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Abstract

A weighted dissimilarity measure in vectorial spaces igps®d to optimize the per-
formance of the nearest neighbor classifier. An approacittifie required weights based
on gradient descent is presented. Experiments with bottheiia and real data shows the
effectiveness of the proposed technique.
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1 Introduction

The great effectiveness of the Nearest Neighbor (NN) rule when the numheototypes
labeled pints in a vector space, is going to infinity is well known [1]. Howeéwemost real
situations the number of prototypes uses to be very small and often leads to aictaoss of
NN performance.

Many researches have studied this small-data-set problem and have progoagdns of
the NN rule and the k-NN rule to improve classification error rate [2, 3, 4, 3, 8, 9, 10].

Consider the following general statistical statement of a Pattern Retmygnlassification
problem with two-class and identical a priori probabilities: gt = {(X1,Y1),...,(X,, Yn)}
be a training data set (prototypes) of independent identically distributed rand@blegrairs,
whereY; € {0,1},1 < i < n, and letX be an observation from the same distribution. Let
the label of X' be estimated through a classification rylg based onD,,, asY = g,(X).
The probability of error isk,, = P{Y # ¢,(X)}. Devroye states that, for any integeand
classification rulgy,, there exists a distribution @fX, Y) with Bayes riskR* = 0 such that the
expection ofR,, is E(R,) > % — ¢, wheres > 0 is an arbitrary small number. This theorem
states that even though we have rules, such as the K-NN rule, that are aliyeosisistent,
that is, theyasymptoticallyprovide optimal performance for any distribution, thignite sample
performance can always be extremely bad for some distributions.



For these reasons a new distance measure is here proposed that tries to itn@rise
classification in small data sets situations.

The proposed weighted measure can be seen as a generalization of the sigptedvei
dissimilarity in a d-dimensional space:
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whereo; is the weight of the i-th dimension. Assuming a classification problenvintifferent
classes, a natural extension of (1) is:
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wherec = class(x). We will refer to this extension a8VL2 dissimilarity”. If o,; = 1,
1 <i<m,1 < j < d, the weighted measure is just tlhig metric. On the other hand,
if the weights are the inverse of the variances in each dimension, the Mab&adistance
is obtained. Weights can also be computed as class-dependent inverse satatiag to a
measure that will be refered to akmss-dependent Mahalanobis dissimilarity

In the general case (2) does not behave as a metric,&irog) can be different frona(y, x)
if class(X) # class(y). In this most general setting, we are interested in findingiani weight
matrix, M, which optimizes the WL2-based NN classification performance.
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2 Approach

In order to optimize the error rate of the NN classifier with the WL2 digisinty measure a
specific criterionndexis proposed. This index is pretended to be binded to the error rate of the
classifier, and the problem is to find thé matrix that minimizes this index.

2.1 Index

Under the proposed framework, we can expect that NN performance can be improigd i
tances between points belonging to the same class are made to be small ehitdaiss dis-
tances are made to be large. Given a fixed training datsb'sétjs suggest trying to optimize
the following criterion index:
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wherex; is the nearest neighbor &fin the same clas$class(X) = class(x;,)) andx7, is the
nearest neighbor of in a different class(class(X) # class(X?7,)).

2.2 Gradient Descent

In order to find a matrix\/ that minimizes (3) a gradient descent procedure is proposed:
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whereoi(f) denotes the value of;; at iterationk of the descent algorithm. By developing the
partial derivatives in (4) the following update equations are obtained:
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where;; is a step factor (or “learning rate”) associated to dimengion class: (typically
wi; = i Vi, 7). This descent procedure stops when no significant changglif) id observed.

It is interesting to note that the computations involved in (5) and (6) implientail com-
puting the NN of eaclx € S, according to the WL2 dissimilarity corresponding to the current
values of the weights;;. Therefore, as a byproduct, a Leaving-One-Out estimation of the error
rate of the NN classifier whit the weighted measure can readily be obtained.

Figure 1 shows a typical evolution of this algorithm, as applied the so calledKey prob-
lem” data set which will be described in Section 3.

2.3 Finding adequate solutionsin adver se situations.

A potential drawback of the proposed gradient descent algorithm is that if the imp#wo of
additive factor in (6) is not sufficiently important, the algorithm tends to Bet;ato zero.
Consider the following two-classes problem, each class having 500 two-dimensoama
(figure 2). Class A is a mixture of two Gaussian distributions, the firstidigion has a stan-
dard deviation 0f/10 in the z; dimension and a unit standard deviation in thedimension,
while the second distribution has a unit standard deviation inztftrdimension and a standard
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Figure 1: Typical behaviour of the gradient descent algorithm as applied to the “monkey prob-
lem” data set. Classification error is estimated through Leaving-One-Out

deviation ofy/10 in thex, dimension, both distributions centered at (0,0). Class B is a Gaussian
distribution with unit standard deviation in the dimension and a standard deviatiom\gf0

in thez, dimension, centered at (6,0). Note the relatively large interclassaparig on ther,
dimension.
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Figure 2: Two-class problem with mixture Gaussian distributions and inssrcleerlapping.

In situations like this one, the convergence of the proposed gradient descent pro@dure ¢
be problematic. In fact, as shown in Figure 3, with this data set (and usingrjasnitialization
weights a constant value for the step fagtdrthe estimated error rate tends to worsen as the



proposed criterion indeX (/) (3) does increase through successive iterations.
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Figure 3: Divergent evolution of the gradient descent algorithm with the “advesggthetic
data of Figure 2. The error rate tends to increase, but there is a step insiohinimum.

This undesirable behaviour is due to the fact that glitend to zero until the algorithm stops.
Nevertheless, it is interesting to note that, even through this divergentibenaa minimum
error estimate is achieved at a certain step of the procedure, adiécaen in Figure 3. In other
words, a low value off (M) does not always necessarily mean a low value of the NN classifier
error rate; as mentioned in Section 2, it was only an assumption. This suggéiséd, uather
than supplying the weight values obtained at the end of the descent procedure, a betésiorhoi
M in general would be supplying the weights that led to the minimum estimated ateorin
typical cases, such as that shown in Figure 1, this minimum is achievedatrthergence point
of the descent procedure, while in adverse situations, such as that in Figuren@inthrum-
error weights will hopefully be a better choice than the standasdo¢ Mahalanobis) distance
and, certainly, will not be as bad as the weights obtained at the end of the process.

3 Experiments

Different corpora have been used from the UCI Repository Of Machine LearnitgpBses
and Domain Theories [12]. A short description of these corpora is given below:

e Australian: 690 prototypes, 14 features, 2 classes. Divided into 10 sete$srealidation.

e Balance: 625 prototypes, 4 features, 3 classes. Divided into 10 sets fowvalmksion.



e DNA: Training set of 400 prototypes (20% of the original Setllest set of 1186 proto-
types, 180 features, 3 classes.

e Diabetes: 768 prototypes, 8 features, 2 classes. Divided into 11 sets fenalatation.
e Heart: 270 prototypes, 13 features, 2 classes. Divided into 9 sets fonabdation.

e Letter: Training set of 3000 prototypes (20% of the original set), Test set of 5000 proto-
types, 16 features, 26 classes.

e Monkey-Problem-1: Training of 124 prototypes, Test of 432 prototypes, 6 features, 2
classes.

e \ehicle: 846 prototypes, 18 features, 4 classes. Divided into 9 sets forabdation.

These data sets have both numeric and categorical features. Each catdgatioe has
been replaced by binary features, where s the range of the categorical feature. For example,
in a hypothetical set of data with two features: Age (Continuous) and Sex (Ciatdgdi,F),
the categorical feature would be replaced by two binary features; i.e., Sexttbé represented
as (1,0) and Sex=F as (0,1). The continuous feature will not suffer any change, leadimg to
overall representation in three dimensions.

Most of the UCI data sets are small. In these ca¢é®ld Cross-Validatiorj13] has been
applied to obtain the classification results. Each corpus is divided\nibdocks usingV — 1
blocks as training set and the remaining block as a test set. Thereforepleakhis used
exactly once as a test set. The number of cross validation bld¢kss specified for each
corpus in the UCI documentation. For the larger DNA, Monkey and Letter corpora asingl
specific partition into training and test sets is provided by UCI and, in thases, no cross
validation was necessary.

4 Results

Experiments with both the NN and the k-NN rules have been carried out usirg théclass-
dependentMahalanobis, and our WL2 dissimilarity measures. Class-dependent Mahalanobis
consists in weighting each dimension by the inverse of the variance of thisigiiomein each
class.

Both in the case of the Mahalanobis and the WL2 dissimilarities, computakigularities
can appear when dealing with categorical features, which often exhibiclass-dependent
variances. This problem was solved by using the overall variance as a tiicnoothing for
the null values.

1The size of the training data has been intentionally reduced for savingutorg time and showing the capa-
bilities of our method for working with small-data-sets.



In the case of k-NN, the results reported for each method correspond to theo¥aluie <
k < 21, which gave best results for this method. Initialization values for trainimgWL2
weights were selected according to the following simple rule, based vim¢eane-out 1-NN
performance on the training data of conventional methods: Ifraautperforms Mahalanobis,
then set all initiab;; = 1; otherwise, set them to the inverse of the corresponding training data
standard deviation. Similarly, the step factors;, are set to a small constant (0.001) in the
former case and to the inverse of the standard deviation in the later.tRasisummarized in
table 1.

NN —Ly | NN —-MAH | NN-WL2 | K — Ly, | K — MAH | K-WL2
Australian| 65.73% 82.94% 82.64% || 69.26%| 85.29% | 85.14%
Balance 78.83% 68.0% 69.16% || 91.16%| 91.16% | 91.16%
Diabetes 69.94% 68.3% 67.34% 76.5% 73.77% | 74.18%
DNA 70.82% 77.23% 91.9% 82.2% 77.23% 91.9%
Heart 52.10% 71.26% 72.41% 59.0% 79.31% | 79.31%
Letter 87.82% 84.02% 89.48% || 87.82%| 84.02% | 89.48%
Monkey 78.7% 87.04% 100% 83.33%| 87.33% 100%
Vehicle 65.3% 66.79% 69.75% || 66.54%| 70.25% | 70.49%

Table 1: Performance of several methods on different data sets. Resultdfadeotorrespond
to the here proposed WL2 techniques.

WL2 outperforms conventional methods in many cases. The greatest impnovisnod-
tained inmonkey-problemla categorical corpus with a small number of features and only two
classes. Similarly good improvement is obtained for Ei¢A corpus, which is also a corpus
with categorical data, but with far more features (180) and 3 classeshé&etter corpus, with
16 continuous features and 26 classes, a moderate but significant gain of elassiiccuracy
is obtained. For other data sets, only marginal improvement or very simdaltsevith respect
to conventional techniques are obtained. The only case in which (k-NN) reseiksgintly but
significantly worse for the WL2 method is tii@abetescorpus.

Since the weights are the same for all points in the same class, resultexpacted to be
data-distribution dependent. That is, the accuracy of the method depends on thetihstof
the points in each class and, most importantly, on the amount of interclasappied, as it
was suggested by the example shown in figures 2 and 3.

5 Concludingremarks

A general weighted measure for the NN classification rule has been presknbeder to obtain
a good matrix of weights, gradient-descent minimization of an appropriateientsdex is



proposed. Results obtained for several data sets are promising. Nevertbiélessptimization
methods can be devised to minimize the proposed index and new indexes can be propdsed whic
would probably lead to improved performance.

These issues will be studied in future work. Another issue to be studied is the behavi
of a new weighting scheme, where weights are assigned togratttype—rather than (or in
addition to) eaclelass This more “local” configuration of the dissimilarity function is expected
to lead to a more data-independent overall behaviour of the corresponding k-NNietassi
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