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We consider the problem of computing the power of some usual F transforms of the
Wilks U, Hotelling-Lawley T, and Pillai V statistics for testifig: CBA = @, under

the multivariate general linear mod¥l = XB + €, where the rowsfcEA are taken

as independent (9, X) random vectors. Keeping all these matrices at full rank, let
C be g x ry ardA beP x ry. For determining p-values; U {U, T, T2, V}) is
taken to be distributed as central JF£r, vg) ), which is the exact distribution when
s=min(g, ra) = 1. For determining powers, we present a pragmatic, unifying
method that takes; Fo be noncentral F{ry,, vg) , Aj), whee A, is isomorphic to F

For any s, we obtain the simple foim= NAF, whee )\iD_ is not a function of the
total sample size, N. We show that for s = 1,ct§\(rvg) , A, defines the exact
noncentral distribution. For s > 1, eachcbnverges in distribution to its prescribed
noncentral F distribution and numerical work supports the accuracy of all
approximations for obtaining powers for all but very small N. We exploit the
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method by computing a set of powers for a multivariate analysis of variance
comparing the profiles of three correlated tests among three independent groups.
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1. INTRODUCTION

Hypothesis-driven research proposals now typically include power analyses to
support the chosen design and sample size. Doing so promotes an early fusion of the
study's research questions, its proposed design, the specific measures to be collected, and
the prescribed data analyses. Of course, the power analyses should be congruent with the
stated hypotheses and their prescribed tests. It is our experience, however, that power
analyses for multivariate hypotheses often use only oversimplified, univariate surrogates.
For example, a proposed multivariate analysis of variance of a factorial design might be
supported only by a power analysis based on some univariate, two-group t tests of the
individual measures. Such incongruence weakens the statistical plan and hurts the quality
of the entire proposal.

Herein we propose and assess a pragmatic strategy for computing the powers of
specific Normal-theory hypothesis tests under the multivariate general linear model.
Section 2 briefly reviews the noncentrality for the univariate general linear model and
then extends it to specify approximate (sometimes exact) noncentral distributions for the
common F transforms of the Wilks, the Hotelling-Lawley, and the Pillai statistics. Our
method is a modification of and is asymptotically equivalent to the Muller-Peterson
(1984) algorithm discussed in Muller, LaVange, Ramey, and Ramey (1992). But unlike
their method, ours provides the exact noncentral F distribution whenever the hypothesis
involves at most s = 1 positive eigenvalu€ofH. For s > 1, both methods designate
approximate noncentral F distributions that converge,(d) well to their limiting
forms. But as the Monte Carlo work in Section 3 illustrates, our method is almost always
more accurate than the Muller-Peterson, and it is sufficiently accurate for performing
power analyses. In Section 4 we use the method to characterize how the relative powers
of the F statistics are dependent on the structure of the s eigenvalues of the population
version ofE~1H. Section 5 focuses on the common g-group, P-variate problem, and
outlines an example.
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2. NONCENTRALITIES

Consider the standard (fixed-effects), full-rank multivariate general linear model,
= XB + €, whereY is N x P of rank PX is N x ry of rank ; andB contains fixed
coefficients. The rows @& are taken to be independent P-variate Normal random vectors
with mean0 and Px P positive-definite covariance mat®x The usual estimates are
B = X' X)Xy, andE = (Y —-XB ) (Y —-XB )/(N —ry). The multivariate general linear
hypothesis i#1,: CBA = @, whereC is r; % ry with full row rank, andh is Px r, with
full column rank; thusy < P. © is usually chosen to e Hj hasv, = rorp degrees of
freedom.

21l n=1

If ro =1 so thai = a, the problem simplifies to a univariate one with Ya =
XBa + €a=XP +&. The resulting estimates aﬁe= Baando2=a% a/(N — r) . Hy
is tested with F = (SSH#/c 2, where

SSH=CB -O[C(X'X)CTHCR -Oy)

is the sums of squares for the hypothesis. It is well-known that F is distributed as an
F(v;, v,, A) random variable witw, = rc andv, = N —  degrees of freedom and
noncentrality

A = (CP — O [C(X'X)IC'T{CP - ©p)/0.

It is helpful to seeX’X)! decomposed into more distinct components. Leftibg
the Nx 1 vector of ones, thet = N1X'1 is the k-element mean vector aiSg =
N-Y(X —1X")"(X —1X") is the corresponding & ry covariance matrix. Thex'X =
N(Sx +XX ) = N¥, showing that with respect to X"X, the size of the design (N) is
unrelated td¥, which is only dependent on the means, variances, and correlations of the
Xs. Thus, C(X'X)1C'11 = N[C¥-1C']Y, so

A = NAC= N{(CP - O [CPIC'TLCP - O )/o2}. (2.1)
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2.2 General Strategy forp > 1

For ry, > 1, SSH generalizes to thex r, sums of squares and cross products matrix
for the hypothesis,

H = N(CBA -0, [C¥1CTLYCBA-O).

0 2 generalizes ta'S A = E/(N — ry), whereE = A'(Y —-XB ) (Y —-XB )A. H andE are
independent Wishart matrices, both baseAA&A, and having# and N — ¢ degrees of
freedom, respectively. (SSKJfo 2 generalizes to {(N —@)/rc} E'IH, but by tradition
we work withE-1H.

There is no generally optimal way to m&pH to a univariate test statistic. The
most common ones are the Wilks Likelihood Ratio (U), Hotelling-Lawley Trace (T), and
Pillai Trace (V) statistics, which are reviewed below. All are based on the s =i (r
positive eigenvalues &1H, denoted) = {@,, ..., @, and orderedp; > @ > ... > @> 0.

U, T, and V are summarized and compared by Seber (1984), Anderson (1984), and
numerous other books and articles, and their critical values have been widely tabled and
charted (e.g., Seber, pp. 562-564). But in practice we usually obtain p values by
transforming them to F-type statistics, denoted herg asF{U, T, To, V}. Ifre=1,

each Fbecomes F = (N xr1—ry + 1)p1/ra, which is also an exact F random variable, as
discussed below. For s > 1, thestatistics are distinct, having differeng andA;.

We do not propose or study power approximations for Roy's test. Fors > 1, no
acceptable method has been developed for transforppitogan F ox? statistic. No
straightforward method exists for computing powers for Roy's statistic itself (Anderson,
1984, pp. 332), although various approximations have been developed, as reviewed by
Krishnaiah (1978). Roy's statistic is fundamentally different from U, T, and V, thus its
power is not accurately discerned from the power probabilities computeg, féleFTz
and F,.

E-IH = (E/N)"{(H/N) = (A’SA)~YH/N), whereS is the maximum likelihood
estimate o. Wherea<t is a central Wishartl is possibly noncentral with
noncentrality matrix
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A =N(A'ZA)YCBA - 0,[C¥Y1C'"{CBA - 0,)}
= NA'ZA)HU= NAE (2.2)

HUis the population counterpart BfN. Let¢"={¢, ..., ¢'} to be the eigenvalues of
AP= (A’ZA)1HE the population counterpart BFf'H. As N o, B P, B,

H/N P, HY andE/N P, A'ZA, so that NEL P, (A’ZA)L. ThusE™H P, (A’ZA)HU
andd P, ¢!

We shall specify and asymptotically justify all F distributions using a common
notation and logic. First, take t6 be an F random variable with = rcra andvg)
degrees of freedom and noncentralitz N\, a form motivated by (2.1) and (2.2).
Accordingly, E(F/N) = NY1 +A; &)V 1vY — 2)] = APv,, as N . Also, for
each | F/N P, fJ, a constant. This leads to the approximakigre v,f=. Each f is a
function of ¢, r, ande-as specified below. Finally, we cite specific theory reviewed by
Anderson (1984, Section 8.6.5) to outline why for the Hotelling and Pillai statistigs,
converges to noncentraf distributions with the noncentralities proposed here. Likewise,
the work of Kulp and Nagarsenker (1984) supports the convergenggofor the
noncentral Wilks statistic.

Motivated becausg/(N — ry) is the unbiased estimator AfZA, Muller and
Peterson (1984) proposed extracting the eigenvapiids,of [(A’ZA)~Y(N — r,)][NHH.
Thus,¢™ =[N/(N - 1)]é" Furthermore, they proposed making? = v v fM |
where M usespM just as ' usesp” One can easily show that for# 1 both
methods lead to the exact univariate noncentrality given abovg > Iir)\i(M) <A, but
AAM 1 as No .

Muller and Barton (1989) used a similar strategy to define approximations of the
non-null distributions of F statistics for univariate approaches for repeated measures
analysis. O'Brien (1986) also applied the strategy to characterize the non-null
distribution of the likelihood-ratig? statistic commonly used in log-linear models; c.f.
Agresti (1990, Section 7.6.4).
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23 m>1lbutrc=1(s=1)

It is well known that wheng = 1, the U, T, and V statistics convert identically to F
= (N —rg — 1y + 1)py/ra, which hast and (N —f — 1, + 1) degrees of freedom. Our
strategy gived = Ng, where

@f = (CBA —0,)(A'’TA) {CBA - O )[C¥CL

This characterizes the exact noncentral F distribution, a result established by first

showing that ¥= (N — &)@, is a noncentral?frandom variable and then converting it to

an exact noncentral F, as per sections 2.4.2 and 2.5.5 of Seber (1984). The result can also
be established by noting that the approximation for the distribution of U given by Kulp

and Nagarsenker (1984, Theorem 3.1) is exact for s = 1. Its only term then is a

noncentral beta distribution function, which is transformable to the noncentral F

prescribed here.

With rc = 1, the Muller-Peterson (1984) method gix@4 = [(N — 5 — 1y + 1)/(N — g)]A.
Forry > 1AM <\, Thus whereas both the proposed method and the Muller-Peterson method
specify the exact noncentral F distribution whgrerl, only the proposed method properly
handles all s = 1 casea™ gives powers that are too low, leading to recommended sample
sizes that are too large. This discrepancy betwesmd\ ™ is important because many
common situations usg F 1 and x > 1, including the one- and two-group Hotelling’stdsts
on centroids. We shall see that this difference betweetdA ™ extends to cases with s > 1.

24 m>landrc>1(s>1)

When s >1, the U, T, and V statistics are distinct and their F transforms only lead to
approximate noncentral F random variables.

Wilks (). Wilks’ (1932) likelihood ratio statistic is the determinan&g¢H + E)~2,
or equivalently, U =|'|ﬁ=1 (1+ @)™t Rao's (1951) transformation ig E
vU-1= 1) /(rorp), where

‘= O 1 refa < 3
E’[(rcrA - 4]/["(;2 + rA2 — 52 rcra 2 4

v

andvgu) =tIN =1y — (i — 1c + 1)/2] — (gra — 2)/2. When is true,
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Fu~F@,, V(ZU) , 0), exactly, for s =1 or 2; for s > 2, this is an approximation that is
“adequate for practical situations” (Seber, p. 41). Using the strategy described above,
Fu/N P fg = {(UD-1t— 1}(rcra); where W= [Ti=1 (1+ @) Thus we take
Au =N\, where\j = t{(US-1t— 1},

Kulp and Nagarsenker (1984) provided an approximation for the noncentral
distribution of U, which quickly provides asymptotic justification for our method.
Briefly: As is commonly done (c.f. Anderson, 1984, p. 330), if we take M and
CBA - ©,under a sequence of alternatives, then their Theorem 3.1 reduces to a single
noncentral beta distribution function, which is transformable exactly to the noncentral F
prescribed here. They noted that using the noncentral beta distribution (or, equivalently,
the noncentral F) is better than using the chi-square distribution, as per Sugiura and
Fujikoshi (1969), whose method is not exact under any case, evgn-dr. r

Forra > 1,Ay >)\fJM) . Evidence heretofore that the Muller-Peterson algorithm
systematically under approximates the powert&mes from a study by Barton and
Cramer (1989). They usé«ﬁJM) to construct various s > 1 situations with nominal powers
of .80, but reported estimated powers consistently higher than this (based on 5000 trials
of each situation).

Hotelling-Lawley (Frl, FTz)' Hotelling (1951) and Lawley (1938) proposed the
statistic T = trfE1H] = ZE -, @ Several F transforms have been proposed. The most
commonly used one, due to Pillai and Samson (1959},1 'B\éTl) (T/s)/(rcrp)-
with v(le) =S(N—g —r1y—1) + 2. McKeon (1974) proposeﬁsl2 F=v(2T2)(T/h) I(rcra),
with V(ZTZ) = 4+ (gra + 2)g, where

C(N= 12— (N = §)(215 + 3) + Ri(1a + 3)
ST NS+ A+ 1) — (6 + 208 + 12— 1)

andh =987 - 2)(N -5 -1, —1). Fore 2, R /Fy <1.00 (with F/F - 1as

N - 00), but this is counterbalanced to some degree by the faM‘JHa} V(ZTZ). We
assessed the difference betweepaﬁd k, for 108 cases formed by crossing, () =

{2, 2}, (2, 3}, (3, 2}, (3, 3)}; N - ={31, 66, 96}; nominal percentage points fqu F
using g ={.005, .010, .020, .040, .050, .075, .100, .200, .400. .600, .800, .900}. We
found that I-'|-1/FT2 >0.98;1.50 < \ng> /v(ZTZ) < 1.95; with the ratio of the resulting p
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values being 0.666 <TPpr2< 1.026. Seber (p. 39) stated that whgnsHrue, the F
“approximation is surprisingly accurate and supersedes previous approximations”
including Frl and another by Hughes and Saw (1972). For etier Frz, Fr/N P, fd =
TH(rera), where P= Y- 1 ¢, This givesAt = NTX

Taking Fr, and Fr, to be noncentral R{ra, v(le) , A1) and F(gra, V(ZTZ) , A7),
respectively, is supported asymptotically by work summarized by Anderson (1984,
Section 8.6.5) and Seber (1984, Section 8.6d). The asymptotic distribution ofNis r
X2(rcr s, trA =A7), again under a sequence of alternatives implyingdB#t - ©, as N
— 00, X(rcra, A7) is the limiting form of graF(rcra, Vo, A1) @sv, — . The asymptotic
distribution of Frl and Frz is established simply by noting that (N3, rcrAFTl, and
reraFr, all have the formk where k/N- 1, as N- . The fact thavgl) > V(ZTZ)
implies that nominal powers computed fqu Bre uniformly greater than those computed
for Fr,

ComparingAt to the Muller-Peterson approximatidé',\f) =[(N—-r—m—-1+
2/s)/(N = §)]At <At when i > 1. Applying the Muller-Peterson strategy tg F
likewise gives?\(T'\g) <AT.

A reviewer suggested we examine a newer F transformation, caslj arfel the
accompanying power approximation due to van der Merwe and Crowther (19@4). F
behaves much IikeTE. Across the 108 cases we studied: 1.00012/@15 < 1.0021,

0.956 <vg2)/vg3) < 0.995;0.997 <p/pr, < 1.033. In their power approximation, the
main term is identical to using k(x, v(2T3) , A1) as proposed here, and the secondary

term appears to make no practical difference in computing the power. We assessed the
20 cases they evaluated in their Table 3, as well as 54 more cases arising from crossing
(ra, ro) = {(2, 2), (2, 3), (3, 3)}; N —x = {31, 66, 96}; nominal power forTllzofTro =

{.80, .90}; and eigenvalue structure &f= {E, G, X} as defined below. The three largest
absolute differences in nominal powers between their methoe}sftamﬂ our method for
Fr,were 0.013, 0.012, and 0.010 (all fe=r3, i = 3, N — k = 31) with all others less

than 0.010. The average (signed) error was 0.002, and the average absolute error was
0.003. Using only the primary term, their power approximation (equivalent to applying
our general strategy tor?lf) changed the power by at most 0.010. In light of its similarity

to Fr, we see no reason to studbé Further.
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Pillai (Fy). Bartlett (1939), Nanda (1950), and Pillai (1955) proposed using
V =tr[(E + H)1H] = zﬁ -1[@/(1 +@)]. Pillai and Mijares (1959) gave the F transform,
Fy =VS [VI(s = V)I/(rcra), wherevy” =s(N =k +s— k). Fy/N P, ) =
s[VH(s = VO(rara), where VW= S - 1 [9/(1 +@)]. Thus we defindy =
Ns[VH (s — VD).

Anderson (1984, Section 8.6.5) summarized results showing that NV
X2(rcra, N trAD, under a sequence of alternatives in wiBBA — ©,. To establish that
Av — N trA first express N¥= N tr[(I + AD-1AYH, whereAU= (A’ZA)HY By
recursively using a result in Searle (1982, pp. 151, #16g);N V
N tr[AD —AP? + AP AT+ ] - N trAPasA” _ 0with NAPremaining finite. Finally,
Av = [(NVD™L = (NsyY~2 - NVE because (N is finite under the sequence of
alternatives, but (Ns} — 0. Similarly, reraFy — [(NV)™ = (Nsy3~1 — NV. Thus graFy
d, Xx2(rera, Av), and more directly F 9, F(rera, v5, Av).

It can be shown thaaM™ <y, with equality holding if s =srandg = @5 = ... =

o

3. ACCURACY

We showed above that whefix 1 and g > 1, the proposed method prescribes the
exact noncentral distributions, whereas the Muller-Peterson algorithm prescribes
distributions that are only asymptotically (M «) correct for this case. This difference
is important because it applies to many situations found in practice. For exampl, r
rc=1, ik =2, and N = 30 defines a two-group discriminant analysis with three variables
and 15 cases per group.AlfE 16.5, the power is exactly 0.90. On the other haftl =
15.33, giving a power of 0.875, a 25% error relative to the exact Type Il error rate.

For s > 1, both methods are approximate. We now assess such cases.

3.1 Comparison with Results of Lee

Lee (1971) developed an asymptotic formula to approximate the powers for U, T,
and V using a complex weighted sum of noncenfalistribution functions. He
assessed its accuracy relative to exact values worked out for 18 cases in whichZ =r
rc =43, 5, 9}, and N —¢ = 63. Although these results do not strictly apply to assessing
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algorithms for the power of |5 FTl, and F, they offer a convenient place to begin.
Figure 1 gives relative errors of approximatidn,{m)/[1(1 —1)]2 whereTt is the
approximated power of |5 FTl, and F by either the Muller-Peterson or the proposed
algorithm andt is the exact power of U, T, and V given by Lee. Note that because
[T(1 —m)]¥2< 0.50, the relative error is at least twice that of the raw direr7r.

Figure 1. Relative errors of approximation for the Muller-Peterson (M-P) and the
proposed methods for 18 cases studied by Lee (1971, Table 1). s=r, =2, rc ={3, 5,
7}, N—ry =63.

The two F-based methods show accuracies that are quite acceptable for performing
power analyses of proposed studies. For these cases, they give relative errors within
+3%, with averages much less than that. The proposed method is seen to be biased
positively for U and T. As hypothesized above, the Muller-Peterson shows a tendency
to underestimate power, but its overall accuracy seems slightly superior to the proposed
method in these cases. We performed similar computations based on Lee's Table 2 and
found the same pattern for s &% {3, 4} as we did for s =y = 2.

This encouraging assessment is limited in two respects. First, like other researchers
of this topic, Lee was not concerned with methods for computing the power probabilities
of Fy, FTl, and , which are the test statistics generally used today. The powers of (say)
U and Fk; surely diverge for lower N, though perhaps only slightly. As a practical matter,
we would prefer an algorithm that gives more accurate powers,ftr &ne that gives
more accurate powers for U. Second, the cases Lee created to investigate had powers
much lower than are typically of interest. The largest power is 0.62, with the vast
majority being less than 0.50. For problems of sample-size choice, one generally desires
to have nominal powers of 0.80 or higher. We prefer 0.90.

3.2 Monte Carlo Study

For the reasons just stated, we performed a Monte Carlo study to assess how well we
can compute the power olfJFFTl, Fr, and F directly, for situations with meaningful

10
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power,1t= .80.

Method and designBecause Fl has the simplest proposed nominal noncentral
distribution, we used this to specify the particular non-null cases to simulate. For a given
N, r, f'c, and g, and a given nominal powety = Tp, we employed the SASunctions
FINV and FNONCT to find\y such that ProbfF.ra, v(le) , Ag) > Fos(rera, v(le), 0)] =
. Fors > 1, we defined four different structures for the first s eigenvaldes @f =
{of, @.... &}:

Equal (E): ¢"= AyN)sY1,1, .., 1}
Linear (L): ¢ = AyN)[s(s + 1)/2{Ys,s -1, ..., 1}
Geometric (G): o= A\JN)(SZ -1y 4251, 52 . 1}
Extreme (X): ¢9= AyN){1, 0, ..., 0.

The sum of the roots,5= \¢/N, is the same for all four structures; this, =\,
and the nominal power forTlFis Th. Though lower tham,, the nominal power forﬁ IS
also the same under all four structures. On the other hgrahdA,, are affected by the
structure of the eigenvalues. To kegyfixed, the elements i must decrease with
increasing N.

We examined all four F statistics under the E, L, G, and X structures for N = {10, 20,
30, 40, 50, 100},%x = 4, & = {2, 3}, ra = 3, and, = {.80, 90}. This produced sets of s =
2 and s = 3 cases that blanket a wide range of situations that are practical for power
analyses.

The experiment was performed using the MMinatrix language of SAS. Each trial
of a particular case proceeded as follows. Without loss of geneka#ty, H, an
ra % ra noncentral Wishart matrix witly idegrees of freedom, was formed by first using
the NORMAL function to generate ag x r, matrixZ having independent rows that are
N(O, I). LetM be the ¢ x r, matrix having elementsn= (qE)llz, k=1tos, and
My = 0 for k# k'. ThenH = (Z + M)'(Z + M) is Wishart with noncentraliti’M, a
diagonal matrix with elementspf, @-,..., @, 0, ...0}. E, the 1, x r, central Wishart
matrix with N — g degrees of freedom, was formed by generating an (> matrix
Z having independent rows that areON() and computinge = Z'Z. The roots oE~1H
were then obtained and used to forg Fro Fr R which were compared to their

respective nominal .05-level critical values. 5000 trials of each case where run, giving

11
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standard errors for each estimated true power of 0.00425d.90 and 0.0057 for

= 0.80. We checked the accuracy of our programming and of IML's NORMAL
random number generator by simulating a full slate ofs=1, i, = 3 cases and
verifying that the obtained results fell within reasonable sampling errors of the known
exact powers.

Figure 2. Proposed (-) and Muller-Peterson (x) approximations and estimated true
powers (©) as a function of eigenvalue structure and total sample size. & is the

estimated true Type-l error rate. ry=4;r,=3; s=rc={2, 3}.

The results forg, = .90 are presented in Figure 2. The results for the linear structure
for ¢ are not shown as they are identical to those of the geometric structure when s = 2
and virtually the same when s = 3. Also, the pattern of resultg f00.80 were in
complete accord with those fog = 0.90. & is the estimated true Type | error rate, the
“power” at¢" = 0. Note only that they are too low foy Fvhen N< 20.

The power results reflect our theoretical conclusions and show a pattern consistent
with those involving Lee's tables. The Muller-Peterson values are generally too low,
whereas those obtained by the proposed method are somewhat high in some cases. The
Muller-Peterson is better forFwith low N, but this is a “lucky” consequence of having
the deflatedx values suppress the true power. In general, there is a clear tendency for
the proposed method to give more accurate results.

Figure 3 re-plots the results from the s\x=rrc = 3 cases to show the relative errors
of approximation, T ; — 7t;)/[ ft;(1 — ft;)]¥2 wherefi; is the proposed approximated
power for a given Fstatistic andt; is the Monte Carlo estimate gf‘E true power.

Cases were chosen to ﬁatl =.90. The results show thaj Ras the most error-free
approximations. For the equal and geometric (and linear) structures, the approximations
for FTl , Ry, and g are positively biased, while those fq1’2 Bre negatively biased.

Structure X induces the most error, with the proposed method performing begiad F

Fr..

2
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Figure 3. Estimated relative errors of approximation as a function of sample size and

eigenvalue structure . s =r, =rc = 3; ry = 4; nominal power of .90 for FTl'

In conclusion, only when N is quite small €&\20) do we see any worrisome
breakdown in accuracy. It is exceptional that this single, straightforward scheme
performs so well over these four test statistics and four eigenvalue structures.

4. COMPARING POWERS OF Fy, Fr, Fr, and R,

The proposed algorithm provides a convenient way to compare the powggs of F
FTl, F'Tz' and . Following Anderson (1984, p. 332), we frame our view by employing
the coefficient of variation af"

S L, U2
[k;m—cp) /s]
CV = — ,
¢

where(p* is their average. Figure 4 plots CV against the approximate powers computed
using the proposed algorithm and the estimated true powers for the case of N = 50,

rk =4,and¢&=ra =s =3. The lines were constructed by computing the powers using
oU={Tt, TH1 - c)/2, F{1 - c)/2} where Fgives a power oft = 0.90 for R, using

o =.05. cvaries between ¢ = 1/3 (Structure E: CV = 0) and ¢ = 1.0 (Structure X:
cV=12 ). Although the L and G structures do not have a pattern.of T&{(1 — c)/2,

Td1 — ¢)/2}, their approximated powers fall right in line with those that do, as illustrated.
Figure 4 demonstrates that thessthtistics have the same power relations that Anderson
described for T, U, and V: As CV increasegf &nd k, become more powerful tharg,F
which becomes more powerful thap. FQuite similar images appear when graphing the
powers for all other combinations @f + s = {2, 3},11={.80, .90}, and N = {50, 100}. It
can be shown that under StructureE=A,, whenever s =, In addition, if s > 1, then
V(2T2) < v(ZTl) < V(ZV) , So it follows that the nominal power of, Exceeds that forTIf,

which exceeds that forlezin this case. We also note from the work of Schatzoff (1966)
and Olson (1974) that Roy's statistic has greater power than {rstaigfics under
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Structure X, but in general it has less power otherwise.

Figure 4. Nominal (lines) and estimated (points) powers of Fy, FTl FTz’ and Fy as a
function of the coefficient of variation of (plD, (pZD, (;E N=50;s=rpa=rc=3;rx=4,

nominal power of .90 for FTl‘

5. THE g-GROUP PROBLEM, WITH EXAMPLE

Most applications of the proposed method will be for power analyses in which g
independent groups are compared with respect to P correlated measurements. This
problem has a specific structure that we now exploit. An example follows.

LetX be the O ry essence model matri@rmed by assembling the q unique rows
of X (N x ry; Iy < Q). X is the collection of the g unique design points (e.g. the q
groups) for the proposed study. Jfof the rows oX are equal to théjrow of X , define
W to be the & g diagonal matrix containing weights wny/N. Thus(X’X) =
N(S( WX ), so that

HO= (CBA — ©p)[C(X "WX )1C']'X(CBA — ).

Thus the eigenvalues AP = (A’ZA)~HY and hence theH, are based on the g defined
design pointsX ), the g sample-sizes weighWY; the conjectured values for the
unknown effectsB), the conjectured common covariance matix @nd the
specification of the hypothesi€ (@©,). Importantly \H is not related to N.
To illustrate the method briefly, consider a profile analysis arising from crossing a 3-

level between-subjects factor, “Group,” with a 3-level within-subjects (repeated
measures) factor, “Test.” Th® subject will provide three observatioyss [yi1 Vi Via]

= [Test Test, Tests]. With N subjects total and taking tHe subject to be in the second

group, the cell means formulation6f=XB + € is

14
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Thus,S( is the 3x 3 identity matrix. The sample size weights are to be W50,
w, =.375, and w= .375, giving the elements of the diagonal mawix Two scenarios

for B are
97 110 97 97 110 97
B(l) =| 95100 110|and B(z) =(100 100 100 .
102 95105 102 95105

The conjectured within-group standard deviations fgnye, and y are 15, 20, and 15.
The within-group correlations ap» = 0.30,p13 = 0.60,p23=0.30. Thus

150 0| 1 .30.60(|150 O 225 90135
YX={02001/.30 1 .30|| 020 O =] 90400 90|.
0 015(|60.30 1 |0 01 135 90225

Comparing the test profiles across the three groups (the Groagt interaction) can
be specified witlH,: CBA = 0 where

11
c=[339|aanz|1 0.
0-1

For B(1), these specifications lead6'= {.278, .134}, which is almost an
linear/geometric eigenvalue structure. The primary noncentralitidgjare.407,
A =412\ = .403. Fon = .05 and N = 48, the approximate powersreye .949,
T =.951my =.943, andt, = .947. FoBy), oU={.181, .004}, which is less than for
B(1) and close to being an extreme eigenvalue structure. Accordingly, the primary
noncentralities and powers (N = 48) are now lower and more vatied:.178,
AP =185\ =.171; y = .610,7er = .630,1 = .612, and, = .590. For N = 96, the
powers arely = .923,1 = .937,1r = .929, andt, = .911. Note that the nominal Type
Il error rate for ky is 41% greater than forTf, which should become the prescribed
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statistic for the written protocol B(») were the primary scenario. Other factors,
especially robustness, might mitigate against such a decision. For instance, Olson (1974)
concluded that V was the more robust statistic.

6. CONCLUSION

The value of the proposed strategy stems from several factors. (1) This is an all-in-
one method that relates directly and simply to the familiar F transforms of the U, T, and
V statistics. These Fs are taken to be noncentral Fs with their usual degrees of freedom.
Computing their noncentrality parameters is isomorphic to computing the F statistics on
population values instead of sample values. As described fully in O’'Brien and Muller
(1993), exploiting the correspondence between a familiar test statistic and its
noncentrality parameter gives intuition and pragmatism to power analysis. This is not the
case for the more abstruse methods that have been proposed over the years for numerous
special cases involving U, T, and V directly (see Krishnaiah, 1978). (2) The method
gives exact powers when applied to any test having s = 1. (3) For s > 1, the method
affords a unifying set of asymptotic results that support its large-sample correctness
across the various F transforms. (4) For s > 1, but with smaller sample sizes, the
empirical work summarized and graphed above shows the method to be sufficiently
accurate for almost all applied work. Although methods that are more exact have been
developed for special situations involving U, T and V, such work does not extend to the
approximate f, FTl, F'Tz' and [ statistics being used so predominately today.

In conclusion, we offer a way to compute power probabilities for the multivariate
general linear hypothesis that is simple, general, and accurate. We hope these qualities
motivate statistical planners to perform power analyses that are more congruent with the
multivariate hypotheses they propose to test.
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