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Pragmatic, Unifying Algorithm Gives Power Probabilities for
Common F Tests of the Multivariate General Linear Hypothesis

Ralph G. O'Brien and Gwowen Shieh*

We consider the problem of computing the power of some usual F transforms of the
Wilks U, Hotelling-Lawley T, and Pillai V statistics for testing H0: CCCCBA  = ŒŒŒŒ0 under
the multivariate general linear model, Y = XB + ‰‰‰‰ , where the rows of ‰‰‰‰A are taken
as independent N(0, ÍÍÍÍ) random vectors.  Keeping all these matrices at full rank, let
C be rC × rX and A be P × rA.  For determining p-values, Fi (i ∈  {U, T1, T2, V}) is
taken to be distributed as central F(rCrA, ν(i)

2  ), which is the exact distribution when
s = min(rC, rA) = 1.  For determining powers, we present a pragmatic, unifying
method that takes Fi to be noncentral F(rCrA, ν(i)

2  , λ i), where λ i is isomorphic to Fi.
For any s, we obtain the simple form λi = Nλ∗

i  , where λ∗
i   is not a function of the

total sample size, N.  We show that for s = 1, F(rCrA , ν(i)
2  , λ i) defines the exact

noncentral distribution.  For s > 1, each Fi converges in distribution to its prescribed
noncentral F distribution and numerical work supports the accuracy of all
approximations for obtaining powers for all but very small N.  We exploit the
method to compare the powers of the various Fi statistics.  Finally, we illustrate the
method by computing a set of powers for a multivariate analysis of variance
comparing the profiles of three correlated tests among three independent groups.
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1. INTRODUCTION

Hypothesis-driven research proposals now typically include power analyses to

support the chosen design and sample size.  Doing so promotes an early fusion of the

study's research questions, its proposed design, the specific measures to be collected, and

the prescribed data analyses.  Of course, the power analyses should be congruent with the

stated hypotheses and their prescribed tests.  It is our experience, however, that power

analyses for multivariate hypotheses often use only oversimplified, univariate surrogates.

For example, a proposed multivariate analysis of variance of a factorial design might be

supported only by a power analysis based on some univariate, two-group t tests of the

individual measures.  Such incongruence weakens the statistical plan and hurts the quality

of the entire proposal.

Herein we propose and assess a pragmatic strategy for computing the powers of

specific Normal-theory hypothesis tests under the multivariate general linear model.

Section 2 briefly reviews the noncentrality for the univariate general linear model and

then extends it to specify approximate (sometimes exact) noncentral distributions for the

common F transforms of the Wilks, the Hotelling-Lawley, and the Pillai statistics.  Our

method is a modification of and is asymptotically equivalent to the Muller-Peterson

(1984) algorithm discussed in Muller, LaVange, Ramey, and Ramey (1992).  But unlike

their method, ours provides the exact noncentral F distribution whenever the hypothesis

involves at most s = 1 positive eigenvalue of E–1H.  For s > 1, both methods designate

approximate noncentral F distributions that converge (N → ∞) well to their limiting

forms.  But as the Monte Carlo work in Section 3 illustrates, our method is almost always

more accurate than the Muller-Peterson, and it is sufficiently accurate for performing

power analyses.  In Section 4 we use the method to characterize how the relative powers

of the F statistics are dependent on the structure of the s eigenvalues of the population

version of E–1H.  Section 5 focuses on the common q-group, P-variate problem, and

outlines an example.



O'Brien and Shieh:  Power for the Multivariate Linear Hypothesis

 3

2. NONCENTRALITIES

Consider the standard (fixed-effects), full-rank multivariate general linear model, Y

= XB + ‰‰‰‰, where Y is N × P of rank P; X is N × rX of rank rX; and B contains fixed

coefficients.  The rows of ‰‰‰‰ are taken to be independent P-variate Normal random vectors

with mean 0 and P × P positive-definite covariance matrix ÍÍÍÍ.  The usual estimates are

B̂  = (X ′′′′X)–1X ′′′′Y, and
 
ÍÍÍÍ̂ 

 
= (Y – XB̂ )′′′′(Y – XB̂ )/(N – rX).

  
The multivariate general linear

hypothesis is
 
H0: CCCCBA = ŒŒŒŒ0 , where C is rC × rX with full row rank, and A is P × rA with

full column rank; thus rA ≤ P.  ŒŒŒŒ0 is usually chosen to be 0.  H0 has ν1 = rCrA degrees of

freedom.

2.1  rA = 1

If rA = 1 so that A ≡ a, the problem simplifies to a univariate one with y ≡ Ya =

XBa + ‰‰‰‰a = X∫∫∫∫ + ‰‰‰‰.  The resulting estimates are ∫∫∫∫̂   = B̂ a and σ̂ 2 = a′′′′ÍÍÍÍ̂    a/(N – rX) .  H0

is tested with F = (SSH/rC)/σ̂ 2, where

SSH = (C∫∫∫∫̂    – ŒŒŒŒ0)′′′′[C(X ′′′′X)-1C′′′′]-1(C∫∫∫∫̂    – ŒŒŒŒ0)

is the sums of squares for the hypothesis.  It is well-known that F is distributed as an

F(ν1, ν2, λ) random variable with ν1 = rC and ν2 = N – rX degrees of freedom and

noncentrality

λ = (C∫∫∫∫  – ŒŒŒŒ0)′′′′[C(X ′′′′X)-1C′′′′]-1(C∫∫∫∫  – ŒŒŒŒ0)/σ2.

It is helpful to see (X ′′′′X)-1 decomposed into more distinct components.  Letting 1 be

the N × 1 vector of ones, then x–  = N-1X′′′′1 is the rX-element mean vector and SX =

N–1(X – 1x– ′′′′)′′′′(X – 1x– ′′′′) is the corresponding rX × rX covariance matrix.  Then X ′′′′X =

N(SX + x–x–′′′′ ) = NÁÁÁÁ, showing that with respect to X ′′′′X, the size of the design (N) is

unrelated to ÁÁÁÁ, which is only dependent on the means, variances, and correlations of the

Xs.  Thus, [C(X ′′′′X)-1C′′′′]-1 = N[CÁÁÁÁ -1C′′′′]-1, so

λ = Nλ∗  = N{(C∫∫∫∫  – ŒŒŒŒ0)′′′′[CÁÁÁÁ -1C′′′′]-1(C∫∫∫∫  – ŒŒŒŒ0)/σ2}. (2.1)
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2.2  General Strategy for rA > 1

For rA > 1, SSH generalizes to the rA × rA sums of squares and cross products matrix

for the hypothesis,

H = N(CB̂ A – ŒŒŒŒ0)′′′′[CÁÁÁÁ -1C′′′′]-1(CB̂ A – ŒŒŒŒ0).

σ̂ 2 generalizes to A ′′′′ÍÍÍÍ̂    A = E/(N – rX), where E = A ′′′′(Y – XB̂ )′′′′(Y – XB̂ )A.  H and E are

independent Wishart matrices, both based on AAAA ′′′′ÍÍÍÍ AAAA, and having rC and N – rX degrees of

freedom, respectively.  (SSH/rC)/σ̂ 2 generalizes to {(N – rX)/rC} E-1H, but by tradition

we work with E-1H.

There is no generally optimal way to map E-1H to a univariate test statistic.  The

most common ones are the Wilks Likelihood Ratio (U), Hotelling-Lawley Trace (T), and

Pillai Trace (V) statistics, which are reviewed below.  All are based on the s = min(rC, rA)

positive eigenvalues of E-1H, denoted ƒƒƒƒ  = {φ1, ..., φs}, and ordered φ1 > φ2 > … > φs > 0.

U, T, and V are summarized and compared by Seber (1984), Anderson (1984), and

numerous other books and articles, and their critical values have been widely tabled and

charted (e.g., Seber, pp. 562-564).  But in practice we usually obtain p values by

transforming them to F-type statistics, denoted here as Fi ,  i ∈  {U, T1, T2, V}.  If r C = 1,

each Fi becomes F = (N – rX – rA + 1)φ1/rA, which is also an exact F random variable, as

discussed below.  For s > 1, the Fi statistics are distinct, having different ν(i)
2   and λ i.

We do not propose or study power approximations for Roy's test.  For s > 1, no

acceptable method has been developed for transforming φ1 to an F or χ2 statistic.  No

straightforward method exists for computing powers for Roy's statistic itself (Anderson,

1984, pp. 332), although various approximations have been developed, as reviewed by

Krishnaiah (1978).  Roy's statistic is fundamentally different from U, T, and V, thus its

power is not accurately discerned from the power probabilities computed for FU, FT1
, FT2

and FV.

E–1H = (E/N)–1(H/N) = (A ′′′′SA)–1(H/N), where S is the maximum likelihood

estimate of ÍÍÍÍ.  Whereas E is a central Wishart, H is possibly noncentral with

noncentrality matrix
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ÎÎÎÎ = Ν(A ′′′′ÍÍÍÍA )–1(CBA – ŒŒŒŒ0)′′′′[CÁÁÁÁ -1C′′′′]-1(CBA – ŒŒŒŒ0)}

= N(A ′′′′ÍÍÍÍA )–1H∗  = NÎÎÎÎ∗ .(2.2)

H∗  is the population counterpart of H/N.  Let ƒƒƒƒ ∗  = {φ∗
1 , ..., φ∗2 } to be the eigenvalues of

ÎÎÎÎ∗  = (A ′′′′ÍÍÍÍA )–1H∗ , the population counterpart of E–1H.  As N → ∞,   B̂  p→ B,

H/N p→ H∗ , and E/N  p→ A ′′′′ÍÍÍÍA , so that NE-1 p→ (A ′′′′ÍÍÍÍA )–1.  Thus, E-1H p→ (A ′′′′ÍÍÍÍA )–1H∗

and ƒƒƒƒ  p→ ƒƒƒƒ ∗ .

We shall specify and asymptotically justify all F distributions using a common

notation and logic.  First, take Fi to be an F random variable with ν1 = rCrA and ν(i)
2  

degrees of freedom and noncentrality λ i = Nλ∗
i  , a form motivated by (2.1) and (2.2).

Accordingly, E(Fi/N) = N-1(1 + λ i /ν1)[ν(i)
2  /(ν(i)

2   – 2)] → λ∗
i  /ν1, as N → ∞.  Also, for

each Fi,  Fi/N p→ f∗i  , a constant.  This leads to the approximation λ∗
i   = ν1f∗i  .  Each f∗i   is a

function of rC, rA and ƒƒƒƒ ∗  as specified below.  Finally, we cite specific theory reviewed by

Anderson (1984, Section 8.6.5) to outline why for the Hotelling and Pillai statistics, ν1Fi

converges to noncentral χ2 distributions with the noncentralities proposed here. Likewise,

the work of Kulp and Nagarsenker (1984) supports the convergence of ν1FU for the

noncentral Wilks statistic.

Motivated because E/(N – rX) is the unbiased estimator of A ′′′′ÍÍÍÍA , Muller and

Peterson (1984) proposed extracting the eigenvalues, ƒƒƒƒ (M), of [(A ′′′′ÍÍÍÍA )–1/(N – rX)][NH∗ ].

Thus, ƒƒƒƒ (M) =[N/(N – rX)]ƒƒƒƒ ∗ .  Furthermore, they proposed making  λ(M)
i   = ν(i)

2  ν1f(M)
i  ,

where f(M)
i   uses ƒƒƒƒ (M) just as f∗i   uses ƒƒƒƒ ∗ .  One can easily show that for rA = 1 both

methods lead to the exact univariate noncentrality given above.  If rA > 1,  λ (M)
i   < λ i, but

λ i/λ
(M)
i   → 1 as N → ∞.

Muller and Barton (1989) used a similar strategy to define approximations of the

non-null distributions of F statistics for univariate approaches for repeated measures

analysis.  O'Brien (1986) also applied the strategy to characterize the non-null

distribution of the likelihood-ratio χ2 statistic commonly used in log-linear models; c.f.

Agresti (1990, Section 7.6.4).
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2.3  rA > 1 but rC = 1 (s = 1)

It is well known that when rC = 1, the U, T, and V statistics convert identically to F

= (N – rX – rA + 1)φ1/rA, which has rA and (N – rX – rA + 1) degrees of freedom.  Our

strategy gives λ = Nφ∗
1 , where

φ∗
1  = (CBA – ŒŒŒŒ0)(A ′′′′ÍÍÍÍA )–1(CBA – ŒŒŒŒ0)′′′′[CÁÁÁÁ -1C′′′′]-1.

This characterizes the exact noncentral F distribution, a result established by first

showing that T2 = (N – rX)φ1 is a noncentral T2 random variable and then converting it to

an exact noncentral F, as per sections 2.4.2 and 2.5.5 of Seber (1984).  The result can also

be established by noting that the approximation for the distribution of U given by Kulp

and Nagarsenker (1984, Theorem 3.1) is exact for s = 1.  Its only term then is a

noncentral beta distribution function, which is transformable to the noncentral F

prescribed here.

With rC = 1, the Muller-Peterson (1984) method gives λ (M) = [(N – rX – rA + 1)/(N – rX)]λ.

For rA > 1, λ (M) < λ.  Thus whereas both the proposed method and the Muller-Peterson method

specify the exact noncentral F distribution when rA = 1, only the proposed method properly

handles all s = 1 cases.  λ(M) gives powers that are too low, leading to recommended sample

sizes that are too large.  This discrepancy between λ and λ (M) is important because many

common situations use rC = 1 and rA > 1, including the one- and two-group Hotelling's T2 tests

on centroids.  We shall see that this difference between λ and λ (M) extends to cases with s > 1.

2.4  rA > 1 and rC > 1 (s > 1)

When s >1, the U, T, and V statistics are distinct and their F transforms only lead to

approximate noncentral F random variables. 

Wilks (FU).  Wilks’ (1932) likelihood ratio statistic is the determinant of E(H + E)–1,

or equivalently, U = ∏k=1
s (1 + φk)

–1.  Rao's (1951) transformation is FU =

ν(U)
2 (U–1/t – 1) /(rCrA), where

  
t =  

1 rCrA ≤  3

{[(rCrA )2  –  4] /[rC
2 +  rA

2 –  5]}1/2 rCrA ≥  4





and ν(U)
2   = t[N – rX – (rA – rC + 1)/2] – (rCrA – 2)/2.  When H0 is true,
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FU ~ F(ν1, ν(U)
2  , 0), exactly, for s = 1 or 2; for s > 2, this is an approximation that is

“adequate for practical situations” (Seber, p. 41).  Using the strategy described above,

FU/N p→ f∗U  = t{(U∗ )–1/t – 1}/(rCrA); where U∗  = ∏k=1
s (1 + φ∗

k )-1.  Thus we take

λU = Nλ∗
U , where λ∗

U  = t{(U ∗ )–1/t – 1}.

Kulp and Nagarsenker (1984) provided an approximation for the noncentral

distribution of U, which quickly provides asymptotic justification for our method.

Briefly: As is commonly done (c.f. Anderson, 1984, p. 330), if we take N → ∞ and

CBA → ŒŒŒŒ0 under a sequence of alternatives, then their Theorem 3.1 reduces to a single

noncentral beta distribution function, which is transformable exactly to the noncentral F

prescribed here.  They noted that using the noncentral beta distribution (or, equivalently,

the noncentral F) is better than using the chi-square distribution, as per Sugiura and

Fujikoshi (1969), whose method is not exact under any case, even for rA = 1.

For rA > 1, λU > λ (M)
U  .  Evidence heretofore that the Muller-Peterson algorithm

systematically under approximates the power of FU comes from a study by Barton and

Cramer (1989). They used λ (M)
U   to construct various s > 1 situations with nominal powers

of .80, but reported estimated powers consistently higher than this (based on 5000 trials

of each situation).

Hotelling-Lawley (FT1
, FT2

). Hotelling (1951) and Lawley (1938) proposed the

statistic T = tr[E-1H] = ∑k = 1
s  φk.  Several F transforms have been proposed.  The most

commonly used one, due to Pillai and Samson (1959), is FT1
 = ν(T1)

2  (T/s) /(rCrA).

with ν(T1)
2   = s(N – rX – rA – 1) + 2.  McKeon (1974) proposed FT2

  = ν(T2)
2 (T/h) /(rCrA), 

with ν(T2)
2   =  4 + ( rCrA + 2)g, where

g = 
(N – rX)2 – (N – rX)(2rA + 3) + rA(rA + 3)

 (N – rX)(rC + rA + 1) – (rC + 2rA + rA
2 – 1)

   ,

and h = (ν(T2)
2   – 2)/(N – rX – rA – 1).  For s ≥ 2, FT1

/FT2
  < 1.00  (with  FT1

/FT2
  → 1 as

N → ∞), but this is counterbalanced to some degree by the fact that ν(T1)
2   > ν(T2)

2  .   We

assessed the difference between FT1
 and FT2

 for 108 cases formed by crossing (rA, rC) =

{(2, 2}, (2, 3}, (3, 2}, (3, 3)}; N – rX = {31, 66, 96}; nominal percentage points for FT1

using pT1
 = {.005, .010, .020, .040, .050, .075, .100, .200, .400. .600, .800, .900}.  We

found that FT1
/FT2

  > 0.98;  1.50 < ν(T1)
2  /ν(T2)

2   < 1.95;  with the ratio of the resulting p
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values being 0.666 < pT1
/pT2

< 1.026.  Seber (p. 39) stated that when H0 is true, the FT2

“approximation is surprisingly accurate and supersedes previous approximations”

including FT1
 and another by Hughes and Saw (1972).  For either FT1

or FT2
, FT/N p→ f∗T  =

T∗ /(rCrA), where T∗  = ∑k = 1
s

 φ∗
i  .  This gives λT = NT∗ .

Taking FT1
 and FT2

 to be noncentral F(rCrA, ν(T1)
2  , λT) and F(rCrA, ν(T2)

2  , λT),

respectively, is supported asymptotically by work summarized by Anderson (1984,

Section 8.6.5) and Seber (1984, Section 8.6d). The asymptotic distribution of (N – rX)T is

χ2(rCrA, trÎÎÎÎ = λT), again under a sequence of alternatives implying that CBA → ŒŒŒŒ0 as N

→ ∞.   χ2(rCrA, λT) is the limiting form of rCrAF(rCrA, ν2, λT) as ν2 → ∞.  The asymptotic

distribution of FT1
 and FT2

 is established simply by noting that (N – rX)T, rCrAFT1
, and

rCrAFT2
 all have the form kΤ where k/N → 1, as N → ∞.  The fact that ν(T1)

2   > ν(T2)
2  

implies that nominal powers computed for FT1
 are uniformly greater than those computed

for FT2
.

Comparing λT to the Muller-Peterson approximation, λ (M)
T1

  = [(N – rX – rA – 1 +

2/s)/(N – rX)]λT  < λT when rA > 1.  Applying the Muller-Peterson strategy to FT2

likewise gives λ (M)
T2

  < λT.

A reviewer suggested we examine a newer F transformation, call it FT3
, and the

accompanying power approximation due to van der Merwe and Crowther (1984).  FT3

behaves much like FT2
.  Across the 108 cases we studied: 1.0001 < FT2

/FT3
 < 1.0021;

0.956 < ν(T2)
2  /ν(T3)

2   ≤  0.995 ; 0.997 < pT2
/pT3

 < 1.033.  In their power approximation, the

main term is identical to using F(rCrA, ν(T3)
2  , λT) as proposed here, and the secondary

term appears to make no practical difference in computing the power.  We assessed the

20 cases they evaluated in their Table 3, as well as 54 more cases arising from crossing

(rA, rC) =  {(2, 2), (2, 3), (3, 3)}; N – rX = {31, 66, 96}; nominal power for FT1
 of π0 =

{.80, .90}; and eigenvalue structure of ÎÎÎÎ = {E, G, X} as defined below.  The three largest

absolute differences in nominal powers between their method for FT3
 and our method for

FT2
 were 0.013, 0.012, and 0.010 (all for rA = 3, rC = 3, N – rX = 31) with all others less

than 0.010. The average (signed) error was 0.002, and the average absolute error was

0.003. Using only the primary term, their power approximation (equivalent to applying

our general strategy to FT3
 ) changed the power by at most 0.010.  In light of its similarity

to FT2
, we see no reason to study FT3

 further.
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Pillai (FV).  Bartlett (1939), Nanda (1950), and Pillai (1955) proposed using

V = tr[(E + H)-1H] = ∑k = 1
s  [φk/(1 +  φk)].  Pillai and Mijares (1959) gave the F transform,

FV = ν(V)
2  [V/(s – V)]/(rCrA), where ν(V)

2   = s(N – rX + s – rA).  FV/N p→ f∗V  =

s[V∗ /(s – V∗ )]/(rCrA), where V∗  = ∑k = 1
s  [φ∗

k /(1 + φ∗
k )].  Thus we define λV =

Ns[V∗ /(s – V∗ )].

Anderson (1984, Section 8.6.5) summarized results showing that NV →d

χ2(rCrA, N trÎÎÎÎ∗ ), under a sequence of alternatives in which CBA → ŒŒŒŒ0.  To establish that

λV → N trÎÎÎÎ∗ , first express NV∗  = N tr[(I  + ÎÎÎÎ∗ )–1ÎÎÎÎ∗ ], where ÎÎÎÎ∗  = (A ′′′′ÍÍÍÍA )–1H∗ .  By

recursively using a result in Searle (1982, pp. 151, #16g), N V∗  =

N tr[ÎÎÎÎ∗   – ÎÎÎÎ∗ 2 + ÎÎÎÎ∗ 3 – ÎÎÎÎ∗ 4 + ...] → N trÎÎÎÎ∗  as ÎÎÎÎ∗  → 0 with NÎÎÎÎ∗  remaining finite.  Finally,

λV = [(NV∗ )–1 – (Ns)–1]–1 → NV∗ , because (NV∗ )–1 is finite under the sequence of

alternatives, but (Ns)–1 → 0. Similarly, rCrAFV → [(NV)–1 – (Ns)–1]–1 → NV.  Thus rCrAFV

→d  χ2(rCrA, λV), and more directly, FV →d  F(rCrA, ν(V)
2  , λV).

It can be shown that  λ (M)
V   ≤ λV, with equality holding if s = rA and φ∗

1  = φ∗
2  = ... =

φ∗
s .

3. ACCURACY

We showed above that when rC = 1 and rA > 1, the proposed method prescribes the

exact noncentral distributions, whereas the Muller-Peterson algorithm prescribes

distributions that are only asymptotically (N → ∞) correct for this case.  This difference

is important because it applies to many situations found in practice.  For example, rA = 3,

rC = 1, rX = 2, and N = 30 defines a two-group discriminant analysis with three variables

and 15 cases per group.  If λ = 16.5, the power is exactly 0.90.  On the other hand, λ (M) =

15.33, giving a power of 0.875, a 25% error relative to the exact Type II error rate.

For s > 1, both methods are approximate.  We now assess such cases.

3.1 Comparison with Results of Lee

Lee (1971) developed an asymptotic formula to approximate the powers for U, T,

and V using a complex weighted sum of noncentral χ2-distribution functions.  He

assessed its accuracy relative to exact values worked out for 18 cases in which s = rA = 2,

rC = {3, 5, 9}, and N – rX = 63.  Although these results do not strictly apply to assessing
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algorithms for the power of FU, FT1
, and FV, they offer a convenient place to begin.

Figure 1 gives relative errors of approximation, (π~  – π)/[π(1 – π)]1/2, where π~  is the

approximated power of FU, FT1
, and FV by either the Muller-Peterson or the proposed

algorithm and π is the exact power of U, T, and V given by Lee.  Note that because

[π(1 – π)]1/2 ≤ 0.50, the relative error is at least twice that of the raw error, π~  – π.

_______________________________________________________________________

Figure 1.  Relative errors of approximation for the Muller-Peterson (M-P) and the

proposed methods for 18 cases studied by Lee (1971, Table 1).   s = rA  = 2,  rC = {3, 5,

7}, N – rX  = 63.

_______________________________________________________________________

The two F-based methods show accuracies that are quite acceptable for performing

power analyses of proposed studies.  For these cases, they give relative errors within

±3%, with averages much less than that.  The proposed method is seen to be biased

positively for U and T1.  As hypothesized above, the Muller-Peterson shows a tendency

to underestimate power, but its overall accuracy seems slightly superior to the proposed

method in these cases.  We performed similar computations based on Lee's Table 2 and

found the same pattern for s = rA = {3, 4} as we did for s = rA = 2.

This encouraging assessment is limited in two respects.  First, like other researchers

of this topic, Lee was not concerned with methods for computing the power probabilities

of FU, FT1
, and FV, which are the test statistics generally used today.  The powers of (say)

U and FU surely diverge for lower N, though perhaps only slightly.  As a practical matter,

we would prefer an algorithm that gives more accurate powers for FU to one that gives

more accurate powers for U. Second, the cases Lee created to investigate had powers

much lower than are typically of interest.  The largest power is 0.62, with the vast

majority being less than 0.50.  For problems of sample-size choice, one generally desires

to have nominal powers of 0.80 or higher.  We prefer 0.90.

3.2 Monte Carlo Study

For the reasons just stated, we performed a Monte Carlo study to assess how well we

can compute the power of FU, FT1
, FT2

, and FV directly, for situations with meaningful
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power, π ≥ .80.

Method and design.  Because FT1
 has the simplest proposed nominal noncentral

distribution, we used this to specify the particular non-null cases to simulate.  For a given

N, rX, rC, and rA, and a given nominal power, πT1
 = π0, we employed the SAS  functions

FINV and FNONCT to find λ0 such that Prob[F(rCrA, ν(T1)
2  , λ0) > F.05(rCrA, ν(T1)

2  , 0)] =

π0.   For s > 1, we defined four different structures for the first s eigenvalues of ÎÎÎÎ ∗ , ƒƒƒƒ∗  =

{ φ∗
1 ,  φ∗

2 ,...,  φ∗
s } :

Equal (E): ƒƒƒƒ ∗  = (λ0/N)s–1{1, 1, ..., 1}

Linear (L): ƒƒƒƒ ∗  = (λ0/N)[s(s + 1)/2]–1{s, s – 1, ..., 1}

Geometric (G): ƒƒƒƒ ∗  = (λ0/N)(2s – 1)–1{2s-1, 2s–2, ..., 1}

Extreme (X): ƒƒƒƒ ∗  = (λ0/N){1, 0, ..., 0}.

The sum of the roots, T∗  = λ0/N, is the same for all four structures; thus, λT  = λ0,

and the nominal power for FT1
 is π0.  Though lower than π0, the nominal power for FT2

 is

also the same under all four structures.  On the other hand, λU and λV are affected by the

structure of the eigenvalues.  To keep π0 fixed, the elements in ƒƒƒƒ∗  must decrease with

increasing N.

We examined all four F statistics under the E, L, G, and X structures for N = {10, 20,

30, 40, 50, 100}, rX = 4, rC = {2, 3}, rA = 3, and π0 = {.80, 90}. This produced sets of s =

2 and s = 3 cases that blanket a wide range of situations that are practical for power

analyses.

The experiment was performed using the IML  matrix language of SAS.  Each trial

of a particular case proceeded as follows.  Without loss of generality, ÍÍÍÍ ≡ I .  H, an

rA × rA noncentral Wishart matrix with rC degrees of freedom, was formed by first using

the NORMAL function to generate an rC × rA matrix Z having independent rows that are

N(0, I ).  Let M  be the rC × rA matrix having elements mkk = (φ∗
k )1/2, k = 1 to s, and

mkk' = 0 for k ≠ k'. Then H = (Z + M)′′′′(Z + M) is Wishart with noncentrality M ′′′′M , a

diagonal matrix with elements {φ∗
1 ,  φ∗

2 ,...,  φ∗
s , 0, ...0}.  E, the rA × rA central Wishart

matrix with N – rX degrees of freedom, was formed by generating an (N – rX) × rA matrix

Z having independent rows that are N(0, I ) and computing E = Z′′′′Z.  The roots of E–1H

were then obtained and used to form FU, FT1
, FT2

, FV, which were compared to their

respective nominal .05-level critical values.  5000 trials of each case where run, giving
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standard errors for each estimated true power of 0.0042 for π = 0.90 and 0.0057 for

π = 0.80.  We checked the accuracy of our programming and of IML’s NORMAL

random number generator by simulating a full slate of s = rC = 1, rA = 3 cases and

verifying that the obtained results fell within reasonable sampling errors of the known

exact powers.

_______________________________________________________________________

Figure 2.  Proposed ( ) and Muller-Peterson ( ) approximations and estimated true

powers ( ) as a function of eigenvalue structure and total sample size.  α̂  is the

estimated true Type-I error rate.  rX = 4; rA = 3;  s = rC = {2, 3}.

_______________________________________________________________________

The results for π0 = .90 are presented in Figure 2.  The results for the linear structure

for ƒƒƒƒ ∗  are not shown as they are identical to those of the geometric structure when s = 2

and virtually the same when s = 3.  Also, the pattern of results for π0 = 0.80 were in

complete accord with those for π0 = 0.90.  α̂   is the estimated true Type I error rate, the

“power” at ƒƒƒƒ∗     ==== 0.  Note only that they are too low for FV when N ≤ 20.

The power results reflect our theoretical conclusions and show a pattern consistent

with those involving Lee's tables.  The Muller-Peterson values are generally too low,

whereas those obtained by the proposed method are somewhat high in some cases.  The

Muller-Peterson is better for FV with low N, but this is a “lucky” consequence of having

the deflated α̂   values suppress the true power.  In general, there is a clear tendency for

the proposed method to give more accurate results.

Figure 3 re-plots the results from the s = rA = rC = 3 cases to show the relative errors

of approximation, (π~ i – π̂ i)/[ π̂ i(1 –  π̂ i)]1/2, where π~ i is the proposed approximated

power for a given Fi statistic and π̂ i is the Monte Carlo estimate of Fi ‘s true power.

Cases were chosen to set π~ T1
 = .90.  The results show that FU has the most error-free

approximations.  For the equal and geometric (and linear) structures, the approximations

for FT1
 , FU, and FV are positively biased, while those for FT2

 are negatively biased.

Structure X induces the most error, with the proposed method performing best for FU and

FT2
.
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_______________________________________________________________________

Figure 3.  Estimated relative errors of approximation as a function of sample size and

eigenvalue structure .  s = rA = rC = 3; rX = 4; nominal power of .90 for FT1
.

_______________________________________________________________________

In conclusion, only when N is quite small (N ≤ 20) do we see any worrisome

breakdown in accuracy.  It is exceptional that this single, straightforward scheme

performs so well over these four test statistics and four eigenvalue structures.

4. COMPARING POWERS OF FU, FT1
, FT2

, and FV

The proposed algorithm provides a convenient way to compare the powers of FU,

FT1
, FT2

, and FV.  Following Anderson (1984, p. 332), we frame our view by employing

the coefficient of variation of ƒƒƒƒ ∗ ,

 

  

CV =

(φk
* – φ*)2 / sΣ

k = 1

s 1 / 2

φ* ,

where   φ*  is their average.  Figure 4 plots CV against the approximate powers computed

using the proposed algorithm and the estimated true powers for the case of N = 50,

rX = 4, and rC = rA = s = 3.   The lines were constructed by computing the powers using

ƒƒƒƒ ∗  = {T ∗ c, T∗ (1 – c)/2, T∗ (1 – c)/2} where T∗  gives a power of π = 0.90 for FT1
 using

α  = .05.  c varies between c = 1/3 (Structure E: CV = 0) and c = 1.0 (Structure X:

CV =  2 ).  Although the L and G structures do not have a pattern of {Tec, Te(1 – c)/2,

Te(1 – c)/2}, their approximated powers fall right in line with those that do, as illustrated.

Figure 4 demonstrates that these Fi statistics have the same power relations that Anderson

described for T, U, and V:  As CV increases, FT1
 and FT2

 become more powerful than FU,

which becomes more powerful than FV.  Quite similar images appear when graphing the

powers for all other combinations of rC = s = {2, 3}, π = {.80, .90}, and N = {50, 100}.  It

can be shown that under Structure E, λT = λV  whenever s = rA.  In addition, if s > 1, then

ν(T2)
2   < ν(T1)

2   < ν(V)
2  , so it follows that the nominal power of FV exceeds that for FT1

,

which exceeds that for FT2
 in this case.  We also note from the work of Schatzoff (1966)

and Olson (1974) that Roy's statistic has greater power than these Fi statistics under



10040

FT1
FT2

FU FV

N: 10 20

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E G X E G X E G X E G Xƒƒƒƒ:

E
st

im
at

ed
 R

el
at

iv
e 

E
rr

or
 o

f A
pp

ro
xi

m
at

io
n

Figure 3.



O'Brien and Shieh:  Power for the Multivariate Linear Hypothesis

 14

Structure X, but in general it has less power otherwise.

_______________________________________________________________________

Figure 4.  Nominal (lines) and estimated (points) powers of FV, FT1, 
FT2

, and FV as a

function of the coefficient of variation of φ∗
1  ,  φ∗

2  , φ∗
3  .  N= 50; s = rA = rC = 3; rX = 4;

nominal power of .90 for FT1
.

_______________________________________________________________________

5. THE q-GROUP PROBLEM, WITH EXAMPLE

Most applications of the proposed method will be for power analyses in which q

independent groups are compared with respect to P correlated measurements.  This

problem has a specific structure that we now exploit.  An example follows.

Let Ẍ  be the q × rX essence model matrix formed by assembling the q unique rows

of X (N × rX; rX ≤ q).  Ẍ  is the collection of the q unique design points (e.g. the q

groups) for the proposed study. If nj of the rows of X are equal to the jth row of Ẍ , define

W to be the q × q diagonal matrix containing weights wj = nj/N.  Thus
 
(X ′′′′X) =

N(Ẍ ′′′′WẌ  ), so that

H∗  = (CBA – ŒŒŒŒ0)′′′′[C(Ẍ ′′′′WẌ  )-1C′′′′]-1(CBA – ŒŒŒŒ0).

Thus the eigenvalues of ÎÎÎÎ∗  = (A ′′′′ÍÍÍÍA )–1H∗ , and hence the λ∗
i  , are based on the q defined

design points (Ẍ ), the q sample-sizes weights (W); the conjectured values for the

unknown effects (B), the conjectured common covariance matrix (ÍÍÍÍ), and the

specification of the hypothesis (C, ŒŒŒŒ0).  Importantly, λ∗
i   is not related to N.

To illustrate the method briefly, consider a profile analysis arising from crossing a 3-

level between-subjects factor, “Group,” with a 3-level within-subjects (repeated

measures) factor, “Test.”  The ith subject will provide three observations, y = [yi1 yi2 yi3]

= [Testi1 Testi2 Testi3].  With N subjects total and taking the ith subject to be in the second

group, the cell means formulation of Y = XB + ‰‰‰‰ is
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

 .

Thus, Ẍ  is the 3 × 3 identity matrix.  The sample size weights are to be w1 = .250,

w2 = .375, and w3 = .375, giving the elements of the diagonal matrix W.  Two scenarios

for B are

   
 B(1) =

97 110 97
95 100 110

102 95 105
and 

   
 B(2) =

97 110 97
100 100 100
102 95 105

.

The conjectured within-group standard deviations for yi1, yi2, and yi3 are 15, 20, and 15.

Τhe within-group correlations are ρ12 = 0.30, ρ13 = 0.60, ρ23 = 0.30.  Thus

     
ÍÍ =

15 0 0
0 20 0
0 0 15

1 .30 .60
.30 1 .30
.60 .30 1

15 0 0
0 20 0
0 0 15

=
225 90 135
90 400 90

135 90 225
.

Comparing the test profiles across the three groups (the Group × Test interaction) can

be specified with H0: CCCCBA = 0 where

   
 C = 1 −1 0

0 1 −1  and A =
1 1

−1 0
0 −1

 .

For B(1), these specifications lead to ƒƒƒƒ ∗  = {.278, .134}, which is almost an

linear/geometric eigenvalue structure.  The primary noncentralities are λ∗
U  = .407,

λ∗
T  = .412, λ∗

V  = .403.  For α  = .05 and N = 48, the approximate powers are πU = .949,

πT1
 = .951, πT2

 = .943, and πV = .947.  For B(2), ƒƒƒƒ ∗  = {.181, .004}, which is less than for

B(1) and close to being an extreme eigenvalue structure.  Accordingly, the primary

noncentralities and powers (N = 48) are now lower and more varied: λ∗
U  = .178,

λ∗
T  = .185, λ∗

V  = .171;  πU = .610, πT1
 = .630, πT2

 = .612, and πV = .590.  For N = 96, the

powers are πU = .923, πT1
 = .937, πT2

 = .929, and πV = .911.  Note that the nominal Type

II error rate for FV is 41% greater than for FT1
, which should become the prescribed
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statistic for the written protocol if B(2) were the primary scenario.  Other factors,

especially robustness, might mitigate against such a decision.  For instance, Olson (1974)

concluded that V was the more robust statistic.

6. CONCLUSION

The value of the proposed strategy stems from several factors. (1) This is an all-in-

one method that relates directly and simply to the familiar F transforms of the U, T, and

V statistics.  These Fs are taken to be noncentral Fs with their usual degrees of freedom.

Computing their noncentrality parameters is isomorphic to computing the F statistics on

population values instead of sample values.  As described fully in O’Brien and Muller

(1993), exploiting the correspondence between a familiar test statistic and its

noncentrality parameter gives intuition and pragmatism to power analysis.  This is not the

case for the more abstruse methods that have been proposed over the years for numerous

special cases involving U, T, and V directly (see Krishnaiah, 1978).  (2) The method

gives exact powers when applied to any test having s = 1. (3)  For s > 1, the method

affords a unifying set of asymptotic results that support its large-sample correctness

across the various F transforms.  (4) For s > 1, but with smaller sample sizes, the

empirical work summarized and graphed above shows the method to be sufficiently

accurate for almost all applied work.  Although methods that are more exact have been

developed for special situations involving U, T and V, such work does not extend to the

approximate FU, FT1
, FT2

, and FV statistics being used so predominately today.

In conclusion, we offer a way to compute power probabilities for the multivariate

general linear hypothesis that is simple, general, and accurate.  We hope these qualities

motivate statistical planners to perform power analyses that are more congruent with the

multivariate hypotheses they propose to test.
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