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Abstract

We present a novel approach to the blind estimation of a linear time-invariant possibly mixed-phase moving
average (MA) system (channel) based on second and fourth order statistics of the stationary received signal. As
the algorithm incorporates the solution of an eigenvector problem, it is termed EVI standing for EIGENVECTOR
APPROACH TO BLIND IDENTIFICATION. One of EVI’s main features is its ability to obtain reliable estimates
of the channel’s MA parameters on the basis of very short records of received data samples. It is also robust
with respect to an overestimation of the channel order. Furthermore, we demonstrate that, if independent
additive white Gaussian noise is present, the degradation of the MA parameter estimates is minor even at low
signal-to-noise ratios. By simulation results, we finally show the potential applicability of EVI to mobile radio
communication channels under time-invariance conditions typically assumed in GSM receivers.

Zusammenfassung

In diesem Artikel wird ein neuartiger Ansatz zur blinden Identifikation eines linearen, zeitinvarianten, evtl.
gemischtphasigen “Moving Average”-(MA)-Modelles (ﬁbertragungskanals) vorgestellt, der auf den Statistiken
zweiter und vierter Ordnung des stationdren Empfangssignals basiert. Da hierzu die Losung eines Eigenvek-
torproblems erforderlich ist, wird dieser Ansatz EIGENVEKTOR-ALGORITHMUS ZUR BLINDEN IDENTIFIKATION
(EVI) genannt. Eines der Hauptmerkmale von EVT ist seine Féhigkeit, die MA-Parameter des Kanals auf
der Basis von sehr wenigen Abtastwerten des Empfangssignals zuverldssig zu schitzen. EVI ist auch gegen
I"Jberschéitzungen des Kanalgrades robust. Auflerdem wird gezeigt, dafl sich das Schétzergebnis selbst bei niedri-
gen Signal-Rausch-Verhéltnissen nur unwesentlich unter dem Einflu von unabhéngigem, additivem, weiflem
gauBverteiltem Rauschen verschlechtert. Durch Simulationsergebnisse wird schliefilich dargelegt, dal EVI unter
GSM-Zeitinvarianzannahmen auch auf Mobilfunkkanéle angewendet werden kann.

Résumé

Dans cette communication nous proposons une nouvelle approche d’identification aveugle de modeles MA
(canaux) a phase mixte, basée sur 'utilisation conjointe des statistiques d’ordre deux et quatre du signal
récu stationnaire. Comme cette approche incorpore la solution d’un probléeme de vecteurs propres, elle est
appelée EIGENVECTOR APPROACH TO BLIND IDENTIFICATION (EVI). Un des intéréts principaux de EVI est sa
capacité d’estimer de maniére fiable les coefficients MA du canal a partir d’un trés faible nombre d’échantillons.
La méthode proposée est aussi robuste vis-a-vis de la surestimation de 'ordre du modele. Par ailleurs, nous
démontrons que si un bruit indépendant, additif, blanc Gaussien est présent, la dégradation des estimées du
modele est négligeable méme pour un faible rapport signal & bruit. Grace & des simulations, nous montrons finale-
ment que EVI peut tout a fait s’appliquer aux canaux de communications mobiles sous I’hypothése d’invariance
temporelle habituellement faite dans les récepteurs GSM.

*This work is supported by the German National Science Foundation (DFG-contracts Ka 841/1 and /2).
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1 Introduction

Optimum receivers in digital communication
systems require the knowledge of the trans-
mission channel’s impulse response. Since this
knowledge usually is not available, the problem
of channel estimation arises. From the point of
view of systems theory, channel estimation is a
particular form of (linear) system identification
which, in our case, is complicated by three main
properties of the radio channel: (i) it consists
of multiple propagation paths and is therefore
frequency-selective, (i7) its discrete-time equiva-
lent baseband impulse response may be mixed-
phase and (%ii) in a mobile environment, it is
time-variant. As for the latter property, time-
variance is relatively slow in many applications
when compared with the symbol period so that
the channel can be estimated repeatedly in pe-
riods of time where it can be assumed time-
invariant (piecewise or quasi time-invariant).

Within such a period of time-invariance, state-
of-the-art mobile communication systems trans-
mit training sequences to assist the receiver
in estimating the channel impulse response.
For this purpose, the cross-correlation between
the received (corrupted) and the stored (ideal)
training sequences is calculated. However, de-
pending on the degree of time-variance, the re-
peated transmission of training sequences leaves
the communication system with an overhead,
which, in the case of the Global System for Mo-
bile communications (GSM), amounts to 22.4%
[28]. This overhead capacity could be used for
other purposes such as channel coding (thus
enhancing overall system performance), if the
channel estimation problem was solved blindly.

Blind system identification

The fundamental idea of blind channel estima-
tion is to derive the channel characteristics from
the received signal only, i.e. without access to
the channel input signal by means of training se-
quences. Depending on the different ways to ex-

tract information from the received signal, two
classes of algorithms can be distinguished':

e Class HOS: When the received signal
is sampled at symbol-rate, the resulting
sequence is (quasi) stationary. Since sec-
ond order statistics of a stationary sig-
nal are inadequate for the identification of
the complete channel characteristics (in-
cluding phase information), class HOS ap-
proaches are based either explicitly or im-
plicitly on Higher Order Statistics. Higher
order cumulants contain the complete in-
formation on the channel’s magnitude and
phase provided that the distribution of
the channel input signal is non-Gaussian
(which is true for applications in digital
communications). Excellent overviews on
HOS and their applications can be found
in [30, 27, 29, 2].

e Class SOCS: When the sampling period
is a fraction of the symbol period (time di-
versity), or alternatively, the symbol-rate
sampled signals received by several sen-
sors are interleaved (antenna diversity),
the resulting received sequence is (quasi)
cyclostationary provided that some ex-
cess bandwidth is available. Generally,
Second Order Cyclostationary Statistics
(SOCS) are sufficient to retrieve the com-
plete channel characteristics, but there
are “singular” channel classes which can
not be identified this way. They include
channels with common subsystems in all
polyphase subchannels (refer to [36, 42, 11]
for details).

Implications of the mobile channel

In a mobile propagation environment, the chan-
nel assumes an arbitrary impulse response in any
instant of time. Particularly, “singular”, “criti-

'For the following statements, a stationary channel input
sequence is assumed.
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cal”?, and mixed-phase channels can not be pre-
vented from occurring. Furthermore, from the
above quasi time-invariance assumption, it fol-
lows that the received signal can only be ob-
served in a (short) period of time. In summary,
a blind channel estimation algorithm for an ap-
plication in mobile communications should sat-
isfy the following requirements:

R1: Reliable estimates of the complex channel
impulse response must be obtained from
few samples of the received signal (hun-
dreds rather than thousands of symbol pe-
riods).

R2: This should apply to arbitrary channels
(whether or not they are “singular”, “crit-
ical”, mixed-phase etc.).

R3: As the effective channel order usually is
unknown (and just quasi time-invariant),
an overestimation must not represent a
problem.

R4: The estimates should be as robust as pos-
sible with respect to stationary additive
white Gaussian noise at low signal-to-noise
ratios.

The algorithm we present in this paper meets
the above requirements. It is a class HOS ap-
proach based on fourth (and second) order sta-
tionary statistics. SOCS-based methods are not
considered because they violate requirement R2:
For two algorithms proposed by Tong et al. [37]
and Schell et al. [32], we have demonstrated in
[7] and [3], respectively, that “singular” chan-
nels represent a severe limitation because their
channel estimation performance from few sam-
ples is heavily affected even if subchannel zeros
are just “close” to each other (rather than being
identical).

Although our algorithm is devoted to the blind
identification of finite impulse response (FIR)
systems, it can also be applied to estimate the

2Channels with zeros ‘on’ or ‘close to’ the unit circle of
the complex z-plane are called “critical”.

moving average (MA) parameters of an autore-
gressive moving average (ARMA) model using
the residual time series, i.e. the AR compen-
sated received signal [14, 4]. Together with Men-
del’s DOUBLE MA ALGORITHM [27], it can also
be utilized to determine both the autoregres-
sive (AR) and MA parameters of a non-causal
ARMA model.

Drawbacks of existing approaches

On the particular problem of blind MA system
identification, a large number of HOS-based al-
gorithms has been proposed, e.g. [14, 35, 13, 38,
24, 39, 21, 1, 12, 40, 43, 41]. The deriva-
tion of many approaches is based on third order
statistics and/or real-valued signals and systems
[14, 35, 38, 39, 1, 12]. Alas, both assumptions
do not apply to applications in digital commu-
nications. Extending the existing algorithms to
fourth order statistics and complex signals and
systems quite frequently results in a poor per-
formance: For a given number of received data
samples, they yield high values of estimation
variance and/or bias, or equivalently, they re-
quire a very large block of received data sam-
ples for a satisfactory estimation of the channel’s
impulse response (thus violating R1). Besides,
knowledge of the system order, which is not usu-
ally available, is of utmost importance [38, 1, 12],
because many algorithms (e.g. [14, 35, 38, 39, 1])
are extremely sensitive to a mis-assumption of
the channel order (cf. R3). However, the robust
order estimation remains a difficult task, espe-
cially in noisy and/or time-variant environments
(refer to [15, 44, 26], e.g.).

Purpose and organization of paper

The purpose of this paper is to derive a fast? al-
gorithm for blind MA system identification from
an approach to blind linear equalization. Note,
however, the two principal differences between
channel equalization and identification:

3where “fast” is meant in the sense “requiring small data
blocks for a satisfactory channel estimation”.
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e To equalize a first order “critical” MA
channel, we would require a high order
(symbol-rate) FIR equalizer, e.g., whereas
for system identification, a single param-
eter needs to be estimated. This is why
many identification approaches ([10], e.g.)
using a linear equalization result deliver
unsatisfactory estimates of critical chan-
nels.

e Noisy case: In contrast to the channel es-
timate, which is supposed to be insensitive
to noise, the equalizer coefficients must be
adjusted differently if noise is present in
order to ensure optimum equalization tak-
ing into account both intersymbol interfer-
ence and noise.

These differences represent the principal ob-
stacles when deriving an identification algo-
rithm from an existing approach to equaliza-
tion. While avoiding these obstacles, we show
in this paper how to derive a sophisticated blind
identification algorithm from the EIGENVEC-
TOR ALGORITHM FOR BLIND EQUALIZATION
(EVA) published recently [20].

In the following section, we state the assump-
tions we make in this paper. For convenience,
a brief review of EVA is given, while details
can be found in [22, 23, 20]. The novel algo-
rithm is derived in section 3 from the EVA solu-
tion. It is termed EIGENVECTOR APPROACH
TO BLIND IDENTIFICATION (EVI) and repre-
sents a genuine identification approach (deliver-
ing low error channel estimates) while retaining
the benefits of an equalizer algorithm (insensi-
tivity to order overestimation). In section 4, the
performance of EVI is illustrated by simulation
results. We demonstrate the excellent quality
of EVT’s estimates (i) in terms of the number
of received data samples (cf. requirement R1),
(71) with mis-assumptions for the channel order
(R3), and (%ii) in presence of additive noise (R4).
With the help of a realistic mobile radio channel
example, we investigate whether or not the four
requirements R1 to R4 can be satisfied at the
same time.

2 Assumptions and review of
the EigenVector Algorithm
for blind equalization (EVA)

2.1 Assumptions

Fig. 1 shows an equivalent discrete-time base-
band model of a digital communication sys-
tem. The transmitted data d(k) are an inde-
pendent, identically distributed (i.i.d.) sequence
of random variables with zero mean, variance
afl, skewness? *yg and kurtosis* v¢. Each sym-
bol period T, d(k) takes a (possibly complex)
value from a finite set. For this reason, the
channel input random process clearly is non-
Gaussian with a non-zero kurtosis (y{ # 0),
while its skewness vanishes (v§ = 0) due to
the even probability density function of typical
digital modulation signals such as Phase Shift
Keying (PSK), Quadrature Amplitude Modula-
tion (QAM) or Amplitude Shift Keying (ASK).

composite )

channel equalizer

d(k) LK) x(k)
iid. hk) *»D4t—> e(k) equalized

MA-(q) AR-() sequence

"reference system"

Fig. 1: Equivalent symbol-rate baseband model
of a digital communication system (including a
linear equalizer and a “reference system”)

For the unknown composite channel, we assume
the Equivalent Discrete-Time White-Noise Fil-
ter model [31] comprising the physical transmis-
sion channel, the transmit and receive filters,
the symbol-rate sampler and the noise whiten-
ing filter. We suppose the composite channel to
be (at least short time) time-invariant. It is de-
scribed by the causal possibly mixed-phase finite

‘defined as ¢ 2 E{(d(k))®} and ~¢ 2 E{|d(k)|'} —
205 — |E{d*(k)}|?, where E{-} denotes statistical ex-
pectation.
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impulse response h(k) = h(0),---,h(q), where
q denotes the (effective) order, and will simply
be termed “channel”. Apart from linear distor-
tions, the (quasi) stationary received sequence
v(k) is corrupted by independent stationary zero
mean additive white Gaussian noise n(k).

In the receiver, an FIR-({) equalizer with im-
pulse response e(k) = ¢e(0),---,e(¢) and an FIR
filter f(k) of the same order are introduced.
As f(k) will be used to generate an implicit
sequence of training (reference) data for the
subsequent iteration of the iterative approach
to be explained, it is termed “reference sys-
tem”. For now, however, assume its coefficients
f(0),---, f(#) to be fixed (arbitrarily). The out-
put sequences of the equalizer and the reference
system shall be termed z(k) and y(k), respec-
tively.

All signals and systems are assumed to be com-
plex-valued due to the equivalent baseband rep-
resentation of the corresponding bandpass com-
munication system. Notice that the assump-
tions mentioned so far are valid throughout the
paper while the scope of the following equaliza-
tion objective is limited to section 2.

2.2 Linear equalization objective

Adjust the £ + 1 coefficients e(k) so that the
equalized sequence z(k) is as close as possible
to the delayed transmitted data d(k — k) in the
MSE (mean square error) sense

MSE(e.ko) = B{la(k) = d(k—ko)P} )
< min ,
where the vector e = [e(0),---,e(£)]” is used to

simplify notation. For each order ¢ and delay
ko, the equalizer minimising (1) is called Mini-
mum Mean Square Error equalizer. In brief, it
is referred to as MMSE-({, ky) equalizer.

2.3 Non-blind solution

If both the received sequence v(k) and some
transmitted data d(k) (training sequence) are

given, the MMSE-(/, ky) equalizer coefficients
can be calculated using the well-known normal
equation [17]

€ MMSE(ko) = Roy Tud (2)
g = E{Vk'd(k - kO)} (3)
A \
Ry, = E{vpv}}.

where r,; and R, denote the cross-correlation
vector and the non-singular (/4 1) x (£+1) Her-
mitian Toeplitz autocorrelation matrix, respec-
tively, and the vectors v; and v} are defined as

[v* (k),v* (k = 1), -, v*(k = )7
[w(k),v(k = 1), 0(k = £)]

(conjugate transpose form). The MMSE- (¢, k)
equalizer

Vi

(4)

e e

%
Vi

A
ensE(ky) = lemuse(0). -+ emuse(@)]” (5)

according to (2) is used as a reference in this pa-
per. In the noiseless case, it approximates the
channel’s inverse system (deconvolution, zero
forcing) in order to minimize intersymbol inter-
ference (ISI). If additive noise is present, how-
ever, its coefficients are adjusted differently so
as to minimize the total MSE in the equalized
sequence z(k) due to ISI and noise.

2.4 Blind “EVA solution”

With blind equalization, the objective is to de-
termine the MMSE-(/, ko) equalizer coefficients
without access to the transmitted data, i.e. from
the received sequence v(k) only. Similar to
Shalvi and Weinstein’s mazimum kurtosis cri-
terion [33, 34], the EVA solution to blind equal-
ization is based on a mazimum “cross-kurtosis”
quality function. We have demonstrated in [23]
that®

c;(0,0,0) =

E{|z (k) [y(k)1*} — B{|=(K)|*} E{|y(k)[*}
—|E{z* (k) y(k)}* — | E{x (k) y(k)}? | o

SFor notational simplicity, just two superscript indices
are used in c3”(:). They represent two occurrences of
both z(k) and y(k).
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i.e. the cross-kurtosis between z(k) and y(k),
can be used as a measure for equalization qual-

ity:

subject to

maximize |c;” (0,0, 0)| { ron(0) = 02 (7)
TT — Yd

Rather than referring to the equalizer output
x(k), this scalar quality function can easily be
expressed in terms of the equalizer input v(k)
by replacing z(k) in equation (6) with

z(k) = v(k) xe(k) = vye, (8)

where “x” denotes the convolution operator. In

this way, we obtain from (7)

subject to
! , (9

maximize |e*CY"e] .
e'R, e =0],

where the Hermitian (£ + 1) x (£ + 1) cross-
cumulant matrix

A *
Cl’ = B{lyk)Pvevi}

~E{ly(k) "} B{vivi}
—E{y(k)vi} E{y* (k) vi}
—E{y"(k)vi} E{y(k)v;} (10)

contains the fourth order cross-cumulant

[sz]ilﬂé = CZU(_ilﬂ 0, _iQ) (11)

in  row 1 and column 19 with

i1,in €40, 1, -+, £},

The quality function (9) is quadratic in the
equalizer coefficients. Its optimization leads to
a closed-form expression in guise of the general-
ized eigenvector problem [23]

“EVA equation”

(12)
which we term “EVA equation”. The coefficient
vector

v
CY{"erva = \Ry,epva

erva = [erval0),- -, emva(f)]” (13)

obtained by choosing the eigenvector of R, C4"
associated with the maximum magnitude eigen-
value X is called the “EVA-(¢) solution” to

the problem of blind equalization. Apart from
the obvious ambiguity by a complex factor, this
solution is unique if the quality function (7) has
a single global maximum. In [22, 23], we have
proven that this is the case if and only if the
magnitude of the combined impulse response

h(k) * f (k) (14)

adopts its maximum value w, 2 max{|w(k)|}
only once, i.e.

it k =k

otherwise

lw(k)| = wm

w(k)| < 1w (15)

2.5 EigenVector Algorithm
for blind equalization (EVA)

Of course, condition (15) can not be guaran-
teed since the channel impulse response h(k) and
thus w(k) are unknown. However, the effects of
an “unlucky guess” of f(k) resulting in a vio-
lation of (15) can be overcome by an iterative
adjustment of the reference system’s coefficients
[22, 20]. This iterative approach makes use of
the following relation between the EVA-(¢) so-
lution and the desired MMSE-(Z, k,) equalizer
(see [20] for details and [23] for a proof):

e The EVA-(¢) solution egya can be de-
composed into a weighted sum of MMSE-
(4, k) equalizers e \pvisr(x) according to (2)
with different delay times k around the
value k. Each MMSE-(/, k) equalizer is
weighted mainly by |w(k)|?. Thus, the
quicker |w(k)|? decays as its index k de-
parts from lag kn,, the closer egya will be
to the MMSE-(£, ky,) equalizer € \ivsE(k,,)
— provided that uniqueness is ensured. For
this reason, if |w(k)| had a distinct peak
value

wlkm)| > (k)| for k#kn, (16)

epva would closely approach e y\vsg(k,,)-
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e [t also follows from the above that if the
reference system f(k) was set such that®

w(k) = w(km) - 6(k — km) (17)

with |w(kp)| # 0, erya would even be
identical to envsg(k,)- Note that both
equation (17) and (16) would obviously en-
sure the uniqueness condition (15).

In other words: The better the reference sys-
tem deconvolves the channel (see eq. (17) and
(16)), the better the resulting EVA solution will
be (in the MMSE sense). For this reason, an
iterative procedure to adjust the reference sys-
tem’s coefficients was suggested where f(k) is
loaded with the equalizer impulse response cal-
culated in the previous iteration [22, 20]. Af-
ter some iterations (based on the same block of
received data samples), both the reference sys-
tem and the equalizer will have the same im-
pulse response being very close to the MMSE-
(4, k) equalizer. An improved convergence rate
can be obtained by a stepwise increase of the
equalizer order ¢ during the iteration procedure.
The resulting overall algorithm was termed EVA
standing for KIGENVECTOR ALGORITHM FOR
BLIND EQUALIZATION [20].

SRemark: If (17) holds, y(k) is proportional to d(k—km ),
i.e. the matrix C%" in (12) refers to a training se-
quence and EVA becomes a non-blind approach using
¢34(0,0,0) as a quality criterion. In this case, f(k) gen-
erates a sequence of reference data within the receiver.
Hence its designation as “reference system”.

3 Eigenvector algorithm for
blind system identification
(EVI)

Objective: As opposed to the previous section,
the objective now is to estimate the channel im-
pulse response h(k) from the received data v(k),
only. Obviously, this system identification prob-
lem is closely related to equalization. A simple
approach would be to take the coefficients of the
inverse equalizer as an estimate for the channel
impulse response. However, this method has two
main problems:

P1: The required equalizer order can be very
high in case of critical channels: In order
to allow the FIR equalizer to perfectly ap-
proximate the inverse channel (i.e. an au-
toregressive model), its order would have
to be infinite. In other words, even in
the noiseless case, the resulting channel
estimates would be biased for any finite
equalizer order, especially if the effective
order of the channel’s inverse system was
high (i.e. for critical channels). Thus, the
identification of a channel as simple as
H(z) =1+ 2! would be quite expensive
(and biased even in the noiseless case).

P2: The second disadvantage results from the
influence of additive noise. As explained
in section 2, EVA closely approximates
the MMSE equalizer solution, which is the
optimum solution for (linear symbol-rate)
equalization. However, the inverse EVA
solution does not correspond to the chan-
nel transfer function, if noise is present.
Again, we would end up with biased chan-
nel estimates.

In this section, we present a novel method for
blind MA system identification which does not
reveal P1 and is quite robust with respect to
P2. In section 3.1, we derive a novel equa-
tion for blind identification from the EVA equa-
tion (12). It also requires the solution of an
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eigenvector problem. The dimensions of the in-
volved matrices depend on the equalizer order
¢ rather than the channel order g. Therefore,
the solution reveals problem P1. In section 3.2,
we demonstrate how unbiased channel estimates
can be obtained in the noiseless case by altering
the eigenvector problem. Thus, problem P1 is
evaded. In order to guarantee the uniqueness of
the eigenvector equation’s solution and to im-
prove estimation wariance, we present in sec-
tion 3.3 a two step approach called EVI standing
for EIGENVECTOR APPROACH TO BLIND IDEN-
TIFICATION. For an appropriate adjustment of
the reference system’s coefficients, EVI uses in
its first step the EVA method as described in
section 2. Then, the eigenvector problem men-
tioned above is solved in the final identification
step. Notice, however, that we do not require
perfect equalization to obtain good channel esti-
mates! Finally, we show in section 4 that EVI
has favorable properties regarding problem P2.

3.1 The fundamental EVI solution

According to section 2, the solution of the EVA
equation (12) is close to the MMSE-(4, ky,) so-
lution (2)

-1 v
epva = Ry C{’erva/A

18
R eMMSE(km) — R, Tva - (18)

From this approximation we realize that the ex-
pression CY"egya /) plays the same role in blind
equalization as does the cross-correlation vector
r'yg in non-blind equalization:
L
\ C) epva = 1y . (19)
For zero-mean i.i.d. channel input data d(k) with
variance a?l, the vector r,4 is linked to the chan-
nel impulse response h(k) by

ryg =03 -h, (20)
where

h = [h*(km), h* (km — 1),---, h*(0),0,---,0]".

(21)

Choosing a sufficiently long delay value k,,, the
length £+1 vector h contains the complete (com-
plex conjugate) channel impulse response in re-
verse order. Upon insertion of equation (20) into
(19), we obtain a formula to estimate the chan-
nel impulse response from the estimated equal-
izer coefficients

U(QihEVI é %CZUGEVA . (22)
Multiplying the upper equation of (18) with
CY" /X and inserting equation (22) on both sides,
we obtain a direct expression for the blind iden-
tification of an MA system [25].

Mgy = CY' R, hgy

“EVI equation”
(23)
Eq. (23) is termed “EVI equation”. Again, an
eigenvector problem has to be solved. Note that
it still involves the reference system (by its out-
put y(k)) and the equalizer order ¢ (by the di-
mensions (£ + 1) x (£ + 1) of the matrices CY"
and R,,). The complex conjugate reverse order
eigenvector associated with the maximum mag-
nitude eigenvalue is called “EVI solution”. For
the uniqueness of the EVI solution, the state-
ments made in section 2 for the EVA solution
remain valid: Condition (15) must hold for a
unique channel estimate. We will deal with this
requirement in the end of section 3.2.

The following remarks are in order, now, to
clarify the properties of the channel estimation
approach according to eq. (23) in the noiseless
case: (i) To obtain unbiased channel estimates’,
the dimensions of the (£ + 1) x (¢ 4+ 1) matri-
ces CY" and Ry, must approach infinity. This
evokes problem P1, which will be solved in sec-
tion 3.2 by some modifications to the EVI equa-
tion. (1) As for the wariance, a deconvolving
impulse response f (k) leading to an approxima-
tion of (17) will result in low variance channel
estimates. We will show in section 3.3 how to
select f(k) appropriately.

"Throughout the paper, we assume that the required
cumulant and correlation coefficients are estimated by
unbiased sample averaging.
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3.2 Eigenvector problem for unbiased
channel estimates (noiseless case)

Since the EVI equation (23) was derived from
the EVA solution, the equalization problem is
involved in so far as the dimensions of the ma-
trix CY"R,,} depend on the equalizer order /:
they are (£ 4+ 1) x (£ 4+ 1). As explained in the
second paragraph of section 3, this leads to bi-
ased channel estimates for any given finite order
£. To alleviate this, £ must be very high for crit-
ical channels resulting in a high computational
complexity. This is due to the fact that we im-
plicitly use the inverse system for MA system
identification. Consequently, the long resulting
vector hgyy (length: £ + 1) contains just few
significant elements (depending on the channel
order ¢q) whereas all the others should be zero.
In the sequel, it is examined whether the ma-
trix dimensions in the EVI equation (23) can be
reduced. It is also demonstrated how unbiased
channel estimates can be obtained (thus avoid-
ing problem P1) by replacing a section of the
inverse autocorrelation matrix with a modified
matrix. With these modifications, the computa-
tional complexity of our approach is also reduced
drastically.

3.2.1 Reducing matrix dimensions ...

As the transmitted data d(k) are regarded as an
i.i.d. sequence of random variables, the range of
lags of non-zero cross-cumulants is restricted to
the channel order q. Thus, the (£ + 1) x (£ +
1) Hermitian cumulant matrix CY" is banded
with bandwidth 2¢ + 1. The area of support of
matrix C4" can be illustrated by the following
representation of the EVI equation (23).

A hEVI = CZU R;UI hEVI (24)

Furthermore, the reference system used with
EVA determines the delay k,, caused by the
combined channel/equalizer impulse response.
Thus, depending on the number of minimum
and maximum-phase channel zeros, the position
of the channel impulse response calculated from
equation (23) within the vector hgyy is fixed,
too. The significant estimated channel coeffi-
cients are always located within 2¢ + 1 adjacent
elementNS of hgyi. Together, they form the sub-
vector hgyy. The other elements of hgyy con-
verge to zero. Therefore, just a (2¢+1) x (£+1)
submatrix of C§" and a (£ + 1) x (2¢ + 1) sub-
matrix of R;,! are relevant for identification. In
equation (25), an illustration of the EVI equa-
tion (23) is given, where the non-zero parts are
located within the horizontal and vertical stripes
marked by the lines. The eigenvectors can thus
be calculated from a matrix with reduced dimen-
sions (2g+ 1) x (2g + 1). Without loss of gener-
ality we obtain from equations (24) and (25) the
regions of support shown in equation (26), where
the relevant range Ry, of the inverted autocor-
relation matrix R,,' follows from the region of
support of C{". Just the indicated areas of sup-
port are relevant for a proper solution of the EVI
equation (23). For this reason, the complexity
of the eigenvector problem can be reduced by
solving

)\ﬂ EVI = azv Rinv EEVI ) (27)

where the dimensions of C¥” are (2q+1)x (4g+1)
and R, represents the significant (4q + 1) x
(2¢+1) submatrix of R;,!. Here, the dimensions
of both matrices involved in this equation are
determined by the channel order ¢ rather than
the order £ of the equalizer.

However, the equalizer order £ is still involved in
equation (27), because we are required to invert
the (/4 1) x (£ + 1) autocorrelation matrix R,
in order to select the submatrix R;,, from the
inversion result R;,!. Even worse, the dimen-
sions of Ry, need to approach infinity to deliver
the optimum submatrix R;,, leading to unbi-
ased channel estimates.
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o | | 1T 11 o

A hpyt | = #0 #0 hpy }2614-1 (25)
0 0

i I or 7 e "1 |
c] e ]

M hpyv | = Rinv h vy dg+1 (26)
A I

3.2.2 Avoiding problem P1 ...

Further considerations detailed in Appendices A
to D show that unbiased channel estimates can
be obtained without the inversion of an infinite
dimensions matrix. Replace R;,, in equation
(27) with the (4g+1) x (2g + 1) Toeplitz matrix

[ Tinv(_q) e rinv(_Qq) 0 ]
_ Tinv (l]) Tinv (_2(])
Rinv é : :
Tinv (2(]) Tinv (—l])
L 0 Tinv (2(]) Tinv (Q) J

(28)

and determine its 4¢q + 1 different elements ac-
cording to

Tinv (_2Q)
: v
Tinv(29) 2q 2¢q
(29)
Rather than inverting an infinite dimensions au-

tocorrelation matrix, we just need to invert the
modified (4¢ + 1) x (4g + 1)(!) autocorrelation

matrix ﬁm,. Note that this matrix is always
non-singular, even if there exist channel zeros
on the unit circle.

Finally, the eigenvector problem (27) can be re-
written as

“Modified EVI
equation”

. (30)
where hpyy is a length 2¢g + 1 column vector,
CY" represents a (2¢ + 1) x (4¢ + 1) submatrix
of CY¥" as indicated in eq. (26) and the (4q +
1) X (2¢ + 1) matrix Ry, is defined according
to equations (28) and (29). Note that it is due
to the substitution of R;,, for R;,, that the
“modified EVI equation” (30) yields unbiased
estimates (in the noiseless case) and thus avoids
problem P1.

Ah gy = aiv Rino hpyi

3.2.3 Properties of the
modified EVI solution

Now, remember that for unique channel esti-
mates, condition (15) must hold. We show with
a simple example that it is sufficient for unbi-
ased estimates that the two largest coefficients
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of the combined channel/reference system im-
pulse response w(k) = h(k) * f(k) have slightly
different magnitudes. Consider the fourth or-
der MA channel C1 which will be used for the
simulation results given in section 4. Fig. 3a dis-
plays the zeros of H(z) = Z{h(k)} in the com-
plex plane. The small top right subplot shows
the magnitude impulse response. From these
plots, we realize that C1 has two zeros relatively
close to the unit circle and two identical maxi-
mum magnitude coefficients: |h(2)] = |h(4)| =
maxy{|h(k)|}. Setting the reference system to
f(k) = d(k —4), the impulse response w(k) has
two identical maximum magnitude coefficients,
too. As we investigate the asymptotic case in
this example, we use true values for the matri-
ces CY" and Ry, in the modified EVI equation
(30). The magnitude of the resulting impulse re-
sponse “estimate” ﬁ(k) is indicated by “x” sym-
bols (and dashed vertical lines) in Fig. 2. For
comparison, the magnitude of the shifted true
channel impulse response is depicted by circles.
From Fig. 2a, we can see that the “estimate”
does not correspond to the true channel impulse
response. This is due to the violation of con-
dition (15). If however, we slightly modify the
channel impulse response so that there is a dif-
ference of, say, ~ 10™° between the magnitudes
of the two largest channel coefficients, we realize
from Fig. 2b that eq. (30) delivers the true chan-
nel impulse response. This demonstrates that,
in practice, we will almost always obtain unbi-
ased channel estimates.

From this example, we also realize that equa-
tion (30) is robust with respect to an overestima-
tion of the channel order: Although the channel
has 5 non-zero coefficients, 11 MA parameters
are “estimated” in Fig. 2. As “knowledge of the
system order is of utmost importance to many
system identification algorithms” [1, 38, 12], this
property must be emphasized adequately.

In summary, we state that with the modifica-
tions to the original EVI equation (23), we ob-
tain a genuine identification algorithm (deliver-

a )= h4)

05 xx [A(K)|
00 |hk-3)|

0.4
T
— 03
X X
(£ :

02 x

o1

0 2 4 6 8 10
k -
b) ()= Ih(@) + 109
05 x < [A(K)|
00 |hk-3)|

0.4
T
— 03
4
=
— 02

0.1

0 ) 4 6 8 10

Fig. 2: EVI “estimates” obtained from eq. (30)
assuming true statistics. Two largest coefficients
of w(k) with a) ...

a difference of ~ 10~° in magnitudes

identical magnitudes b) ... with

ing unbiased® channel estimates) while retain-
ing the benefits of an approach to equalization
(insensitivity to order overestimation). Further-
more, they lead to a considerable decrease in
computational complexity.

3.3 The two step EVI approach

Assuming the knowledge of the true values of
(Njgv and Ry, in equation (30), we have shown
in the above example that it is very unlikely to
end up with a wrong channel “estimate”, be-
cause this requires f(k) to be selected such that
w(k) has at least two largest coefficients with

8Strictly speaking, EVI’s estimates are unbiased in the
noiseless case, only. However, we show in section 4
that they are very robust with respect to additive white
Gaussian noise. Although no proof is available, a justi-
fication for this robustness is given in Appendix E.
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EIGENVECTOR APPROACH TO BLIND IDENTIFICATION (EVI):

appropriate reference system.

S1: Execute some EVA iterations (as described in section 2 and [20]) to generate an

S2:  Set up matrices CY (submatrix of CY" calculated in the final EVA iteration) and
Ry, (upon inversion of the (4g + 1) x (4q + 1) autocorrelation matrix R,,) and
solve the modified EVI equation (30). Choose the eigenvector associated with the
maximum magnitude eigenvalue and take the complex conjugate reverse vector
as an estimate (k) of the channel impulse response.

Table 1: The EIGENVECTOR APPROACH TO BLIND IDENTIFICATION (EVI)

identical magnitudes. However, if these matri-
ces are estimated from finite data blocks, the
estimation variance will depend on the actual
impulse response w(k), too. To obtain mini-
mum variance channel estimates, equation (17)
must be approximated®. This can be done by
adjusting f(k) with the iterative procedure de-
scribed in the end of section 2: f(k) is loaded
with the equalizer impulse response calculated
in the previous step. This results in a two step
identification algorithm, termed EIGENVECTOR
APPROACH TO BLIND IDENTIFICATION (EVT),
where some EVA iterations are executed prior to
the solution of the modified EVI equation (30).
Table 1 provides a description of EVI.

Its main parameters are:

S1: — The order £ of the equalizer and the ref-
erence system.
— The number L of received data samples
v(k) used to estimate R, and C¥".
— The number of EVA iterations executed.

S2: — The estimated channel order 4. As EVI
does not suffer from choosing ¢ > ¢, ¢ can
also be considered the maximum expected
(effective) channel order.

— The number L of received data samples
v(k) used to estimate R,, and C¥".

Remark: Although EVA is executed in step S1,
note that we are not interested in perfect equal-

9Notice that this also avoids the effects of an “unlucky
guess” of f(k).

ization, here. FEwven without step S1, i.e. with
the reference system set to f(k) = d(k—ko), EVI
yields the true channel impulse response (assum-
ing true values of the correlation and cumulant
sequences as well as the noiseless case). For this
to be true, we do mot need a reference system
that equalizes the channel (therefore, the equal-
izer order ¢ can be relatively small in step S1).
We just require the combined channel/reference
system impulse response w(k) have a single max-
imum magnitude value (condition (15)). Only
when considering estimation variance in terms
of the number of data samples used to estimate
the correlation and cumulant sequences, a de-
convolving reference system will prove to be fa-
vorable. These are the two reasons why we exe-
cute EVA iterations in step S1 prior to the iden-
tification step S2.

Summary: Since EVI yields unbiased® channel
estimates with low standard deviation, it rep-
resents an efficient fast approach to blind MA
system identification. Remember that this is
true even if the channel order ¢ is overestimated
(G > q). In section 4, we show that EVT is also
robust with respect to additive white Gaussian
noise.
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4 Simulation results

In this section, the estimation performance of
EVI (as described in section 3.3) is illustrated
by five simulation results, which are based on
the channel examples C1 to C5 described in Ta-
ble 2. With the synthetic time-invariant MA
and ARMA channels C1 to C4, the quality of
EVT’s estimates is demonstrated (i) in terms of
the number of received data samples (cf. require-
ment R1 in the introduction), (7) with mis-
assumptions for the channel order (R3), and
(1) in presence of additive noise (R4). With the
help of channel C5, which stands for a collection
of piecewise time-invariant approximations of re-
alistic mobile radio channels under GSM (Global
System for Mobile Communications) conditions,
we investigate whether or not the four require-
ments R1 to R4 can be satisfied at the same
time.

Ch. | Order | Description

ex. q

C1 4 Critical MA channel with two
equal magnitude coefficients
and two critical zeros

C2 4 Equivalent minimum-phase sys-
tem (same magnitude transfer
function as C1)

C3 oo | ARMA system (first order all-
pass)

C4 4 Critical MA channel with two
equal magnitude coefficients
and four critical zeros

Ch <4 | Collection of nine mobile radio
sample channels

Table 2: Channel examples used for the simula-
tions

EVT’s estimation performance is also compared
with the W-SLICE algorithm by Fonollosa and
Vidal [12]. We will refer to this method as the
WS algorithm. It computes the channel im-
pulse response as a linear combination of 1D
(auto)cumulant slices, where we apply fourth
order cumulants only to avoid the problem of

weighting between the sets of 4th and 2nd or-
der cumulants (unfortunately, this problem is
not addressed in [12]). To exploit a maximum
amount of statistical information, we use the
complete set of fourth order cumulants for WS.

Table 3 summarizes the main parameters of the
simulations. Referring to Fig. 1, an i.i.d. QPSK
(Quaternary Phase Shift Keying) or BASK (Bi-
nary Amplitude Shift Keying) random sequence
d(k) is propagated through one of the channel
examples C1 to C5. The resulting steady state
channel output sequence is corrupted by inde-
pendent stationary zero mean additive white
Gaussian noise (AWGN) n(k) according to a
given signal-to-noise ratio S/N. Based on a
block of L received data samples v(0),---,v(L —
1), the cumulant and correlation sequences re-
quired by the respective algorithm are estimated
by unbiased sample averaging. Finally, the
channel impulse response estimate A(k) is cal-
culated according to the respective approach.
In the frame of Monte-Carlo runs, M, different
channel input sequences d(k) are generated to
obtain M, estimated channel impulse responses
ﬁ(“)(k) with 4 = 1,---, M.. Estimation qual-
ity is assessed by the mean + standard devia-
tion values or the normalized mean square er-
ror of the estimates. However, as all blind sys-
tem identification algorithms can not estimate
one complex factor, each estimate is multiplied
with the optimum constant (minimizing the es-
timate’s Euclidean distance from the true chan-
nel impulse response) before estimation quality
is assessed.

4.1 Synthetic channel examples
C1 to C4

With the following four simulation results,
QPSK signalling is applied to the synthetic
channel examples. For C1 to C4, Figure 3 dis-
plays the zeros of H(z) = Z{h(k)} in the com-
plex z-plane as well as the magnitude of the
(complex) impulse responses h(k).

Figure 4: Channel example C1 (see Fig. 3a)
is rather unfavorable for EVI since two channel
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Fig. | Modula- | Channel | AWGN Number L of | Simulation
no. | tion d(k) | example | S/N | received samples | demonstrates ...
4| QPSK C1 =0 50,---,5000 EVI and WS convergence rates
5| QPSK C2 =0 50,---,5000 EVI and WS convergence rates
6 | QPSK C3 =0 500, 2000 EVTI allpass approximation
7,11 | QPSK C4,C1 | >3dB 5000 EVI performance in presence of noise
10 | BASK C5 >7dB 142 (GSM) EVI/WS performance with short records
Table 3: Overview of the main simulation parameters
& Channd C1 b) Channe C2 of EVA iterations (eight in this example).
1.2 | [ [ I [ 1; [ [IEERER, In Figure 4, the mean (solid lines) + standard
1 , deviation values (dotted) of the ¢+ 1 = 9 coeffi-
105 s cients'! of M, = 50 impulse responses estimated
E-o.z g-o.g by EVI (Fig. a) an(‘i WS (Fig. b) in the noise-
N B} N o less case are given in terms of the blocklength
-5 15 L. The magnitudes of the true channel coeffi-
e R T N R cients are indicated by arrows on the right mar-
Re(z} - Re(z} - gins. This example illustrates that EVI yields
©) Channel C3 d) Channel C4 unbiased estimates for L > 500 approximately,
1.2 1199 00000ninss 1; [ [ whereas the WS method delivers biased coeffi-
1 . i cients even with 5000 data samples. As for the
os 103 estimation variance, EVI achieves comparable
%_02 %_O.g values of variance with blocklengths smaller by
4 4 a factor of about 10.
12 12 Remark: For channel C1, a comparison of EVI
. Pt am. with the GM METHOD [14] was presented in [25].

Fig. 3: Zero plots and magn. impulse responses
of the synthetic channel examples C1 to C4

zeros are close to the unit circle!? and two coeffi-
cients of the impulse response are exactly equal
in magnitude. The former property would re-
quire a large equalizer order for a proper equal-
ization (nevertheless, we select for the EVA it-
erations in step S1 of EVI an equalizer of order
¢ = 16 only, which is sufficient for the generation
of an adequate reference system). On account of
the latter property, the optimization of the ref-
erence system requires a relatively high number

19The minimum distance is 0.0797 corresponding to a
spectral null which is 21.1 dB below the spectral peak.
Unnormalized channel impulse response of Cl: h(k) =
[0.440.3j, —0.6—0.45, 0.5—0.65, 0.2—0.45, 0.6—0.55].

Similar to the WS result, the GM method deliv-
ered biased coefficients with 5000 data samples
(even with 500000 samples, in fact). Actually,
there are quite a few algorithms (e.g. [38, 39, 1])
which are, just as the GM method, based on the
same quadratic equation (see eq. (8) in [1], e.g.).
As the performance levels obtained by these al-
gorithms seem to be roughly of the same order
of magnitude, we do not consider any represen-
tative of this class of algorithms in this paper.

Figure 5: Channel example C2 (see Fig. 3b) is
the equivalent minimum-phase system of chan-
nel C1, i.e. all zeros zy of C1 with |zg| > 1 are
moved to the location 1/z; inside the unit circle

"1n this section, the “estimated channel order” § is de-
fined as the number of estimated channel coefficients
minus one.
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Fig. 4: Estimation of the MA channel C1 in
terms of the blocklength L: a) EVI as described
in section 3.3; b) W-SLIiCcE (WS) algorithm [12].

of the complex z-plane. From Figure 5b, we real-
ize that the WS estimation quality of minimum-
phase channels such as C2 is largely superior to
that of a mixed-phase channel (cf. Fig. 4b). Just
as EVI’s estimates of C1 in Fig. 4a, the WS es-
timates of C2 are unbiased from about L = 500
samples on. In the case of EVI, the variance of
C2’s estimates is also lower than that for C1,
especially for small sample sizes (L < 500). In
summary, EVI delivers a slightly better estima-
tion performance for channel C2.

Figure 6: Channel example C3 (see Fig. 3c)
is a first-order allpass. Although this is a recur-
sive system, its impulse response can be approx-
imated by a finite length impulse. Remember
that the effective length of the allpass impulse
response depends on the pole’s magnitude |z
In this example, we pick zoo = 0.8¢/™/4. This al-

a) EVI estimates of channel C2
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Fig. 5: Estimation of the MA channel C2 in
terms of the blocklength L: a) EVI as described
in section 3.3; b) W-SLICE (WS) algorithm [12].

lows an impulse response approximation by an
order 16 MA model.

Figures 6a and d display the magnitude (mean
+ standard deviation) of the M, = 25 impulse
responses estimated on the basis of L = 500
and 2000 received data samples, respectively
(¢ = 32). Figures 6b,e and 6¢,f show the corre-
sponding magnitude of the frequency response
and the group delay. Again, the mean + the
standard deviation values are marked (solid and
dotted lines, respectively). The true values are
indicated by dashed lines.

Figure 7: As opposed to fourth order cumu-
lants, the correlation sequence is influenced by
independent stationary additive Gaussian noise
(AGN). Since the modified EVI equation (30)
uses both the correlation and the cumulant se-
quences, it is obvious that the EVI solution is
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Fig. 6: EVI estimation of the ARMA channel C3 (see Figure 3c)
a-c) L = 500 received data samples used to estimate EVI’s matrices; d-f) L = 2000

degraded by AGN. Some examples to illustrate
this degradation due to zero mean additive white
Gaussian noise (AWGN) are given in the sequel.
In this case, the autocorrelation sequence is dis-
turbed at lag zero only, i.e. the elements on the
main diagonal of the matrix ﬁvv are increased
by the value of the noise power.

For the fourth order MA channels C4 and C1,
Figure 7 demonstrates EVI’s estimation perfor-
mance in terms of the noise-to-signal (N/S) ra-
tio of the received signal. In Figures 7a to c,
channel C1 according to Fig. 3a is reconsidered,
whereas in Figures 7d to f, the channel example
C4 with transfer function H(z) = 1 +0.999 z—*
is regarded (see Fig. 3d). As the two largest co-
efficients of its impulse response have nearly the
same magnitudes and four zeros are extremely
close to the unit circle!?, C4 is critical for a

20 201] = ... = |z04] = 0.99975 leading to spectral nulls
66 dB below the spectral peak.

proper adjustment of the reference system co-
efficients in step S1 of EVI.

Figures 7a and d display the magnitudes of the
estimated channel coefficients as a function of
N/S, where true autocorrelation values with su-
perimposed noise power (at lag zero) and true
cumulant values are used. Thus, these results
correspond to the asymptotic case, where an in-
finite number L of received data samples is avail-
able for the estimation of the correlation and
cumulant sequences. For comparison, the true
magnitude channel coefficients are indicated by
arrows on the right side. First, we realize from
these figures that the channels are correctly
identified in the noiseless case. For channel C1
(Fig. 7a), the degradation due to AWGN is neg-
ligible up to (at least) N/S = 0.5 (S/N = 3 dB).
From Fig. 7d, we see that even with the critical
channel C4, the degradation is very small, al-
though the effect of AWGN is increased. Ignore,
for the moment, the negative values of N/S.
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Fig. 7: EVI estimation performance in presence of additive white Gaussian noise

a-c) Channel C1 (see Figure 3a);

In Figures 7b and e, the trajectories of the “esti-
mated” zeros are drawn for N/S ratios ranging
from 0 to 0.5. As we overestimate the channel
order ¢ = 4 in these examples (¢ = 8), true ze-
ros (marked with circles) are added in the origin
of the complex z-plane (and in |z| = o0). The
trajectories emerge from the true zero locations
corresponding to the noisefree case (N/S = 0).
With the N/S ratio reaching the value of 0.5,
the zeros approach their final position marked
with plus symbols (“+”). We find that the chan-
nel zeros are correctly identified for the com-
plete range of N/S ratios. Further zeros are
introduced which leave their ideal positions (in
|zl = 0 or |z| = oo) as the noise power is in-
creased. Since these additional zeros are spaced
equidistantly on circles, their influence on the es-
timated channel impulse response is negligible.
Note that a justification for EVI’s robustness
with respect to AWGN is given in Appendix E.

d-f) Channel C4 (see Figure 3d)

Figures 7c and f display (in terms of N/S) the
mean (solid lines) + standard deviation (dot-
ted) values of the coefficients of M, = 100 im-
pulse responses estimated by EVI on the basis of
L = 5000 received data samples. We can state
that the mean values are quite robust to an in-
crease in the noise power. Just the standard
deviation increases as S/N degrades.

The remaining noise influence can be compen-
sated for provided that the noise correlation se-
quence is known. If this is not the case, it
can be estimated with an alternative method
based on fourth order cumulants [24]. With this
approach, the autocorrelation estimates of the
received signal do not contain Gaussian noise
whereas the conventional autocorrelation esti-
mates do. The difference between both yields
the noise correlation.

To compensate for the noise, EVI’s matrix f{m,
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must be rectified. In case of AWGN, its power
has to be subtracted from the main diagonal
only. In order to assess the influence of a
noise overcompensation, negative values of the
N/S ratios are also considered in the Figures 7a
and d. Figure 7a reveals that an overcompensa-
tion may cause severe degradations.

4.2 Realistic mobile radio channel ex-
ample C5

In this section, we attempt to estimate mobile
radio communication channels on the assump-
tions typically made in GSM receivers (Global
System for Mobile Communications). Accord-
ing to the GSM standard (refer to [28], e.g.),
information symbols are transmitted in bursts
where each “normal” burst (see Fig. 8) contains
two packets of 58 data symbols (bits) surround-
ing a training sequence of 26 bits. For (non-
blind) channel estimation, state-of-the-art GSM
receivers use the training sequence, while, for
blind channel estimation, almost the entire burst
could be used (142 symbols).

< 142bits — >

3] 58Databits |26 Train.bits| 58 Databits  [3]cuad]
! Burst (0577ms) T
< !

Fig. 8: GSM “normal” burst

In a mobile scenario, the physical multipath ra-
dio channel is time-variant with a baseband im-
pulse response depending on the time difference
T between the observation and excitation in-
stants as well as the (absolute) observation time
t. We adopt the stochastic zero mean Gaus-
sian Stationary Uncorrelated Scattering (GSUS)
model [31] leading to the following impulse re-
sponse of the composite channel [18]

N,
1 S
he(T,t) = ~ E eI fanttOu) . grp(r — 1),
€ v=1

VN £Z

(31)
where N, is the number of elementary echo
paths, ¢grg(7) denotes the combined trans-
mit /receive filter impulse response, and the sub-

script in h.(-) suggests its continuous-time prop-
erty. 3D sample impulse responses can easily be
determined from (31) by independently drawing
N, Doppler frequencies fq,, N, initial phases
©,, and N, echo delay times 7, from random
variables with Jakes, uniform, and piecewise ex-
ponential probability density functions, respec-
tively. As for the echo delay times 7,, we use
standard COST-207'3 Typical Urban (TU), Bad
Urban (BU) and Hilly Terrain (HT) profiles.

i A
ht‘“\\ i “02‘ \
/ \&g"”l’“":l‘

/T =1/37us -

Fig. 9: Sample magnitude impulse response
of a COST-207 Bad Urban (BU) channel with
raised cosine transmit/receive filtering (r = 0.5),
T =3.7us, famez =88 Hz

Figure 9 shows, in non-causal representation,
a sample magnitude impulse response |h.(7,1)],
obtained from equation (31) with N, = 100, of
a Bad Urban channel with raised cosine'® trans-
mit and receive filters (r = 0.5). Both time axes
are normalized to the GSM symbol (bit) period
T = 3.7 us. The velocity of the mobile unit is
v = 100km/h. Assuming a carrier frequency of
950 MHz, this leads to a maximum Doppler shift
of fa.maez = 88 Hz. Equation (31) was evaluated

13(European) Cooperation in the field of Scientific and
Technical research, project #207.

" The authors are well aware of the fact that GSM trans-
mitters use non-linear GMSK modulation (Gaussian
Minimum Shift Keying). However, we consider linear
modulation in this example in order to avoid system-
atic errors in the channel estimates. Simulation results
taking into account transmitter non-linearity are given
in [6, 9, 8].



ELSEVIER SIGNAL PROCESSING, VOL. 66, NO. 1, ApRIL 1998 19

over a t range covering one minimum Doppler
period Tqmin = 1/ fdmaz = 30807 = 11.4 ms.

Assuming quasi time-invariance over one
burst'S, h.(7,t) is sampled on the ¢ axis each
150 bits (cf. Fig. 8). This produces 21 slices
within the ¢ range of 30807, which can be
seen in Fig. 9 as surface lines parallel to the
7 axis. Furthermore, each slice is sampled at
7 = kT and then constrained to the index range
k where the associated sample power delay
spectrum exceeds the threshold of 1% of its
maximum value.

h6) 2 hotrt) for {775

where ¢ =0, -- -, 20.

On the above assumptions, nine different sam-
ple GSUS composite channels h.(7,t) were ob-
tained from eq. (31) by combining three COST-
207 propagation environments (TU, BU, HT)
with three raised cosine transmit /receive filters:
roll-off factors r € {0.9,0.5,0.1}. Let BU-(0.5)
denote the Bad Urban channel with roll-off fac-
tor r = 0.5, e.g.. According to eq. (32), each
channel h.(7,t) was decomposed into 21 slices
h(k,&). This collection of 9 piecewise time-in-
variant channels will be called “channel set C5”.
Referring to Fig. 1 with h(k, &) substituted for
h(k), M. = 100 bursts of 150 i.i.d. BASK (Bi-
nary Amplitude Shift Keying) symbols d(k) were
propagated through each channel slice. Then,
WS and EVI were applied to L = 142 samples
of v(k). Both algorithms were given the effec-
tive length of the sample power delay spectrum,
which is equivalent to the mean length of the
channel impulse response. Note that the actual
effective length of a channel slice may well be
shorter due to time selective fading.

Estimation quality measure: Let h(W) (K, €) de-
note the estimate of h(k,¢) based on the pth
input burst (ux = 1,---, M,). For each slice in-
dex &, estimation quality is assessed on the basis
of the averaged Normalized Mean Square Error

5Notice that this is also supposed in state-of-the-art
(non-blind) GSM receivers.

(NMSE)

2 54 10 (k,€) — h(k,©)]?
NMSE() = Z zk\h(k,fn?

(33)

Figure 10: From the set C5 of nine sample
channels described above, we have selected for
Figure 10 six examples by combining the prop-
agation environments TU, BU and HT with
the roll-off factors » = 0.5 (Figures a to ¢) and
0.1 (Figures d to f). For each channel, Fig. 10
shows the NMSE(¢)-values (in per cent) of WS’
and EVI’s estimates for different values of S/N,
where the noiseless case is marked by “o” sym-
bols, while “x” and “4” stand for S/N = 10 dB
and 7 dB, respectively [5]. The NMSE(¢)-values
for WS are connected by dotted lines, those for
EVT by solid lines. Note the different scaling on
the NMSE(¢) axes of Figure 10.

From Figures 10a and d, we realize that EVI
can estimate the T'U channels very well, even at
S/N =7dB (“+”): the NMSE({) values are be-
low 3% for most slices. Conversely, assuming an
acceptance threshold value of 5% (dashed lines),
WS can not identify slices £ = 12 to 17 of chan-
nel TU-(0.5) (Fig. a) and all but the last two
slices of TU-(0.1) (Fig. d). It turns out that
these slices are mixed-phase, so that these re-
sults are in accordance with those presented in
Figure 4 for the mixed-phase channel C1. Apart
from the last slice (¢ = 20), EVI largely outper-
forms WS at any given S/N.

Comparable statements can be made for the BU
channels in Figures 10b and e (note that the
channel used for Fig. 10b was shown in Fig. 9):
although there are channel slices, where WS and
EVI perform almost equally well (¢ = 6 to 8 and
18 to 20), there is a huge performance gap for
the mixed-phase channel slices (¢ = 0 to 2 and
10 to 14). For all slices of BU-(0.5) and 18 out
of 21 slices of BU-(0.1), EVI’s NMSE(¢)-values
remain below 5%, while this is true for WS’ esti-
mates for 10 (BU-(0.5)) and 2 (BU-(0.1)) slices,
only. Again, for all slices and S/N ratios, EVI’s
performance is superior to that of WS.
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a) NMSE(€) in % of Ch. TU-(r=0.5)

b) NMSE(E) in % of Ch. BU-(r=0.5)

¢) NMSE(&) in % of Ch. HT-(r=0.5)
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Fig. 10: EVT (solid) and WS (dotted) estimates of channels C5 from 142 samples

AWGN: “o”: §/N =00, “x:

a-c): Roll-off factor r = 0.5,

In case of the HT channels, we can see from
Figures 10c and f that both approaches success-
fully identify all slices: all NMSE({)-values are
around 3% in the noiseless case and around 4%
at 7 dB. If we average NMSE(¢) over all slice in-
dices £ to obtain NMSE, it turns out that WS’
performance is slightly better than that of EVI.
It should be noted that, by mere coincidence,
all channel slices were minimum-phase in this
example.

Finally, Table 4 summarizes the NMSE-values
for the entire set C5 of sample channels, where
those exceeding 5% are marked in boldface [5].
The first value in each column refers to WS,
while the second applies to EVI. We realize that
WS can not identify satisfactorily the BU chan-
nels as well as TU-(0.1). On the other hand,

10 dB,
a, d) Typical Urban (TU), b, e): Bad Urban (BU),
d-f): roll-off factor r = 0.1

“+7: 7dB
¢, f): Hilly Terrain (HT)

EVI is capable of estimating all channel exam-
ples at S/N ratios down to 7dB (10dB) to
within an outstanding NMSE bound of 4.3%
(3.5%). This demonstrates that EVI can satisfy
the requirements R1 to R4 at the same time.

It should be noted that EVI’s estimates of criti-
cal channels (those with zeros very close to or on
the complex plane’s unit circle) can be improved
by adjusting EVI’s parameters: in the initial
equalization step, the equalizer order and/or the
number of iterations could be increased. As for
WS, second order statistics could be used in ad-
dition to cumulants in order to improve perfor-
mance. However, this evokes the problem of
how to weight correlation estimates against cu-
mulants. Furthermore, for low S/N ratios, the
estimates will be biased.
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S/N || TU-(0.9) | TU-(0.5) | TU-(0.1)
odB| 29/12] 48/12| 7.5/22
10dB || 30/14| 48/14 | 7.6/25

7dB| 3.1/18| 48 /18 | 7.7/32

S/N | BU-(0.9) | BU-(0.5) | BU-(0.1)
odB| 71/12] 86/20|12.2/27
10dB || 83 /15| 9.9/23 |14.0 /3.2

7dB| 9.5/20|11.2/3.0 | 15.6 /4.3

S/N | HT-(0.9) | HT-(0.5) | HT-(0.1)
~dB| 29/32] 29/32| 29/32
10dB | 33/35| 33/35| 33/35

7dB| 3.8/41| 38/41 | 38/41

Table 4: NMSE [in per cent] for WS’s and EVI’s
estimates of channels C5: Typical Urban (TU)
(above), Bad Urban (BU) and Hilly Terrain
(HT) (below)

5 Conclusions and
further work

In this paper, we have presented a novel algo-
rithm (EVI) for an efficient blind identification
of possibly mixed-phase FIR systems. In the
noiseless case, we have shown how to obtain un-
biased channel estimates by the solution of a
modified eigenvector problem derived from the
closed-form EVA solution to blind equalization.
The modifications to the eigenvector problem
also drastically reduce the computational com-
plexity of this approach. Furthermore, a two
step procedure has been introduced in order to
ensure the uniqueness of the estimate and to
minimize estimation variance for a given num-
ber of received data samples used to estimate the
required correlation and cumulant coefficients.

Various simulation results illustrate EVI’s bril-
liant convergence properties. EVI’s estimation
performance was also investigated in presence
of additive white Gaussian noise. It was demon-
strated by simulation results that the true chan-
nel zeros are still identified properly. Although
some additional zeros were introduced, their in-
fluence was very small even at signal-to-noise

ratios as low as 3dB.

Although the HOS class of blind identification
approaches is said to require excessive amounts
of samples of the received signal to achieve
acceptable performance levels, we have finally
demonstrated in this paper that it is possible
with EVI to blindly estimate realistic mobile ra-
dio channels from one demodulated GSM burst
(142 samples, cf. requirement R1 in the intro-
duction). At a constant signal-to-noise ratio of
7dB (cf. R4), all channel slices (R2, R3) were
identified within a normalized mean square er-
ror bound of 5 per cent. Thus, EVI can meet
the requirements R1 to R4 at the same time.
To the knowledge of the authors, no other HOS-
based algorithm is capable of achieving the cited
NMSE levels on the assumptions made in this
paper. Furthermore, we have shown that the
WS algorithm’s performance level heavily de-
pends on the actual channel impulse response.

While this paper concentrated on the quality of
blind channel estimates, further work will be
directed towards a comparison of the bit error
rates attainable from blind and non-blind chan-
nel estimates. First results based on GSM were
published recently [6, 9]. A comprehensive study
on the feasibility of blind channel estimation in
GSM systems will be provided in [8].

Remark: MATLAB programs implementing both
EVA and EVI as well as compressed postscript
files of preprints of related publications are read-
ily available from our WWW server at the ad-
dress http://www.comm.uni-bremen.de.

Acknowledgements

We would like to express our gratitude to the
anonymous reviewers for having compiled com-
prehensive and thorough reviews leading to nu-
merous modifications throughout the paper. We
also thank the reviewers for their patience with
respect to a considerable delay in the revision
process due to changes of affiliation of all au-
thors.



ELSEVIER SIGNAL PROCESSING, VOL. 66, NO. 1, ApRIL 1998 22

Appendices

A Decomposition of the
cross-cumulant matrix CY"

The cross-cumulant matrix (Njgv in equations
(27) and (30) with the elements

[agv]ilsh = CZU(_Z'l - qaoa _Z'Q) (Al)
= > Wk — iy — q)h(k — i2) [w(k)?
k

(with i1 €{0,---,2q} and i9€{0,---,4q}) can be
decomposed into the following triplet of matrices

~yv o d *
Cl =71 Hpsp11x2001° W-Hgzgr1x4g11 (A2)

where W is the (3¢+1 x 3¢+ 1) diagonal matrix
A L.
W = diag{lw(0), -, [w(30)"}  (A.3)

and Ho 3441x2¢+1 and Hy 3541x4¢+1 represent fil-
tering matrices. Generally, we define the chan-
nel matrix Hy . as the (b x ¢) Toeplitz matrix
with top left element [H, pxcJo,0 = h(a), while
the following elements h(i) of the first row (col-
umn) have decreasing (increasing) time lags i.
Examples are

M h(g) 0
Hg30+1x49+1 2 T
0 h(q) -+ h(0)
(A.4)
and r w 0
Ho3q+1x2¢+1 = h(g) - h(0) |- (A.5)
L0 bl |

The decomposition (A.2) will be used in the se-
quel.

B Effect of R;,, on the
eigenvector problem (27)

In Appendix C, we demonstrate that unbiased
channel estimates can be obtained from eq. (27),

if the (4¢ + 1) x (2¢ + 1) submatrix Ry, of the
(4 1) x (£+ 1) inverse autocorrelation matrix
R} is replaced with a modified matrix. This
can be shown by clarifying the effect of Ry, on
the eigenvector problem (27). For this purpose,
we insert the decomposition (A.2) of CY’ into

equation (27) to obtain

Ah gyy N

= Y4 HE 301 1x2011 WHg 3041 x4g+1 Rinoh mvr

N (B.1)

where h gy would contain the ¢ + 1 true chan-
nel coefficients as well as q zeros, if R;;,,, was the
submatrix of the infinite dimensions inverse au-
tocorrelation matrix. In Appendix D, we show
that, as £ approaches infinity, R, ! has a subma-
trix R;,, approximating Toeplitz(!) structure.
Therefore, R;y, can also be explained as a fil-
tering matrix. Note that the (4g+1) x (2¢+ 1)
Toeplitz matrix R;,, contains 6q + 1 coefficients
of the system correlation sequence 7, (k) of the
infinite length inverse channel. Hence, in equa-
tion (B.1), the result of Hy 3511x4g+1RinvhEvi
corresponds to the convolution of the channel’s
impulse response h(k) with 6¢ 4 1 coefficients of
the inverse channel correlation sequence 7y, (k)
and with h*(—k). Thus, we have h(k)*rjn, (k) *
h*(—k)o?% = riny (k) * 14y (k) = 0(k), or equiva-

lently, in vector notation

Hq,3q+1><4q+1RinvEEVIU(21
= [0,"',0,1,0,"',0]T

3q+1

2% (B2

By the multiplication with the diagonal ma-
trix W according to (B.1), the vector i/o? is
weighted with the constant |w(k,,)[?>. Then,
lw(kp)|?i/0% selects a single column from

0.3g+1x2g+1> SO that equation (B.1) finally
reads as shown in equation (B.3) on page 24,
where ¢+ 1 columns contain the complete chan-
nel impulse response (as indicated by the dashed
rectangles)!'®. As long as the righthand side vec-
tor does not have its non-zero element on the
first (or last) ¢ elements, this selective property

'5Note that for |w(kn)|? /03 to select a single column, it
is also sufficient that equation (17) holds.
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obviously is sufficient for a proper identification
of the channel by the solution of the eigenvector
problem.

C Obtaining unbiased channel esti-
mates (noiseless case)

We show now that it is possible to replace the
matrix R;p, with a computationally less expen-
sive Toeplitz matrix R,;,, while maintaining the
selective property mentioned above. In equa-
tion (B.2), g columns of Ry, are multiplied with
the ¢ zero coefficients of the vector hgyi. Thus,
just 5¢ + 1 out of the 6g + 1 coefficients r;y, (k)
are significant in R;p,. Their selection depends
on the position of h(k) within the vector hpgyy.
According to 7in, (k) ¥ h* (k) = h*(=k) *riny (k)
we can state R;p,hgvr = H3,5q+1x4q+1rmu, SO
that eq. (B.2) can be transformed into equa-
tion (C.1), where the matrix has the dimen-
sions (3¢ + 1) x (5¢ + 1) and the ¢ + 1 values
ofe€{0,---,q} correspond to the g+ 1 different
positions of h(k) within hgyy (length: 2¢ + 1).
The ¢+1 systems of equations according to (C.1)
can be collected into the single system (C.2).
These are 4g+1 equations for the 6g+1 unknown
parameters 7in,(—3q), -+, Tinw(3¢q). Thus, 2q
parameters can be chosen arbitrarily. Letting
for instance 7 (—3¢), - -+, Tinw(—2¢—1) = 0 and
Tinw(2g+1), -+, Tiny (3¢) = 0, the first ¢ columns
as well as the last ¢ columns of the matrix in
equation (C.2) can be omitted.

,iv = ﬁvvFinv é
( ron(0) -+ Tou(—0q) 0 7
; . Tinv(_QQ)
ru () roo(=q) :
- - Tinv(2q)
L 0 rou(q) o0 Tu(0) i
(C.3)

Thus, we have obtained a new system of
equations that also guarantees the selection
of a single column from the channel matrix

0,3g+1x2¢+1- 1f we solve equation (C.3) for the
4q+1 coefficients ri,,(—2q), - - -, Tiny (29) and use

them for the Toeplitz matrix ftmv given in equa-
tion (28), we will thus achieve unbiased channel
estimates (in the noiseless case) from the “Modi-
fied EVI equation” (30) irrespective of the actual
impulse response w(k).

N.B.: Remember that the uniqueness of the
solution still has to be ensured. This prob-
lem is addressed by an example in the end
of section 3.2 and in section 3.3. Also note
that by substituting R;,, for R;ny, the com-
putational effort to calculate the inverse of the
(4 1) x (£ + 1) autocorrelation matrix Ry, is
reduced to calculating the inverse of the smaller
(4g + 1) x (4¢g + 1) autocorrelation matrix R.,.

D Toeplitz structure of the central in-
finite dimensions inverse autocor-
relation matrix

While in general, the inverse of a non-singular
Hermitian Toeplitz matrix (such as the (£+1) x
(£ + 1) autocorrelation matrix R, ) just is Her-
mitian persymmetric [16], we prove here that
the inverse of R, has a submatrix approximat-
ing Toeplitz(!) structure as ¢ approaches infin-
ity. Note that a MATLAB program justifying the
Toeplitz assumption can be retrieved from our

WWW server.

We assume an i.i.d. input sequence d(k) with
zero mean and variance 02 as well as a causal
FIR transmission system h(k) of order g. Let
v(k) denote its output sequence. For notational
clarity, let R, denote the (n x n) autocorre-
lation matrix with n = ¢+ 1. It is Hermitian
Toeplitz and can be represented by

Ryv, = o HyH, | (D.1)

where H,, is the (7 4+ ¢ x n) filtering matrix
Hj ,1¢xy (as defined in Appendix A) with full
column rank.

First, we build a (n X n) upper triangular matrix
E, which orthonormalizes the columns of H,,.
Departing from a matrix with just one column,
this can be done by means of the Gram-Schmidt
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- N r— 1 e :
h*(0) -+ h*(q), , O - 0 :
. | [ [ 0
~ N i Lo | N .
Ayt = 9§ H 5041 x0g01 [w(Em) 2= 0 (O )l 0 ‘w(km)PO__%
d : | e e 0 d
| | U ery | L. gk
L0 c0 L_(_O)J h*(a) ] i |
(B.3)
Tov (Q) Tvv(_Q) 0 Tinv (5 - 3q)
i= U?qu,3q+1x4q+1H3,5q+1x4q+1rz’nv = . . : (C.1)
0 Tvv(Q) e Tvv(_Q) Tinv (5 + 2Q)
[ ron(q) - Tou(—q) 0 0 ]
N - - - : Tinv(—3¢)
i= 0 Tvu(q) v (—q) 0 (C.2)
: ’ - - 'rinv(?)Q)
| 0 0 Tow(q) 0 Tew(—q) ]
orthogonalization process. E, is determined re- and thus
cursively by 1
lim R,,, = — lim (E,E;) . (D.8)
VU, 2 n

(D.2)

where

E -
. ; E,=(HH,)

VE;H;H,E, (1]
(D.3)
As H,E, has orthonormal columns, we have
with the (n x n) identity matrix I, and equa-
tion (D.1)
(E;H;)(HnEn) = I (D.4)
E; (Ryy/03) By = 1, (D.5)
ERy, (EsE;) Jog = E;. (D.6)

enz

Due to its triangular structure with non-
vanishing elements on the main diagonal, Ej
is always non-singular and has therefore an in-
verse. We obtain
Ruvyp (EnE;) [oi = Ty
= R, = (E,E;) /o]

vU,M

(D.7)

We realize that (D.3) represents the calculation
of the coefficients of the maximum-phase pre-
diction error filter. As n approaches infinity, e,
converges to the inverse maximum-phase trans-
mission system so that E, approaches a Toeplitz
structure (just the top left corner of E, does not
have this structure). For the inverse of the au-
tocorrelation matrix (eq. (D.7)), the elements of
any given diagonal are equal to the scalar prod-
uct of two vectors, which — for n — oo — differ
just by a uniform shift. However, this is true
in the center of this matrix, only. Thus, in its
central part, all elements on the same diagonal
are identical, and the inverse of the infinite di-
mensions autocorrelation matrix approximates
a Toeplitz structure. This completes the proof.

|
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E Influence of additive white Gaus-
sian noise

We will justify the conclusion drawn from
Fig. 7b,e in section 4.1 that the channel zeros
“estimated” by EVI using true statistics do not
change significantly under AWGN influence [19].

In Appendices B and C, we have shown that in
the noisefree case

~ o~ i
WH, 50115411 Rinsh vi = [w(km )2 s (E.1)
d

*
selects exactly one column from Hf 5,11, 0041
However, rewriting

=:W3
N

W - Hgy 301154941 RinvhEVI

|w(0)[% - w(0)

(w(3q 4+ 1)]? - wa(3q + 1)

) (E.2)
0
o’ o |’

we realize that both the coefficients w(k) of the
combined channel/reference system and the co-
efficients ws(k) of a weighting vector wy con-
tribute to this selective property.

Figure 11 displays the normalized magnitudes of
w(k) and wo(k) as well as the product |w(k)|? -
|wa(k)| for channel C1 from Figure 7b and noise-
to-signal ratios of N/S = 0 and 0.5. In the noise-
less case (Fig. 11a to c¢), just one element of wy
does not vanish. Thus, the same property holds
for the product (see Fig. 11c). Although in the
noisy case quite a few coefficients ws (k) reveal
non-negligible magnitudes (see Fig. e), the mul-
tiplication with [w(k)|? still ensures a distinctive
peak in |w(k)|? - |wa(k)| and thus guarantees a
good approximation of the selection of a single
column. So, the noise robustness of EVI is due

to the fact that the product |w(k)|? - |wo (k)| de-
cays even more quickly than |w(k)| and |wq(k)|.
As the interpretation of Hp 3 1,0, as a fil-
tering matrix (see in eq. (A.2)) nearly holds, we
can write

hpvr o b (k) (lw(k)? - wa(k) . (E.3)
and in frequency domain
Hpvi(z) o< H*(2") - G(z) (E.4)
with
G(z) = Z{jwk)? wa(k)} . (B.5)

From this relation, we realize that the true chan-
nel zeros are present in EVI's estimates while
excessive zeros are introduced by G(z).
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