
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/220965450

RoXSum:	Leveraging	Data	Aggregation	and
Batch	Processing	for	XML	Routing

CONFERENCE	PAPER	·	JANUARY	2007

DOI:	10.1109/ICDE.2007.369037	·	Source:	DBLP

CITATIONS

17

READS

11

3	AUTHORS:

Zografoula	Vagena

LogicBlox,	Inc.

39	PUBLICATIONS			665	CITATIONS			

SEE	PROFILE

Mirella	M	Moro

Federal	University	of	Minas	Gerais

985	PUBLICATIONS			377	CITATIONS			

SEE	PROFILE

Vassilis	Tsotras

University	of	California,	Riverside

266	PUBLICATIONS			4,244	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Mirella	M	Moro

Retrieved	on:	08	April	2016

https://www.researchgate.net/publication/220965450_RoXSum_Leveraging_Data_Aggregation_and_Batch_Processing_for_XML_Routing?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_2
https://www.researchgate.net/publication/220965450_RoXSum_Leveraging_Data_Aggregation_and_Batch_Processing_for_XML_Routing?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Zografoula_Vagena?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Zografoula_Vagena?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/LogicBlox_Inc?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Zografoula_Vagena?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Mirella_Moro2?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Mirella_Moro2?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Federal_University_of_Minas_Gerais?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Mirella_Moro2?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Vassilis_Tsotras?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Vassilis_Tsotras?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_California_Riverside?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Vassilis_Tsotras?enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw%3D%3D&el=1_x_7


RoXSum: Leveraging Data Aggregation and Batch Processing for XML Routing

Zografoula Vagena
IBM Almaden Research Center

San Jose, CA 95120, USA
zovagena@us.ibm.com

Mirella M. Moro, Vassilis J. Tsotras∗

University of California
Riverside, CA 92521, USA
{mirella,tsotras}@cs.ucr.edu

Abstract

Content-based routing is the primary form of communi-
cation within publish/subscribe systems. In those systems
data transmission is performed by sophisticated overlay
networks of content-based routers, which match data mes-
sages against registered subscriptions and forward them
based on this matching. Despite their inherent complexi-
ties, such systems are expected to deliver information in a
timely and scalable fashion. As a result, their successful
deployment is a strenuous task. Relevant efforts have so
far focused on the construction of the overlay network and
the filtering of messages at each broker. However, the effi-
cient transmission of messages has received less attention.
In this work, we propose a solution that gracefully handles
the transmission task, while providing performance benefits
for the matching task as well. Along those lines, we design
RoXSum, a message representation scheme that aggregates
the routing information from multiple documents in a way
that permits subscription matching directly on the aggre-
gated content. Our performance study shows that RoXSum
is a viable and effective technique, as it speeds up message
routing for more than an order of magnitude.

1 Introduction

Content-based routing is a form of data delivery that dif-
fers from unicast, multicast and anycast communications,
since the flow of messages is driven by their content rather
than the IP address of their destination. This form of com-
munication is widely employed by content-based data dis-
semination services. Such services (usually instantiated as
publish/subscribe systems) enable consumers to describe
the content of messages they are interested in (through user
profiles), and producers to simply inject messages to the
system without providing any addressing information.

∗This research was partially supported by a UC Micro grant and Lotus
Interworks; Mirella Moro was supported by Capes (Brazil).

Two important functions in those services are the filter-
ing of messages (ie. matching consumers profiles to mes-
sages from producers), and the routing of messages (ie.
defining the destination for each incoming message). Those
tasks are usually left to the communication infrastructure,
which typically consists of application-level routers (mes-
sage brokers) organized in some overlay network structure.

With the adoption of XML as the standard for data ex-
change, XML-aware data dissemination services become
necessary [2]. In those systems, the data to be routed are
encoded as XML. User profiles can then be expressed us-
ing an XML query language. Recent research on XML-
aware data dissemination services has focused on the fil-
tering task, and various approaches discussing indexing of
profiles [3, 2, 12, 8], batch processing of the incoming mes-
sages [6] and improving the filtering process [9] have ap-
peared. For the routing task, several ideas have explored
the construction of the routing tables [2, 14], and in situ
transformation of the original data, in order to meet user
requirements and improve transportation efficiency [2].

Nevertheless, the efficient transmission of messages has
received less attention. Conventional data compression
techniques have been proposed to achieve this task. Each
message is compressed before leaving a broker and decom-
pressed on arrival at another broker. However, as pinpointed
in [14], the compression and decompression costs can sig-
nificantly hamper the successful operation of such systems,
and add up to the already large message filtering costs.

In this paper, we propose a new message representation
scheme, coupled with novel filtering algorithms that com-
bine the advantages of content aggregation and batch pro-
cessing. We improve the overall effectiveness of the whole
message routing infrastructure by designing a solution that
decreases communication costs, while boosting the perfor-
mance of the message filtering process. Our main contribu-
tions are summarized as follows.

• we design a new structure, the RoXSum (Routing XML
Summary), which aggregates the content of multiple
messages.

• we demonstrate that the message filtering process can

https://www.researchgate.net/publication/4133527_Bloom_Filter-Based_XML_Packets_Filtering_for_Millions_of_Path_Queries?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/220225677_Path_sharing_and_predicate_evaluation_for_high-performance_XML_filtering?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/221309608_FiST_Scalable_XML_Document_Filtering_by_Sequencing_Twig_Patterns?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2939005_SemCast_Semantic_Multicast_for_Content-Based_Data_Dissemination?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2939005_SemCast_Semantic_Multicast_for_Content-Based_Data_Dissemination?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/3297626_Cache-Conscious_Automata_for_XML_Filtering?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2947023_Towards_an_Internet-Scale_XML_Dissemination_Service?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2947023_Towards_an_Internet-Scale_XML_Dissemination_Service?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2947023_Towards_an_Internet-Scale_XML_Dissemination_Service?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2947023_Towards_an_Internet-Scale_XML_Dissemination_Service?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/220964760_Batched_Processing_for_Information_Filters?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==


be performed on RoXSum itself, instead of the original
messages, thus enjoying the merits of batch processing
while decreasing decompression overheads.

• we devise incremental composition and decomposition
algorithms for RoXSum to be performed at each broker.

• we demonstrate the efficiency of our solutions with a
thorough empirical evaluation that unveils the charac-
teristics of the proposed methods on a prototype mes-
sage routing system that we have implemented.

We proceed with related work in section 2 and the RoX-
Sum structure and its challenges in section 3. Section 4 de-
scribes the processing algorithms. Section 5 presents an ex-
perimental study that evaluates the performance of our tech-
niques on a prototype message routing system and section
6 concludes the paper.

2 Related Work

A large number of proposals related to the efficient de-
ployment of publish/subscribe systems have already ap-
peared. An early system [18] provided support for match-
ing keyword search queries over large collections of doc-
uments. Most systems employ the Event-Condition-Action
paradigm to perform profile matching and selective dissem-
ination of information. Events are usually described either
as conjunctions of (attribute, value) pairs (eg. [4]), or in
XML [16, 2, 12], and profiles are expressed as selection
predicates over the content of events. For messages and user
profiles represented in XML, automata-based profile algo-
rithms are among the most popular message matching solu-
tions [10, 3, 9]. Nevertheless, several alternative matching
techniques, such as relational joins [16], bloom filters [8]
and subsequence matching [12] have also been proposed.
The goal of these works is scalability with respect to the
number of user profiles, which is achieved by employing
multi-query processing methods. The work in [6] targets
scalability on the number of messages and designs match-
ing techniques which handle message batches. Our work
combines the advantages of both optimizations by employ-
ing multi-query processing on batches of messages.

While early publish/subscribe systems were centralized,
scalability requirements have mandated the study of dis-
tributed architectures. SIFT [18] was the first system to pro-
vide solutions for distributed message filtering. Recently,
works that deal with the construction of the overlay network
structure [15, 5], the distribution of user profiles [2] and
message routing policies (eg. [14]) have appeared. [15, 2, 5]
use XML as the encoding format for messages, which is
also the focus of this paper. Our solution is complemen-
tary to those works, as it targets the design of a compact but
directly queryable message format. Moreover, it can be in-
tegrated with and benefit any of the previous architectures.

RoXSum is inspired by ideas from the summarization of
XML data where structural constraints of the original data
are preserved (e.g. [7, 13]). RoXSum uses the basic idea
of identifying and representing the structural relationships
of the original data. Nevertheless, it functions at the gran-
ularity of documents instead of document nodes. Hence,
RoXSum is tailored for compactly representing informa-
tion among multiple documents and is optimized for quickly
identifying whole documents (rather than nodes).

3 The RoXSum Data Structure

A key component in our system is a new data structure
called RoXSum. Its purposes are to aggregate the structural
information contained in a set of XML documents, and to
permit the message filtering process to be applied directly
on itself, instead of the original documents. Its design is
based on the observation that within an XML document (or
among multiple XML documents), elements share structure
and labels. This observation is the basis for all structural
summary structures that have appeared in the literature and
their effectiveness is well-established (eg. [7, 11]).

RoXSum is a data structure that aggregates a set of doc-
uments in such a way that their common parts are stored
only once. It consists of two parts: a hierarchical structure
called RoXSum tree, and a set of groups of documents iden-
tifiers called RoXSum extents. Each node in the RoXSum
tree groups all structurally equivalent nodes from the doc-
ument. The notion of structural equivalence is formalized
with the concept of bisimilarity [13, 11].

Two document nodes correspond to the same node in the
RoXSum tree if and only if they are bisimilar. Intuitively,
two nodes on the same document are bisimilar if the se-
quences of labels of the incoming paths to the nodes are the
same. It is not difficult to show that when the original doc-
ument has a tree structure (as is the case in this paper) the
derived structure is also a tree, thus the name RoXSum tree.
To aggregate multiple documents within the same RoXSum
structure, we assume the existence of a virtual root with
edges to each one of the document roots.

Analogously to previous related results [13, 11], if a
given path expression query is evaluated over the RoXSum
tree, and the nodes that satisfy the query are identified in
that tree, then the corresponding documents nodes, and only
those nodes, are the ones that satisfy the same query. As a
result, the RoXSum tree is both safe and precise; safe be-
cause it does not miss any result and precise because it does
not produce any false positives.

For message filtering purposes, we need to identify the
documents that satisfy a query. A naive solution is to as-
sociate the set of identifiers of those documents that con-
tain the corresponding bisimilar nodes to the corresponding
RoXSum tree node. So, after identifying the RoXSum tree

2

https://www.researchgate.net/publication/220910223_Mesh_Based_Content_Routing_using_XML?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/220910223_Mesh_Based_Content_Routing_using_XML?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/221322232_Index_Structures_for_Path_Expressions?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/221322232_Index_Structures_for_Path_Expressions?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/221322232_Index_Structures_for_Path_Expressions?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/4133527_Bloom_Filter-Based_XML_Packets_Filtering_for_Millions_of_Path_Queries?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/220225677_Path_sharing_and_predicate_evaluation_for_high-performance_XML_filtering?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/225709310_Processing_XML_Streams_with_Deterministic_Automata?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/221309608_FiST_Scalable_XML_Document_Filtering_by_Sequencing_Twig_Patterns?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/221309608_FiST_Scalable_XML_Document_Filtering_by_Sequencing_Twig_Patterns?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2939005_SemCast_Semantic_Multicast_for_Content-Based_Data_Dissemination?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/3943319_Exploiting_Local_Similarity_for_Indexing_Paths_in_Graph-Structured_Data?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/3943319_Exploiting_Local_Similarity_for_Indexing_Paths_in_Graph-Structured_Data?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/3943319_Exploiting_Local_Similarity_for_Indexing_Paths_in_Graph-Structured_Data?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2487373_DataGuides_Enabling_Query_Formulation_and_Optimization_in_Semistructured_Databases?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2487373_DataGuides_Enabling_Query_Formulation_and_Optimization_in_Semistructured_Databases?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/3297626_Cache-Conscious_Automata_for_XML_Filtering?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/221213980_Filtering_Algorithms_and_Implementation_for_Very_Fast_PublishSubscribe?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2580371_The_SIFT_Information_Dissemination_System?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2580371_The_SIFT_Information_Dissemination_System?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2947023_Towards_an_Internet-Scale_XML_Dissemination_Service?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2947023_Towards_an_Internet-Scale_XML_Dissemination_Service?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2947023_Towards_an_Internet-Scale_XML_Dissemination_Service?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/4193791_XTreeNet_scalable_overlay_networks_for_XML_content_dissemination_and_querying_synopsis?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/4193791_XTreeNet_scalable_overlay_networks_for_XML_content_dissemination_and_querying_synopsis?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/220964760_Batched_Processing_for_Information_Filters?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==


Figure 1. RoXSum Data Structure.

nodes that satisfy a query, we can obtain the documents that
satisfy it as well. This solution produces the correct answer,
but the total size of a RoXSum is proportional to “number
of documents * the total number of nodes” (i.e. the sum of
the number of nodes in each document). To decrease this
space, we consider an important observation: each docu-
ment stored on a RoXSum structure is a tree; so, identifying
the leaf nodes of all root-to-leaf paths with a document id
is enough to imply all internal path nodes of that document.
Hence, we can associate a document id with only the RoX-
Sum tree nodes that correspond to the leaf nodes of that
document. The set of document identifiers that correspond
to a RoXSum tree node is the RoXSum extent of that node.

An example RoXSum structure appears in figure 1. A
collection containing documents with identifiers D1, D2,
D3 and D4 is shown at the top of the figure, while the cor-
responding RoXSum structure is illustrated at the bottom.
The document identifiers under each label in the RoXSum
structure represent the extent of the respective node.

Having this structure, identifying documents (when eval-
uating a query or rebuilding the document) from the RoX-
Sum tree is straight-forward. From each node on the RoX-
Sum tree that satisfies a query, its extent and the extent of
its descendants contains those, and only those, documents
that satisfy the query as well. For example, consider the
query /bib/book/title on the documents of figure 1. There is
only one path in the RoXSum that satisfies this query. All
documents within the extent of the RoXSum tree node title
(under elements bib and book), and within its descendant
node subtitle satisfy the query, i.e. documents D1 and D2.
In the next section, we explain how RoXSum is used within
our message routing infrastructure.

4 Data Dissemination Process

We assume the existence of a network of K content based
routers (or brokers) whose purpose is to route incoming
messages to their corresponding consumers1. The main

1The actual construction and maintenance of the communication infras-
tructure is outside the scope of this paper and has been covered elsewhere
(e.g. [15, 5]).

Figure 2. Data flow and main tasks within a broker.

components of our infrastructure are: producers that cre-
ate XML documents and inject them in the routing system
through an entrance broker; profiles defined by users as path
expressions over the messages; a routing table that is main-
tained at each broker for storing all user profiles (on that
broker) with respective target broker information; and mes-
sages (exchanged within the system) that have a header with
control information, the RoXSum tree, and the text informa-
tion (for matching value conditions if needed).

At each point in time, a broker has to accomplish three
main operations, namely: (i) receive incoming messages,
(ii) match received messages against profiles, and (iii) for-
ward messages appropriately. Each of these operations con-
sists of smaller tasks performed by a distinct module within
the broker. Figure 2 presents the flow of information and the
operations within the processing modules of a broker. The
responsibilities of each module are summarized as follows2.

Receiving Module. This module receives profiles and
groups them into the broker’s routing table and the pro-
file NFA, which is a Non-deterministic Finite Automaton
that is used for multi-message filtering (task 1). This task
is performed whenever a broker receives either new pro-
files to be added to its routing table or invalidation notices
for some of the existing profiles. Furthermore, this module
accepts streams of documents from client applications and
is responsible for aggregating them, forming new RoXSum
structures (task 2). RoxSum structures are created by pro-
cessing the stream of incoming messages through a SAX-

2Due to lack of space, complete descriptions and algorithms will appear
in the extended version of this paper.

3

https://www.researchgate.net/publication/220910223_Mesh_Based_Content_Routing_using_XML?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/4193791_XTreeNet_scalable_overlay_networks_for_XML_content_dissemination_and_querying_synopsis?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==


based parser. This parser reads the XML document in-order
and either (i) adds new index nodes to the RoXSum tree, or
(ii) adds new document ids to existing index nodes, follow-
ing the bisimilarity constraint previously explained. Finally,
this module forwards each incoming RoXSum to the filter-
ing module (task 3).

Filtering Module. This module matches the profiles
against RoXSum structures, one structure at a time (task
4). It employs a new automata-based, multi-query process-
ing technique that operates on the RoXSum structure itself.
Specifically, for each set of profiles, it is guaranteed that
their common parts are processed only once by the NFA.
Building the NFA resembles the approach in [3]. How-
ever there are two differences: (i) instead of operating at
node granularity and on the original documents, our NFA
is tailored to operate on document granularity on the RoX-
Sum structure; and (ii) our implementation uses different
structures to keep the results (optimized linked stacks and
hash tables). All profiles are matched against all documents
that comprise the structure, by performing single pass over
a RoXSum structure. This process outputs a set of (docu-
ment identifier, destination broker) pairs that are passed to
the forwarding module.

Forwarding Module. This module sends each docu-
ment to its destination broker. Given the results of the
matching phase, this module has to accomplish three tasks:
(i) gather the content of each document, (ii) aggregate the
contents of documents that are sent to the same broker into
a new RoXSum structure (task 5), and (iii) formulate the
messages to be handed on the underlying network infras-
tructure (task 6). The first two tasks are performed on the
RoXSum structure itself (through structure traversals, parti-
tions and aggregations with other structures) thus avoiding
the need to reconstruct the original documents. There are
also two hash tables involved: docTarget, which maps each
document id that satisfies any profile to the respective target
brokers, and targetRS, which maps target ids to the root of
the RoXSum that will be routed to them. Finally, task 7 is
performed by the underlying network infrastructure.

For example, figure 3a depicts a given RoXSum structure
and a routing table. The matching profile module returns
that documents D1 matches profiles /a/b/c and /a//d/e, and
D2 matches profile /a/b/c. Then, docTarget contains two
entries (one per matched document) as in figure 3b. At the
end, targetRS is populated as in 3b. Each target receives a
RoXSum with only those documents that match any of the
respective profiles.

5 Experimental Evaluation

To empirically study the viability of our method, we built
a simulator of a network of N brokers for manipulating
RoXSum structures. This section presents a summary of

Figure 3. Decomposition of RoXSum structure.

the results of a series of experiments that were conducted to
assess the behavior of the RoXSum structure.

We utilized both benchmark (XMark [17]) and custom
generated datasets. The custom datasets represent highly
heterogeneous collections which are common in distributed
publish/subscribe systems. For the heterogeneous collec-
tions, we collected 22 different DTDs with variable struc-
tures and used them to generate the input documents, with
the aid of the ToXGene XML document generator [1].

The experiments were conducted on an Intel Pentium
IV, 2.6GHz machine, with 1GB of memory. All algorithms
were implemented in Java using Sun JDK version 1.4.0.

Message Size. We compare the space requirements for
routing a set of documents individually as opposed to aggre-
gating them in a RoxSum structure. On sets with 100 up to
100,000 documents, the size of the RoXSum tree is usually
less than 5% of the total size of the documents. Likewise,
the size of the RoXSum tree with the documents content, is
at least 10 times smaller than the regular documents.

Routing within a Broker These experiments evaluate
the performance of the tasks that take place within a single
broker. We measure the time between the moment a set
of documents enters an entrance broker to the moment the
same documents are forwarded to their target brokers. The
main parameters that affect such performance are:

• Number of input documents: affects the amount of
data to be processed and the size of the associated RoX-
Sum structure.

• Number of target brokers: influences the number of
output messages to be created. It also affects how
many RoXSum structures will be created from the orig-
inal structure. Additionally, the size of each structure
is defined by a combination of the number of target
brokers and the profile selectivity.

• Number of profiles: quantifies the system scalability
regarding the number of profiles it can handle at the
same time.

• Selectivity of the profiles: defines the amount of infor-
mation from the input that needs to be routed, i.e. how
many documents need to be sent to target brokers.

The results when varying those parameters are as follows.

4

https://www.researchgate.net/publication/2490262_ToXgene_A_template-based_data_generator_for_XML?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/220225677_Path_sharing_and_predicate_evaluation_for_high-performance_XML_filtering?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==
https://www.researchgate.net/publication/2524518_The_XML_benchmark_project?el=1_x_8&enrichId=rgreq-7c98d93f-9139-48ce-b582-5988f7547330&enrichSource=Y292ZXJQYWdlOzIyMDk2NTQ1MDtBUzoxMDE1MzkzNzI4NjM0ODhAMTQwMTIyMDI4MTEyNw==


Figure 4. Performance when varying the number of input
documents and target brokers - all in logarithmic scale.

Varying the Number of Documents for 100 Targets. We
use 1, 000 profiles whose associated path expressions have
from 3 up to 7 nodes each, and all incoming documents
satisfy at least one of them. The profiles distribute the doc-
uments uniformly among the target brokers (we show the
results for 100 target brokers but similar measures were ob-
tained for 1 and 10 brokers). Figure 4a has the results for the
number of documents varying from 1, 000 (1K) to 100, 000
(100K). The Y axis presents the time (in seconds), whereas
the X axis presents the number of input documents evalu-
ated. In all cases, except when evaluating few documents
(1K), the RoXSum is at least 10 times faster than evaluat-
ing the documents sequentially. This difference practically
reaches two orders of magnitude when evaluating 100K
messages. This happens because the very small size of the
RoXSum structure enables the profile evaluation and the out-
put message processing to be performed very quickly.

Varying the Number of Profiles. Here, we keep the num-
ber of documents fixed in 10K, the selectivity of the set of
profiles fixed to 50%, and the number of target brokers to
10. The message filtering results are uniformly routed to
those 10 target brokers. The number of profiles varies from
1, 000 (1K) to 50, 000 (50K). Figure 4b illustrates the re-
sults. The Y axis presents time, whereas the X presents the
number of profiles evaluated against the documents. We
compare the results provided when matching the profiles
to the RoXSum structure (which includes the time to build
the RoXSum) versus to each document separately. In most
cases, the evaluation on the RoXSum is around 10 times
faster than the plain solution.

Varying Profile Selectivity. We considered 10 different
target brokers and 1, 000 profiles on 10K documents. The
selectivity is defined for the set of profiles (ie. a selectivity
of 10% means that 1 in each 10 input documents satisfies
any of the 1, 000 profiles). Figure 4c illustrates the results.
The Y axis presents the time, whereas the X axis presents
the selectivity. Once more, the results show that employing
the RoXSum structure can result in an order of magnitude
faster evaluation compared to the processing of each docu-
ments separately. Moreover, this experiment shows that the
RoXSum performs gracefully when varying the number of
both the input and the output documents.

6 Conclusion

In this paper we focused on the efficient routing of mes-
sages within a content-based routing system. We proposed
RoXSum, a message representation scheme that aggregates
the content information of different messages and enables
very efficient profile matching. Moreover, its performance
adapts gracefully to increasing number of both messages
and profiles. RoXSum avoids document decompression at
each broker by performing the subscription matching di-
rectly on the aggregated content while permitting batch
processing for message filtering. Our experiments demon-
strate that employing RoXSum within content-based mes-
sage routing systems can significantly boost their perfor-
mance and scalability.

References

[1] D. Barbosa et.al. Toxgene: A Template-based Data Genera-
tor for XML. In WebDB, 2002.

[2] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an Internet-
Scale XML Dissemination Service. In VLDB, 2004.

[3] Y. Diao et. al. Path Sharing and Predicate Evaluation for
High-Performance XML Filtering. ACM TODS, 28(4), 2003.

[4] F. Fabret et. al. Filtering Algorithms and Implementation for
Very Fast Publish/Subscribe. In SIGMOD, 2001.

[5] W. Fenner et. al. XTreeNet: Scalable Overlay Networks for
XML Content Dissemination and Querying. In WCW, 2005.

[6] P. M. Fischer and D. Kossmann. Batched Processing for In-
formation Filters. In ICDE, 2005.

[7] R. Goldman and J. Widom. DataGuides: Enabling Formu-
lation and Optimization in Semistructured Databases. In
VLDB, 1997.

[8] X. Gong et. al. Bloom Filter-based XML Packets Filtering
for Millions of Path Queries. In ICDE, 2005.

[9] B. He, Q. Luo, and B. Choi. Cache-Conscious Automata for
XML Filtering. In ICDE, 2005.

[10] T. J. Green et. al. Processing XML Streams with Determin-
istic Automata. In ICDT, 2003.

[11] R. Kaushik et. al. Exploiting Local Similarity for Indexing
Paths in Graph-Structured Data. In ICDE, 2002.

[12] J. Kwon et al. FiST: Scalable XML Document Filtering by
Sequencing Twig Patterns. In VLDB, 2005.

[13] T. Milo and D. Suciu. Index Structures for Path Expressions.
In ICDT, 1999.

[14] O. Papaemmanouil and U. Centintemel. SemCast: Semantic
Multicast for Content-based Data Dissemination. In ICDE,
2005.

[15] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-Based
Content Routing using XML. In SOSP, 2001.

[16] F. Tian et. al. Implementing a Scalable XML Pub-
lish/Subscribe System Using Relational Database Systems.
In SIGMOD, 2004.

[17] XMark. The XML benchmark project. In http://www.xml-
benchmark.org.

[18] T. W. Yan and H. Garcia-Molina. The SIFT Information Dis-
semination System. ACM TODS, 24(4), Dec 1999.

5


