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Abstract

A weighted dissimilarity measure in vectorial spaces is proposed to optimize the per-

formance of the nearest neighbor classifier. An approach to find the required weights based

on gradient descent is presented. Experiments with both synthetic and real data shows the

effectiveness of the proposed technique.
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1 Introduction

The great effectiveness of the Nearest Neighbor (NN) rule when the number ofprototypes,

labeled pints in a vector space, is going to infinity is well known [1]. However in most real

situations the number of prototypes uses to be very small and often leads to a dramatic loose of

NN performance.

Many researches have studied this small-data-set problem and have proposed variations of

the NN rule and the k-NN rule to improve classification error rate [2, 3, 4, 5, 6,7, 8, 9, 10].

Consider the following general statistical statement of a Pattern Recognition classification

problem with two-class and identical a priori probabilities: LetDn = f(X1; Y1); : : : ; (Xn; Yn)g
be a training data set (prototypes) of independent identically distributed random variable pairs,

whereYi 2 f0; 1g; 1 � i � n, and letX be an observation from the same distribution. Let

the label ofX be estimated through a classification rulegn, based onDn, asY = gn(X).
The probability of error isRn = PfY 6= gn(X)g. Devroye states that, for any integern and

classification rulegn, there exists a distribution of(X; Y ) with Bayes riskR� = 0 such that the

expection ofRn is E(Rn) � 12 � ", where" > 0 is an arbitrary small number. This theorem

states that even though we have rules, such as the K-NN rule, that are universally consistent,

that is, theyasymptoticallyprovide optimal performance for any distribution, theirfinitesample

performance can always be extremely bad for some distributions.



For these reasons a new distance measure is here proposed that tries to improvethe NN

classification in small data sets situations.

The proposed weighted measure can be seen as a generalization of the simple weightedL2
dissimilarity in a d-dimensional space:d(x; y) =vuut dXj=1 �j2(xj � yj)2 (1)

where�i is the weight of the i-th dimension. Assuming a classification problem intom different

classes, a natural extension of (1) is:d(x; y) =vuut dXj=1 �2cj(xj � yj)2 (2)

wherec = class(x). We will refer to this extension as“WL2 dissimilarity” . If �ij = 1,1 < i < m, 1 < j < d, the weighted measure is just theL2 metric. On the other hand,

if the weights are the inverse of the variances in each dimension, the Mahalanobis distance

is obtained. Weights can also be computed as class-dependent inverse variances, leading to a

measure that will be refered to asclass-dependent Mahalanobis dissimilarity.

In the general case (2) does not behave as a metric, sinced(x; y) can be different fromd(y; x)
if class(x) 6= class(y). In this most general setting, we are interested in finding anm�dweight

matrix,M , which optimizes the WL2-based NN classification performance.

M = 0BB@ �11 : : : �1d
...

...�m1 : : : �cd 1CCA
2 Approach

In order to optimize the error rate of the NN classifier with the WL2 dissimilarity measure a

specific criterionindexis proposed. This index is pretended to be binded to the error rate of the

classifier, and the problem is to find theM matrix that minimizes this index.

2.1 Index

Under the proposed framework, we can expect that NN performance can be improved if dis-

tances between points belonging to the same class are made to be small while inter-class dis-

tances are made to be large. Given a fixed training data set,S, this suggest trying to optimize

the following criterion index:



J(M) =X
x2S d(x=nn; x)d(x 6=nn; x) (3)

wherex=nn is the nearest neighbor ofx in the same class,(class(x) = class(x=nn)) andx 6=nn is the

nearest neighbor ofx in a different class,(class(x) 6= class(x 6=nn)).
2.2 Gradient Descent

In order to find a matrixM that minimizes (3) a gradient descent procedure is proposed:�(k+1)ij = �(k)ij � @(J(M))@�(k)ij (4)

where�(k)ij denotes the value of�ij at iterationk of the descent algorithm. By developing the

partial derivatives in (4) the following update equations are obtained:�(k+1)ij = �(k)ij � �ij�(k)ij (x=nnj � xj)2d(x; x=nn)d(x; x 6=nn) 8x 2 S : class(x) = i (5)

�(k+1)ij = �(k)ij + d(x; x=nn)�ij�(k)ij (x 6=nnj � xj)2d(x; x 6=nn)3 8x 2 S : class(x) 6= i ^ clase(x 6=nn) = i (6)

where�ij is a step factor (or “learning rate”) associated to dimensionj in classi (typically�ij = � 8i; j). This descent procedure stops when no significant change inJ(M) id observed.

It is interesting to note that the computations involved in (5) and (6) implicitly entail com-

puting the NN of eachx 2 S, according to the WL2 dissimilarity corresponding to the current

values of the weights�ij. Therefore, as a byproduct, a Leaving-One-Out estimation of the error

rate of the NN classifier whit the weighted measure can readily be obtained.

Figure 1 shows a typical evolution of this algorithm, as applied the so called “monkey prob-

lem” data set which will be described in Section 3.

2.3 Finding adequate solutions in adverse situations.

A potential drawback of the proposed gradient descent algorithm is that if the impact ofthe

additive factor in (6) is not sufficiently important, the algorithm tends to set all �ij to zero.

Consider the following two-classes problem, each class having 500 two-dimensional points

(figure 2). Class A is a mixture of two Gaussian distributions, the first distribution has a stan-

dard deviation of
p10 in thex1 dimension and a unit standard deviation in thex2 dimension,

while the second distribution has a unit standard deviation in thex1 dimension and a standard
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Figure 1: Typical behaviour of the gradient descent algorithm as applied to the “monkey prob-

lem” data set. Classification error is estimated through Leaving-One-Out.

deviation of
p10 in thex2 dimension, both distributions centered at (0,0). Class B is a Gaussian

distribution with unit standard deviation in thex1 dimension and a standard deviation of
p10

in thex2 dimension, centered at (6,0). Note the relatively large interclass overlapping on thex1
dimension.
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Figure 2: Two-class problem with mixture Gaussian distributions and interclass overlapping.

In situations like this one, the convergence of the proposed gradient descent procedure can

be problematic. In fact, as shown in Figure 3, with this data set (and using just unit initialization

weights a constant value for the step factor�), the estimated error rate tends to worsen as the



proposed criterion indexJ(M) (3) does increase through successive iterations.
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Figure 3: Divergent evolution of the gradient descent algorithm with the “adverse”synthetic

data of Figure 2. The error rate tends to increase, but there is a step in whichit is minimum.

This undesirable behaviour is due to the fact that all�ij tend to zero until the algorithm stops.

Nevertheless, it is interesting to note that, even through this divergent behaviour, a minimum

error estimate is achieved at a certain step of the procedure, as it canbe seen in Figure 3. In other

words, a low value ofJ(M) does not always necessarily mean a low value of the NN classifier

error rate; as mentioned in Section 2, it was only an assumption. This suggests usthat, rather

than supplying the weight values obtained at the end of the descent procedure, a better choice forM in general would be supplying the weights that led to the minimum estimated error rate. In

typical cases, such as that shown in Figure 1, this minimum is achieved at theconvergence point

of the descent procedure, while in adverse situations, such as that in Figure 3, theminimum-

error weights will hopefully be a better choice than the standard (L2 or Mahalanobis) distance

and, certainly, will not be as bad as the weights obtained at the end of the process.

3 Experiments

Different corpora have been used from the UCI Repository Of Machine Learning Databases

and Domain Theories [12]. A short description of these corpora is given below:� Australian: 690 prototypes, 14 features, 2 classes. Divided into 10 sets for cross-validation.� Balance: 625 prototypes, 4 features, 3 classes. Divided into 10 sets for cross-validation.



� DNA: Training set of 400 prototypes (20% of the original set)1. Test set of 1186 proto-

types, 180 features, 3 classes.� Diabetes: 768 prototypes, 8 features, 2 classes. Divided into 11 sets for cross-validation.� Heart: 270 prototypes, 13 features, 2 classes. Divided into 9 sets for cross-validation.� Letter: Training set of 3000 prototypes (20% of the original set), Test set of 5000 proto-

types, 16 features, 26 classes.� Monkey-Problem-1: Training of 124 prototypes, Test of 432 prototypes, 6 features, 2

classes.� Vehicle: 846 prototypes, 18 features, 4 classes. Divided into 9 sets for cross-validation.

These data sets have both numeric and categorical features. Each categorical feature has

been replaced byn binary features, wheren is the range of the categorical feature. For example,

in a hypothetical set of data with two features: Age (Continuous) and Sex (Categorical: M,F),

the categorical feature would be replaced by two binary features; i.e., Sex=Mwill be represented

as (1,0) and Sex=F as (0,1). The continuous feature will not suffer any change, leading toan

overall representation in three dimensions.

Most of the UCI data sets are small. In these casesN-Fold Cross-Validation[13] has been

applied to obtain the classification results. Each corpus is divided intoN blocks usingN � 1
blocks as training set and the remaining block as a test set. Therefore, eachblock is used

exactly once as a test set. The number of cross validation blocks,N , is specified for each

corpus in the UCI documentation. For the larger DNA, Monkey and Letter corpora a single

specific partition into training and test sets is provided by UCI and, in thesecases, no cross

validation was necessary.

4 Results

Experiments with both the NN and the k-NN rules have been carried out using theL2, a“class-

dependent”Mahalanobis, and our WL2 dissimilarity measures. Class-dependent Mahalanobis

consists in weighting each dimension by the inverse of the variance of this dimension in each

class.

Both in the case of the Mahalanobis and the WL2 dissimilarities, computation singularities

can appear when dealing with categorical features, which often exhibitnull class-dependent

variances. This problem was solved by using the overall variance as a “back-off” smoothing for

the null values.
1The size of the training data has been intentionally reduced for saving computing time and showing the capa-

bilities of our method for working with small-data-sets.



In the case of k-NN, the results reported for each method correspond to the valueof k; 1 <k < 21, which gave best results for this method. Initialization values for trainingthe WL2

weights were selected according to the following simple rule, based on leaving-one-out 1-NN

performance on the training data of conventional methods: If rawL2 outperforms Mahalanobis,

then set all initial�ij = 1; otherwise, set them to the inverse of the corresponding training data

standard deviation. Similarly, the step factors,�ij, are set to a small constant (0.001) in the

former case and to the inverse of the standard deviation in the later. Results are summarized in

table 1. NN � L2 NN �MAH NN-WL2 K � L2 K �MAH K-WL2

Australian 65.73% 82.94% 82.64% 69.26% 85.29% 85.14%

Balance 78.83% 68.0% 69.16% 91.16% 91.16% 91.16%

Diabetes 69.94% 68.3% 67.34% 76.5% 73.77% 74.18%

DNA 70.82% 77.23% 91.9% 82.2% 77.23% 91.9%

Heart 52.10% 71.26% 72.41% 59.0% 79.31% 79.31%

Letter 87.82% 84.02% 89.48% 87.82% 84.02% 89.48%

Monkey 78.7% 87.04% 100% 83.33% 87.33% 100%

Vehicle 65.3% 66.79% 69.75% 66.54% 70.25% 70.49%

Table 1: Performance of several methods on different data sets. Results in boldface correspond

to the here proposed WL2 techniques.

WL2 outperforms conventional methods in many cases. The greatest improvement is ob-

tained inmonkey-problem1, a categorical corpus with a small number of features and only two

classes. Similarly good improvement is obtained for theDNA corpus, which is also a corpus

with categorical data, but with far more features (180) and 3 classes. Forthe lettercorpus, with

16 continuous features and 26 classes, a moderate but significant gain of classification accuracy

is obtained. For other data sets, only marginal improvement or very similar results with respect

to conventional techniques are obtained. The only case in which (k-NN) results are slightly but

significantly worse for the WL2 method is theDiabetescorpus.

Since the weights are the same for all points in the same class, results were expected to be

data-distribution dependent. That is, the accuracy of the method depends on the distribution of

the points in each class and, most importantly, on the amount of interclass overlapping, as it

was suggested by the example shown in figures 2 and 3.

5 Concluding remarks

A general weighted measure for the NN classification rule has been presented.In order to obtain

a good matrix of weights, gradient-descent minimization of an appropriate criterion index is



proposed. Results obtained for several data sets are promising. Nevertheless, other optimization

methods can be devised to minimize the proposed index and new indexes can be proposed which

would probably lead to improved performance.

These issues will be studied in future work. Another issue to be studied is the behaviour

of a new weighting scheme, where weights are assigned to eachprototype–rather than (or in

addition to) eachclass. This more “local” configuration of the dissimilarity function is expected

to lead to a more data-independent overall behaviour of the corresponding k-NN classifiers.
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