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Abstract. Count data reported over one period of time of-
ten show overdispersion and infinite divisibility compared to
the Poisson distribution. We propose a methodology which
can be extended to pure birth processes derived from Pois-
son processes. Our model reveals itself as the most general
of this type. Our family encompasses many distributions anal-
ysed separately and used in bonus-malus systems.
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1 Introduction

Count data, as for example the number of claims reported to
an insurance company during a period of time, occur in many
practical problems. When only randomness looks present,
they seem to be described by a Poisson distribution which is
the first choice for non-negative integer valued random vari-
ables. In many cases, for example in motor third party lia-
bility, this choice is rejected by the usual Chi Square test for
goodness of fit. It is immediately observed that the Poisson
model underestimates the variance because overdispersion oc-
curs (the variance is larger than the mean), indicating that the
population heterogeneity of the drivers has not been taken into
account by the Poisson model and its single parameter. This
suggests that more parameters are needed to describe the dis-
tribution of the data. As the sequence of signs of the difference
between observed and expected under the Poisson distribution
is +,−,+, the result of Shaked (1980) reveals that it is natural
to try to use a mixed Poisson distribution.
Moreover, indication of infinite divisibility of the data is sug-
gested and especially when the frequency is low, an excess of
zeroes relative to the Poisson distribution often arises.
Many models have been built to try to solve each part of the
problem separately. Here we propose a methodology and a
model to solve the problem as a whole. It is possible to build
a model which is the more general of this type.
In many cases, data are collected in a single period of time
which is taken as unity and so time is eliminated. Neverthe-
less, the model has to be extended to stochastic processes. Our
model is not only adapted to this situation but also to data re-
ported over several consecutive periods and, moreover, to the
problem met in the industry sector where defaults are reported
over periods of different lenghts and to the situation where
several zero default are observed but not reported.
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2 The motivation

The following kind of data are frequent in insurance, market-
ing, biometry, financial problems. As an example, we consider
a typical Swiss motor portfolio (see table 1), published by
Bühlmann (1970) and used by, among others, Lemaire (1985),
Tremblay (1992), Denuit (1997), Walhin and Paris (1999b).
As usual, the data set gives the number Nk of policyholders
having reported k claims to the company during the period
(k = 0, 1, 2, . . . ).

Number of Number Nk of Expected frequency Sign
accidents k policyholders under Poisson difference

0 103704 102629.55 +
1 14075 15921.95 −
2 1766 1235.07 +
3 255 63.87
4 45 2.48
5 6 0.07
6 2 0.00

Table 1. Reference portfolio

If we try to fit a Poisson distribution with parameter λ esti-
mated by maximum likelihood : λ̂ = N̄ = 0.15514, the usual
χ2 statistic of goodness of fit, with 3 degrees of freedom is
2550.93 and leads to the rejection of the Poisson distribution.
Note: for the grouping rule, in order to find the χ2 statistic, we
try to obey the rule B in Lemaire (1995), i.e. each theoretical
frequency is at least 1 and 80% of the theoretical frequencies
are at least 5.

Moreover, the sequence of signs of the differences between
observed and expected is the Shaked one. This suggests a
Poisson mixture.

The estimated variance S2 = 0.17931 and the value of the
statistic of the usual asymptotic Poisson overdispersion test
based on √

n− 1
2

(
S2

N̄
− 1

)
∼ N(0, 1) (1)

(see Gart (1975) and Böhning (1994)), equivalent to the Fisher
index of overdispersion, is 28.14, indicating a strong presence
of overdispersion which is present in a mixed Poisson prob-
ability law and also in a compound Poisson probability law
corresponding to an infinitely divisible probability law in the
discrete case (see Feller (1968), Tome 1, CH XII, Section 3,
p271).

Thus it is natural to analyse the presence of infinite divisibil-
ity in the data. In the discrete case, the expression k2k4 − k2

3 ,
where kj is the cumulant of order j of the random variable,
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is zero in the Poisson case and strictly positive for any other
infinitely divisible random variable. Using the k-statistic of
Fisher as an estimation of the corresponding cumulant, we ob-
serve a value of 0.0149 indicating a possible strictly positive
value. Using the corrected version of the statistic (see Gupta,
Móri, Székely (1994))

k2k4 − k2
3 ∼ N(0,

8λ4

n
(1 + 12λ+ 3λ2)) (2)

where the parameter λ of the Poisson is estimated by maxi-
mum likelihood, gives for our example an observed reduced
value of 44.32 indicating a possible presence of inifinite divis-
ibility as in a compound Poisson probability law.

The test for deviation in a single cell (see Rao (1973) p395)
can be applied. In the particular case of the Poisson distribu-
tion, the test statistic for the deviation in the zero cell is based
on

N0 − ne−λ̂√
ne−λ̂(1 − e−λ̂ − λ̂e−λ̂)

∼ N(0, 1). (3)

The observed value, 32.18, indicates a strong deviation in the
zero cell.
This observation is in agreement with the preceding ones be-
cause, by Jensen’s inequality, the mixed Poisson distribution,
with mixing distribution U(λ), has the following property

∫ ∞

0

e−λdU(λ) ≥ e−
∫ ∞
0 λdU(λ). (4)

3 The model

Let N(t) be a counting (pure birth) process on the interval
(0, t] (N(0) = 0). As the data are counts of accident insur-
ance policies reporting a number of claims during a particular
year, it is natural from the preceding considerations to suppose
that N(t) is an infinitely divisible mixed Poisson process (see
Grandell (1997)) for which

Π(n, t) = P[N(t) = n]

=
∫ ∞

0

e−λt (λt)
n

n!
dU(λ) , n = 0, 1, . . .(5)

Therefore

Π(0, t) = P[N(t) = 0] =
∫ ∞

0

e−λtdU(λ) (6)

is a completely monotonic function (Π(0, t) possesses deriva-
tives Π(n)(0, t) of all orders, and (−1)nΠ(n)(0, t) ≥ 0 ∀t >
0) as a Laplace transform (see Feller (1971), Tome 2, CH XIII,
Section 4, Theorem 1, page 439) and determines entirely the
distribution of N(t), for fixed t, because

Π(n, t) = (−1)n t
n

n!
Π(n)(0, t). (7)

For N(t) to be infinitely divisible, it is sufficient that U(λ)
is infinitely divisible (see Maceda (1948)). Moreover Feller

(1971), Tome 2, CH XIII, Section 7, Theorem 1, page 450,
showed that U(λ) is infinitely divisible if its Laplace trans-
form,

Π(0, t) =
∫ ∞

0

e−λtdU(λ),

may be written as

ψN(t)(u) = e−θ(t−tu), (8)

where θ is a Bernstein function (θ ≥ 0, θ(0) = 0, θ
′

is com-
pletely monotonic), which restricts the choice of completely
monotonic functions Π(0, t).

Due to the mixed Poisson representation of the model, the
probability generating function of N(t) is

ψN(t)(u) = e−θ(t−tu). (9)

Taking the derivative of the logarithm of ψ, we obtain

d

du
lnψN(t)(u) = tθ

′
(t− tu), (10)

where the function θ
′
(t − tu), taken as a function of u, is

absolutely monotonic (all derivatives of the function exist and
are positive). Thus, it can be expanded in series as

θ
′
(t− tu) =

∞∑
n=0

rn(t)un, (11)

where the rn(t) ≥ 0. By equating terms with identical powers
of u in the two members of

d

du
ψN(t)(u) = ψN(t)(u)tθ

′
(t− tu), (12)

we obtain the recursive relationship

Π(0, t) = e−θ(t),

(n+ 1)Π(n+ 1, t) = t
n∑

j=0

rj(t)Π(n− j, t). (13)

These relationships are identical to those of Steutel (1973)
(see also Katti (1967)) which characterize infinitely divisible
probability distributions for discrete random variables.
The representation of N(t) as a compound Poisson process of
the type

N(t) = Ξ1 + · · · + ΞL(t), (14)

where the Ξi are iid (independent and identically distributed)
integer valued random variables and L(t) is Poisson dis-
tributed and independent of the Ξi is easily obtained from the
probability generating function of N(t) (see (9)).
As 1− θ(t−tu)

θ(t) is an absolutely monotonic function taking the
value 1 for u = 1, it is the probability generating function
of an integer random variable (see Feller (1971), Tome 2, CH
VII, Theorem 2, p223):

ψΞ(t)(u) = 1 − θ(t− tu)
θ(t)

=
∞∑

j=1

pΞ(t)(j)uj , (15)
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where

pΞ(t)(j) = P[Ξ(t) = j].

We immediately see that

pΞ(t)(0) = 0

pΞ(t)(j) = (−1)j−1 tj

j!

dj

dtj θ(t)

θ(t) , j = 1, 2, . . .
(16)

The probability distribution of the Ξi is immediately deduced
from the knowledge of the function θ(t). The probability gen-
erating function (9) can also be written as

ψN(t)(u) = e−θ(t)[1−ψΞ(t)(u)]. (17)

N(t) is distributed as the sum of a random number L(t)
(which is Poisson with mean θ(t)) of iid random variables Ξi

independent of L(t) and distributed as Ξ(t).
Remark: as driving abilities vary from individual to individ-
ual, the Poisson parameter λ changes and the mixing distribu-
tion U reflects the heterogeneity of the portfolio. Many mod-
els have been built with a particular choice of the function U
but it is difficult to validate the choice because there are so
many particularities of the drivers which have to be taken into
account that the functionU has to be continuous. As the obser-
vation bears on the number of claims during a single period,
the basic paper of Simar (1976) indicates that the estimation
of U is always purely discrete indicating only that the portfo-
lio can be divided into a low number of homogeneous classes
and consequently this procedure is not adapted to the situa-
tion. Denuit and Lambert (2000) try to solve this problem by
a smoothed version of the Simar non-parametric maximum
likelihood estimator.
The fact that the model is not rejected is not a proof of an
appropriate choice because the model taken into account can
have properties which are in contradiction with the natural
properties of the real model.
The basic problem is the choice of the function θ (or θ

′
) but to

be able to estimate such a function with an infinite number of
restrictions (a completely monotonic function has an infinity
of derivatives with alternate sign) we need an infinite number
of observations which is impossible. So to be efficient with the
kind of data at our disposal, we need to restrict the number of
difficulties and adopt a parametric form for θ. The choice is
dictated by the following consideration: the main problem in
risk theory is the determination of the probability distribution
function of the random sum

SN(t) = X1 +X2 + · · · +XN(t), (18)

where the Xi are iid and represent the cost of claims, N(t) is
the number of claims in (0, t] and is supposed to be indepen-
dent of the Xi.
The two main objectives are:

- an easy evaluation of the probability distribution function
of SN(t) through a procedure which avoids the use of con-
volutions.

- an easy evaluation of the intensity of the process

E[N(t+ 1) −N(t)|N(t)], (19)

on which the premium for the period [t,t+1] is based.

The next section proposes a solution.

4 A remarkable family of probability distributions

In order to build an infinitely divisible mixed Poisson process,
it is sufficient to choose the function θ

′
(t). The family charac-

terized by

θ
′
(t) =

p

(1 + ct)a
, p > 0 , c > 0 , a ≥ 0, (20)

has been introduced by Hofmann (1955) and used by
Thyrion (1961), Kestemont and Paris (1985), Walhin and Paris
(1999b).
By integration we immediately find

θ(t) = pt if a = 0

=
p

c
ln(1 + ct) if a = 1 (21)

=
p

c(1 − a)
[(1 + ct)1−a − 1] if a �= 1.

This formulation encompasses many probability distributions.
The parameter a distinguishes between the different distribu-
tions. If t is fixed, for a = 0 we find the ordinary Poisson dis-
tribution, for a = 1

2 the Poisson Inverse Gaussian distribution,
for a = 1 the Negative Binomial distribution, for a = 2 the
Polya-Aeppli distribution. The limiting case a → ∞ , c → 0
such that ac → b gives the Neyman Type A distribution for
which

θ(t) =
p

b
(1 − e−bt). (22)

For notation purposes, we will write Ho(p, c, a) for the distri-
bution of this family with parameters p, c, a. This family can
be divided into two parts:

1 the distributions with 0 ≤ a ≤ 1. In this case

lim
t→∞ θ(t) = +∞. (23)

From Tauberian results (see Feller (1971), Tome 2, CH
XIII, Section 5), this leads to

lim
t→∞Π(0, t) = 0 = lim

λ→0
U(λ), (24)

which is the general situation in insurance. This result ex-
plains why the limiting cases, the Poisson distribution (a =
0) and the Negative Binomial distribution (a = 1) have re-
ceived so much attention in counting distributions.

2 the distributions with a > 1. In this case

lim
t→∞ θ(t) = d > 0, (25)

where d = p
c(a−1) and

lim
t→∞Π(0, t) = e−d = lim

λ→0
U(λ). (26)
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In this case the random variable Λ has a point mass at the
origin.
Letting in this case

θ(t) = d

[
1 − (1 − θ(t)

d
)
]
, (27)

and defining

Q(0, t) = 1 − θ(t)
d
, (28)

Q(0, 0) = 0 , Q(0, t) ≥ 0 , Q(0, t) completely monotonic,
we obtain

Π(0, t) = e−d[1−Q(0,t)], (29)

and also another procedure of construction.
In the particular case a > 1 in the Hofmann process,

Q(0, t) = (1 + ct)1−a (30)

is the Laplace transform of a Gamma random variable.

5 General properties

The factorial cumulant generating function for N(t),

ln E[(1 + u)N(t)] = ln Π(0,−tu) (31)

= −θ(−tu),
yields the factorial cumulants

κ1 = pt,
κ2 = pcat2,
κ3 = pc2a(a+ 1)t3,
κ4 = pc3a(a+ 1)(a+ 2)t4,

(32)

from which we derive

EN(t) = pt,
VarN(t) = pt+ pcat2.

(33)

Except for the case a = 0, we always have

VarN(t) > EN(t), (34)

and for fixed c, the difference increases with a.
Different formulations of skewness and kurtosis can be ob-
tained (see Walhin (2000)).
The ordinary Poisson distribution appears as a limiting case.
If we consider a Poisson distribution with the same expected
value, pt, as introduced above, that is

p(n, t) = e−pt (pt)
n

n!
, n = 0, 1, . . . (35)

we have the Jensen inequality

p(0, t) ≥ Π(0, t), (36)

which explains the excess of zeroes. In the same way (see
Feller (1943)) we have

p(1, t)
p(0, t)

= pt ≥ Π(1, t)
Π(0, t)

= tθ
′
(t), (37)

and Π(0, t) is an increasing function of a for which

lim
a→0

Π(0, t) = p(0, t). (38)

From Chebyshev’s inequality for integrals of decreasing func-
tions (see Hardy et al. (1964)), we have

Π(0, t+ s) ≥ Π(0, t)Π(0, s), (39)

which is an evident result in insurance. Indeed one expects
that the probability of no claim for a policyholder over a long
period (t+s) is larger than the probability of no claim for two
policyholders over periods t and s respectively.
The Cauchy-Schwartz inequality gives

nΠ(n, t)
Π(n− 1, t)

≤ (n+ 1)Π(n+ 1, t)
Π(n, t)

, (40)

whereas these relationships are constant for the Poisson dis-
tribution.

Let us assume that N ∼ Ho(p, c, a). Let us introduce the ran-
dom variable

Yi = 1 if Xi > D,

= 0 if Xi ≤ D.

If we count the number of independent events with character-
istic Xi > D amongst the N , that is

N
′
= Y1 + Y2 + · · · + YN , (41)

we have

ψN ′ (u) = ψN (ψY (u))
= e−θ(t(1−FX(D))(1−u),

(42)

which shows that

N
′ ∼ Ho(p(1 − FX(D)), c(1 − FX(D)), a). (43)

From (16) and

dn

dtn
θ(t) = (−1)n−1pcn−1 Γ(a+ n− 1)

Γ(a)
(1 + ct)1−a−n ,

a > 0, (44)

we can deduce the probability distribution of the Ξi. It is sum-
marized in table 2.

Parameter a Distribution of Ξ(t)
a = 0 Degenerate P[Ξ(t) = 1] = 1
0 < a < 1 Extended Truncated Negative Binomial
a = 1 Logarithmic Distribution
a > 1 Truncated Negative Binomial
a → ∞ Truncated Poisson

Table 2. Candidates for the distribution of Ξ(t)

We can verify that

pΞ(t)(n)
pΞ(t)(n− 1)

=
ct

1 + ct
(1 +

a− 2
n

) , n > 1, (45)
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and so the probability distribution of the Ξi belongs to the
(α, β, 1) class to which an extended Panjer algorithm applies
(see Sundt and Jewell (1981)). Note that (α, β, 1) is a repa-
rameterization for the classical notation (a, b, 1) due to the
parameter a already being used within the Hofmann distri-
bution.

The probability distribution of N(t) is easily available as

Π(0, t) = e−θ(t),

Π(x+ 1, t) = pt
(1+ct)a

x∑
i=0

(
ct

1+ct

)i
Γ(a+i)Π(x−i,t)

i!(x+1)Γ(a) ,

x ≥ 0
(46)

Unfortunately, this formula requires knowledge of all the
probabilities. In the particular cases a = 0, 1

2 , 1, simplified
stable recursions are known. For a = 2, a simple formula is
due to Evans (1953). However this formula is not stable. It
does not seem possible to find a simple (stable) formula for
the general case.

Although the Hofmann distribution (with a /∈ {0, 1}) does
not belong to the (α, β,m) class, the probability distribution
of the random sum

SN(t) = X1 +X2 + · · · +XN(t), (47)

may be computed recursively by introducing the auxiliary ran-
dom variable

V (t) = X1 +X2 + · · · +XΞ(t), (48)

whose probability distribution can be obtained by the ex-
tended Panjer algorithm. In a second step, we obtain the prob-
ability distribution of SN(t) as

SN(t) = V1(t) + V2(t) + · · · + VL(t)(t), (49)

where the random variables Vi(t) are independent and have
the same distribution as V (t). The distribution of S(t) is easy
to obtain because L(t) is Poisson distributed and so SN(t) can
be evaluated by the Panjer algorithm. Whenever the Xi are
integer random variables, we have

fV (t)(0) = 1 − θ(t−tfX(0))
θ(t)

fV (t)(x) = 1
1− ct

1+ct fX(0)

[
pΞ(t)(1)fX(x)

+
x∑

i=1

(1 + (a− 2) i
x )fX(i)fV (t)(x− i)

]
,

x ≥ 1
(50)

where

fV (t)(x) = P[V (t) = x],
fS(t)(x) = P[S(t) = x].

6 Bayesian analysis of the model

As Π(0, t) determines completely the distribution function U
of the random variable Λ, the cumulant generating function of

Λ is
ln E(euΛ) = ln Π(0,−u) = −θ(−u), (51)

from which we deduce the cumulants of Λ in the Hofmann
process:

κ1 = p,

κj = p(ac)j−1(1 + 1
a )(1 + 2

a ) . . . (1 + j−2
a ) , j ≥ 2.

(52)
In particular we find

EΛ = p,
VarΛ = pac,

and the coefficient of variation of Λ,
√

ac
p , is an a priori mea-

sure of the heterogeneity of the portfolio.
If we observe the stochastic process N(t) during the period,
we can, a priori, deduce the intensity of the process

E[N(t+ 1) −N(t)|N(t) = k] = k+1
t

Π(k+1,t)
Π(k,t)

= E[Λ|N(t) = k].
(53)

Comparing this expression with EΛ = EN(1) gives us the
possibility to set up a well-balanced bonus-malus system. Al-
ternatives exist (see Walhin and Paris (1999a) or Denuit and
Dhaene (2000)).
The following result is surprising

E[Λ|N(t) = 0] = θ
′
(t). (54)

Indeed, knowing the history of policyholders without claims
allows to determine the distribution of N(t), as well as the
distribution of Λ, with the help of a single regression function.
This regression function characterizes the probability distribu-
tion of the two random variables N(t) and Λ and solves many
problems of characterization.
In the same way, we have

Var[Λ|N(t) = 0] = −θ′′
(t), (55)

and thus, it is possible to define the a posteriori coefficient of
variation of Λ for that particular case and to compare both.
Remark: formula (54) indicates that in a stable portfolio it is
sufficient to know the behaviour over a long period of drivers
who do not report claims to be able to know the model.

7 Extensions

Other parameterizations exist for the Hofmann distribution:
the Generalized Poisson Pascal distribution (see Panjer and
Willmot (1992)) and those proposed by Hougaard et al.
(1997). Our modelization has the advantage of simplicity and
it easily allows extensions.

7.A. Changing frequency

As the process is stationary, we have

E[N(t+ 1) −N(t)] = EN(1) = p, (56)
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but the introduction of a bonus-malus system may lead to a
reduction of the frequency of the claims reported and so we
can have

E[N∗(t+ 1) −N∗(t)] = pvt , 0 < v < 1. (57)

A new model can be built and the new parameter v can be
estimated if we have at our disposal data reported over a suf-
ficient number of successive years. This type of extension has
been proposed by Besson and Partrat (1992) within the Nega-
tive Binomial and Poisson Inverse Gaussian models. It is easy
to show that we have

P[N∗(t) = n] = Π(n,
1 − vt

1 − v
). (58)

7.B. The most general model

In this subsection, we work with a Hofmann process and we
exclude the Poisson case, i.e. a > 0.
As θ

′
(t) is a decreasing function of t, we have

lim
t→∞ θ

′
(t) = 0. (59)

In this case, from formula (54) the drivers who reported zero
claim during a long period will pay a very low premium for
the period [t, t+ 1]. This is unacceptable. As it happens, even
the best drivers may cause an accident. So we must apply a
basic minimum premium and replace θ

′
(t) by

θ
′
1(t) = δ + θ

′
(t). (60)

The function θ
′
1(t) is also completely monotonic and from a

general result on completely monotonic function (see Berg
and Forst (1975)) this is the most general situation of this type.
The corresponding counting process N1(t) is the sum of two
independent components: the first N∗(t) is a simple Poisson
process with mean δt which describes the purely random part
and the second is a mixed infinitely divisible Poisson process
related to the behaviour of the drivers.
Let Π1(n, t) be the probability law ofN1(t). It is easy to eval-
uate this distribution as well as the compound distribution of

X1 + · · · +XN1(t)

(see Walhin (2000) for details).
The extended Hofmann process has four parameters. The new
parameter δ is identifiable because if data are available over a
long period, we have

lim
t→∞

Π1(0,t+1)
Π1(0,t) = e−δ,

lim
t→∞

1
t

Π1(1,t)
Π1(0,t) = δ.

(61)

In the general model we always have

lim
t→∞Π(0, t) = 0. (62)

Remark: when N(t) is Negative Binomial distributed, one
speaks of the Lüders distribution (see Lüders (1959)). In the
case N(t) is Neyman Type A distributed, the resulting distri-
bution is called the Short distribution (introduced by Cress-
well and Frogatt (1963)).

8 Estimation of the parameters

The Hofmann process has three parameters, one of them
distinguishes between the different probability laws. Several
methods can be proposed for the estimation of the parame-
ters. The moment method is inadequate for non-negative in-
teger valued random variables. So the first method we apply
is the maximum likelihood. From Hürliman (1990) we know
that the sample mean is the maximum likelihood estimator of
the parameter p but it is not possible to obtain explicit formu-
lae for the estimators of a and c. They can be obtained numer-
ically and their efficiency can be estimated.
We fix the time to t = 1 as the observation is on a one year
basis.
We will denote by asσx the asymptotic standard deviation of
the estimate of x and by asρ(x, y) the asymptotic correlation
between the estimates of x and y.
Results for our reference portfolio are given in table 3.

Obs Ho
0 103704 103704.60 l −54609.59 asσp 0.0012
1 14075 14072.52 χ2 0.434 asσc 0.0687
2 1766 1769.26 df 2 asσa 0.0824
3 255 255.23 p − value 0.574 asρ(p, c) 0.0463
4 45 41.98 p 0.15514 asρ(p, a) 0.0002
5 6 7.58 c 0.3480 asρ(c, a) −0.9718
6 2 1.46 a 0.4483
7 0.29
8 0.06

Table 3. Hofmann fit

We note that the asymptotic correlation between the estimates
of p and a is almost 0. This property has been observed in
every used data set. It is a good property saying that the es-
timates of p and a are almost independent, which strenghtens
our opinion that a chooses the distribution whereas p is merely
the average claims frequency. The asymptotic correlation be-
tween the estimates of c and a is almost -1, which is not sur-
prising as we know that the product ac is part of the variance.
So we expect the estimates of these two parameters to move
in opposite directions.
Note that the asymptotic variance-covariance matrix has been
obtained as the inverse of the observed Information matrix,
i.e. the negative of the second partial derivative of the log-
likelihood. A better way to estimate this variance-covariance
matrix is to compute the Fisher Information matrix, which is
based only on the first partial derivatives of the log of the
Π(n, 1). The elements of the Fisher Information matrix write

aij(θ) = n
∞∑

k=0

Π(k, 1)(
∂

∂θi
ln Π(k, 1))(

∂

∂θj
ln Π(k, 1)),

(63)
where θ is the vector of parameters to be estimated.
Special attention should be paid here as the infinite sum will
have to be truncated. Results for with this method are given in
table 4.

asσp asσc asσa asρ(p, c) asρ(p, a) asρ(c, a)
0.001223 0.068904 0.082642 0.046447 0 −0.971996

Table 4. Asymptotic variance-covariance by the Fisher Information
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Note that it is necessary to truncate the sum in k far enough
in order to get convergence. In particular this is true for the
asρ(p, a). Moreover, derivating the Π(k, 1) with respect to the
parameters p, c and a is a tedious task. Fortunately, formu-
lae giving these derivatives are given in Panjer and Willmot
(1992) for the parameterization under the form of the Gen-
eralized Poisson Pascal Distribution (see section 7). Having
the variance-covariance matrix within this parameterization ,
it is not difficult to find the variance-covariance matrix under
the Hofmann parameterization (see also Panjer and Willmot
(1992) page 313).
It turns out that p̂ and â are asymptotically uncorrelated. This
fact seems to be true even for very small samples and for any
values of the parameters. Nevertheless this is only a conjec-
ture. It remains to be proved.
Another method of estimation is the minimum χ2 method pre-
sented by Berkson (1980) as an alternative to maximum like-
lihood. We will not use this method because of the thickness
of the right tail of the distribution and the difficulties related
to the grouping of the classes with low frequency. We there-
fore prefer the alternative method proposed by Kestemont and
Paris (1985) with equivalent properties as the maximum like-
lihood: estimate p by the sample mean and the parameters a
and c with the relations

n0
n = e−θ(1),
n1
n = d

dtθ(t)
∣∣
t=1

e−θ(1),
(64)

where ni is the number of observations in the class i.
This methodology attaches the greatest importance to the two
claims with the most important strength.
It is possible to analyse the quality of this procedure with the
two statistics

T = k2 − p(1 + ac)
V = k3 − (pc2a(a+ 1) + 3pca+ p) (65)

where k2 and k3 are the Fisher k statistics and so are ∼
N

(
0, o( 1

n )
)
.

Results for our numerical example are given in table 5.

Obs Ho
0 103704 103704.00 l −54609.60
1 14075 14075.00 χ2 0.438
2 1766 1766.78 df 2
3 255 255.39 p − value 0.803
4 45 42.26 T −0.00006
5 6 7.69 V −0.00076
6 2 1.50 p 0.15514
7 0.30 c 0.3546
8 0.06 a 0.4406

Table 5. Hofmann fit with the proportion estimation method

We study in table 6 the case of the Hofmann + Poisson Distri-
bution.

We note that the results are very bad. The asymptotic standard
deviations are high and the asymptotic correlations are near 1
in absolute value. This is due to the fact that the model finds

Obs Ho + Po
0 103704 103703.67 l −54609.53 asσδ 0.1244
1 14075 14076.17 χ2 1.16 asσp 0.1244
2 1766 1763.51 df 1 asσc 0.3319
3 255 258.60 p − value 0.280 asσa 0.2600
4 45 42.18 δ 0.0524 asρ(δ, p) −0.9999
5 6 7.28 p 0.1027 asρ(δ, c) −0.9805
6 2 1.30 c 0.2581 asρ(δ, a) 0.9952
7 0.24 a 0.9119 asρ(p, c) 0.9805
8 0.04 asρ(p, a) −0.9952

asρ(c, a) −0.9947

Table 6. Hofmann+Poisson fit

it difficult to separate the effect of δ from p. At the limit, in
model Po + Po, we would have a problem of identification
between the two parameters. Another reason is perhaps that
introducing parameter δ makes the model overparameterized
and leads to instability of the estimates.
We are not surprised that the asymptotic correlation between
δ and a is near 1. Indeed, as δ represents the pure Poisson part
of the process, it is clear that if we give a great importance to
the Poisson part, the model will tend to a great a in order to
compensate the effect of δ.
To conclude, we can say that the extended model has to
be interpreted with care due to the high sampling errors.
Nevertheless, in the absence of data over a longer period,
maximum likelihood estimation is the best we can do.

9 Conclusion

This paper presents a model for the number of claims which
encompasses a large number of probability laws. The model
is tractable and has a lot of attractive properties which make it
suitable for application not only in the insurance domain but
also in many other fields where overdispersion relative to the
Poisson model is observed.
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