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Abstract. Many object classes, including human faces, can be modeledas a set of characteristic parts arranged in a variable spatial con�gu-ration. We introduce a simpli�ed model of a deformable object classand derive the optimal detector for this model. However, the optimaldetector is not realizable except under special circumstances (indepen-dent part positions). A cousin of the optimal detector is developed whichuses \soft" part detectors with a probabilistic description of the spatialarrangement of the parts. Spatial arrangements are modeled probabilisti-cally using shape statistics to achieve invariance to translation, rotation,and scaling. Improved recognition performance over methods based on\hard" part detectors is demonstrated for the problem of face detectionin cluttered scenes.
1 IntroductionVisual recognition of objects (chairs, sneakers, faces, cups, cars) is one of themost challenging problems in computer vision and arti�cial intelligence. Histor-ically, there has been a progression in recognition research from the particularto the general. Researchers initially worked on the problem of recognizing indi-vidual objects; however, during the last �ve years the emphasis has shifted torecognizing classes of objects which are visually similar.One line of research has concentrated on exploiting photometric aspects ofobjects. Matched �ltering (template matching) was an initial attempt along theselines. More modern approaches use classi�cation in subspaces of �lter responses,where the set of �lters is selected based on human receptive �elds, principal com-ponents analysis [12, 23, 16, 2], linear discriminant analysis, or by training withperceptron-like architectures [22, 20]. These methods allow one to accomodate abroader range of variation in the appearance of the target object than is possibleusing a simple matched �lter.



A second line of research has used geometric constraints between low levelobject features. Methods such as alignment [11], geometric invariants [15], com-binations of views [24, 21], and geometric hashing [26, 19] �t within this category.Further generalization has been obtained by allowing an object to be repre-sented as a collection of more complex features (or texture patches) connectedwith a deformable geometrical model. The neocognitron architecture [10] maybe seen as an early representative. More recently, Yuille [27] proposed to use de-formable templates to be �t to contrast pro�les by gradient descent of a suitableenergy function. Lades, von der Malsburg and colleagues [13, 25] proposed touse jet-based detectors and deformable meshes for encoding shape. Their workopened a number of interesting questions: (a) how to derive the energy functionthat encodes shape from a given set of examples, (b) how to initialize automat-ically the model so that it converges to the desired object despite a clutteredbackground in the image, and (c) how to handle partial occlusion of the object.Lanitis, Cootes et al. [14, 6, 7] proposed to use principal components analysis(applied to the shape of an object rather than the photometric appearance) toaddress the �rst issue. Pope and Lowe [17, 18] used probability theory to modelthe variation in shape of triples of features. Brunelli and Poggio [1] showed thatan ad hoc face detector consisting of individual features linked together withcrude geometry constraints outperformed a rigid correlation-based \full-face"detector.Burl, Leung, and Perona [3, 4] introduced a principled framework for repre-senting object deformations using probabilistic shape models. Local part detec-tors were used to identify candidate locations for object parts. These candidateswere then grouped into object hypotheses and scored based on the spatial ar-rangement of the parts. This approach was shown to work well for detectinghuman faces in cluttered backgrounds and with partial occlusion. There is noguarantee, however, that �rst \hard-detecting" the object parts and then look-ing for the proper con�guration of parts is the best approach. (Under a \hard"detection strategy, if the response of a part detector is above threshold, only theposition of the part is recorded; the actual response values are not retained forsubsequent processing.)In this paper, we reconsider from �rst principles the problem of detecting anobject consisting of characteristic parts arranged in a deformable con�guration.The key result is that we should employ a \soft-detection" strategy and seek thearrangement of part locations that maximizes the sum of the shape log-likelihoodratio and the responses to the part detectors. This criteria, which combines boththe local photometry (part match) and the global geometry (shape likelihood)provides a signi�cant improvement over the \hard-detection" strategy used pre-viously.In Sect. 2 we provide a mathematical model for deformable object classes.The optimal detector for this model is derived from �rst principles in Sect. 3.We then investigate, in Sect. 4, an approximation to the optimal detector whichis invariant to translation, rotation and scaling. In Sect. 5 we present evidencewhich veri�es the practical bene�ts of our theoretical �ndings.



2 Deformable Object Classes
We are interested in object classes in which instances from the class can bemodeled as a set of characteristic parts in a deformable spatial con�guration.As an example, consider human faces, which consist of two eyes, a nose, andmouth. These parts appear in an arrangement that depends on an individual'sfacial geometry, expression, and pose, as well as the viewpoint of the observer.We do not o�er a precise de�nition of what constitutes an object \part",but we are generally referring to any feature of the object that can be reliablydetected and localized using only the local image information. Hence, a part maybe de�ned through a variety of visual cues such as a distinctive photometric pat-tern, texture, color, motion, or symmetry. Parts may also be de�ned at multiplescales. A coarse resolution view of the head can be considered a \part" as cana �ne resolution view of an eye corner. The parts may be object-speci�c (eyes,nose, mouth) or generic (blobs, corners, textures).
2.1 Simpli�ed ModelConsider a 2-D object consisting of N photometric parts Pi(x; y), each occuringin the image at a particular spatial location (xi; yi). The parts Pi can be thoughtof as small image patches that are placed down at the appropriate positions.Mathematically, the image T of an object is given by:

T (x; y) = NXi=1 Pi(x� xi; y � yi) (1)
For convenience, we will assume, that the Pi(x; y) are de�ned for any pair (x; y),but are non-zero only inside a relatively small neighborhood around (0; 0).Let X be the vector describing the positions of the object parts, i.e.X = �x1 x2 : : : xN y1 y2 : : : yN �T (2)An object class can now be de�ned as the set of objects induced by a set ofvectors fXkg. In particular, we assume that the part positions are distributedaccording to a joint probability density pX(X). We will designate the resultingobject class as T . To generate an object from this class, we �rst generate arandom vector X according to the density pX(X). Since this vector determinesthe part positions, we simply place the corresponding pattern Pi at each of thesepositions.Note that no assumption about pX(X) is made at this time. It should beclear, however, that through pX(X) we can control properties of the objectclass, such as the range of meaningful object shapes, as well as tolerable rangesof certain transformations, such as rotation, scaling and translation.



3 Derivation of the Optimal DetectorThe basic problem can be stated as follows: given an image I determine whetherthe image contains an instance from T (hypothesis !1) or whether the imageis background-only (hypothesis !2). In our previous work we proposed a two-step solution to this problem: (1) apply feature detectors to the image in orderto identify candidate locations for each of the object parts and (2) given thecandidate locations, �nd the set of candidates with the most object-like spatialcon�guration. However, there is nothing to say that �rst hard-detecting candi-date object parts is the right strategy. In the following section, we will directlyderive the optimal detector starting from the pixel image I.
3.1 Optimal DetectorThe optimal decision statistic is given by the likelihood ratio� = p(Ij!1)p(Ij!2) (3)We can rewrite the numerator by conditioning on the spatial positions X of theobject parts. Hence, � = PXp(IjX; !1) � p(Xj!1)p(Ij!2) (4)where the summation goes over all possible con�gurations of the object parts.Assuming that parts do not overlap, we can divide the image into N +1 regions,I0; I1; : : : ; IN , where Ii is an image which is equal to I in the area occupiedby the non-zero portion of part Pi (positioned according to X) and zero other-wise. I0 denotes the background. Assuming furthermore that the background isindependent across regions, we obtain

� = PXQNi=0 p(IijX ; !1) � p(Xj!1)p(Ij!2) (5)
=XX " NYi=1 p(IijX; !1)p(Iij!2) # � p(Xj!1) (6)
=XX " NYi=1�i(xi; yi)# � p(Xj!1) (7)

Here, the �i(xi; yi) = p(IijX;!1)p(Iij!2) can be interpreted as likelihood ratios express-ing the likelihood of part Pi being present in the image at location (xi; yi). Notethat �0(x; y) is equal to one, under the hypothesis that the statistics of thebackground region do not depend on the presence or absence of the object.



We can specialize this derivation by introducing a particular part detectionmethod. For example, assuming that the object is embedded in white Gaussiannoise, we can substitute Gaussian class conditional densities and obtain�i = N �Ii; �X ; �2I�N (Ii; 0; �2I) (8)Here, �X is the object with parts positioned atX, 0 shall denote a vector of zerosand I is the identity matrix. Expanding the Gaussian densities and combiningterms yields: �i = exp��TXIi�2 � �TX�X2�2 �
= exp���TX�X2�2 � � exp��TXIi�2 �
= c � exp��TXIi�2 � (9)where �2 is the variance of the pixel noise and c depends only on the energy inthe object image and is therefore constant independent ofX , provided the partsdo not overlap. Equation (9) simply restates the well known fact that matched�ltering is the optimal part detection strategy under this noise model. WritingAi for the response image obtained by correlating part i with the image I andnormalizing by �2, we �nally obtain� = c �XX " NYi=1 exp (Ai(xi; yi))# � p(X) (10)The constant c does not a�ect the form of the decision rule, so we will omit itfrom our subsequent equations.3.2 Independent Part PositionsIf the part positions are independent, p(X) can also be expressed as a productp(X) = NYi=1 pi(xi; yi) (11)Thus, we have � =XX " NYi=1�i(xi; yi)pi(xi; yi)#For the special case of additive white Gaussian noise, we obtain� =XX " NYi=1 exp (Ai(xi; yi)) pi(xi; yi)#



=XX " NYi=1 exp (Ai(xi; yi) + log pi(xi; yi))#
= NYi=1

24 X(xi;yi) exp (Ai(xi; yi) + log pi(xi; yi))35 (12)
Thus, we need to compute the correlation response image (normalized by �2)for each object part. To this image, we add the log probability that the partwill occur at a given spatial position, take the exponential, and sum over thewhole image. This process is repeated for each object part. Finally, the productof scores over all the object parts yields the likelihood ratio.Note, that the detector is not invariant to translation, rotation, and scalingsince the term pi(xi; yi) includes information about the absolute coordinates ofthe parts.
3.3 Jointly Distributed Part PositionsIf the part positions are not independent, we must introduce an approximationsince summing over all combinations of part positions as in (7) is infeasible.The basic idea|similar to a winner-take-all strategy|is to assume that thesummation is dominated by one term corresponding to a speci�c combinationX0 of the part positions. With this assumption, we have

� � �0 = NYi=1�i(xi; yi) � p(X0)
log�0 = NXi=1 log �i(xi; yi) + log p(X0) (13)

and in the case of additive white Gaussian noiselog�0 =  NXi=1 Ai(x0i; y0i)! + log p(X0) (14)
The strategy now is to �nd a set of part positions such that the matched �lterresponses are high and the overall con�guration of the parts is consistent withp(Xj!1). Again, the resulting detector is not invariant to translation, rotation,and scaling.
4 TRS-invariant Approximation to the Optimal DetectorThe approximate log-likelihood ratio given in (13) can readily be interpreted asa combination of two terms: the �rst term, PAi, measures how well the hy-pothesized parts in the image match the actual model parts, while the second



term, p(X0), measures how well the hypothesized spatial arrangement matchesthe ideal model arrangement. The second term, the con�guration match, is spec-i�ed as a probability density over the absolute coordinates of the parts, which inpractice is not useful since (a) there is no way to know or estimate this densityand (b) this formulation does not provide TRS-invariance.We can make use of the theory developed in our previous work (see [4] or[5]) to write down a TRS-invariant detector that closely follows the form of (13).In particular, we know how to factor the term p(X0) into a part that dependspurely on shape and a part that depends purely on pose:pX(X0) = pU (U0(X0)) � p�(�0(X0)) (15)Here, U denotes the shape of the constellation and the vector � captures thepose parameters. Computing U(X) corresponds to transforming a constellationX in the image to so-called shape space by mapping two part positions (thebase-line pair) to �xed reference positions. In shape space, the positions of theremaining N � 2 parts de�ne the shape of the con�guration, written asU = �u3 u4 : : : uN v3 v4 : : : vN �T (16)If pX(X) is a joint Gaussian density, then the shape density, pU (U), can becomputed in closed form as shown by Dryden and Mardia [8]. This established,we can obtain the TRS-invariant detector by dropping the pose informationcompletely and working with shape variablesU0, instead of �gure space variablesX0. The resulting log-likelihood ratio is then
log�1 = NXi=1 Ai(x0i; y0i) + K � log pU (U0j!1)pU (U0j!2) (17)

The shape likelihood ratio, rather than just pU (U0), is used in place of pX(X0)to provide invariance to the choice of baseline features. The likelihood ratio alsoassigns lower scores to con�gurations that have higher probabilities of accidentaloccurrence. The factor ofK provides a weighted trade-o� between the part matchand shape match terms, since the units of measurement for the two terms will nolonger agree. (The proper setting for this value can be estimated from trainingdata).An object hypothesis is now just a set of N coordinates specifying the (hy-pothesized) spatial positions of the object parts. Any hypothesis can be assigneda score based on (17). It is no longer the case that hypotheses must consist onlyof points corresponding to the best part matches. The trade-o� between havingthe parts match well and having the shape match well may imply that it is betterto accept a slightly worse part match in favor of a better shape match or viceversa.We do not have a procedure for �nding the hypothesis that optimizes log�1.One heuristic approach A1 is to identify candidate part locations at maximaof the part detector responses and combine these into hypotheses using the



conditional search procedure described in [4]. However, instead of discardingthe response values, these should be summed and combined with the shapelikelihood. In this approach, the emphasis is on �nding the best part matchesand accepting whatever spatial con�guration occurs. There is no guarantee thatthe procedure will maximize log�1.Figure 1 illustrates the gain of approach A1 over hard detection. The twocomponents of the goodness function (sum of responses and shape log-likelihood)can be seen as dimensions in a two dimensional space. Evaluating the goodnessfunction is equivalent to projecting the data onto a particular direction, whichis determined by the trade-o� factor K. A technique known as \Fisher's LinearDiscriminant" [9] provides us with the direction which maximizes the separabilityof the two classes. If the sum of the detector responses had no discriminativepower, the value of K would tend toward in�nity. This would correspond to ahorizontal line in the �gure. The advantage of soft detection is further illustratedin Fig. 2.
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Fig. 1. Illustration of the advantage of soft detection. The sum of the detector outputsis plotted against the shape log-likelihood, for a set of face (o) and background (+)samples. Also shown is a line onto which the data should be projected (derived byFisher's Linear Discriminant method).
A second approach, A2, is to insist on the best shape match and acceptwhatever part matches occur. This method is roughly equivalent to using a rigidmatched �lter for the entire object, but applying it at multiple orientations andscales.



Fig. 2. Two constellations of candidates for part locations are shown. The backgroundconstellation (black 'x') yields a greater shape likelihood value than the correct hy-pothesis (white '+'). However, when the detector response values are taken into con-sideration, the correct hypothesis will score higher.
Finally, we tested a third approach, A3, that intuitively seems appealing.Candidate part locations are identi�ed as before in A1 at local maxima in thepart response image. From pairs of candidate parts, the locations of the otherparts are estimated to provide an initial hypothesis. (So far, this is equivalentto using a �xed-shape template anchored at the two baseline points). From theinitial hypothesis, however, a gradient-style search is employed to �nd a localmaximum of log�1. Individual part positions are pulled by two forces. One forcetries to maximize the response value while the other force tries to improve theshape of the con�guration.

5 ExperimentsWe conducted a series of experiments aimed at evaluating the improvementsover hard detection of object parts, brought about by the di�erent approachesdescribed in the previous section. To test our method, we chose the problem ofdetecting faces from frontal views. A grayscale image sequence of 400 frameswas acquired from a person performing head movements and facial expressionsin front of a cluttered background. The images were 320 � 240 pixels in size,while the face occupied a region of approximately 40 pixels in height. Our facemodel was comprised of �ve parts, namely eyes, nose tip and mouth corners.For the part detectors we applied a correlation based method|similar to amatched �lter|acting not on the grayscale image, but on a transformed versionof the image that characterizes the dominant local orientation. We found thismethod, which we previously described in [5], to be more robust against varia-tions in illumination than grayscale correlation. The part detectors were trained



A1 A2 A3
suboptimalsuboptimal suboptimaloptimalsuboptimal optimalsuboptimalsuboptimaloptimalpart resp.:shape:combined: part resp.:shape:combined: part resp.:shape:combined:Fig. 3. Pictorial illustration of the three approaches A1, A2, and A3 discussed in thetext. For each approach we show a set of three contours which represent the superpo-sition of response functions from three part detectors. With approach A1 the detectorresponses are optimal, but the combination of responses and shape is suboptimal. Withapproach A2 the shape likelihood is optimal, but the combination is still suboptimal.Only under approach A3 is the combined likelihood function optimized by seeking acompromise between contributions from the detector responses and shape.

Best BestCorrect False� Responses 101.1 93.7Shape Log-LH. 1.457 -0.096Weighted Total 101.5 93.7
Best BestCorrect False� Responses 96.4 94.8Shape Log-LH. 3.460 -3.530Weighted Total 97.5 93.7Fig. 4. Examples from the sequence of 400 frames used in the experiments. The highestscoring correct and incorrect constellations are shown for each frame. The tables givethe values for shape log-likelihood, sum of detector responses as well as overall goodnessfunction.



on images of a second person. In order to establish ground truth for the partlocations, each frame of the sequence was hand-labeled.Prior to the experiment, shape statistics had been collected from the face ofa third person by �tting a joint Gaussian density with full covariance matrixto data extracted from a sequence of 150 images, taken under a semi-controlledpose as discussed in [4].5.1 Soft Detection vs. Hard DetectionIn a �rst experiment, we found that using the �ve features described above,recognition on our test sequence under the hard detection paradigm was almostperfect, making it di�cult to demonstrate any further improvements. Therefore,in order to render the task more challenging, we based the following experimentson the upper three features (eyes and nose tip) only. In this setting, approachA1, i.e. combining the part responses with the shape likelihood without anyfurther e�ort to maximize the overall goodness function (17), yields a signif-icant increase in recognition performance. This result is illustrated in Fig. 5,where ROC (Receiver Operating Characteristics) curves are shown for the harddetection method as well as for approach A1.
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Fig. 5. The two ROC curves show the performance of hard vs. soft detection of featuresas a trade-o� between detection probability, Pd, and probability of false alarm, Pfa. Thesoft detection method A1 clearly outperforms the hard detection strategy, especiallyin the low false alarm range.
5.2 Gradient Descent OptimizationApproach A3 was tested in a second experiment by performing a gradient de-scent maximization of the goodness criteria with respect to the hypothesized



part positions in the image. There are two potential bene�ts from doing this:improved detection performance and improved localization accuracy of the partpositions. A cubic spline interpolation of the detector response images was usedin order to provide the minimization algorithm with a continuous and di�eren-tiable objective function. Local maxima of the detector response maps were usedas initial estimates for the part positions. We found that, on average, optimalpart positions were found within a distance of less than one pixel from the initialpositions.Fig. 6 shows the detection performance of the method before and after op-timization of (17). There does not seem to be any noticeable improvement overapproach A1. This result is somewhat surprising, but not entirely counterintu-itive. This is because by optimizing the goodness criteria, we are improving thescore of the constellations from both classes, !1 and !2. It is not clear that, onaverage, we are achieving a better separation of the classes in terms of their re-spective distribution of the goodness criteria. From a di�erent perspective, thisis a positive result, because the gradient descent optimization is computationallyvery expensive, whereas we have already been able to develop a 2Hz real-timeimplementation of approach A1 on a PC with Pentium processor (233MHz).Since our part detectors did not exhibit a signi�cant localization error forthe test data at hand, we have not been able to determine whether approach A3might provide improved localization accuracy.
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Fig. 6. The ROC performance does not signi�cantly improve after Gradient DescentOptimization of the goodness criteria.
6 ConclusionWe have reconsidered from �rst principles the problem of detecting deformableobject classes of which human faces are a special case. The optimal detector for



object class T was derived for the case of independent part positions. When thepart positions are jointly distributed the optimal detector is too complicated toevaluate, but it can be approximated using a winner-take-all simpli�cation. Inboth cases, the detector is composed of two terms: the �rst term measures howwell the hypothesized parts in the image match the actual model parts, while thesecond term measures how well the hypothesized spatial arrangement matchesthe ideal model arrangement.The con�guration match is speci�ed in terms of the absolute positions of theobject parts, therefore the optimal detector cannot be used in practice. However,using previous theoretical results, we were able to write an expression that closelyfollows the form of (13), but only exploits the shape of the con�guration. Theresulting criteria combines the part match with shape match and is invariant totranslation, rotation, and scaling.Although we do not have a procedure for �nding the hypothesis that maxi-mizes the overall goodness function, a heuristic approach A1 worked very well.In this approach, candidate parts are identi�ed and grouped into hypotheses asin the shape-only method, but, in addition, the response values (part matches)are retained and combined with the shape likelihood. A second approach, in-cluding a gradient descent optimization of the goodness function with respectto the part position in the image, did not provide signi�cant improvement inrecognition performance.
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