Objective: As opposed to the previous section,the objective now is to estimate the channel im-pulse response h(k) from the received data v(k),only. Obviously, this system identi�cation prob-lem is closely related to equalization. A simpleapproach would be to take the coe�cients of theinverse equalizer as an estimate for the channelimpulse response. However, this method has twomain problems:P1: The required equalizer order can be veryhigh in case of critical channels: In orderto allow the FIR equalizer to perfectly ap-proximate the inverse channel (i.e. an au-toregressive model), its order would haveto be in�nite. In other words, even inthe noiseless case, the resulting channelestimates would be biased for any �niteequalizer order, especially if the e�ectiveorder of the channel's inverse system washigh (i.e. for critical channels). Thus, theidenti�cation of a channel as simple asH(z) = 1 + z�1 would be quite expensive(and biased even in the noiseless case).P2: The second disadvantage results from theinuence of additive noise. As explainedin section 2, EVA closely approximatesthe MMSE equalizer solution, which is theoptimum solution for (linear symbol-rate)equalization. However, the inverse EVAsolution does not correspond to the chan-nel transfer function, if noise is present.Again, we would end up with biased chan-nel estimates.In this section, we present a novel method forblind MA system identi�cation which does notreveal P1 and is quite robust with respect toP2. In section 3.1, we derive a novel equa-tion for blind identi�cation from the EVA equa-tion (12). It also requires the solution of an



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 8eigenvector problem. The dimensions of the in-volved matrices depend on the equalizer order` rather than the channel order q. Therefore,the solution reveals problem P1. In section 3.2,we demonstrate how unbiased channel estimatescan be obtained in the noiseless case by alteringthe eigenvector problem. Thus, problem P1 isevaded. In order to guarantee the uniqueness ofthe eigenvector equation's solution and to im-prove estimation variance, we present in sec-tion 3.3 a two step approach called EVI standingfor EigenVector approach to blind Iden-tification. For an appropriate adjustment ofthe reference system's coe�cients, EVI uses inits �rst step the EVA method as described insection 2. Then, the eigenvector problem men-tioned above is solved in the �nal identi�cationstep. Notice, however, that we do not requireperfect equalization to obtain good channel esti-mates! Finally, we show in section 4 that EVIhas favorable properties regarding problem P2.3.1 The fundamental EVI solutionAccording to section 2, the solution of the EVAequation (12) is close to the MMSE-(`; km) so-lution (2) eEVA = R�1vv Cyv4 eEVA=�� eMMSE(km) = R�1vv rvd : (18)From this approximation we realize that the ex-pressionCyv4 eEVA=� plays the same role in blindequalization as does the cross-correlation vectorrvd in non-blind equalization:1� Cyv4 eEVA � rvd : (19)For zero-mean i.i.d. channel input data d(k) withvariance �2d, the vector rvd is linked to the chan-nel impulse response h(k) byrvd = �2d � h ; (20)whereh = [h�(km); h�(km � 1); � � � ; h�(0); 0; � � � ; 0]T :(21)

Choosing a su�ciently long delay value km, thelength `+1 vector h contains the complete (com-plex conjugate) channel impulse response in re-verse order. Upon insertion of equation (20) into(19), we obtain a formula to estimate the chan-nel impulse response from the estimated equal-izer coe�cients�2d hEVI �= 1� Cyv4 eEVA : (22)Multiplying the upper equation of (18) withCyv4 =� and inserting equation (22) on both sides,we obtain a direct expression for the blind iden-ti�cation of an MA system [25].�hEVI = Cyv4 R�1vv hEVI \EVI equation"(23)Eq. (23) is termed \EVI equation". Again, aneigenvector problem has to be solved. Note thatit still involves the reference system (by its out-put y(k)) and the equalizer order ` (by the di-mensions (` + 1) � (` + 1) of the matrices Cyv4and Rvv). The complex conjugate reverse ordereigenvector associated with the maximum mag-nitude eigenvalue is called \EVI solution". Forthe uniqueness of the EVI solution, the state-ments made in section 2 for the EVA solutionremain valid: Condition (15) must hold for aunique channel estimate. We will deal with thisrequirement in the end of section 3.2.The following remarks are in order, now, toclarify the properties of the channel estimationapproach according to eq. (23) in the noiselesscase: (i) To obtain unbiased channel estimates7,the dimensions of the (` + 1) � (` + 1) matri-ces Cyv4 and Rvv must approach in�nity. Thisevokes problem P1, which will be solved in sec-tion 3.2 by some modi�cations to the EVI equa-tion. (ii) As for the variance, a deconvolvingimpulse response f(k) leading to an approxima-tion of (17) will result in low variance channelestimates. We will show in section 3.3 how toselect f(k) appropriately.7Throughout the paper, we assume that the requiredcumulant and correlation coe�cients are estimated byunbiased sample averaging.



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 93.2 Eigenvector problem for unbiasedchannel estimates (noiseless case)Since the EVI equation (23) was derived fromthe EVA solution, the equalization problem isinvolved in so far as the dimensions of the ma-trix Cyv4 R�1vv depend on the equalizer order `:they are (` + 1) � (` + 1). As explained in thesecond paragraph of section 3, this leads to bi-ased channel estimates for any given �nite order`. To alleviate this, ` must be very high for crit-ical channels resulting in a high computationalcomplexity. This is due to the fact that we im-plicitly use the inverse system for MA systemidenti�cation. Consequently, the long resultingvector hEVI (length: ` + 1) contains just fewsigni�cant elements (depending on the channelorder q) whereas all the others should be zero.In the sequel, it is examined whether the ma-trix dimensions in the EVI equation (23) can bereduced. It is also demonstrated how unbiasedchannel estimates can be obtained (thus avoid-ing problem P1) by replacing a section of theinverse autocorrelation matrix with a modi�edmatrix. With these modi�cations, the computa-tional complexity of our approach is also reduceddrastically.3.2.1 Reducing matrix dimensions ...As the transmitted data d(k) are regarded as ani.i.d. sequence of random variables, the range oflags of non-zero cross-cumulants is restricted tothe channel order q. Thus, the (` + 1) � (` +1) Hermitian cumulant matrix Cyv4 is bandedwith bandwidth 2q + 1. The area of support ofmatrix Cyv4 can be illustrated by the followingrepresentation of the EVI equation (23).
� � hEVI =26666664 . . . 0@@@@Cyv40 @@@@ . . .

37777775R�1vv hEVI (24)

Furthermore, the reference system used withEVA determines the delay km caused by thecombined channel/equalizer impulse response.Thus, depending on the number of minimumand maximum-phase channel zeros, the positionof the channel impulse response calculated fromequation (23) within the vector hEVI is �xed,too. The signi�cant estimated channel coe�-cients are always located within 2q+1 adjacentelements of hEVI. Together, they form the sub-vector ehEVI. The other elements of hEVI con-verge to zero. Therefore, just a (2q+1)� (`+1)submatrix of Cyv4 and a (` + 1) � (2q + 1) sub-matrix of R�1vv are relevant for identi�cation. Inequation (25), an illustration of the EVI equa-tion (23) is given, where the non-zero parts arelocated within the horizontal and vertical stripesmarked by the lines. The eigenvectors can thusbe calculated from a matrix with reduced dimen-sions (2q+1)� (2q+1). Without loss of gener-ality we obtain from equations (24) and (25) theregions of support shown in equation (26), wherethe relevant range Rinv of the inverted autocor-relation matrix R�1vv follows from the region ofsupport of Cyv4 . Just the indicated areas of sup-port are relevant for a proper solution of the EVIequation (23). For this reason, the complexityof the eigenvector problem can be reduced bysolving �ehEVI = eCyv4 Rinv ehEVI ; (27)where the dimensions of eCyv4 are (2q+1)�(4q+1)and Rinv represents the signi�cant (4q + 1) �(2q+1) submatrix of R�1vv . Here, the dimensionsof both matrices involved in this equation aredetermined by the channel order q rather thanthe order ` of the equalizer.However, the equalizer order ` is still involved inequation (27), because we are required to invertthe (`+1)� (`+1) autocorrelation matrix Rvvin order to select the submatrix Rinv from theinversion result R�1vv . Even worse, the dimen-sions of Rvv need to approach in�nity to deliverthe optimum submatrix Rinv leading to unbi-ased channel estimates.
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�266666666664

...0ehEVI0...
377777777775 = 26666664 . . . 6= 0 . . .

37777775| {z }Cyv4 �26666664 . . . 6= 0 . . .
37777775| {z }R�1vv
266666666664

...0ehEVI � 2q + 10...
377777777775 (25)

�266666666664
...0ehEVI0...

377777777775 = 26666664 . . . @@@@@@@@| {z }2q+1eCyv4 . . .
3777777526666664 . . . Rinv . . .

37777775
266666666664

...0ehEVI 9>>>=>>>; 4q + 10...
377777777775 (26)

3.2.2 Avoiding problem P1 ...Further considerations detailed in Appendices Ato D show that unbiased channel estimates canbe obtained without the inversion of an in�nitedimensions matrix. Replace Rinv in equation(27) with the (4q+1)� (2q+1) Toeplitz matrix
eRinv �= 266666666666664

rinv(�q) � � � rinv(�2q) 0... . . . . . .rinv(q) . . . rinv(�2q)... . . . . . . ...rinv(2q) . . . rinv(�q). . . . . . ...0 rinv(2q) � � � rinv(q)
377777777777775(28)and determine its 4q + 1 di�erent elements ac-cording to264 rinv(�2q)...rinv(2q) 375 = eR�1vv � [0; � � � ; 0| {z }2q ; 1; 0; � � � ; 0| {z }2q ]T :(29)Rather than inverting an in�nite dimensions au-tocorrelation matrix, we just need to invert themodi�ed (4q + 1) � (4q + 1)(!) autocorrelation

matrix eRvv . Note that this matrix is alwaysnon-singular, even if there exist channel zeroson the unit circle.Finally, the eigenvector problem (27) can be re-written as�ehEVI = eCyv4 eRinv ehEVI \Modi�ed EVIequation" (30)where ehEVI is a length 2q + 1 column vector,eCyv4 represents a (2q + 1) � (4q + 1) submatrixof Cyv4 as indicated in eq. (26) and the (4q +1) � (2q + 1) matrix eRinv is de�ned accordingto equations (28) and (29). Note that it is dueto the substitution of eRinv for Rinv that the\modi�ed EVI equation" (30) yields unbiasedestimates (in the noiseless case) and thus avoidsproblem P1.3.2.3 Properties of themodi�ed EVI solutionNow, remember that for unique channel esti-mates, condition (15) must hold. We show witha simple example that it is su�cient for unbi-ased estimates that the two largest coe�cients



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 11of the combined channel/reference system im-pulse response w(k) = h(k) � f(k) have slightlydi�erent magnitudes. Consider the fourth or-der MA channel C1 which will be used for thesimulation results given in section 4. Fig. 3a dis-plays the zeros of H(z) = Z fh(k)g in the com-plex plane. The small top right subplot showsthe magnitude impulse response. From theseplots, we realize that C1 has two zeros relativelyclose to the unit circle and two identical maxi-mum magnitude coe�cients: jh(2)j = jh(4)j =maxkfjh(k)jg. Setting the reference system tof(k) = �(k � 4), the impulse response w(k) hastwo identical maximum magnitude coe�cients,too. As we investigate the asymptotic case inthis example, we use true values for the matri-ces eCyv4 and eRinv in the modi�ed EVI equation(30). The magnitude of the resulting impulse re-sponse \estimate" ĥ(k) is indicated by \�" sym-bols (and dashed vertical lines) in Fig. 2. Forcomparison, the magnitude of the shifted truechannel impulse response is depicted by circles.From Fig. 2a, we can see that the \estimate"does not correspond to the true channel impulseresponse. This is due to the violation of con-dition (15). If however, we slightly modify thechannel impulse response so that there is a dif-ference of, say, � 10�5 between the magnitudesof the two largest channel coe�cients, we realizefrom Fig. 2b that eq. (30) delivers the true chan-nel impulse response. This demonstrates that,in practice, we will almost always obtain unbi-ased channel estimates.From this example, we also realize that equa-tion (30) is robust with respect to an overestima-tion of the channel order: Although the channelhas 5 non-zero coe�cients, 11 MA parametersare \estimated" in Fig. 2. As \knowledge of thesystem order is of utmost importance to manysystem identi�cation algorithms" [1, 38, 12], thisproperty must be emphasized adequately.In summary, we state that with the modi�ca-tions to the original EVI equation (23), we ob-tain a genuine identi�cation algorithm (deliver-
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Fig. 2: EVI \estimates" obtained from eq. (30)assuming true statistics. Two largest coe�cientsof w(k) with a) ... identical magnitudes b) ... witha di�erence of � 10�5 in magnitudesing unbiased8 channel estimates) while retain-ing the bene�ts of an approach to equalization(insensitivity to order overestimation). Further-more, they lead to a considerable decrease incomputational complexity.3.3 The two step EVI approachAssuming the knowledge of the true values ofeCyv4 and eRinv in equation (30), we have shownin the above example that it is very unlikely toend up with a wrong channel \estimate", be-cause this requires f(k) to be selected such thatw(k) has at least two largest coe�cients with8Strictly speaking, EVI's estimates are unbiased in thenoiseless case, only. However, we show in section 4that they are very robust with respect to additive whiteGaussian noise. Although no proof is available, a justi-�cation for this robustness is given in Appendix E.



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 12EigenVector approach to blind Identification (EVI):S1: Execute some EVA iterations (as described in section 2 and [20]) to generate anappropriate reference system.S2: Set up matrices eCyv4 (submatrix of Cyv4 calculated in the �nal EVA iteration) andeRinv (upon inversion of the (4q + 1)� (4q + 1) autocorrelation matrix eRvv) andsolve the modi�ed EVI equation (30). Choose the eigenvector associated with themaximum magnitude eigenvalue and take the complex conjugate reverse vectoras an estimate ĥ(k) of the channel impulse response.Table 1: The EigenVector approach to blind Identification (EVI)identical magnitudes. However, if these matri-ces are estimated from �nite data blocks, theestimation variance will depend on the actualimpulse response w(k), too. To obtain mini-mum variance channel estimates, equation (17)must be approximated9. This can be done byadjusting f(k) with the iterative procedure de-scribed in the end of section 2: f(k) is loadedwith the equalizer impulse response calculatedin the previous step. This results in a two stepidenti�cation algorithm, termed EigenVectorapproach to blind Identification (EVI),where some EVA iterations are executed prior tothe solution of the modi�ed EVI equation (30).Table 1 provides a description of EVI.Its main parameters are:S1: { The order ` of the equalizer and the ref-erence system.{ The number L of received data samplesv(k) used to estimate Rvv and Cyv4 .{ The number of EVA iterations executed.S2: { The estimated channel order q̂. As EVIdoes not su�er from choosing q̂ > q, q̂ canalso be considered the maximum expected(e�ective) channel order.{ The number L of received data samplesv(k) used to estimate eRvv and eCyv4 .Remark: Although EVA is executed in step S1,note that we are not interested in perfect equal-9Notice that this also avoids the e�ects of an \unluckyguess" of f(k).

ization, here. Even without step S1, i.e. withthe reference system set to f(k) = �(k�k0), EVIyields the true channel impulse response (assum-ing true values of the correlation and cumulantsequences as well as the noiseless case). For thisto be true, we do not need a reference systemthat equalizes the channel (therefore, the equal-izer order ` can be relatively small in step S1).We just require the combined channel/referencesystem impulse responsew(k) have a single max-imum magnitude value (condition (15)). Onlywhen considering estimation variance in termsof the number of data samples used to estimatethe correlation and cumulant sequences, a de-convolving reference system will prove to be fa-vorable. These are the two reasons why we exe-cute EVA iterations in step S1 prior to the iden-ti�cation step S2.Summary: Since EVI yields unbiased8 channelestimates with low standard deviation, it rep-resents an e�cient fast approach to blind MAsystem identi�cation. Remember that this istrue even if the channel order q is overestimated(q̂ > q). In section 4, we show that EVI is alsorobust with respect to additive white Gaussiannoise.



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 134 Simulation resultsIn this section, the estimation performance ofEVI (as described in section 3.3) is illustratedby �ve simulation results, which are based onthe channel examples C1 to C5 described in Ta-ble 2. With the synthetic time-invariant MAand ARMA channels C1 to C4, the quality ofEVI's estimates is demonstrated (i) in terms ofthe number of received data samples (cf. require-ment R1 in the introduction), (ii) with mis-assumptions for the channel order (R3), and(iii) in presence of additive noise (R4). With thehelp of channel C5, which stands for a collectionof piecewise time-invariant approximations of re-alistic mobile radio channels underGSM (GlobalSystem for Mobile Communications) conditions,we investigate whether or not the four require-ments R1 to R4 can be satis�ed at the sametime.Ch. Order Descriptionex. qC1 4 Critical MA channel with twoequal magnitude coe�cientsand two critical zerosC2 4 Equivalent minimum-phase sys-tem (same magnitude transferfunction as C1)C3 1 ARMA system (�rst order all-pass)C4 4 Critical MA channel with twoequal magnitude coe�cientsand four critical zerosC5 � 4 Collection of nine mobile radiosample channelsTable 2: Channel examples used for the simula-tionsEVI's estimation performance is also comparedwith the W-Slice algorithm by Fonollosa andVidal [12]. We will refer to this method as theWS algorithm. It computes the channel im-pulse response as a linear combination of 1D(auto)cumulant slices, where we apply fourthorder cumulants only to avoid the problem of

weighting between the sets of 4th and 2nd or-der cumulants (unfortunately, this problem isnot addressed in [12]). To exploit a maximumamount of statistical information, we use thecomplete set of fourth order cumulants for WS.Table 3 summarizes the main parameters of thesimulations. Referring to Fig. 1, an i.i.d. QPSK(Quaternary Phase Shift Keying) or BASK (Bi-nary Amplitude Shift Keying) random sequenced(k) is propagated through one of the channelexamples C1 to C5. The resulting steady statechannel output sequence is corrupted by inde-pendent stationary zero mean additive whiteGaussian noise (AWGN) n(k) according to agiven signal-to-noise ratio S=N . Based on ablock of L received data samples v(0); � � � ; v(L�1), the cumulant and correlation sequences re-quired by the respective algorithm are estimatedby unbiased sample averaging. Finally, thechannel impulse response estimate ĥ(k) is cal-culated according to the respective approach.In the frame of Monte-Carlo runs, Mc di�erentchannel input sequences d(k) are generated toobtain Mc estimated channel impulse responsesĥ(�)(k) with � = 1; � � � ;Mc. Estimation qual-ity is assessed by the mean � standard devia-tion values or the normalized mean square er-ror of the estimates. However, as all blind sys-tem identi�cation algorithms can not estimateone complex factor, each estimate is multipliedwith the optimum constant (minimizing the es-timate's Euclidean distance from the true chan-nel impulse response) before estimation qualityis assessed.4.1 Synthetic channel examplesC1 to C4With the following four simulation results,QPSK signalling is applied to the syntheticchannel examples. For C1 to C4, Figure 3 dis-plays the zeros of H(z) = Z fh(k)g in the com-plex z-plane as well as the magnitude of the(complex) impulse responses h(k).Figure 4: Channel example C1 (see Fig. 3a)is rather unfavorable for EVI since two channel



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 14Fig. Modula- Channel AWGN Number L of Simulationno. tion d(k) example S=N received samples demonstrates ...4 QPSK C1 =1 50; � � � ; 5000 EVI and WS convergence rates5 QPSK C2 =1 50; � � � ; 5000 EVI and WS convergence rates6 QPSK C3 =1 500, 2000 EVI allpass approximation7,11 QPSK C4, C1 � 3 dB 5000 EVI performance in presence of noise10 BASK C5 � 7 dB 142 (GSM) EVI/WS performance with short recordsTable 3: Overview of the main simulation parameters
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Fig. 3: Zero plots and magn. impulse responsesof the synthetic channel examples C1 to C4zeros are close to the unit circle10 and two coe�-cients of the impulse response are exactly equalin magnitude. The former property would re-quire a large equalizer order for a proper equal-ization (nevertheless, we select for the EVA it-erations in step S1 of EVI an equalizer of order` = 16 only, which is su�cient for the generationof an adequate reference system). On account ofthe latter property, the optimization of the ref-erence system requires a relatively high number10The minimum distance is 0.0797 corresponding to aspectral null which is 21:1 dB below the spectral peak.Unnormalized channel impulse response of C1: h(k) =[0:4+0:3j; �0:6�0:4j; 0:5�0:6j; 0:2�0:4j; 0:6�0:5j].

of EVA iterations (eight in this example).In Figure 4, the mean (solid lines) � standarddeviation values (dotted) of the q̂+1 = 9 coe�-cients11 ofMc = 50 impulse responses estimatedby EVI (Fig. a) and WS (Fig. b) in the noise-less case are given in terms of the blocklengthL. The magnitudes of the true channel coe�-cients are indicated by arrows on the right mar-gins. This example illustrates that EVI yieldsunbiased estimates for L � 500 approximately,whereas the WS method delivers biased coe�-cients even with 5000 data samples. As for theestimation variance, EVI achieves comparablevalues of variance with blocklengths smaller bya factor of about 10.Remark: For channel C1, a comparison of EVIwith theGM method [14] was presented in [25].Similar to the WS result, the GM method deliv-ered biased coe�cients with 5000 data samples(even with 500000 samples, in fact). Actually,there are quite a few algorithms (e.g. [38, 39, 1])which are, just as the GM method, based on thesame quadratic equation (see eq. (8) in [1], e.g.).As the performance levels obtained by these al-gorithms seem to be roughly of the same orderof magnitude, we do not consider any represen-tative of this class of algorithms in this paper.Figure 5: Channel example C2 (see Fig. 3b) isthe equivalent minimum-phase system of chan-nel C1, i.e. all zeros z0 of C1 with jz0j > 1 aremoved to the location 1=z�0 inside the unit circle11In this section, the \estimated channel order" q̂ is de-�ned as the number of estimated channel coe�cientsminus one.
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Fig. 4: Estimation of the MA channel C1 interms of the blocklength L: a) EVI as describedin section 3.3; b)W-Slice (WS) algorithm [12].of the complex z-plane. From Figure 5b, we real-ize that the WS estimation quality of minimum-phase channels such as C2 is largely superior tothat of a mixed-phase channel (cf. Fig. 4b). Justas EVI's estimates of C1 in Fig. 4a, the WS es-timates of C2 are unbiased from about L = 500samples on. In the case of EVI, the variance ofC2's estimates is also lower than that for C1,especially for small sample sizes (L < 500). Insummary, EVI delivers a slightly better estima-tion performance for channel C2.Figure 6: Channel example C3 (see Fig. 3c)is a �rst-order allpass. Although this is a recur-sive system, its impulse response can be approx-imated by a �nite length impulse. Rememberthat the e�ective length of the allpass impulseresponse depends on the pole's magnitude jz1j.In this example, we pick z1 = 0:8ej�=4. This al-
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Fig. 5: Estimation of the MA channel C2 interms of the blocklength L: a) EVI as describedin section 3.3; b)W-Slice (WS) algorithm [12].lows an impulse response approximation by anorder 16 MA model.Figures 6a and d display the magnitude (mean� standard deviation) of the Mc = 25 impulseresponses estimated on the basis of L = 500and 2000 received data samples, respectively(q̂ = 32). Figures 6b,e and 6c,f show the corre-sponding magnitude of the frequency responseand the group delay. Again, the mean � thestandard deviation values are marked (solid anddotted lines, respectively). The true values areindicated by dashed lines.Figure 7: As opposed to fourth order cumu-lants, the correlation sequence is inuenced byindependent stationary additive Gaussian noise(AGN). Since the modi�ed EVI equation (30)uses both the correlation and the cumulant se-quences, it is obvious that the EVI solution is
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Fig. 6: EVI estimation of the ARMA channel C3 (see Figure 3c)a-c) L = 500 received data samples used to estimate EVI's matrices; d-f) L = 2000degraded by AGN. Some examples to illustratethis degradation due to zero mean additive whiteGaussian noise (AWGN) are given in the sequel.In this case, the autocorrelation sequence is dis-turbed at lag zero only, i.e. the elements on themain diagonal of the matrix eRvv are increasedby the value of the noise power.For the fourth order MA channels C4 and C1,Figure 7 demonstrates EVI's estimation perfor-mance in terms of the noise-to-signal (N=S) ra-tio of the received signal. In Figures 7a to c,channel C1 according to Fig. 3a is reconsidered,whereas in Figures 7d to f, the channel exampleC4 with transfer function H(z) = 1 + 0:999 z�4is regarded (see Fig. 3d). As the two largest co-e�cients of its impulse response have nearly thesame magnitudes and four zeros are extremelyclose to the unit circle12, C4 is critical for a12jz01j = : : : = jz04j = 0:99975 leading to spectral nulls66 dB below the spectral peak.

proper adjustment of the reference system co-e�cients in step S1 of EVI.Figures 7a and d display the magnitudes of theestimated channel coe�cients as a function ofN=S, where true autocorrelation values with su-perimposed noise power (at lag zero) and truecumulant values are used. Thus, these resultscorrespond to the asymptotic case, where an in-�nite number L of received data samples is avail-able for the estimation of the correlation andcumulant sequences. For comparison, the truemagnitude channel coe�cients are indicated byarrows on the right side. First, we realize fromthese �gures that the channels are correctlyidenti�ed in the noiseless case. For channel C1(Fig. 7a), the degradation due to AWGN is neg-ligible up to (at least) N=S = 0:5 (S=N = 3 dB).From Fig. 7d, we see that even with the criticalchannel C4, the degradation is very small, al-though the e�ect of AWGN is increased. Ignore,for the moment, the negative values of N=S.
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Fig. 7: EVI estimation performance in presence of additive white Gaussian noisea-c) Channel C1 (see Figure 3a); d-f) Channel C4 (see Figure 3d)In Figures 7b and e, the trajectories of the \esti-mated" zeros are drawn for N=S ratios rangingfrom 0 to 0:5. As we overestimate the channelorder q = 4 in these examples (q̂ = 8), true ze-ros (marked with circles) are added in the originof the complex z-plane (and in jzj = 1). Thetrajectories emerge from the true zero locationscorresponding to the noisefree case (N=S = 0).With the N=S ratio reaching the value of 0:5,the zeros approach their �nal position markedwith plus symbols (\+"). We �nd that the chan-nel zeros are correctly identi�ed for the com-plete range of N=S ratios. Further zeros areintroduced which leave their ideal positions (injzj = 0 or jzj = 1) as the noise power is in-creased. Since these additional zeros are spacedequidistantly on circles, their inuence on the es-timated channel impulse response is negligible.Note that a justi�cation for EVI's robustnesswith respect to AWGN is given in Appendix E.

Figures 7c and f display (in terms of N=S) themean (solid lines) � standard deviation (dot-ted) values of the coe�cients of Mc = 100 im-pulse responses estimated by EVI on the basis ofL = 5000 received data samples. We can statethat the mean values are quite robust to an in-crease in the noise power. Just the standarddeviation increases as S=N degrades.The remaining noise inuence can be compen-sated for provided that the noise correlation se-quence is known. If this is not the case, itcan be estimated with an alternative methodbased on fourth order cumulants [24]. With thisapproach, the autocorrelation estimates of thereceived signal do not contain Gaussian noisewhereas the conventional autocorrelation esti-mates do. The di�erence between both yieldsthe noise correlation.To compensate for the noise, EVI's matrix eRvv



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 18must be recti�ed. In case of AWGN, its powerhas to be subtracted from the main diagonalonly. In order to assess the inuence of anoise overcompensation, negative values of theN=S ratios are also considered in the Figures 7aand d. Figure 7a reveals that an overcompensa-tion may cause severe degradations.4.2 Realistic mobile radio channel ex-ample C5In this section, we attempt to estimate mobileradio communication channels on the assump-tions typically made in GSM receivers (GlobalSystem for Mobile Communications). Accord-ing to the GSM standard (refer to [28], e.g.),information symbols are transmitted in burstswhere each \normal" burst (see Fig. 8) containstwo packets of 58 data symbols (bits) surround-ing a training sequence of 26 bits. For (non-blind) channel estimation, state-of-the-art GSMreceivers use the training sequence, while, forblind channel estimation, almost the entire burstcould be used (142 symbols).
58 Data bits58 Data bits

Burst (0.577ms)

142 bits
3 3 Guard

Tail Tail
26 Train. bitsFig. 8: GSM \normal" burstIn a mobile scenario, the physical multipath ra-dio channel is time-variant with a baseband im-pulse response depending on the time di�erence� between the observation and excitation in-stants as well as the (absolute) observation timet. We adopt the stochastic zero mean Gaus-sian Stationary Uncorrelated Scattering (GSUS)model [31] leading to the following impulse re-sponse of the composite channel [18]hc(�; t) = 1pNe NeX�=1 ej(2�fd;�t+��) � gTR(� � ��) ;(31)where Ne is the number of elementary echopaths, gTR(�) denotes the combined trans-mit/receive �lter impulse response, and the sub-

script in hc(�) suggests its continuous-time prop-erty. 3D sample impulse responses can easily bedetermined from (31) by independently drawingNe Doppler frequencies fd;� , Ne initial phases�� , and Ne echo delay times �� from randomvariables with Jakes, uniform, and piecewise ex-ponential probability density functions, respec-tively. As for the echo delay times ��, we usestandard COST-20713 Typical Urban (TU), BadUrban (BU) and Hilly Terrain (HT) pro�les.
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τ / T  =  τ / 3.7µs    →Fig. 9: Sample magnitude impulse responseof a COST-207 Bad Urban (BU) channel withraised cosine transmit/receive �ltering (r = 0:5),T = 3:7 �s, fd;max = 88 HzFigure 9 shows, in non-causal representation,a sample magnitude impulse response jhc(�; t)j,obtained from equation (31) with Ne = 100, ofa Bad Urban channel with raised cosine14 trans-mit and receive �lters (r = 0:5). Both time axesare normalized to the GSM symbol (bit) periodT � 3:7 �s. The velocity of the mobile unit isv = 100 km=h. Assuming a carrier frequency of950 MHz, this leads to a maximum Doppler shiftof fd;max = 88 Hz. Equation (31) was evaluated13(European) Cooperation in the �eld of Scienti�c andTechnical research, project #207.14The authors are well aware of the fact that GSM trans-mitters use non-linear GMSK modulation (GaussianMinimum Shift Keying). However, we consider linearmodulation in this example in order to avoid system-atic errors in the channel estimates. Simulation resultstaking into account transmitter non-linearity are givenin [6, 9, 8].



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 19over a t range covering one minimum Dopplerperiod Td;min = 1=fd;max = 3080T = 11:4 ms.Assuming quasi time-invariance over oneburst15, hc(�; t) is sampled on the t axis each150 bits (cf. Fig. 8). This produces 21 sliceswithin the t range of 3080T , which can beseen in Fig. 9 as surface lines parallel to the� axis. Furthermore, each slice is sampled at� = kT and then constrained to the index rangek where the associated sample power delayspectrum exceeds the threshold of 1% of itsmaximum value.h(k; �) �= hc(�; t) for � � = kTt = � 150T ; (32)where � = 0; � � � ; 20.On the above assumptions, nine di�erent sam-ple GSUS composite channels hc(�; t) were ob-tained from eq. (31) by combining three COST-207 propagation environments (TU, BU, HT)with three raised cosine transmit/receive �lters:roll-o� factors r2f0:9; 0:5; 0:1g. Let BU-(0.5)denote the Bad Urban channel with roll-o� fac-tor r = 0:5, e.g.. According to eq. (32), eachchannel hc(�; t) was decomposed into 21 slicesh(k; �). This collection of 9 piecewise time-in-variant channels will be called \channel set C5".Referring to Fig. 1 with h(k; �) substituted forh(k), Mc = 100 bursts of 150 i.i.d. BASK (Bi-nary Amplitude Shift Keying) symbols d(k) werepropagated through each channel slice. Then,WS and EVI were applied to L = 142 samplesof v(k). Both algorithms were given the e�ec-tive length of the sample power delay spectrum,which is equivalent to the mean length of thechannel impulse response. Note that the actuale�ective length of a channel slice may well beshorter due to time selective fading.Estimation quality measure: Let ĥ(�)(k; �) de-note the estimate of h(k; �) based on the �thinput burst (� = 1; � � � ;Mc). For each slice in-dex �, estimation quality is assessed on the basisof the averaged Normalized Mean Square Error15Notice that this is also supposed in state-of-the-art(non-blind) GSM receivers.

(NMSE)NMSE(�) �= 1Mc McX�=1Pk jĥ(�)(k; �) � h(k; �)j2Pk jh(k; �)j2 :(33)Figure 10: From the set C5 of nine samplechannels described above, we have selected forFigure 10 six examples by combining the prop-agation environments TU , BU and HT withthe roll-o� factors r = 0:5 (Figures a to c) and0:1 (Figures d to f). For each channel, Fig. 10shows the NMSE(�)-values (in per cent) of WS'and EVI's estimates for di�erent values of S=N ,where the noiseless case is marked by \�" sym-bols, while \�" and \+" stand for S=N = 10 dBand 7 dB, respectively [5]. The NMSE(�)-valuesfor WS are connected by dotted lines, those forEVI by solid lines. Note the di�erent scaling onthe NMSE(�) axes of Figure 10.From Figures 10a and d, we realize that EVIcan estimate the TU channels very well, even atS=N = 7 dB (\+"): the NMSE(�) values are be-low 3% for most slices. Conversely, assuming anacceptance threshold value of 5% (dashed lines),WS can not identify slices � = 12 to 17 of chan-nel TU-(0.5) (Fig. a) and all but the last twoslices of TU-(0.1) (Fig. d). It turns out thatthese slices are mixed-phase, so that these re-sults are in accordance with those presented inFigure 4 for the mixed-phase channel C1. Apartfrom the last slice (� = 20), EVI largely outper-forms WS at any given S=N .Comparable statements can be made for the BUchannels in Figures 10b and e (note that thechannel used for Fig. 10b was shown in Fig. 9):although there are channel slices, where WS andEVI perform almost equally well (� = 6 to 8 and18 to 20), there is a huge performance gap forthe mixed-phase channel slices (� = 0 to 2 and10 to 14). For all slices of BU-(0.5) and 18 outof 21 slices of BU-(0.1), EVI's NMSE(�)-valuesremain below 5%, while this is true for WS' esti-mates for 10 (BU-(0.5)) and 2 (BU-(0.1)) slices,only. Again, for all slices and S=N ratios, EVI'sperformance is superior to that of WS.
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channel slice index ξ    →Fig. 10: EVI (solid) and WS (dotted) estimates of channels C5 from 142 samplesAWGN: \�": S=N =1, \�": 10 dB, \+": 7 dBa, d) Typical Urban (TU), b, e): Bad Urban (BU), c, f): Hilly Terrain (HT)a-c): Roll-o� factor r = 0:5, d-f): roll-o� factor r = 0:1In case of the HT channels, we can see fromFigures 10c and f that both approaches success-fully identify all slices: all NMSE(�)-values arearound 3% in the noiseless case and around 4%at 7 dB. If we average NMSE(�) over all slice in-dices � to obtain NMSE, it turns out that WS'performance is slightly better than that of EVI.It should be noted that, by mere coincidence,all channel slices were minimum-phase in thisexample.Finally, Table 4 summarizes the NMSE-valuesfor the entire set C5 of sample channels, wherethose exceeding 5% are marked in boldface [5].The �rst value in each column refers to WS,while the second applies to EVI. We realize thatWS can not identify satisfactorily the BU chan-nels as well as TU-(0.1). On the other hand,

EVI is capable of estimating all channel exam-ples at S=N ratios down to 7 dB (10 dB) towithin an outstanding NMSE bound of 4:3%(3:5%). This demonstrates that EVI can satisfythe requirements R1 to R4 at the same time.It should be noted that EVI's estimates of criti-cal channels (those with zeros very close to or onthe complex plane's unit circle) can be improvedby adjusting EVI's parameters: in the initialequalization step, the equalizer order and/or thenumber of iterations could be increased. As forWS, second order statistics could be used in ad-dition to cumulants in order to improve perfor-mance. However, this evokes the problem ofhow to weight correlation estimates against cu-mulants. Furthermore, for low S=N ratios, theestimates will be biased.



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 21S=N TU-(0.9) TU-(0.5) TU-(0.1)1 dB 2.9 / 1.2 4.8 / 1.2 7.5 / 2.210 dB 3.0 / 1.4 4.8 / 1.4 7.6 / 2.57 dB 3.1 / 1.8 4.8 / 1.8 7.7 / 3.2S=N BU-(0.9) BU-(0.5) BU-(0.1)1 dB 7.1 / 1.2 8.6 / 2.0 12.2 / 2.710 dB 8.3 / 1.5 9.9 / 2.3 14.0 / 3.27 dB 9.5 / 2.0 11.2 / 3.0 15.6 / 4.3S=N HT-(0.9) HT-(0.5) HT-(0.1)1 dB 2.9 / 3.2 2.9 / 3.2 2.9 / 3.210 dB 3.3 / 3.5 3.3 / 3.5 3.3 / 3.57 dB 3.8 / 4.1 3.8 / 4.1 3.8 / 4.1Table 4: NMSE [in per cent] for WS's and EVI'sestimates of channels C5: Typical Urban (TU)(above), Bad Urban (BU) and Hilly Terrain(HT) (below)5 Conclusions andfurther workIn this paper, we have presented a novel algo-rithm (EVI) for an e�cient blind identi�cationof possibly mixed-phase FIR systems. In thenoiseless case, we have shown how to obtain un-biased channel estimates by the solution of amodi�ed eigenvector problem derived from theclosed-form EVA solution to blind equalization.The modi�cations to the eigenvector problemalso drastically reduce the computational com-plexity of this approach. Furthermore, a twostep procedure has been introduced in order toensure the uniqueness of the estimate and tominimize estimation variance for a given num-ber of received data samples used to estimate therequired correlation and cumulant coe�cients.Various simulation results illustrate EVI's bril-liant convergence properties. EVI's estimationperformance was also investigated in presenceof additive white Gaussian noise. It was demon-strated by simulation results that the true chan-nel zeros are still identi�ed properly. Althoughsome additional zeros were introduced, their in-uence was very small even at signal-to-noise

ratios as low as 3dB.Although the HOS class of blind identi�cationapproaches is said to require excessive amountsof samples of the received signal to achieveacceptable performance levels, we have �nallydemonstrated in this paper that it is possiblewith EVI to blindly estimate realistic mobile ra-dio channels from one demodulated GSM burst(142 samples, cf. requirement R1 in the intro-duction). At a constant signal-to-noise ratio of7 dB (cf. R4), all channel slices (R2, R3) wereidenti�ed within a normalized mean square er-ror bound of 5 per cent. Thus, EVI can meetthe requirements R1 to R4 at the same time.To the knowledge of the authors, no other HOS-based algorithm is capable of achieving the citedNMSE levels on the assumptions made in thispaper. Furthermore, we have shown that theWS algorithm's performance level heavily de-pends on the actual channel impulse response.While this paper concentrated on the quality ofblind channel estimates, further work will bedirected towards a comparison of the bit errorrates attainable from blind and non-blind chan-nel estimates. First results based on GSM werepublished recently [6, 9]. A comprehensive studyon the feasibility of blind channel estimation inGSM systems will be provided in [8].Remark: Matlab programs implementing bothEVA and EVI as well as compressed postscript�les of preprints of related publications are read-ily available from our WWW server at the ad-dress http://www.comm.uni-bremen.de.AcknowledgementsWe would like to express our gratitude to theanonymous reviewers for having compiled com-prehensive and thorough reviews leading to nu-merous modi�cations throughout the paper. Wealso thank the reviewers for their patience withrespect to a considerable delay in the revisionprocess due to changes of a�liation of all au-thors.



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 22AppendicesA Decomposition of thecross-cumulant matrix eCyv4The cross-cumulant matrix eCyv4 in equations(27) and (30) with the elements[eCyv4 ]i1;i2 = cyv4 (�i1 � q; 0;�i2) (A.1)= d4 Xk h�(k � i1 � q)h(k � i2) jw(k)j2(with i12f0; � � � ; 2qg and i22f0; � � � ; 4qg) can bedecomposed into the following triplet of matriceseCyv4 = d4 �H�0;3q+1�2q+1�W�Hq;3q+1�4q+1 (A.2)whereW is the (3q+1�3q+1) diagonal matrixW �= diagfjw(0)j2 ; � � � ; jw(3q)j2g (A.3)andH0;3q+1�2q+1 andHq;3q+1�4q+1 represent �l-tering matrices. Generally, we de�ne the chan-nel matrix Ha;b�c as the (b� c) Toeplitz matrixwith top left element [Ha;b�c]0;0 = h(a), whilethe following elements h(i) of the �rst row (col-umn) have decreasing (increasing) time lags i.Examples areHq;3q+1�4q+1 �= 264 h(q) � � � h(0) 0. . . . . . . . .0 h(q) � � � h(0)375(A.4)andH0;3q+1�2q+1 �= 266666664 h(0) 0... . . .h(q) . . . h(0). . . ...0 h(q)
377777775 : (A.5)

The decomposition (A.2) will be used in the se-quel.B E�ect of Rinv on theeigenvector problem (27)In Appendix C, we demonstrate that unbiasedchannel estimates can be obtained from eq. (27),

if the (4q + 1)� (2q + 1) submatrix Rinv of the(` + 1) � (` + 1) inverse autocorrelation matrixR�1vv is replaced with a modi�ed matrix. Thiscan be shown by clarifying the e�ect of Rinv onthe eigenvector problem (27). For this purpose,we insert the decomposition (A.2) of eCyv4 intoequation (27) to obtain�ehEVI= d4 H�0;3q+1�2q+1WHq;3q+1�4q+1RinvehEVI ;(B.1)where ehEVI would contain the q + 1 true chan-nel coe�cients as well as q zeros, if Rinv was thesubmatrix of the in�nite dimensions inverse au-tocorrelation matrix. In Appendix D, we showthat, as ` approaches in�nity, R�1vv has a subma-trix Rinv approximating Toeplitz(!) structure.Therefore, Rinv can also be explained as a �l-tering matrix. Note that the (4q+1)� (2q+1)Toeplitz matrix Rinv contains 6q+1 coe�cientsof the system correlation sequence rinv(k) of thein�nite length inverse channel. Hence, in equa-tion (B.1), the result of Hq;3q+1�4q+1RinvehEVIcorresponds to the convolution of the channel'simpulse response h(k) with 6q+1 coe�cients ofthe inverse channel correlation sequence rinv(k)and with h�(�k). Thus, we have h(k)�rinv(k)�h�(�k)�2d = rinv(k) � rvv(k) = �(k), or equiva-lently, in vector notationHq;3q+1�4q+1RinvehEVI�2d= [0; � � � ; 0; 1; 0; � � � ; 0]| {z }3q+1 T �= i (B.2)By the multiplication with the diagonal ma-trix W according to (B.1), the vector i=�2d isweighted with the constant jw(km)j2. Then,jw(km)j2 i=�2d selects a single column fromH�0;3q+1�2q+1, so that equation (B.1) �nallyreads as shown in equation (B.3) on page 24,where q+1 columns contain the complete chan-nel impulse response (as indicated by the dashedrectangles)16. As long as the righthand side vec-tor does not have its non-zero element on the�rst (or last) q elements, this selective property16Note that for jw(km)j2 i=�2d to select a single column, itis also su�cient that equation (17) holds.



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 23obviously is su�cient for a proper identi�cationof the channel by the solution of the eigenvectorproblem.C Obtaining unbiased channel esti-mates (noiseless case)We show now that it is possible to replace thematrix Rinv with a computationally less expen-sive Toeplitz matrix eRinv while maintaining theselective property mentioned above. In equa-tion (B.2), q columns ofRinv are multiplied withthe q zero coe�cients of the vector ehEVI. Thus,just 5q + 1 out of the 6q + 1 coe�cients rinv(k)are signi�cant in Rinv. Their selection dependson the position of h(k) within the vector ehEVI.According to rinv(k)�h�(�k) = h�(�k)�rinv(k)we can state RinvehEVI = H�0;5q+1�4q+1rinv, sothat eq. (B.2) can be transformed into equa-tion (C.1), where the matrix has the dimen-sions (3q + 1) � (5q + 1) and the q + 1 valuesof "2f0; � � � ; qg correspond to the q+1 di�erentpositions of h(k) within ehEVI (length: 2q + 1).The q+1 systems of equations according to (C.1)can be collected into the single system (C.2).These are 4q+1 equations for the 6q+1 unknownparameters rinv(�3q); � � � ; rinv(3q). Thus, 2qparameters can be chosen arbitrarily. Lettingfor instance rinv(�3q); � � � ; rinv(�2q�1) = 0 andrinv(2q+1); � � � ; rinv(3q) = 0, the �rst q columnsas well as the last q columns of the matrix inequation (C.2) can be omitted.ei = eRvverinv �=2666666664 rvv(0) � � � rvv(�q) 0... . . . . . .rvv(q) . . . rvv(�q). . . . . . ...0 rvv(q) � � � rvv(0)
3777777775264 rinv(�2q)...rinv(2q) 375 :(C.3)Thus, we have obtained a new system ofequations that also guarantees the selectionof a single column from the channel matrixH�0;3q+1�2q+1. If we solve equation (C.3) for the4q+1 coe�cients rinv(�2q); � � � ; rinv(2q) and use

them for the Toeplitz matrix eRinv given in equa-tion (28), we will thus achieve unbiased channelestimates (in the noiseless case) from the \Modi-�ed EVI equation" (30) irrespective of the actualimpulse response w(k).N.B.: Remember that the uniqueness of thesolution still has to be ensured. This prob-lem is addressed by an example in the endof section 3.2 and in section 3.3. Also notethat by substituting eRinv for Rinv , the com-putational e�ort to calculate the inverse of the(` + 1) � (` + 1) autocorrelation matrix Rvv isreduced to calculating the inverse of the smaller(4q + 1)� (4q + 1) autocorrelation matrix eRvv .D Toeplitz structure of the central in-�nite dimensions inverse autocor-relation matrixWhile in general, the inverse of a non-singularHermitian Toeplitz matrix (such as the (`+1)�(`+ 1) autocorrelation matrix Rvv) just is Her-mitian persymmetric [16], we prove here thatthe inverse of Rvv has a submatrix approximat-ing Toeplitz(!) structure as ` approaches in�n-ity. Note that aMatlab program justifying theToeplitz assumption can be retrieved from ourWWW server.We assume an i.i.d. input sequence d(k) withzero mean and variance �2d as well as a causalFIR transmission system h(k) of order q. Letv(k) denote its output sequence. For notationalclarity, let Rvv;� denote the (� � �) autocorre-lation matrix with � = ` + 1. It is HermitianToeplitz and can be represented byRvv;� = �2dH��H� ; (D.1)where H� is the (� + q � �) �ltering matrixH0;�+q�� (as de�ned in Appendix A) with fullcolumn rank.First, we build a (���) upper triangular matrixE� which orthonormalizes the columns of H�.Departing from a matrix with just one column,this can be done by means of the Gram-Schmidt
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�ehEVI = d4 H�0;3q+1�2q+1 jw(km)j2 i�2d = 26666664 h�(0) � � � h�(q) 0 � � � 0. . . . . . . . . ...0 h�(0) � � � h�(q) 0... . . . . . . . . .0 � � � 0 h�(0) � � � h�(q)

37777775
2666666664

...0jw(km)j2 d4�2d0...
3777777775(B.3)i = �2dHq;3q+1�4q+1H�0;5q+1�4q+1rinv = 264 rvv(q) � � � rvv(�q) 0. . . . . . . . .0 rvv(q) � � � rvv(�q) 375264 rinv("� 3q)...rinv("+ 2q) 375 (C.1)

ei = 26666664 rvv(q) � � � rvv(�q) 0 � � � 0. . . . . . . . . . . . ...0 rvv(q) � � � rvv(�q) 0... . . . . . . . . . . . .0 � � � 0 rvv(q) � � � rvv(�q)
37777775264 rinv(�3q)...rinv(3q) 375 (C.2)

orthogonalization process. E� is determined re-cursively byE� = �� E��10 : : : 0 � e� � with E0 = [ ] ;(D.2)wheree� = eE�qeE��H��H� eE� ; eE� = (H��H�)�1266640...0137775:(D.3)As H�E� has orthonormal columns, we havewith the (� � �) identity matrix I� and equa-tion (D.1) �E��H��� � (H�E�) = I� (D.4)E�� �Rvv;�=�2d�E� = I� (D.5)E��Rvv;� �E�E��� =�2d = E�� : (D.6)Due to its triangular structure with non-vanishing elements on the main diagonal, E��is always non-singular and has therefore an in-verse. We obtainRvv;� �E�E��� =�2d = I�) R�1vv;� = �E�E��� =�2d (D.7)

and thuslim�!1R�1vv;� = 1�2d lim�!1 �E�E��� : (D.8)We realize that (D.3) represents the calculationof the coe�cients of the maximum-phase pre-diction error �lter. As � approaches in�nity, e�converges to the inverse maximum-phase trans-mission system so that E� approaches a Toeplitzstructure (just the top left corner of E� does nothave this structure). For the inverse of the au-tocorrelation matrix (eq. (D.7)), the elements ofany given diagonal are equal to the scalar prod-uct of two vectors, which { for � ! 1 { di�erjust by a uniform shift. However, this is truein the center of this matrix, only. Thus, in itscentral part, all elements on the same diagonalare identical, and the inverse of the in�nite di-mensions autocorrelation matrix approximatesa Toeplitz structure. This completes the proof.�



ELSEVIER Signal Processing, vol. 66, no. 1, April 1998 25E Inuence of additive white Gaus-sian noiseWe will justify the conclusion drawn fromFig. 7b,e in section 4.1 that the channel zeros\estimated" by EVI using true statistics do notchange signi�cantly under AWGN inuence [19].In Appendices B and C, we have shown that inthe noisefree caseWHq;3q+1�4q+1 eRinvehEVI = jw(km)j2 i�2d (E.1)selects exactly one column from H�0;3q+1�2q+1.However, rewritingW � =:w2z }| {Hq;3q+1�4q+1 eRinvehEVI= 264 jw(0)j2 � w2(0)...jw(3q + 1)j2 � w2(3q + 1) 375!� jw(km)j2�2d � 26666664 ...010...
37777775 ; (E.2)

we realize that both the coe�cients w(k) of thecombined channel/reference system and the co-e�cients w2(k) of a weighting vector w2 con-tribute to this selective property.Figure 11 displays the normalized magnitudes ofw(k) and w2(k) as well as the product jw(k)j2 �jw2(k)j for channel C1 from Figure 7b and noise-to-signal ratios ofN=S = 0 and 0:5. In the noise-less case (Fig. 11a to c), just one element of w2does not vanish. Thus, the same property holdsfor the product (see Fig. 11c). Although in thenoisy case quite a few coe�cients w2(k) revealnon-negligible magnitudes (see Fig. e), the mul-tiplication with jw(k)j2 still ensures a distinctivepeak in jw(k)j2 � jw2(k)j and thus guarantees agood approximation of the selection of a singlecolumn. So, the noise robustness of EVI is due

to the fact that the product jw(k)j2 � jw2(k)j de-cays even more quickly than jw(k)j and jw2(k)j.As the interpretation of H�q;3q+1�2q+1 as a �l-tering matrix (see in eq. (A.2)) nearly holds, wecan writehEV I / h�(k) � �jw(k)j2 � w2(k)� ; (E.3)and in frequency domainHEV I(z) / H�(z�) �G(z) (E.4)with G(z) �= Z �jw(k)j2 � w2(k)	 : (E.5)From this relation, we realize that the true chan-nel zeros are present in EVI's estimates whileexcessive zeros are introduced by G(z).References[1] A. Alshebeili, A. N. Venetsanopoulos, and A. E.C�etin. Cumulant Based Identi�cation Ap-proaches for Nonminimum FIR Systems. IEEETrans. on Signal Processing, SP-41(4):1576{1588, April 1993.[2] B. Boashash, E.J. Powers, and A.M. Zoubir, ed-itors. Higher-Order Statistical Signal Process-ing. AddisonWesley Longman, NSW 2066, Aus-tralia, 1997.[3] D. Boss, M. Boe, and K.D. Kammeyer. Exploit-ing Second Order Cyclostationarity or HigherOrder Statistics for the Blind Identi�cation ofMixed Phase FIR Systems? In Proc. 15thGRETSI symposium, volume 1, pages 57{60,Juan-les-Pins, France, September 1995.[4] D. Boss and K.D. Kammeyer. Blind Estimationof ARMA-Systems. In Proc. EUSIPCO-94, vol-ume III, pages 1105{1108, Edinburgh, Scotland,September 1994.[5] D. Boss and K.D. Kammeyer. Blind GSM Chan-nel Estimation. In Proc. VTC-97, volume 2,pages 1044{1048, Phoenix, Arizona, May 1997.[6] D. Boss and K.D. Kammeyer. Blind GSM Chan-nel Estimation based on Higher Order Statis-tics. In Proc. ICC-97, volume 1, pages 46{50,Montr�eal, Canada, June 1997.
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