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Abstract: Some methods for inducing topological structures by relations were initiated and their 
importance in applications were indicated. Topologies generated by equivalence relations were all 
quasi-discrete spaces. We induced the topologies generated using similarity relations and pre-order 
relations. Also, the topologies generated using general binary relations on the universe of discourse 
were initiated. Finally, rheumatic fever data reduction using topologies induced by relations were 
studied.  
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INTRODUCTION 

 
 Topology is an important and interesting area of 
mathematics, the study of which will not only introduce 
you to new concepts and theorems but also put into 
context old ones like continuous functions. It is so 
fundamental that its influence is evident in almost every 
other branch of mathematics. This makes the study of 
topology relevant to all who aspire to be 
mathematicians whether their first love is algebra, 
analysis, category theory, chaos, continuum mechanics, 
dynamics, geometry, industrial mathematics, 
mathematical biology, mathematical economics, 
mathematical finance, mathematical modeling, 
mathematical physics, mathematics of communication, 
number theory, numerical mathematics, operation 
research or statistics. Topological notions like 
compactness, connectedness and denseness are as basic 
to mathematicians of today as sets and functions were 
to those of last century[3,8,9]. 
 For a long time, many individuals believed that 
abstract topological structures have limited application 
in the generalization of real line and complex plane or 
some connections to Algebra and other branches of 
mathematics. And it seems that there is a big gap 
between these structures and real life applications. We 
noticed that in some situations, the concept of relation 
is used to get topologies that are used in important 
applications such as computing topologies[15], 
recombination spaces[2,7,17] and information 
granulation[21] which are used in biological sciences and 
some other fields of applications. 
 The aim of rough set theory is to give a description 
of the set of objects by logical, set-theoretical, 
topological etc. tools in terms of similarity relations and 
derived notions related by these relations. The 

description of the set of objects entails as well 
relationships and functional or near to functional 
dependencies among various similarity relations 
generated by various sets of the set of objects.  
 Rough sets were first introduced by[10,11] and are 
based on approximation spaces. An approximation 
space is a pair A = (Ob, R). Here, R is an equivalence 
relation, also called indiscernibility relation, imposing a 
granularity on the universe Ob such that R ⊆ Ob×Ob. 
Furthermore, we assume Ob to be finite. For x∈Ob, let 
[x]R  be  the  equivalence  class   containing  x,  i.e., 
[x]R = {y: y R x } .  
 Given an arbitrary set X⊆Ob, we wish to describe 
X in terms of elements or granules of Ob/R. Pawlak 
proposed the use of lower and upper approximations of 
a set X, denoted R (X) and R  (X), respectively. Lower 
and upper approximations are defined as: 
 
  R (X) = {x∈Ob:[x]R ⊆X} 
  R (X) = {x∈Ob: [x]R∩X ≠ φ} 
 
 The semantics of the approximations of sets may 
be defined as follows: 
 
• Elements of the universe that belong to R  (X) are 

those elements that surely belong to the set X 
• Elements that belong to R  (X) possibly belong to 

the set X 
• Elements that belong to Ob/ R  (X) are elements of 

the universe that surely do not belong to the set X. 
Hence, the uncertainty lies in R  (X)/ R  (X) which 
is also called area of uncertainty. Elements of the 
area of uncertainty may, or may not, belong to X  
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 The approximation operators can also be 
considered using membership functions. It is possible to 
define a rough membership function as presented in[12]. 
 

MATERIALS AND METHODS 
 
Topologies induced by relations:  Let A = (Ob, R) be 
an approximation space. The equivalence classes Ob\R 
of the relation R will be called elementary sets (atoms) 
in A. Every finite union of elementary sets in A will be 
called a composed set in A. The family of all composed 
sets in A will be denoted by com (A). 
 The  family  com  (A) in the approximation space 
A = (Ob, R) is a topology on the set Ob. 
 Since the approximation space A = (Ob, R), 
defines uniquely the topological space τ (A) = (Ob, com 
(A)) and com (A) is the family of all open sets in τ (A) 
and U/R is a basis for τ (A), then τ (A) is a quasi-
discrete topology on Ob  and com (A) is both the set of 
all open and closed sets in τ (A). Thus, the lower 
approximation and the upper approximation of any 
subset X⊆Ob can be interpreted as the interior and the 
closure of the set X in the topological space τ (A), 
respectively. 
 
Lemma 1: If β is a base for a topological space (Ob,τ), 
where β is a partition of Ob, then for every subset 
X⊆Ob: 
 
• }XB:B{)X(int ⊆β∈=τ �  
• }XB:B{)X(cl ϕ≠∩β∈=τ �  
 
Proof: Only we prove (ii) because (i) is trivial. Let 
x∈clτ (X) then for every open set G containing x, 
X∩G≠ϕ. But 

B
G B,

∈β
= � then there exists Bo ⊆G such 

that x∈Bo⊆G. But oB is an open set containing x, hence 
Bo∩X ≠ ϕ and x∈U{B∈β: B∩X ≠ ϕ}.  
 Conversely, if }XB:B{x ϕ≠∩β∈∈�  and G is an 
open set containing x and β is a partition of Ob, x∈U, 
then x belongs to only one element of β say x∈Bo. Then 
must  Bo ⊆ G,  i.e., x∈Bo⊆G but Bo∩X ≠ ϕ, hence 
G∩X ≠ ϕ. Then x∈clτ

 (X).  
 Let A1 = (Ob, R1) and A2 = (Ob, R2) be two 
approximation spaces. Then we say that the partition 
Ob/R depends on the partition Ob/R2 denoted Ob/R1 if 
and only if 

2

1
S Ob / R

B S, B Ob / R
∈

= ∀ ∈� . 

 
Proposition 2: Let τ1 and τ2 be the topologies induced 
by the partitions Ob/R1 and Ob/R2 respectively. Then 
Ob/R1�Ob/R2 iff τ2⊆τ1. 

Example: Consider the partitions β1 = {{x1, x2}, {x3}, 
{x4}} and β2 = {{x1, x2}, {x3, x4}} of the set Ob = {x1, 
x2, x3, x4}. Then β1 � β2 and τ2 ⊆ τ1 where τ1 = {Ob, φ, 
{x3},  {x4},  {x1,2},  {x3,  x4}, {x1, x2 x3}, {x1, x2 x4}}, 
τ2 = {Ob, φ, {x1, x2}, {x3, x4}} are the topologies 
generated by β1 and β2 respectively. 
  For any topological space (Ob,τ), we define the 
equivalence relation E(τ) on the set Ob by 

Oby,x,})y({cl})x({cliff)(E)y,x( ∈∀=τ∈ ττ .The set of 
all equivalence classes of E(τ) is denoted by Ob/ E(τ).  
 
Proposition 3: Let A = (Ob, R) be an approximation 
space and let τR be the topology generated by the base 
BR = Ob/R. If (Ob, τ) is the quasi-discrete topological 
space has Ob/E(τ) as a base. Then τR = τ iff for all 
x∈BR∈βR there exists B∈Ob/E(τ) such that x∈B.  
 
Lemma 4[15]: For any topology τ on a set Ob  and for 
all x, y∈Ob , if y∈clτ({x}) and x∈clτ({y}) then clτ 
({x}) = clτ ({y}). 
 
Lemma 5[15]: If τ is a quasi-discrete topology on a set 
Ob, then y∈clτ ({x}) implies x∈clτ ({y}) for all x, 
y∈Ob. 
 
Lemma 6[15]: If τ is a quasi-discrete topology on a set 
Ob,  then the family {clτ({x}): x ∈ Ob}  is  a partition 
of Ob. 
 
Proposition 7: Let τ be the topology induced by the 
partition βR = Ob/R . Then βR = Ob/E(τ). 
 
Proof: x∈∈∈∈B, B∈βR: 
 

• iff 
y B

x cl (B) cl ({y})τ τ
∈

∈ = �  

• iff  yo ∈ B and x∈clτ({yo}) iff clτ({x}) = clτ({yo}) 
(Lemma 2.2) 

• iff (x, yo) ∈ E(τ) 
• iff  A∈Ob/E(τ) such that x ∈ A 
• iff βR = Ob/E(τ)  
 
 For  any  n  approximation spaces A1 = (Ob, R1), 
A2 = (Ob, R2),…, An = (Ob, Rn) we define the partition 

ind i
i 1,2,...,n

Ob / E( ) Ob / E( )
=

τ = τ�  . 

 
Theorem 8: τi ⊆ τind, i = 1, 2,…, n where τi and τind are 
the topologies generated by the partitions Ob/(τi) and 
Ob/E(τind) respectively. 
 
Proof: Since Ob/E(τind) ≤ Ob/E(τi) for all i = 1, 2,…, n 
then τI ⊆ τind. 
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Example: Consider the topological space (Ob, τ) where 
Ob = {x1, x2, x3, x4} and b = {{x1}, {x2, x3}, {x4}} is 
the base of τ, then τ is a quasi-discrete topology and: 
 

}x{})x({cl 11 =τ , }x,x{})x({cl 322 =τ , }x,x{})x({cl 323 =τ  
}x{})x({cl 44 =τ  

 
 Then Ob/E(τ) = {{x1}, {x2, x3}, {x4}} = β. 
 
Example: Consider the approximation spaces 

)R,Ob(A 11 = , )R,Ob(A 22 = and )R,Ob(A 33 =  where 

}x,x,x,x{Ob 4321=  and Ob/E(τ1) = {{x1}, {x2, x3}, 
{x4}},   Ob/E (τ2)  =  {{x1,  x2},  {x3, x4}}  and Ob/E 
(τ3) = {{x1}, {x2}, {x3, x4}}are the bases of τ1, τ2 and τ3 
respectively, then ind 1 2Ob / E( ) (Ob / E( )) (Ob / E( ))τ = τ ∩ τ  

3 1 2 3 4(Ob / E( )) {{x },{x },{x },{x }}∩ τ = is the partition 
induced by E(τind). Then τι ⊂ τind, i = 1, 2, 3. 
 
Topologies generated using similarity relations: A 
similar relation R on Ob is any relation satisfies: 
 
• For any x∈Ob, xRx  (reflexive) 
• For any x, y∈Ob, if xRy then yRx (Symmetric) 
 
 For x∈Ob, we define the similar class containing x 
by R(x) = {y∈Ob: xRy}. 
 The relation R on Ob defined by xRy iff d(x,y)<n 
where (Ob, d) is a metric space with a metric function d 
defined as: d(x,y) = yx −  and n = card (Ob), is a 
similar relation. 
 
Proposition 9: For any similar relation R defined on 
Ob we have:  
 
• x∈R(x) 
• y∈R(x) iff x∈R(y) 
• xRy iff x∈R(y) and y∈R(x) 
 
 The class � = {B(x): x∈X} is called a symmetric 
covering of a set X if x∈B(y) iff y∈B(x). Then the class 
� = {R(x): x∈Ob} is a symmetric covering of the set of 
objects Ob. 
 Let � is the symmetric covering of Ob by the 
similar relation R. Then we define a relation R� induced 
by � by x R� y iff there exist B∈� and x,y∈B. 
 
Proposition 10: The relation R� is a similar relation on 
the set of objects Ob.  
 Since � is a covering of Ob, then for any x∈Ob 
there exists B∈� such that x∈B hence x, x∈B∈� then 

xR�x. Let xR�y then there exists B∈� such that x, y ∈B 
then y, x∈B hence yR� x.  
 
Proposition 10 For every x∈Ob we have: 
  

R�(x)= �
)(B

B
xβ∈

, where �(x)= {B∈�: x∈B} 

 
Proof:  
 
 y∈Rβ(x) ⇔ ∃ B∈ β and x,y∈B 
  ⇔ ∃ B∈ β and x∈B and y∈B 
  ⇔ ∃ B∈ β and y∈B 
  ⇔ 

B (x)
B

∈β
�  

 
 Let � is the covering of Ob. Then we define the 
class �* = {R�(x): x∈Ob}. 
 
Proposition 11: The class �* is a symmetric covering 
of the set of objects Ob and R� ⊆ R�*. 
 
Proof: 
 
• x∈Rβ(y) ⇔ ∃ B∈β(y) and x∈B ⇔∃ B∈β(x) and 

y∈B ⇔ y∈Rβ(x) 
• Let (x,y) ∈ Rβ � ∃ B∈β and x, y ∈B 
 � B∈ β(x) and B∈ β(y) 
 � B∈β(x)� β(y) 
 � B∈

B (x)
B

∈β
�  = Rβ(x)∈β* 

 � x,y∈B∈β* 
 � x,y∈Rβ* 
 
 Let A⊆Ob be any non empty subset of the set of 
objects. Then A is called a similar pre-class of R if for 
any x, y∈A �  (x, y)∈R. 
 
Proposition 12: Every similar class R(x) is a maximal 
similar pre-class. 
 For an element x∈Ob we define a class called the 
pre-similar class of x as follows:  
 
LR(x) = {A⊆Ob: x∈A and A is similar pre-class of R}. 
Let LR = {LR(x): x∈Ob} be the family of all pre-similar 
classes. Then we define a relation R* on LR by for any 
LR(x), LR(y) ∈ LR, LR(x)R*LR(y) iff there exist 
A∈LR(x) and B∈LR(y) and A �B ≠ ϕ .  
 
Proposition 13: 
 
• The relation R* on LR is a similar relation 
• xRy iff LR(x)R*LR(y) for any x,y∈Ob 
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Proof: 
 
• Since for any LR(x) ∈ LR and A∈LR(x), A�A ≠ φ 

then LR(x)R*LR(x) hence R* is reflexive. Also if 
LR(x)R*LR(y) then there exist A∈LR(x) and 
B∈LR(y) such that A�B≠φ, hence B�A≠φ, hence 
LR(y)R*LR(x). then R* is symmetric.  

• Firstly, we will prove that xRy � LR(x)R*LR(y)  
 
 Let (x, y)∈R � {x, y}is a similar pre-class of R. 

 � there exist a similar class R(x) such that {x,y}⊆ 
R(x) and R(x)∈LR(x) but R is symmetric then 
R(x)∈LR(y),   then  there  exist   A = R(x)∈LR(x)  and 
B = R(x)∈LR(y) and A� B ≠ ϕ , hence LR(x)R*LR(y). 
 Conversely, let for some x,y∈Ob, LR(x)R*LR(y) 
then there exist R(z)∈LR(x) and R(z)∈LR(y) a similar 
class of R. hence x∈R(z) and y∈R(z) then x,y ∈R(z) 
hence xRy. 
 Let L

R
(x) be the pre-similar class of x∈Ob. Then 

we define a set L*
R
(x) =

RA L ( )

A
∈
�

x

 called the R-link of x, 

where A∈L
R
(x) and A≠R(x).  

 If L*
R(x) = Ob then it is called open R- link of x 

and if L*
R(x) ⊂ Ob then it is called closed R- link of x.  

 The class M={ L*R(x): x∈Ob} of all R- links of 
x∈Ob is a subbase of a topology on Ob called the 
linked topology and denoted 

RL*τ . 

 
Proposition 14: 
 
• For any x∈Ob, L*

R(x) ⊆ R(x) 
• The class M is a symmetric covering of Ob 
 
Proof: 
 
• Let     y∈L*R(x)  �  y∈

RA L (x)
A

∈
�    �  there exists 

A = R(x)∈LR(x) and y∈A then y∈R(x) � L*R(x) 
⊆ R(x) 

• For any x∈Ob, x∈L*
R(y) � M is covering of Ob  

 
 Now let x∈ L*

R (y) � x∈
RA L (x)

A
∈
� : 

 
• there exist A=R(x) ∈ LR(y) and x∈R(x) 
• x, y ∈R(x) 
• y∈ L*

R (x) 
 
then M is a symmetric covering of Ob. 

Proposition 15: 
 
• The linked topology 

R*Lτ is finer than the similar 

topology �R, where �R is the topology generated by 
the subbase {R(x): x∈Ob} 

• xRy � ∃ open set u∈
R*Lτ and x,y∈u 

 
Example: Let Ob = {c1,c2,…, c7} be the set of objects 
which is seven computers in a local network in a certain 
company. Let � be the irregular topology on the set of 
objects which induced by a general relation on Ob 
which makes the following graph. We define a similar 
relation R on the set of objects by: Two computers x 
and y are in relation by R iff the computer x has a copy 
of a certain program in the computer y.  
 Then we can define the similar classes of R as 
follows: 
 
• R(c1) = {c1, c2, c4}, R(c2) = {c1, c2, c3,c4, c5}, R(c3) 

= {c2, c3, c5}, R(c4) = {c1, c2, c5, c6, c4}, R(c5) = {c2, 
c3, c4, c6, c5}, R(c6) = {c4, c5, c6, c7}, R(c7) = {c6, 
c7}. Then we have LR(c1) = {{c1}, {c1, c2}, {c1, c4}, 
{c1, c2, c4}}, LR(c2) = {{ c2}, {c2, c1}, {c2, c4}, {c2, 
c5}, {c2, c3}, {c2, c3, c5}, {c2, c1, c4}, {c2, c4, c5}, 
{c2, c1, c3, c4, c5}}, LR(c3) = {{c3}, {c3, c2}, {c3, 
c5}, {c3, c2, c5}}, LR(c4) = {{c4, {c4, c1}, {c4, c2}, 
{c4, c5}, {c4, c6}, {c4, c1, c2}, {c4, c2, c5}, {c4, c5, 
c6}, {c4, c1, c2, c5, c6}}, LR(c5) = {{c5}, {c5, c2}, 
{c5, c4}, {c5, c3}, {c5, c6}, {c5, c2, c3}, {c5, c2, c4}, 
{c5, c4, c6}, {c2, c5, c4, c5, c6}}, LR(c6) = {{c6}, {c6, 
c4}, {c6, c5}, {c6, c7}, {c6, c4, c7}, {c6, c5, c7}, {c6, 
c4, c5}, {c4, c5, c6, c7}} 

• LR(c7) = {{c7},  {c6, c7}}.  Also,   we   have: 
L*R(c1) = {c1, c2, c4}, L*R(c2) = {c1, c2, c3, c4, c5}, 
L*R(c3) = {c2, c3, c5} L*R(c4) = {c1, c2, c5, c6, c4}, 
L*R(c5) = {c2, c3, c4, c5, c6}, L*R(c6) = {c4, c5, c6, 
c7}, L*R(c7) = {c7} 

 
 Then the linked topology 

RL*τ is finer than the 

similar  topology,  such  that  L*R(ci)  ⊆   R(ci)   for  all 
i = 1,2,…,7.  
 For any subset A of the set of objects, we define 
two sets R(A)  and )A(R , they are called the lower and 
upper similar classes of A by:  
 

R(A) {R( ) : R(x) A}= ⊆� x  

 
and 
 

R(A) {R( ) : R(x) A }= ≠ φ� �x  
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 Let Rτ  be the topology induced by the subbase 
{R(A) : A Ob}⊆ this topology called the lower similar 

topology. Also we define the topology Rτ which is 
called the upper similar topology and generated by the 
subbase {R(A) : A Ob}⊆ . 
 
Proposition 16: Let Rτ  and Rτ be the lower and upper 
similar topologies then: 
 
• RR τ⊆τ  if R is an equivalence relation 

• RR τ⊆τ if R is a similar relation 

• Rτ  and Rτ are in general not comparable if R is a 
general relation 

 
 The following proposition present another way to 
generate topologies from similarity relations. 
 
Proposition 17: }A)(R,A:ObA{R

** ⊆∈∀⊆=τ xx  is a 
topology on Ob.  
 
Proof: 
 
• R

**,Ob τ∈ϕ  is clearly 
• If A1, A2, … ∈ **

Rτ  and �
i

iA∈x for some i
�
 then 

�i
A)(R ⊆x then �

i
iA)R( ⊆x  hence **

i R
i

A ∈ τ�  

• Let A1, A2 ∈ R
**τ , then 21 AA �∈∀x  we have 

1A)(R ⊆x and 2A)(R ⊆x  hence 21 AA)(R �⊆x  
then **

1 2 RA A ∈ τ�  
 
Example: Consider Ob = {a, b, c, d} be the set of 
objects with a similar relation R its similar classes are: 
 
• R(a) = {a, c}, R(b) = {b, d}, R(c) = {a, c, d} and 

R(d) = {b, c, d}. Then: Rτ  = {Ob, ϕ {c}, {d}, {c, 
d}, {a, c}, {b, d}, {a, c, d}, {b, c, d}}, Rτ = {Ob, ϕ, 
{d, c}, {a, c, d}, {b, c, d}} and τ**R = {Ob, ϕ} then 
τ**R R R⊂ τ ⊂ τ  

• The conjugate relation R  of R is defined by (x, y) 
∈ R  iff (x, y) ∉ R or x = y 

 
Proposition 18: 
 
• ,IRR =�  I is the identity relation 

• R is a similar relation 
• R R=  

Proof: 
 
• (x,y) R R∈ �  iff x = y � R R I=�  
• (x,x) R∈  such that x = x and if (x,y) R∈  then 

(x,y)∉R or x = y then (y,x)∉R or y = x hence 
(y,x)∈ R  

• (x, y)∈ R ⇔ ( x,y) ∉ R  or  x = y ⇔  (x,y)∈R  or 
x = y ⇔ (x,y)∈R  

 
Example: Let Ob = {a, b, c, d} be the set of objects 
with the similar relation R = {(a, a), (b, b), (c, c), (d, d), 
(d, c), (c, d), (d, b), (b, d), (c, b), (b, c), (b, a), (a, b)}. 
Then )RObOb(IR −×= �  = {(a,a), (b,b), (c,), (d,d), 
(c,a), (a,c), (d,a), (a,d)}. 
 
Topologies generated using dominance (pre-order) 
relations: For a long time, many mathematicians 
believed that there is a large deviation between abstract 
topological structures and computing[12-14].  
 A relation R on a set Ob is called a dominance 
relation (pre-order) whenever R is both reflexive and 
transitive . If x is related to y, we write x R y  and say 
that x dominances y. The set }yRx:x{)y(R =  is called 
the before set. 
 
Example: Let { }6,5,4,3,2,1Ob =  and R)y,x( ∈  if 
and only if Ob,y,x,y|x ∈ . 
 R =  {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (4, 4), (5, 
5), (6, 6), (1,6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6)}. The 
relation R is a dominance relation. 
 In a finite space (Ob, ),τ  it is clear that 

}G:GOb{c τ∈−=τ  is also a topology.  
 A subset XF ⊂  is a closed set iff yFF

Fy∈
= �  such 

that }xRy:x{yF =  (Fy is the smallest closed set about 
x). This is the dual of our representation of open sets.  
 If R is a dominance relation on a set Ob, then its 
dual DR  is defined by the requirement xRy D  if and 
only if yRx .  
 A point x in a subset U of Ob is insulated from 

UOb −  if and only if there is no point y in UOb −  such 
that y dominates x. 
 
Lemma 19: Let R be a dominance relation on a set 

UP,ObU,Ob ∈⊂  the following are equivalent: 

 
• P is insulated from UOb −  
• R)P,y(,UP ∈∈ , then Uy ∈  
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Table 1: Application for Openness algorithm 
P(Ob)  Insulated points Open sets 
{1} � � 
{2} 
{3} 
{4} 
{1, 2} � � 
{1, 3} 
{1, 4} 
{2, 3} 
{2, 4} 
{3, 4} 
{1, 2, 3} � � 
{1, 2, 4} 
{2, 3, 4} 
{1, 3, 4} 
Ob � � 
ϕ � � 
 
Proof: First, consider p∈U is insulated from Ob-U, (y, 
p) ∈R. Let y∉U, then y∈Ob-U, So (y, p)∉R, but (y, 
p)∈R, a contradiction, then y∈U. 
 Second, consider p∈U, x ∈Ob-U, suppose (x, p) 
∈R. Then x∈U contradicts that x∉U, then U{R =τ  

}Ux,UbO from insulated isx:Ob ∈∀−⊂ (x, p)∉R.  
 
Proposition 20: If R is a dominance relation on a set 
Ob, then is topology on Ob. 
 
Proof: Clearly Ob and φ are elements in τR let Ui∈ τR 
for every i∈I. For any i

Ii
Ux

∈
∈�  and (y, x)∈R, there is 

i0∈I such that 
0i

x U .∈  By openness of 
0i

U ,  we have 

i
Ii

i UUy
0 =

⊂∈ � . Therefore Ri
Ii
U τ∈

∈
� . Also, if A and B 

are elements of Rτ , then }}d{,,Ob{
2

ϕ=τ
−

−
. 

 According to the above proposition we give the 
following algorithm to check the openness of a subset 

ObU ⊂  with respect to a dominance relation R. 
 
Openness algorithm: 
 
 i- Find Ob-U 
 ii- Investigates the existence of any pair (a, b) 

Ub,UOba,R ∈−∈∈ , we have two cases:  
• If there exists such pair, then U is not 

open 
• If there is not such pair (a, b), then U 

is open  
 
 The following example (Table 1) is an application 
for the above algorithm. 
 
Example 4: Consider Ob = {1, 2, 3, 4}, (x, y)∈R 
whenever Oby,x,yx ∈∀≤ , then R = {(1, 1), (1, 2), 
(1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}. 

Table 2: Closure space generated by a general relation 
A ClR (A) intr (A) 
{a} {a} φ 
{b} {b, c} {b} 
{c} {a, c} φ 
{a, b} Ob {b} 
{a, c} {a, c} φ 
{b, c} Ob {b, c} 
Ob Ob Ob 
φ φ φ 
 
 Then the induced topology is τR = {Ob, ϕ, {1}, {1, 
2}, {1, 2, 3}}. 
 Let Ob be the set of objects and let R be any binary 
relation on Ob. The relation R gives rise to a closure 
operator clR as follows: 
 
clR(A) = AU{y∈X}|∃x∈A: (y, x)∈R} for every A⊆Ob 

  
Lemma 21: The interior operator corresponding to clR 
is given by: 
 

intR(A) = {y∈A: ∀x∈Ac, ∼yRx} 
 
Proof: intR(A)  = [clR(Ac)]c 
 
= {Ac � {y∈X: ∃x∈Ac, (y, x)∈R}}c 
= A � {y∈X: ∃x∈Ac, (y, x)∈}c 
= A � {y∈X: ∀x∈Ac, (y, x)∉R}c 
= {y∈A: ∀x∈Ac, ∼yRx} 
 
 Thus the interior operator of A consist of those 
elements of A which are not R-related to any elements 
outside A. 
 
Lemma 22: For any relation R on Ob , )cl,Ob( R is 
closure space. 
 In the following we will give an example (Table 2) 
for closure space generated by a general relation. 
 
Example: Consider Ob{a, b, c} and R is a binary 
relation on Ob, R = {(a, b), (c, b), (a, c)}. Then we have 
the Table 2 for closures and interiors of the subsets of 
Ob: We note from Table 2 that:  
 
• clR(φ) = φ 
• A ⊆ clR (A) 
• clR(A� B) = clR(A) � clR(B) for all A, B ⊆ Ob  
 
Lemma 23 If Ob be non-empty set and R is transitive 
relation, then (x, clR) is topological space. 
 
Example 24 Consider the relation R = {(1, 1), (2, 3), 
(3, 2), (2, 2)} on Ob = {1, 2, 3}. Table 3 shows closures 
and interiors of the subsets of Ob. 
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Table 3: Closures and interiors of the subsets of Ob 
A ClR (A) intR (A) 
{1} {1} {1} 
{2} {2, 3} φ 
{3} {2, 3} φ 
{1, 2} Ob {1} 
{1, 3} Ob {1} 
{2, 3} {2, 3} {2, 3} 
Ob Ob Ob 
φ φ φ 

 
 From Table 3, we have: 
 
• clR(φ) = φ 
• A⊆clR(A 
• clR(A� B) = clR(A) � clR(B) for all A, B ⊆ Ob 
• clR(clR(A)) = clR(A) for all A ⊆ Ob 
 
Topologies generated using general binary relations: 
The basic aim of this section is to generate topological 
structures using the lower and the upper approximations 
of any binary relation. Given general approximation 
space )R,Ob(A = where R here is any general binary 
relation on Ob. For any subset X  of Ob we define 
lower and upper approximations as follows[18,19,22]: 
 

)}XyR)y,x((y:Obx{)X(R ∈�∈∀∈=
−

 

and 

)}XyR)y,x((y:Obx{)X(R ∈∧∈∃∈=
−

 
 
 Then the following structures are topologies on Ob: 
 

}G)G(R:ObG{
1

=⊆=τ
−−  

}G))G(R(R)G(R:ObG{ 2

2
==⊆=τ

−−−−
 

}G)))G(R(R(R)G(R:ObG{ 3

3
==⊆=τ

−−−−−
…..

}Obn,G)G(R:ObG{ 1n

1n
==⊆=τ −

−−−
 

 
 These topologies have the property that: ⊆τ

−1
 

1n2
....

−−−
τ⊆⊆τ . 

 Also, if we deal with the upper approximation 
instead of the lower approximation we can construct the 
following topologies: 
 

})G(RG)G(R:ObG{1 ϕ=∨=⊆=τ
−−−

 
2

2 {G Ob : R (G) R(R(G)) G R(R(G)) }
− − − − − −
τ = ⊆ = = ∨ = φ  

3

3 {G Ob : R (G) R(R(R(G))) G R(R(R(G))) }......
− − − − − − − −
τ = ⊆ = = ∨ = φ  

 
n 1 n 1

n 1 {G Ob : R (G) G R (G) ,n Ob }
− −− − −

−τ = ⊆ = ∨ = φ =  

 These topologies have the property that 

1n21 .... −

−−−
τ⊆⊆τ⊆τ . 

 In the following we will give some illustrative 
examples and remarks. 
 
Example: Let }d,c,b,a{Ob = be the universe and let 

)}b,c(),a,d(),d,b(),d,c(),b,a{(R = be a general binary 
relation on Ob. Then we have the following topologies 
on Ob using the lower approximation: 
 

}}d,b,a{,,Ob{
1

ϕ=τ
−

 

}}d,b,a{,,Ob{
2

ϕ=τ
−

3
{Ob, ,{a},{b},{d},{a,b},{a,d},{b,d},{a,b,d}}

−
τ = φ  

 
 If we made more iteration to introduce more 
topologies using the lower approximation we will 
obtain that: 

14 −−
τ=τ , 

25 −−
τ=τ  and 

36 −−
τ=τ  and so on.  

 Also we have the following topologies on Ob using 
the upper approximation: 
 

}}c{,,Ob{1 ϕ=τ
−

 

}}c{,,Ob{2 ϕ=τ
−

 

3 {Ob, ,{d},{c},{a,c},{b,c},{a,b,c},{a,c,d},{b,c,d}}
−
τ = φ   
 
 If we made more iteration to introduce more 
topologies using the upper approximation we will 
obtain that : 14 τ=τ , 25 τ=τ  and 36 τ=τ  and so on. 

 
Remark: If the relation R on the universe Ob is 
constant, then all topologies induced by the lower or the 
upper approximations are indiscrete.  
 If the relation R on the universe Ob is identity or 
contain the identity relation, then all topologies induced 
by the lower or the upper approximations are discrete.  
 If we made more iteration to introduce more 
topologies using the lower approximation or the upper 
approximation, then all new iterations will introduce the 
same topologies we before obtained.  
 Another method for constructing topologies using 
the lower and the upper approximations is presented 
bellow: 
 All the following are topologies on Ob: 
 

)}G(R)G(R:)G(R{
1 −

−−

−

−
==τ  

)}G(R)G(R:)G(R{
2

22
2 −

−−

−

−
==τ  
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)}G(R)G(R:)G(R{
3

33
3 −

−−

−

−
==τ , 

……, )}G(R)G(R:)G(R{
1n

1n1n
1n −−

−

−

−

−

−−

−
==τ  

 
 Also, all the following structures are topologies on 

Ob. 1 {R(R(G)) : R(R(G)) R(R(G))},
− − −

− − −
τ = =

−

−
=τ R(R{2  

)))}G(R(R(R)))G(R(R(R:)))G(R(
−

−

−

−

−

−−
=  and so on. 

 
Example: According to Example 4.1 we have: 
 

}}c,b,a{},d{,,Ob{
1

ϕ=τ
−

−
 

}}d{,,Ob{
2

ϕ=τ
−

−
 

}}d{,,Ob{
3

ϕ=τ
−

−
 

 
RESULTS AND DISCUSSION 

 
 Here we will give the main conventions that we 
will apply in this work. These conventions will be 
indicated by examples.  
 We briefly describe the rheumatic fever datasets 
used in our example. No doubt that, the rheumatic fever 
is a very common disease. It has many symptoms 
differs from patient to another but though the diagnosis 
it is the same. So, we obtained the following data on 
seven rheumatic fever patients from Banha fever 
hospital, Egypt. All patients are between 9-12 years old 
with history of Arthurian began from age 3-5 years. 
This disease has many symptoms and it is usually 
started in young age and still with the patient along his 
life. Table 4 introduced the seven patients characterized 
by 8 symptoms (Attributes) using them to decide the 
diagnosis for each patient (Decision Attribute). Table 5 
shows the rheumatic fever information system. 
 Let us consider the topological space aτ  
generated using binary relation defined on the attribute 
a. Also, using the same terminology the topological 
space Bτ  is the topology generated using general 
relation defined on a subset of attributes B of all 
condition attributes At. The decision attribute generates 
the topology Dτ . 
 Now, we will use the following suggestion: 
 
• The set of attributes AtB ⊆  is called a reduct if 

DB τ≤τ and B is minimal, where: 
 
 )U'G,G,'GG.t.s'G,Giff( DBDB ≠⊂τ∈∃τ∈∀τ≤τ  

Table 4: Rheumatic fever data   
Attribute name �Attribute values Attribute refers to  
Sex (S) S1 Male 
 S2 Female 
Pharyngitis (P) yes Yes 
 no No 
Arthritis (A) a0 No arthritis 
 a1 Began in the knee 

 a2 Began in the ankle 
Carditis (C)  r1 Affected 
 r2 Not affected 
Chorea (Ch) yes Yes 
 no No 
ESR e1 Normal 
 e2 High  
Abdonominal pain (Ap) p1 Absent 
 p2 Present 
Headache (H) yes Yes 
 no No 
Diagnosis (D) d1 Rheumatic  arthritis 
 d2 Rheumatic carditis 
 d3 Rheumatic arthritis 
  and carditis 

 
Table 5: Rheumatic fever information system 
Attributes S P A C Ch ESR Ap H D 
Patients 
p1 S2 yes a1 r1 yes e1 p1 no d3 
p2 S1 yes  a1 r1 yes e2 p1 yes d3 
p3 S2 yes  a2 r1 no  e1 p1 no d3 
p4 S1 yes a1 r2 no  e1 p1 no d1 
p5 S1 no  a0 r1 no  e1 p2 no d2 
p6 S1 yes a1 r1 no e2 p1 no d3 
p7 S1 yes a2 r1 no e1 p1 yes d3 

 
• The attribute Ata ∈  is called the core if 

ab,Atb,a,ba ≠∈∀ττ �  
 
 When the classical technique of rough set theory 
(ROSETTA software) used to obtain reducts and core 
of our data we found that we have 8 reducts of Table 5 
with out any intersections among them. So, we do not 
have any core of Table 5. The set of obtained reducts is 
as follows: 
 

}}HApAP{},HCA{
},ApESRAP{,}ESRC{

},ApKCAP{},ApAPS{
},CAS{},ChCS{{)At(dRe

∨∨∨∨∨
∨∨∨∨

∨∨∨∨∨∨∨
∨∨∨∨=

 

 
 Now, after getting the reducts of Table 5 using the 
ROSETTA software. We will convert Table 4-7 using 
Table 6. 
 Now we will apply the above contributions on 
Table 6 where }x,x,x,x,x,x,x{Ob 7654321=  is the set of 
objects, the set of condition attributes is },,{At δβα=  
and the decision attribute is the diagnosis D. 
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Table 6: Convert table 
Attribute  Attribute 
symbol Refers to? values Refers to? 
 � {S, CH}  �1 S takes s1 
  �2 K takes k1 

  �3 Each of {S,K}takes {s2, k2} 

� {P, A, ESR} �1 F takes f1 
  �2 A takes a1 
  �3 A takes a2 
  �4 E takes e4 
   Each of {F, A, E}takes 
  �5 {f2, a0, e} 
δ {C, Ap, H} δ1 R takes r1 

  δ2 P takes p1 

  δ3 H takes h3 
   Each of {R,P,H} takes 
  δ4 {r2, p2, h2} 
D Diagnosis d1 Rheumatic arthritis 
  d2 Rheumatic carditis 
  d3 Rheumatic arthritis and carditis 
 
Table 7: Multi-valued information system 
U � � δ D 
x1 {�2} {�1, �2, �3} {δ1, δ2} {d3} 
x2 {�1, �2} {�1, �2} {δ1, δ2, δ3} {d3} 
x3 {�3} {�1, �3, �4} {δ1, δ2} {d3} 
x4 {�1} {�1, �2, �4} {δ2} {d1} 
x5 {�1} {�4} {δ1} {d2} 
x6 {�1} {�1, �2} {δ1, δ2} {d3} 
x7 {�1} {�1, �3, �4} {δ1, δ2, δ3} {d3} 
 
 According to the binary relation 

}AtB,)y(f)x(f),y,x{(R B
c

BB ⊆⊆= we can construct 
the following topologies:  
 

}}x,x{},x{},x{,,Ob{ 3232ϕ=τα , },Ob{ ϕ=τβ , },Ob{ ϕ=τδ , 

{Ob, }α βτ = ϕ , },Ob{ ϕ=τ δα , },Ob{ ϕ=τ δβ , },Ob{ ϕ=τ δβα  
 
 Now we will apply the relation 

})y(f)x(f),y,x{(R D ⊆= to deal with the decision 

attribute D and we can construct the following 
topology: 
 

}}x,x,x,x,x,x{},x,x,x,x,x,x{

},x,x,x,x,x{,,Ob{

765321764321

76321D ϕ=τ
 

 
 We observe that, Dτ≤τα , this leads to from the 
above contributions that }{α is the reduct and it is the 
core.  
 Then we can get the degree of dependency for each 
attribute as follows: 

 For α=a , we get 
7
2

)D,( =αγ  , for β=a , we get 

γ(β, D) = 0 and for a = δ, γ(δ, D) = 0. But if we get the 
degree of dependencies for the other attributes we will 
find that: 

0)D,C()D},,({
)D},,({)D},,({

=γ=δβγ=
δαγ=βαγ

 

 
 Thus, the set of attributes of equal highest degree 
of dependency is the reduct of our system. So we 
conclude that {α}is the reduct of our data using the 
topological method also, {α} is the core of our system.  
 Now, we observe that the reduction that we got by 
using the GMIS is contained in the reduction that we 
got using the discernibility matrix and this clears for us 
that our method for getting the reduction is more 
precise than using the ROSETTA method. Because, the 
ROSETTA method can not apply on general binary 
relations. 
 
Topological reduction of single valued datasets: By 
reduction we mean if we can remove some data from 
the data table given in our information system 
preserving its basic properties. To express this idea 
more precisely, let S = (Ob, At, {Va: ∈a At}, fa) be an 
information system (numerical system). Let r be a 
positive real, for each object x ∈ Ob and for ∈a At, 
Na(x, r) is the a-neighborhood of x and defined by: 
 
   Na(x, r) = {y ∈Ob: r)y(f)x(f aa ≤− } 
 
 For any subset B of At, the B-neighborhood of x is 
defined by: 
 

BN (x, r) = {y ∈Ob: r)y(f)x(f aa ≤−  Ba ∈∀ } 
 
 For any subset X of Ob, we define two mappings 

Cl,Int : P(Ob ) →  P(Ob ) as follows: 
 
 }Ba,X)r,x(N:Obx{)X(Int aB ∈∀⊆∈= ,s 
 }Ba,X)r,x(N:Obx{)X(Cl aB ∈∀φ≠∩∈= . 
 
 The classes }AtB,ObX:)X(Int{ B ⊆⊆ , B{Cl (X) : X  

Ob,B At}⊆ ⊆ and }AtB,Obx:)r,x(N{ B ⊆∈ are 
subbases of a topological spaces denoted Iτ , Cτ and 

Nτ respectively. 
 Now let At = { n21 a,...,a,a } and let 

1aIτ , 
2aI

τ ,…, 

naI
τ , 

1aCτ , 
2aCτ ,…,

naCτ and 
1aNτ  , 

2aNτ , …, 
naNτ be the 

topologies induced by the subbases{Inta1 (X): ⊆ 
Ob},{Inta2 (X): ⊆ Ob},…, {Intan (X): ⊆ Ob}, {Cla1 (X): 
⊆ Ob}, {Cla2 (X): ⊆ Ob},…,{Clan (X): ⊆ Ob} and {Na1 

(X): ⊆ Ob},{Na2 (X): ⊆ Ob},…, {Nan (X): ⊆ Ob}, 
respectively. These topologies called interior, closure 
and neighborhood topologies respectively. 
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Table 8: The information system 
Ob  a1 a2 a3 a4 
x1 1 2 9 6 
x2 3 2 6 2 
x3 3 6 3 3 
x4 4 2 2 3 
x5 6 6 5 4 
 
 One of the two attributes ji a,a  , ji ≠  is called 

interior-dispensable in At if 
jaia II τ=τ ,otherwise , ia or 

ja is indispensable in At. Let 2,1τ , 3,1τ ,…, n,1n−τ  be the 

topologies induced by 
1aIτ ∪

2aIτ ,
1aIτ ∪

3aIτ ,…, 

1naI −
τ ∪

naIτ if interior topologies are used (the same 

terminology used if closure topologies or neighborhood 
topologies is replaced). 
 Now if 

AtIτ  is the topology induced by 

}ObX:)X(Int{ At ⊆ (
AtCτ or 

AtNτ can be used alternately), 

then when 
AtIj,i τ=τ  the set }aa{ j,i is a second order 

reduct of At in S. On the other hand, if 
AtIj,i τ≠τ for all i, 

j = 1, 2,…, n we must calculate the highest topologies 
3,2,1τ ,…, n,1n,2n −−τ  and the subset }a,a,a{ kji is a third 

order reduct of At in S when 
ATIk,j,i τ=τ . By the same 

manner, we can define a highly order reducts of At in S. 
 In each case, the topological core of At in S is the 
intersection of all reducts (intersection of all the same 
order reducts). This core called the interior core and 
denoted CoreInt (At). By the same terminology, we can 
define the closure core (CoreC1 (At))and the 
neighborhood core (CoreN (At)). 
    Illustrated Example Consider the information system 
given by Table 8 and if we choose r = 2, then 

}2)y(f)x(f:Oby{)r,x(N
iii aaa ≤−∈= ,hence we have the 

following subbases: 
 
ς1 = {{x1, x2, x3}, {x1, x2, x3, x4}, {x2, x3, x4,x5}, {x4, 

x5}} 
ς2 = {{x1,x2,x4}, {x3,x5}} 
ς3 = {{x1}, {x3, x4, x5}, {x2, x5}, {x3, x4}, {x2, x3, x5}} 
ς4 = {{x2, x3, x4, x5}, {x1, x5}, Ob } 
 
 The corresponding bases are: 
 
β1 = {{x1, x2, x3}, {x1, x2, x3, x4}, {x2, x3, x4, x5}, {x4, 

x5}}, {x4}, {x2, x3}, {x2, x3, x4}} 
β2 = {{x1, x2, x4}, {x3, x5}} 
β3 = {{x1}, {x3, x4, x5}, {x2, x5}, {x3, x4}, {x2, x3, x5}, 

{x5}, {x3}, {x3, x5}} 
β4 = {{x2, x3, x4, x5}, {x1, x5}, {x5}, Ob } 
 
 The corresponding topologies are: 

τ1 = {Ob, ϕ, {x1, x2, x3}, {x1, x2, x3, x4}, {x2, x3, x4, x5}, 
{x4, x5}, {x4}, {x2, x3}, {x2, x3, x4}} 

τ2 = {Ob, ϕ, {x1, x2, x4}, {x3, x5}} 
τ3 = {Ob, ϕ, {x1}, {x3, x4, x5}, {x2, x5}, {x3, x4}, {x2, 

x3, x5}, {x5}, {x3}, {x3, x5},{x1, x2, x5},{x1, x3, x4, 
x5},{x1, x2, x3, x5},{x1, x3, x4}, {x1, x5}, {x1, x3, 
x5},{x1, x3},{x2, x3, x4, x5},{x2, x3, x5}, {x3, x4, 
x5}} 

τ4 = {Ob, ϕ, {x2, x3, x4, x5}, {x1, x5}, {x5}} 
 
 If we considered the set of all attributes then 

AtNτ is 

the discrete topology, but the second order topologies 
are given such that: 1,2τ ≠

AtNτ , 1,3τ = 
AtNτ , 1,4τ ≠  

AtNτ , 

2,3τ = 
AtNτ , 2,4τ ≠

AtNτ , 3,4τ ≠
AtNτ Then 1 3{a ,a }  and  

2 3{a ,a }  are second order reducts of At and the second 
order core is given by N 3Core (At) {a }= . 
 

CONCLUSION 
 
 There are many approaches for obtaining 
topologies by relations and we used some of them in 
data reduction. These approaches were generalizations 
to Pawlak approaches namely, we ignored the notion of 
equivalence relations. Also, these approaches open the 
way for other approximations if we use the general 
topological recent concepts such as pre-open sets or 
semi-open sets. Make use of this terminology to obtain 
the missing values in incomplete datasets will be a good 
future work[1,4-6,16,20]. Implementing software for large 
data sets reduction using advanced programming 
languages will be also a good future work. 
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