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Abstract

Simulation with indels was used to produce alignments where true site homologies in DNA sequences were known; the gaps from
these datasets were removed and the sequences were then aligned to produce hypothesized alignments. Both alignments were then ana-
lyzed under three widely used methods of treating gaps during tree reconstruction under the maximum parsimony principle. With the true
alignments, for many cases (82%), there was no difference in topological accuracy for the different methods of gap coding. However, in
cases where a difference was present, coding gaps as a fifth state character or as separate presence/absence characters outperformed treat-
ing gaps as unknown/missing data nearly 90% of the time. For the hypothesized alignments, on average, all gap treatment approaches
performed equally well. Data sets with higher sequence divergence and more pectinate tree shapes with variable branch lengths are more
affected by gap coding than datasets associated with shallower non-pectinate tree shapes.

© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Molecular systematics relies on comparisons of DNA
sequence information. Before phylogenetic inference meth-
odologies can be applied, the corresponding (putatively
homologous) nucleotide bases (or amino acids) must be
associated by multiple sequence alignment, converting
sequences of unequal length (although equal length
sequences may also require alignment) into sequences of
equal length. This is accomplished by proposing insertion
and deletion events, more commonly referred to as gaps (or
indels). The specific treatment of gaps in phylogenetic anal-
ysis can affect the results (Giribet and Wheeler, 1999;
Ogden and Whiting, 2003; Simmons and Ochoterena,
2000). Many studies conclude that gaps should be included,
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in some way, in order to provide additional phylogenetic
signal (Freudenstein and Chase, 2001; Graham et al., 2000;
Hennequin et al,, 2003; Kawakita etal, 2003; Petersen
et al, 2004; Simmons et al., 2001; van Dijk et al, 1999;
Vogler and DeSalle, 1994, just to name a few). Still, others
have argued against the usefulness of insertion deletion
events as phylogenetic characters (Ford et al., 1995; Golen-
berg et al., 1993; Li, 1997).

Notwithstanding many of the studies cited above, many
phylogenetic studies perform tree reconstruction treating
gaps in only one particular way and do not examine the
sensitivity of their conclusions to differential gap treatment.
For example, in a 3 year (1993-1996) literature review of
four systematic journals (Systematic Biology, Systematic
Botany, Cladistics, and Molecular Biology), Gonzalez
(1996) found that 78% of the phylogenetic studies did not
examine multiple ways of treating gaps. Of the remaining
cases, essentially half found that gaps were informative and
the other half concluded that the coding of gaps was
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irrelevant. There still seems to be a paucity of information
concerning the treatment and exploration of gaps in the lit-
erature. Most parsimony studies do not explicitly report the
way in which gaps are treated, and one must assume that
the program default is being used; e.g., for PAUP* (Swo-
fford, 2002) this would be gaps being treated as missing.
Most distance-based analyses and, until recently (Holmes,
2005), most likelihood and Bayesian analyses either treated
gaps as unknowns or removed the gap containing col-
umn(s) from the analyses for pairs of sequences or for all
sequences in an alignment. Given that the specific treatment
of gaps may make a difference in the resulting phylogenetic
hypotheses, it is important to elucidate any contributing
factors and how much of a difference these factors play. In
this study, we will focus on the treatment gaps in a parsi-
mony framework.

The treatment of indels has been addressed for a num-
ber of years, even if only tangentially (Baldwin et al.,
1995; Barriel, 1994; Baum et al., 1994; Crandall and Fitz-
patrick, 1996; Freudenstein and Chase, 2001; Hibbett
et al., 1995; Kelchner, 2000; Kelchner, 2002; Kretzer et al.,
1996). Simmons and Ochoterena (2000) provided a com-
prehensive discussion of the variety of ways that gaps can
be treated during phylogenetic inference via parsimony,
ranging from treating them as missing data (including
regions that are highly divergent) to coding them as fifth
state or separate characters. They presented two formal
descriptions of coding insertion and deletion events as
separate presence/absence characters. The first, termed
“simple indel coding” (SIC) is a more conservative
approach and is relatively easy to implement “by coding
all gaps that have different 5’ and/or 3’ termini as separate
presence absence characters.” Essentially, (1) indels in
multiple sequences are considered a single character if
they start and end at the same position; (2) overlapping
indels are considered separate characters; and (3) when a
large indel contains smaller indels completely within it,
the large indel is coded as unknown/missing for the char-
acter associated with the shorter indel, rather than pres-
ence/absence. This approach has been implemented in an
automated fashion in the program GapCoder (Young and
Healy, 2003), which can be used on single datasets. The
second approach, termed “complex indel coding,” is more
difficult because it takes into account additional informa-
tion concerning the number of steps required to transform
from one indel to another; there are also specific cases not
explicitly covered by the described rule set. Recently,
Muller (2006) also discussed incorporating length muta-
tional events and presented a new program for automated
adaptation of the “complex indel coding” (this paper was
brought to our attention after completion of our analyses
and near the termination of the preparation of this manu-
script). Other methods for dealing with regions of unequal
length have also been proposed but will not be specifically
dealt with in this paper, as we will be dealing with the
issue of using (or not using) gaps as information in parsi-
mony analyses. Among these different approaches, are

found the recently emerging concurrent analysis (com-
bined analysis) methods (Lunter et al., 2005; Redelings
and Suchard, 2005; Wheeler, 1996; Wheeler et al., 2003),
coding separate multistate characters (Lutzoni et al.,
2000), recoding indels as single events (Crandall and Fitz-
patrick, 1996; Manos and Steele, 1997; Swofford, 1993),
secondary structure guided inferences (Gillespie et al.,
2005; Kjer, 1995), likelihood or Bayesian derived models
(Holmes, 2005; Holmes and Bruno, 2001; Knudsen and
Miyamoto, 2003; McGuire et al., 2001; Metzler, 2003;
Miklos et al., 2004; Mitchison, 1999; Rivas, 2005; Thorne
et al., 1991, 1992), and stretch and block coding (Geiger,
2002).

DNA sequence simulation allows investigators to
directly compare results (true vs. hypothesized) in order to
determine where one method outperforms another and to
what extent. Only recently have alignments been simulated
that include indels (Blanchette et al., 2004a,b; Hall, 2005;
Keightley and Johnson, 2004; Ogden and Rosenberg, 2006;
Pollard et al., 2004; Rosenberg, 2005a,b). However, none of
these studies examine the effects of gap treatment differ-
ently during tree reconstruction.

The primary objective of this study is to investigate,
within a parsimony framework, the effect on topological
accuracy when gaps are treated as unknowns, fifth state
characters, or as separate coded gap characters using SIC.
We simulate datasets with indels, which represent the true
alignments (all columns are homologous) and are ana-
lyzed for each of the gap treatments, eliminating the
uncertainty of misalignment. We also align these datasets,
after having removed all gaps, using automated tech-
niques to explore how the gap treatments perform when
alignment is uncertain. Finally, we examine the roles that
tree shape and maximum evolutionary distance may play
in conjunction with different treatments of gaps.

2. Materials and methods
2.1. Data simulation

We used the simulated datasets from Ogden and Rosen-
berg (2006), consisting of seven base 16-taxon topologies,
providing sufficient tree shape diversity and complexity.
The seven topologies consisted of a balanced tree, a pecti-
nate tree, and 5 random trees (See Fig.3 in Ogden and
Rosenberg, 2006). The relative branch lengths of each
topology were set under 11 different conditions: ultrametric
equal-branch length, clocklike random branch length (5
sets), and non-clock-like random branch lengths (5 sets).
Each of these 11 conditions was scaled such that the maxi-
mum evolutionary distance between a pair of sequences
was equal to 1.0 or 2.0. Thus, each of the 7 topologies was
used to create 22 model trees. All simulations were con-
ducted under identical conditions in the program MySSP
(Rosenberg, 2005c). The initial sequence length was
2000 bp. Aside from the different conditions explained
above, DNA evolution was simulated under the Hase-
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gawa—Kishino-Yano (HKY) model (Hasegawa etal,
1985), with a transition bias (Kappa) of 3.6 (Rosenberg and
Kumar, 2003); initial and expected base frequencies of A
and T=0.2; and G and C=0.3.

Insertion and deletion events were modeled as a Poisson
process, following Rosenberg (2005a). Expected numbers
of insertions and deletions (modeled separately) for a given
branch were determined as a function of the realized num-
ber of substitutions (itself a Poisson process) which
occurred on that branch. Expected rates were based on
observed values from primates and rodents, with one inser-
tion event for every 100 substitutions and one deletion
event for every 40 substitutions (Ophir and Graur, 1997).
The realized number of insertion and deletion events was
drawn from a Poisson distribution with mean equal to the
expectation. The actual size of each insertion and deletion
event was independently determined from a truncated (so
as not to include zero) Poisson distribution with mean
equal to four bases, (as observed in primates and rodents)
(Ophir and Graur, 1997; Sundstrom et al., 2003).

Each simulation was replicated 100 times. The fate of
every insertion and deletion event was tracked throughout
the simulations, such that the columns, including those with
gaps in the final alignment, represented the true homologies
(Rosenberg, 2005a).

2.2. Alignment

These simulations resulted in 15,400 unique datasets
(alignments) containing gaps representing either insertion or
deletion events during the simulation process, and will be
referred to as the True Alignments (TA). Each of the TA
were then stripped of their gaps and were realigned via Clu-
stalW version 1.83 (Thompson et al,, 1994) using default
parameters. We will refer to these alignments as the hypoth-
esized alignments (HA). The HA represent a reasonable and
realistic amount of alignment error and were used to investi-
gate the role that alignment accuracy plays, in conjunction
with treatment of gaps, in topological accuracy. However,
the TA are the major focus of this study. See Ogden and
Rosenberg (2006) for further details on methods.

2.3. Tree reconstruction analyses

Each of the datasets (15,400 TA and 15,400 HA) were
analyzed under parsimony with gaps treated in three ways:
as an unknown, as a fifth state character, and as a separate
presence/absence character (Simmons and Ochoterena,
2000). In order to code gaps as presence or absence charac-
ters, we automated the SIC method of Simmons and Och-
oterena (2000) to allow coding of thousands of input files
(program available upon request from M.S. Rosenberg).
GapCoder (Young and Healy, 2003) can only recode indi-
vidual data files, but was used to cross check our implemen-
tation of the SIC scheme.

All phylogenetic analyses were performed using PAUP*
Version 4.b10 Windows (Swofford, 2002). For each treat-

ment of gaps, the TA and HA were analyzed identically
allowing for subsequent direct comparisons. The analyses
consisted of 100 random additions with TBR swapping and
all other default settings, except for using GapMode
= NewState for the gaps as a fifth state character approach.
When multiple trees were recovered, the strict consensus of
these trees was used as the result. The total alignment accu-
racy (TAA) is the average accuracy of all pair wise
sequence comparisons in the multiple alignment (Ogden
and Rosenberg, 2006). Topological accuracy is referred to
in terms of the Robinson and Foulds (1981) distance to the
known true tree.

3. Results

The average number of total characters and parsimony
informative characters for the analyzed data sets for each
of the three gap treatment approaches are found in Table 1
(see Supplemental information for details on each of the
random trees). Across all tree shapes, the resulting data sets
used for unknown and fifth state analyses consisted of
matrices with average lengths (number of columns) of 2362
and 2145 for the TA and the HA, respectively. After SIC of
the TA, an average of 218 additional characters (columns in
the matrix) were added when the maximum evolutionary
distance among any two taxa was 1, and an average of 396
characters were added when the distance was 2. Thus, the
new data matrices, which include the additional SIC gap
characters, resulted in average lengths of 2668 and 2414 for
the TA and the HA, respectively. Across all tree shapes, the
average increase in number of parsimony informative char-
acters, when gaps are treated as a fifth state was greater in
TA (185 additional characters) than in HA (120 additional
characters) datasets. However, for the pectinate tree shape,
when gaps were treated as a fifth state, there were more
characters added for HA (114) than for TA (99).

A pair wise comparison, for the TA, of each of the three
approaches (Table 2) of treating gaps indicated that 82% of
the time there was no difference between the three treat-
ments. In other words, any of the two contrasting methods
performed equally well (or equally poorly as the case may
be) in the majority of the analyses. For the balanced tree
shape, the percentage of cases with no difference reached
88%. Contrastingly, in the pectinate tree shape, the value
decreased to 66% where no difference was seen across the
gap treatment comparisons.

TA analyses that treated gaps either as fifth state charac-
ter or using SIC outperformed treating gaps as unknown
(Fig. 1 and Table 2). For example, across all tree shapes, of
the 23% fifth vs. unknown cases, where there was a differ-
ence between the approaches, treating gaps as fifth state
outperformed unknown 83% of the time (2928 out of 3550
cases). For the SIC vs. unknown the results were even more
pronounced with SIC recovering more accurate topologies
in 92% of the cases (1792 out of 1862) where there was a
difference. However, it should be noted that the SIC vs.
unknown contrast consisted of more cases where there was
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Average number of characters for the different analyzed data sets across all tree types and conditions

TA # characters TA # parsimony HA # HA # parsimony  Max evolutionary
informative characters informative distance
characters characters Rate—1 Rate—2

All tree shapes

Unknown 2362.02 1644.34 2145.37 1684.92

Fifth state 2362.02 1828.97 2145.37 1804.47

Simple indel coding 2668.30 1752.44 2414.08 1799.87

# Additional characters added after fifth state treatment 184.62 119.55

# Additional characters added after simple indel coding 306.28 108.09 268.71 114.96 218.11 396.05
Balanced tree shape

Unknown 2363.39 1726.84 2162.06 1769.61

Fifth state 2363.39 1925.77 2162.06 1891.62

Simple indel coding 2673.31 1863.92 2452.79 1916.83

# Additional characters added after fifth state treatment 198.92 122.01

# Additional characters added after simple indel coding 309.92 137.07 290.73 147.22 218.25 401.59
Pectinate tree shape

Unknown 2410.06 1506.67 2159.30 1545.64

Fifth state 2410.06 1606.13 2159.30 1659.53

Simple indel coding 2752.69 1547.51 2453.64 1618.69

# Additional characters added after fifth state treatment 99.46 113.89

# Additional characters added after simple indel coding 342.64 40.84 294.34 73.05 243.72 441.55

The last two columns are the number of additional characters added to the TA after simple indel coding procedure for the maximum evolutionary dis-

tance for each of the different rates used during simulation.

Table 2
Different gap treatment comparisons across the indicated tree shapes and all conditions for the true alignments (TA) and the hypothesized alignments
(HA)

Fifth vs. unknown SIC vs. fifth SIC vs. unknown

No difference Sth state Unknown No difference SIC Sth State No difference SIC Unknown
TA comparison across all 7 tree shapes
Total (%) 76.95 19.01 4.04 82.49 5.65 11.86 8791 11.64 0.45
# of cases 11,850 2928 622 12,704 870 1826 13,538 1792 70
% of cases with difference 82.48 17.52 3227 67.73 96.24 3.76
TA comparison across balanced tree shape
Total (%) 83.73 12.82 345 87.05 4.36 8.59 92.64 7.14 0.23
# of cases 1842 282 76 1915 96 189 2038 157 5
% of cases with difference 78.77 21.23 33.68 66.32 96.91 3.09
TA comparison across pectinate tree shape
Total (%) 57.18 34.68 8.14 64.59 12.45 2295 75.59 22.73 1.68
# of cases 1258 763 179 1421 274 505 1663 500 37
% of cases with difference 81.00 19.00 35.17 64.83 93.11 6.89
HA comparison across all 7 tree shapes
Total (%) 72.88 1291 14.21 76.24 13.27 10.49 84.18 8.62 7.20
# of cases 11,224 1988 2188 11,741 2044 1615 12,964 1327 1109
% of cases with difference 47.61 52.39 55.86 44.14 54.47 45.53

The number of cases represents the number of analysis replicates (out of a total 15,400 for all tree shapes and 2200 for the balanced and pectinate tree
shapes) where the particular gap treatment (unknown, fifth state, or SIC) outperformed the opposing method. No difference indicates the number of cases

where both methods performed equally (well or poor).

no difference, relative to fifth state vs. unknown. So
although the percentage was higher, the absolute number of
cases where fifth state coding outperformed unknown (as
compared to SIC vs. unknown) was greater. Thus while
fifth state coding recovered more accurate topologies, SIC
was a more conservative method of adding additional char-
acters (unknown only outperformed SIC 70 times, while it
outperformed fifth state 622 times). However, the down
side of this conservative reliability was that in many analy-

ses the indel coding was not sensitive enough to recover
more accurate topologies than the unknown analyses (see
below). The same general trends were recovered for each of
the separate tree shape breakdowns as well (Supplemental
material).

The SIC vs. fifth state comparisons, for TA analyses,
indicated that, on average, treating gaps as a fifth state
character resulted in more accurate tree reconstruction. For
example, across all tree shapes, of the 18% of the cases
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Fig. 1. Bubble plot, representing the relative number of cases, for comparisons of the three gap treatment approaches. The X and Y axes are distances from
the true tree. Points along the diagonal indicate that there was no difference in reconstructed topological accuracy between the two contrasted approaches.
Points above and below indicate the relative amount of cases where the gap treatment recovered less accurate topologies.

where there was a difference, treating gaps as fifth state out-
performed SIC 68% of the time (Table 1 and Fig. 1). So
while SIC was more reliable (because it outperformed
unknown gap treatment in a higher percentage than fifth
state vs. unknown), there were consistently more cases
where treating gaps as a fifth state recovered more accurate
topologies, even though the difference may be minimal.
The above results are all based on the true alignments
(TA). Using the hypothesized alignments (HA) led to a
different pattern. There was no difference between the
different comparisons of gap treatment 77% of the time,
and when there was a difference all of the methods per-
formed essentially equally well (Table 2 and Figs. 1 and 2).
For example, for the cases where there was a difference,
treating gaps as unknown recovered slightly more accurate
topologies (14% of the cases) than treating gaps a fifth state
(13% of the characters). Furthermore, as alignment accu-
racy decreased, all three comparisons showed that, on aver-

age, differential gap treatment did not affect topological
accuracy. In other words, contrary to many of the TA,
treating gaps as fifth state or SIC did not outperform treat-
ing gaps as unknown across the span of generated align-
ment error in HA. This generalization is based on a moving
average across many analyses and any one dataset could be
highly affected by any particular gap treatment and align-
ment inaccuracy.

4. Discussion
4.1. Treatment of gaps

The main question that stimulated this study was: within
a parsimony framework, is it better to use gaps as informa-
tion and, if so, what approach to gap coding leads to more
accurately reconstructed phylogenies? While many
approaches are now available, we decided to investigate
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ing averages based on an overlapping sliding window of 100 consecutive points.

this question within the parsimony framework and to limit
the analyses to the three most widely used automated meth-
ods. The fact that 82% of the time there is no difference,
across all tree shapes and conditions for TA, is important.
Thus, for the majority of true alignments across a wide
range of tree shapes, it does not matter which method is
used. To reiterate though, this is in terms of distance to the
true tree; the fact that two approached performed equally
well, or equally poor, does not mean that the same topology
was necessarily recovered. Balanced trees resulted in more
cases where no difference was found between alternative
gap treatments than pectinate trees. Therefore, it would be
preferable to more thoroughly explore the use of differen-
tial gap treatments when a recovered topology is more pec-
tinate (Aagesen et al., 2005; Ogden and Whiting, 2003).
These generalizations are based on trends and averages
across all analyses, and it should again be emphasized that
for any one dataset, even if the tree is balanced, gap treat-
ment may have an effect (positive or negative). In contrast
to the many cases where no difference was registered, our
results indicate that, across our studied conditions, there is
a relatively large percentage (e.g., 18% across all tree shapes
up to 34% in pectinate tree shape analyses) of cases that did
react differently to alternative gap treatments. In the major-
ity of these cases, treating gaps as a fifth state character or
as SIC (Simmons and Ochoterena, 2000) recovered more
accurate topologies. Hence, we suggest (in parsimony anal-
yses) that gaps should minimally be treated in one of these
two ways, as no other automated and objective gap treat-
ment approaches are currently available (although see
Muller, 2006). On average, both approaches perform
equally well. However, if the particular tree shape and data-
set are such that it does make a difference, one is more likely
to add accuracy to the phylogenetic reconstruction by cod-
ing gaps as a fifth state character.

Initially the superiority of fifth state coding over SIC for
TA analyses, as judged by the number of cases where the
former recovered more accurate topologies than the latter
(Table 2 and Fig. 1), was surprising. However, after further
investigation, the number of parsimony informative char-
acters that are added for each approach (Table 1), explains,
in part, this phenomenon. Fifth state coding added around
77 more parsimony informative characters than SIC, which
could account for the recovery of more accurate topologies,
due to the potential additional phylogenetic information
content (i.e., synapomorphies). However, as noted above,
SIC is a more conservative approach and therefore recov-
ered less accurate topologies only in a small percentage of
cases when compared to unknown gap treatment. These
results suggest either approach is better than not coding
gaps, but based on our data (particularly for more accurate
alignments), treating gaps as a fifth state character appears
to be the more preferable method, even if only slightly bet-
ter. The specific effect of indel length on these two methods
needs to be examined further (see below).

Because we do not know the actual true alignments with
non-simulated data, it was very important to examine the
results for the HA analyses. Coding gaps as fifth state or
with SIC for HA analyses, on average, did not increase
topological accuracy (Table 2 and Figs. 1 and 2) across the
span of generated alignment error. However, this does not
mean that gap coding will not affect any one particular
analysis as many single dataset cases exist where differential
gap coding made a large difference (note the point spread
above and below the y-axis in Fig. 2). Nevertheless, it is
readily demonstrated that for alignments that were 97%
accurate as measured by TAA all the way down to align-
ments with less than 20% accuracy (which are almost ran-
dom alignments), there is no average difference. Why then,
does coding gaps as characters for the TA result in topolog-
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outperforms treating gaps as unknown for TA associated to datasets that
resulted in very poor HA (bottom three lines).

ical accuracy differences when coded gaps vs. unknown
comparisons are made? In order to elucidate this conun-
drum, the average lines for HA and TA topological accu-
racy results, in terms of TAA vs. distance to true tree, were
plotted (Fig. 3). While, there is no alignment error for the
TA (they are exactly true by definition), the plot allows one
to identify data sets that would have been difficult to align.
In the region where HA alignments are very inaccurate (less
than 50%), TA topologies with gap coding outperform TA
topologies with gaps treated as unknown. This is due to
datasets (and associated tree types) that result in poor
alignments using ClustalW default settings. Thus, for the
corresponding HA datasets in this region, when more accu-
rate alignments could be generated (approaching the true
alignment), then coding gaps as characters would result, on
average, in more accurate topologies than treating gaps as
missing. Hence, across datasets that have little possibility
for large alignment errors, one is no better or worse off, on
average, coding gaps. For datasets where alignment is likely
to be problematic, if one can create more accurate align-
ments, then coding gaps is better than treating them as
unknowns, because on average, topological accuracy
increases.

Given the above conclusion, how does one identify data-
sets that are hard to align? This inquiry will require further
investigation, but we can mention some of the contributing
factors to alignment error in our study. One issue, evolution-
ary distance, is highlighted by the fact that there were 2579
datasets resulting in alignment accuracy (as measured by
TAA) lower than 50%. Of these, 2330 (90%) were datasets
simulated with the maximum evolutionary distance of two.
Of the other 249 cases, simulated with a maximum evolu-
tionary distance of one, almost all were simulation replicates
from ultrametric equal-branch length random tree shapes.
However, although these replicates (with the distance of
one) contained large amounts of alignment error, they
recovered completely accurate topologies, with only a few
exceptions. Therefore, 16 taxa datasets containing pairwise
comparisons (Rosenberg, 2005a) with a maximum evolu-

tionary distance of 1 or less are much less prone to differen-
tial gap treatments affecting topological accuracy. Similarly,
of the 2579 datasets with TAA <50%, 2239 were generated
under the random branch length condition. Additionally,
associated tree shape has also been shown to play a signifi-
cant role in alignment accuracy and tree reconstruction
(Ogden and Rosenberg, 2006). One interesting aspect of tree
shape is that although pectinate trees, on average, contain
less alignment error than more balanced topologies, these
errors have a larger effect on tree reconstruction then the
same amount of error in a balanced tree. Although there are
relatively few pectinate topologies in the <50% accuracy
range, gap coding in the corresponding TA pectinate tree
datasets showed a larger difference than in more balanced
trees. Therefore, datasets that have large evolutionary dis-
tances (2 or more), associated with deep, variable branch
length, and certain types of topologies may be considered
“hard to align” and gap treatment may play an important
role during tree reconstruction. Also worthy of noting, is
that Ogden and Rosenberg (2006) showed that, on average,
for more balanced tree shapes and shorter branch lengths,
alignment error may have little affect on topological recon-
struction, and that for more pectinate tree shapes and longer
branches the effect is much more pronounced.

4.2. The indel model

One final issue has to do with the biological accuracy of
the indel model used and how the modeled number and
length of indels may bias our conclusions. Although very
simple, the model used is not tremendously unrealistic, par-
ticularly for non-coding DNA. Insertions and deletion
events were independently modeled through a relatively
simple Poisson processes with frequency of occurrence on
each branch based (indirectly) on the branch length and
general rate parameters obtained from empirical studies
(Ophir and Graur, 1997; Sundstrom et al., 2003). Although
the decision to model insertion and deletion events sepa-
rately was likely inconsequential to this study, it could have
importance for future work since advances in multiple
sequence alignment have found advantages to treating
them as separate processes (LOytynoja and Goldman,
2005). While some indel models are based on single base
length events (e.g., Thorne et al., 1991), in our simulations
individual indel events were not restricted to single base
pairs but were drawn from a size distribution. The Poisson
distribution we used for indel sizes appears to be a poor fit
to empirically derived size distributions estimated from
entire genome alignments (Chimpanzee Sequencing and
Analysis Consortium); however, it should be noted that this
and other empirically determined patterns of indel size
(from pairwise comparisons of mammalian genomes) can-
not easily be modeled by any standard theoretical distribu-
tion. Despite the limitations and simplicity of our model,
the produced alignment accuracies are very similar to those
found by other researchers using alternate indel models
(Keightley and Johnson, 2004; Pollard et al., 2004).
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Despite these potential problems with our indel model,
we hypothesize that our general conclusions will hold true
for a similar constructed study, even if a more “realistic”
model were employed. We simulated an expected rate of
one insertion event (mean length =4) for every 100 substi-
tutions and one deletion event (mean length =4) for every
40 substitutions. These parameters led to alignments (HA)
that ranged between 97% and 20% accurate, thus, the simu-
lations produced alignment error across the large majority
of the possible alignment space. Our indel rates are interme-
diate between two possible dataset extremes: no indels and
almost all indels. As datasets contain fewer and shorter
indels, the effect of gap coding will be less. For example, in
82% of the comparisons no difference was seen between
approaches for treating gaps; if one were to simulate
shorter and less frequent indel events, the proportion of
contrasts with no difference would likely be larger. On the
other hand, as indels become longer and more frequent,
coding gaps as unknown would introduce more missing
data into the matrix and would most likely lead to less
accurate tree reconstructions; however, if gaps were treated
as a fifth state, there would likely be more contrasts that
have a difference, but there would likely also be more
homoplasious indel sites, and so the percentage of cases
where coding gaps as a fifth state outperforms unknown
coding may not increase significantly.

It is important to underscore that the specific distribu-
tion of gaps does not matter under parsimony analysis
when gaps are treated as unknowns or as a fifth state char-
acter. In fact, one could randomly rearrange the columns,
and the new dataset, although mixed up in order, would
generate the identical phylogenetic estimate. For SIC and
other similar coding approaches, however, the distribution
of indel lengths may have an affect on phylogenetic accu-
racy. An array of simulations across a range of modeled
indel lengths would need to be generated and analyzed to
address this issue (for example, simulating the identical
total number of indel sites, but distributed in larger or
smaller gap clusters). Thus, while our study provides some
small insight into the effect that indel frequency and length
can have on alignment and tree reconstruction accuracy,
this is an issue that needs to be further scrutinized, particu-
larly for approaches other than parsimony-based ones.

In this study, we have only examined three different
treatments of gaps in multiple sequence alignment, and
there are still many questions that need to be answered. It is
difficult to predict exactly how “complex indel coding”
(Simmons and Ochoterena, 2000) and other approaches to
gap coding will perform, but undoubtedly in many cases no
difference will be seen. In cases where differences are
observed, using gaps as information may recover more
accurate topologies when the associated “hard to align”
alignment is aligned more accurately. Other approaches
have largely ignored the issue of treating gaps as phyloge-
netic information. For example, Bayesian and Likelihood
methods either treat each gap as ambiguous data or ignore
the gaps by removing the entire column from the analysis.

However, Bayesian and Likelihood approaches that
include indel formation in the model are becoming more
readily available and practical for larger data sets (Holmes,
2005; Holmes and Bruno, 2001; Knudsen and Miyamoto,
2003; McGuire et al, 2001; Metzler, 2003; Miklos et al.,
2004; Mitchison, 1999; Rivas, 2005; Thorne et al., 1991,
1992). A similar trend is being seen in concurrent analysis
frameworks where the alignment and phylogeny are esti-
mated simultaneously (Fleissner et al., 2005; Lunter et al.,
2005; Redelings and Suchard, 2005). The treatment of gaps
as information in modeling approaches is an area that
needs further study. Approaches for dealing with gaps in
distance-based algorithms also need to be explored.

In conclusion, simulation with indels produced align-
ments where the true homologies were known and these
were then analyzed under the three most common
approaches of treating gaps in parsimony. For these true
alignments, most of the time there was no difference in
topological accuracy for the different methods of gap cod-
ing. However, in the true alignment cases where a difference
was present, coding gaps recovered more accurate topolo-
gies than treating gaps as unknowns. Treating gaps as fifth
state outperformed simple indel coding in a majority of the
true alignment cases where there was a difference. There-
fore, our data suggest that using gaps as information is
preferable to treating gaps as unknown and that coding
gaps as fifth state characters is slightly preferable to simple
indel coding. We also showed that data sets with large max-
imum evolutionary distances, and certain tree shapes may
be more affected by differential gap coding approaches.
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