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Abstract. Different eigenspace-based approaches have 
been proposed for the recognition of faces. They differ 
mostly in the kind of projection method been used and in 
the similarity matching criterion employed. A first goal of 
this paper is to present a comparison between some of 
these different approaches. A second goal is to outline an 
adaptive, neural-based Security Access Control System. 
 

1. Introduction 
Among the most successful approaches used in face 

recognition we can mention eigenspace-based methods, 
which are mostly derived from the Eigenface-algorithm. 
These methods project the input faces onto a dimensional 
reduced space where the recognition is carried out, 
performing a holistic analysis of the faces. Different 
eigenspace-based approaches have been proposed. They 
differ mostly in the kind of projection/decomposition 
method been used, and in the similarity matching 
criterion employed. A first goal of this paper is to present 
a comparison between some of these different 
approaches. The comparison considers the use of three 
different projection methods (Principal Component 
Analysis, Fisher Linear Discriminant and Evolutionary 
Pursuit) and four different similarity matching criteria 
(Euclidean-, Cosines- and Mahalanobis-distance and Self-
Organizing Map). A second goal of the paper is to outline 
an adaptive, neural-based Security Access Control 
System, whose main characteristic is the adaptive 
learning of changes in the face of the database persons. 

The article is structured as follows. Different 
eigenspace-approaches are described in section 2. In 
section 3 these different approaches are compared. 
Finally, in section 4 a neural-based Security Access 
Control System is outlined and some conclusions of this 
work are given. 

 

2. Eigenspace-based Approaches 
Eigenspace-based approaches approximate the vector 

faces (image faces) with lower dimensional feature 
vectors. The main supposition behind this procedure is 
that the face space (given by the feature vectors) has a 
lower dimension than the image space (given by the 
number of pixels in the image), and that the recognition 
of the faces can be performed in this reduced space. 

These approaches consider an off -line phase or training, 
where the face database is created and the so-called 
projection matrix, the one that achieve the dimensional 
reduction, is obtained from all the database face image. In 
the off -line phase are also obtained the reduced 
representations of each database images. These 
representations are the ones to be used in the recognition 
process. 

 

2.1. General Approach 
Figure 1 shows the block diagram of a generic 

eigenspace-based face recognition system. A 
preprocessing module performs a normalization to 
transform the face image into a unitary vector and then a 
subtraction of a so-called mean face (  x ). Normalization is 
necessary to initialize each face vector x with the same 
energy. The mean face is previously obtained in the off-
line training phase. 

After that, x is projected using the projection matrix 

  W ∈R
N × m  that depends on the eigenspace method been 

used (see section 2.2). This projection corresponds to a 
dimensional reduction of the input, starting with vectors x 

in R
N

 (with N the vector image dimension), and 

obtaining projected vectors q in Rm  with m<N (usually 
m<<N). Depending on the eigenspace approach been 
used, the topology of the original face space would be 
preserved or not, and the reconstruction of the face vector 
x will be possible. For face recognition tasks is not 
critical the reconstruction ability of the projection. 

The Similarity Matching module compares the 
similarity of the reduced representation of the query 

vector face q with the reduced vectors   p
k ∈R

m
 that 

represent the faces in the database (see figure 1 again). By 
using a given criterion of similarity (see section 2.3), this 

module determines the most similar vector   p
k
 in the 

database. The class of this vector is the result of the 
recognition process, i.e. the identity of the face. In 
addition, a Rejection System for unknown faces is used if 
the similarity matching measure is not good enough. The 
rejection parameter of this system could be determined 
using the Bayesian Optimal Criterion proposed in [3]. 

 
Figure 1. Block diagram of the recognition system based on Eigenspace projection. 



 

2.2. Projection/Decomposition Methods 
 

2.2.1. Principal Components Analysis - PCA 
PCA is a general method to identify the principal 

differences between signals and after that to make a 
dimensional reduction of them. In order to obtain the 
eigenfaces (face vectors in the reduced space), we first 
need to obtain the projection axes in which exists the 
largest variance of the projected face images. Then, we 
repeat this procedure in the orthogonal space that is stil l 
uncovered, until we realize that there is no more variance 
to take into account. The theoretical solution of this 
problem is well known and is obtained by solving the 

eigensystem of the correlation matrix   R ∈RN × N : 
 { }txxxxR )()(E −−=  (1) 

where x  represent the normalized image vectors, x  is 
the mean face image, and N is the original vector image 
dimension. The eigenvectors of this system represent the 
projection axes or eigenfaces, and the eigenvalues 
represent the projection variance of the correspondent 
eigenface. Then by sorting the eigenfaces in descendent 
order of eigenvalues we have the successive projection 
axes that solve our problem. 

The main problem is that   R ∈R
N × N

 is too big for a 
reasonable practical implementation. We have a database 
of NT face images (the training set), and then we need to 
estimate the correlation matrix just by taking the 
corresponding averages in the training set. Let 

[ ])()()( 21 xxxxxxX −−−= NT�  be the matrix of the 

normalized training vectors. Then, the R  estimator wil l 

be given by     R = XXT . We could say that the number of 
eigenfaces must be less than, or equal to, NT, because 
with NT training images all the variance must be 
projected into the hyperplane subtended by the training 
images. In other words the rank of R  is less than, or 
equal to, NT. Thereafter they could have more null or 
negligible eigenvalues depending on the linear

dependence of the vectors in the training set. In addition, 

the eigensystem of     X
TX ∈R

NT × NT  has the same non-zero 

eigenvalues of R , because     X XTX vk = λk X v k  
represent both systems at the same time. 

Now we can solve the reduced eigensystem of 

    X
T
X ∈R

NT × NT
. The correspondent eigenvalues are just 

the eigenvalues of the original system, and the eigenfaces 

are represented by   w
k = X v k , and to be normalized they 

must be divided by λk . This procedure is shown in 

figure 2. 
To improve the dimensional reduction is 

recommendable to apply a given criterion for neglect the 
components with small projection variance. If we just 
ignore a number of components, the mean square error of 
the given representation is the sum of the eigenvalues not 
used in the representation. Therefor a good criterion 
would be to choose only m components, obtained by the 
normalized Residual Mean Square Error [2]: 

 
  

RMSE(m) = λk

k = m +1

N

∑ λk

k=1

N

∑  (2) 

 

 Considering m given by RMSE(m)<5% will be good 
for standard applications. 
 

2.2.2. Fisher Linear Discriminant - FLD 
 FLD searches for the projection axes on which the 
face images of different classes are far from each other 
(similar to PCA), and at the same time where the images 
of a same class are close from each other. In order to 
define the mathematical structure under FLD, first we 
define the parameter     γ (u)  to be maximized on the 
successive projection axes as: 

)(

)(
)(

u

u
u

w

b

s

s
=γ  (3) 

with u  any projection unitary vector in the image space, 
and )(ubs  and )(uws  given by: 

 

 
 

Figure 2. PCA procedure used to obtain the projection matrix and the face projections vectors of the database. 
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where m  is the global mean vector, )(P iC  are the 

probabili ties associated to each class iC , )(im  are the 

average vectors of iC , and )(ix  are the vectors associated 

to iC . )(ubs  measures the separation between the 

individual class means respect to the global mean face, 
and )(uws  measure the separation between vectors of 

each class respect to their own class mean. Alternative we 
define the scatter matrices: 

( )( )∑
=

−−=
NC

i

ii
ib C

1

T)()()(P mmmmS  (6) 

( )( )[ ]∑
=

−−=
NC

i

iiii
iw C

1

T)()()()(E)(P mxmxS  (7) 

then: 
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 At this point is not difficult to demonstrate that the 
solution for our problem is the solution of the generalized 
eigensystem: 
 k

wk
k

b wSwS λ=  (9) 

Then kw  would be the fisherfaces and kλ  are the 

successive γ  parameters associated with each fisherface. 

Notice that the eigensystem of bw SS 1−  does not have 

orthogonal eigenvectors because this matrix is not 
symmetric in general, then the fisherfaces would not be 
an orthogonal projection set. Another implementation 
problems are: the matrices bS  and wS  are too big, and 

also wS  could be singular and then non-invertible. An 

easy way to solve these two problems at the same time is 
to use PCA previous to the FLD procedure. Then, the size 
of the scatter matrices would be large enough and

depending on the criterion for dimensional reduction wS  

will became non-singular. Figure 3 shows the FLD 
procedure. Thereafter we could adjust a criterion for the 
Fisher-space dimensional reduction. In analogy with PCA 
a good criterion would be to choose only m components 
obtained by the normalized Residual Fisher Parameter: 
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Considering m given by RFP(m) < 10-5 % wil l be good for 
standard applications. The advantage of FLD against PCA 
is that the information kept in the dimensional reduction 
is better for recognition purposes. Although there exists 
some drawbacks, because FLD use the particular class 
information and then is recommended to have a lot of 
images per class in the training, or at least a good 
characterization of each one. In other words, in PCA the 
convergence of the R estimator depends mostly on the 
total number of training images N, but in FLD the 
convergence of the scatter matrices estimators depends 
also on the numbers of images per class. Then, the main 
drawback of FLD is that could be over-adjusted on the 
training images, and then the recognition system may 
have an important lack of generalization that may be 
notice in the recognition rate. 
 

2.2.3. Evolutionary Pursuit - EP 
 The eigenspace-based adaptive approach proposed in 
[1], searches for the best set of projection axes in order to 
maximize a fitness function, measuring at the same time 
the classification accuracy and generalization abil ity of 
the system. Because the dimension of the solution-space 
of this problem is too large, it is solved using a specific 
kind of Genetic Algorithm called Evolutionary Pursuit 
(EP). In the proposed representation, we are going to call 
the projection axes (image vectors) as EP-faces. 
 In order to obtain the EP-faces first we do an initial 
dimensional reduction using PCA, and then we use the 
Whitening Transformation (equivalent to a Mahalanobis 
metric system, see 2.3). In the Whitened-PCA space we 
do several rotations between pair of axes and then we 
select a subset of the rotated Whithened-PCA axes. This

 

 
Figure 3. FLD procedure used to obtain the projection matrix and the face projections vectors of the database. 



 

transformation is coded using a chromosome 
representation, the chromosome structure use 10 bit for 

each angle kα  (between 0 and 2/π ), and a number of 

bits ia  equal to the number of Whithened-PCA 

components (m), in order to select a subset of axes. 
Notice that the number of possible rotations between axes 
would be 2/)1( −mm , so the number of bits for each 

chromosome is mmm +− )1(5 , and the size of the 

genome-space (too large to search it exhaustively) is 
mmm +− )1(52 . 

Each chromosome represents a certain projection 
system. Then in order to evaluate this system the 
following fitness function is used: 

  ζ (αk ,ai )   = ζ a(α k,ai ) + λ ζ s (αk ,ai )  (11) 

  ζa (αk ,ai )
 

measures the accuracy,   ζs (α k,ai )
 

measures the generalization ability, and λ
 
is a positive 

constant that determines the importance of the second 
term against the first one. The generalization abili ty is 
computed as: 

    

ζs (α k , ai ) = m( i) − m( )T m (i ) − m( )
i =1

NC

∑  . (12) 

where   m is the global mean and     m( i)  is the mean of the 
corresponding classCi . The accuracy measure   ζa (αk ,ai )  
proposed in [1] is just the recognition rate of training face 
images as the top choice. But in our implementation we 
realize that this measure became always 100% when the 
number of classes is small respect to the dimension of the 
reduced space (we use only 15 classes against the 369 
used in [1]). Then we use the top 2 identity for that. 

As usual, in order to find the maximal value of the 
fitness function, we start with a random set of 
chromosomes and we search for the best using the GA 
iteration procedure. The operators used to create a new 
set of chromosomes per iteration are: proportionate

selection, pre-selection of parents in proportion to their 
relative fitness; two-point crossover, exchange the 
selection between the crossover points; and fixed 
probabili ty mutation, each bit of the chromosome is given 
a fixed probabili ty of flipping. The whole training process 
is represented in figure 4. 
 

2.3. Similarity Matching Methods 
 

2.3.1. Euclidean Distance 

    

d (x,y) = xi − yi( )2
i=1

p

∑  .  (13) 

From a geometrical point of view this distance 
measures: the difference between the reduced face vectors 
and the difference between the reconstruction error of 
each vector, given by the difference of norm of each one. 

 

2.3.2. Cosine Distance 

    

cos(x,y) =
xTy

x y
 . (14) 

Given that the image vectors are normalized and 
located over an hyper-sphere surface, the angle between 
them represents the distance above this surface. Although 
in the reduced space the norm of the vectors decrease 
depending on the reconstruction error. This distance does 
not take into account the reconstruction error of each 
vector. 
 

2.3.3. Mahalanobis Distance  

( ) ( )yxRyxyx −−= −1T),(d , (15) 
 

where R  is de correlation matrix of face images. 
From a geometrical point of view this distance, as a 
different metric system, has a scaling effect in the image 
space. Taking into consideration the face image subset, 
directions in which a greater variance exist are 
compressed and directions in which a smaller variance 
exist are expanded. 

 

 
 

Figure 4. EP procedure used to obtain the projection matrix and the face projections vectors of the database. 



 

In (15) we suppose x  and y  are vectors in the 

image space. Notice that EF
1T

EF
1 WWR −− Γ= , then: 

( ){ } ( ){ }yxWyxWyx −Γ−= −
EF

1T
EF),(d .   (16) 

So, in the PCA space the Mahalanobis distance is 
equivalent to the Euclidean distance, weighting each 
component by the inverse correspondent eigenvalues (or 
projection variance). In general this happened when the 
different components are uncorrelated between them. 
Another way to do this normalization is using the 
standard PCA and after that changing the eigenface 

matrix by     WEFΓ
−1 . This is called Whitening 

Transformation of PCA [1]. Then using the Euclidean 
distance over the whitened PCA vectors, we have the 
same effect as using the Mahalanobis distance. 
 

2.3.4. SOM Clustering 
In Self-Organizing Maps (SOM) are used as 

associative networks to match the projected query face 
with the corresponding projected database face. The use 
of a SOM to implement this module improves the 
generalization abili ty of the system. The SOM approach 

uses reference vectors im , the so-called SOM 

codewords, to approximate the probabili ty distribution of 
the faces in a 2D map. In the training phase of the SOM a 
clustering of the reduced vector faces is carried out. 
Thereafter the SOM is transformed in an associative 
network by a labeling of all his nodes. 

There are two alternatives to implement this module: 
the standard SOM algorithm and the Dot-Product SOM 
(DP-SOM) [4]. Using either of these two approaches to 
find the reference vectors, the following step is to find the 
best matching of each training image and to see in which 
place of the map they are going to be located. After that a 
so-called labeling algorithm allows to associate a fixed 
face identity for each node in the map. 
 

3. Comparison among the approaches 
In order to test the described methods we made 

several simulations based in the Yale University - Face 
Image Database, which corresponds to a database with a 
low number of classes (15). We use 150 images of 15 
different classes (only 10 of the 11 images per class 
where considered). First we preprocessed the images by 
masking them in windows of 100 x 200 pixels placing the 
several face features in the same relative places. 

In figure 5 we show the results of several simulations 
using different kind of representations and similarity 
matching methods. The criterion used for the PCA 
representation is RMSE<1.5%. In the Fisher 
representation we always use RFP<10-5% but in the PCA 
starting space we change the RMSE criterion depending 
on the numbers of training images used until the   Sw  
matrix became non-singular. In the EP representation we 
always started with RMSE<7% to improve the initial 
dimensional reduction. Notice that we never fix the 

number of axes used in each representation, and thereafter 
this is always a result of the training process.  

For each simulation we used a fixed number of 
training images, using the same types of images per class 
(the 10 images per class are: center-light, w/glasses, 
happy, left-light, w/no glasses, right-light, sad, sleepy, 
surprised, and wink). We take the average of 20 different 
set of images for each fixed number of training images. 
All the images not used for training are used for testing. 
Also because the number of axes are always a result of 
training, the number of axes shown in figure 5 are the 
round average of several simulations. 

In our results we can notice that the number of axes 
selected are almost ever equal or more than the number of 
classes (15). We can also see that the best models always 
are obtained with the Fisher representation, and the 
difference against the other representations decreases 
when the number of training images per class decreases, 
showing that the FLD discrimination ability strongly 
depends on the number of training images per class. The 
best results are almost always obtained with FLD- cosine, 
and the only exception was using 2 training images per 
class when the Withening-FLD-cosine wins. The systems 
that seem to be as efficient as FLD-cosine are SOM, 
Withening-DP-SOM, and Withening-cosine. 

The SOM and DP-SOM systems considerably 
decrease their recognition rate as the number of training 
images decrease. This probably happened because we 
always use a map of 20x20 nodes, and when the training 
images are few, the recognition ability depends mostly on 
the labeling procedure, which became very unpredictable. 
The Withening-FLD-cosine system has maintained its 
recognition ability more than the other systems when the 
number of training images per class decreases. 

We can also see that the EP-systems always 
performed worse than the FLD systems. At the same 
time, we realized that the number of axes selected are 
always of the same order of the number of classes, then 
the accuracy pursuit (mostly dependent on the top 2) 
seems to fail for this reason, and then FLD kept the 
advantage. The worst results seems to be the obtained 
with Whithening-PCA-Euclidean and Whithening-PCA-
SOM, and against the result of the cosine-based systems 
we can see that the changes in the norms of the vectors 
seems to confuse the recognition abili ty. 

 

4. Conclusions and System Outline 
We made an extensive analysis of the recognition 

capabili ties of different Eigenspace-based approaches, 
separating the representation problem from the similarity 
matching method employed and using a database with a 
low number of classes! We also use the Whitening 
Transformation as a Mahalanobis metric system before 
the initial PCA processing, in order to match PCA and 
FLD against EP. We saw important differences between 
the recognition rated reached using Euclidean and cosine 
similarity matching methods. Without the whitening 



 

processing we confirm that this is due the consideration 
of reconstruction error on the similarity measure, because 
the difference between them became appreciable when 
the number of projection axes decrease. Using whitening 
processing the difference considerably increase because 
the vectors’ norm changes due the scaling effect of this 
procedure. In order to obtain the best recognition rates we 
saw that the cosine similarity matching works better, and 
that the whitening-cosine based methods seems to keep 
their recognition abil ity with fewer training images. 
Concerning the lower recognition abili ty of our EP 
implementation, we conclude that this is not the best 
representation method for a small number of classes, or at 
least the accuracy measure is not appropriate. 

An important goal of this paper was to change the 
standard block of similarity matching for a SOM. Notice 
that in this way the structure of the identification system 
(see figure 1) changes because we do not need the 
database reduced representation anymore, because now 
this information would be appropriately included in the 
SOM reference vectors (codewords). In our simulations 
we realize that this kind of identification system works as 
good as the standard ones, concerning the recognition 
rates. But an interesting feature of this approach is the 
possibility to adapt itself to the changes of faces. This has 
a direct application in adaptive security access systems 
where the persons to be recognized would be constantly 
viewed by the system. Specifically when a new person 
arrive, the neural system wil l carried out the recognition, 
and after that the SOM will perform one training 
iteration. This iteration might be done with a small value 

of α  and modifying only the nearest neighbors. The 
labeling procedure wil l be re-applied. In this way the 
SOM map will adapt itself to the changes of faces like the 
change due the bear, hair, or even age evolution. In this 
sense this system represent a robust control access 
identification system. 

As future work we want to perform our comparative 
study on a larger training database, like FERET. We want 
also to implement the here-outlined adaptive security-
access control system. 
 

Acknowledgements 
  This research was supported by the DID (U. de 
Chile) under Project ENL-2001/11 and by the join 
"Program of Scientific Cooperation" of CONICYT 
(Chile) and BMBF (Germany). 
 

References 
[1] C. Liu and H. Wechsler, “Evolutionary Pursuit and 

Its Application to Face Recognition”, IEEE Trans. 
Patt. Analysis and Machine Intell., vol. 22, no. 6, 
570-582, 2000. 

[2] D.L. Swets and J.J. Weng, “Using Discriminant 
Eigenfeatures for Image Retrieval” , IEEE Trans. 
Patt. Analysis and Machine Intell., vol. 18, no. 8, 
831-836, 1996. 

[3] M. Golfarelli, D. Maio and D. Maltoni, “On the 
Error-Reject Trade-Off in Biometric Verification 
Systems” , IEEE Trans. Patt. Analysis and Machine 
Intell., vol. 19, no. 7, 786-796, 1997. 

[4] T. Kohonen, “Self-Organized Maps” , Springer, 
1997. 

 

Whitening Whitening Whitening Whitening

im./class axes Euclidean cos( � �
DP-SOM SOM Euclidean cos( � �

DP-SOM SOM
PCA 87.9 86.0 84.2 84.6 64.7 79.3 73.4 64.7

RMSE < 1.5% 6.2 6.8 6.3 7.0 9.4 11.6 10.5 10.5

FISHER 91.5 91.6 89.3 90.3 91.9 92.6 88.9 92.1
RMSE < 1.5% 6.6 6.5 7.4 6.7 5.8 5.6 6.2 6.2

E.P. 81.2 85.3 82.6 83.7 - - - -
RMSE < 7% 9.0 8.7 9.4 9.8

PCA 88.7 87.1 83.7 86.0 69.5 83.2 76.5 66.1
RMSE < 1.5% 3.8 4.1 4.8 5.1 8.9 9.0 8.8 10.5

FISHER 92.2 91.7 86.7 90.3 92.3 92.4 89.3 92.1
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RMSE < 7% 5.7 6.6 6.8 7.6

PCA 87.3 86.7 81.2 84.8 72.9 84.4 77.1 66.7
RMSE < 1.5% 3.9 3.9 4.9 3.6 5.5 5.6 5.1 6.5

FISHER 90.3 91.1 85.1 90.3 90.4 91.0 86.6 90.1
RMSE < 3.0% 4.5 5.0 5.5 4.4 4.2 4.4 5.7 4.7

E.P. 83.6 86.9 81.8 85.0 - - - -
RMSE < 7% 4.6 4.7 4.4 5.0

PCA 86.6 85.4 77.7 82.0 75.0 84.8 72.7 67.4
RMSE < 1.5% 4.0 3.9 4.6 5.6 5.6 5.4 5.2 6.9

FISHER 89.0 90.4 81.7 87.4 88.9 89.9 83.0 88.7
RMSE < 4.5% 3.6 4.0 5.6 4.0 3.1 3.9 4.1 3.9

E.P. 81.1 86.9 76.6 82.5 - - - -
RMSE < 7% 4.3 3.7 3.0 3.7

PCA 82.7 80.8 64.9 76.2 75.6 82.1 62.4 60.8
RMSE < 1.5% 5.9 5.9 7.6 7.9 4.9 4.6 6.7 7.3

FISHER 81.5 82.2 66.8 79.4 80.7 82.8 69.0 78.8
RMSE < 12.0% 5.6 5.8 9.2 5.8 4.7 4.9 9.1 5.8

E.P. 77.8 81.2 69.9 76.0 - - - -
RMSE < 7% 5.6 5.3 5.6 7.3

14

35

15

14

26

3

2

56

17

16

34

15

13

46

15

6

5

18

18

4

 

Figure 5. Mean recognition rates using different numbers of training images per class, and taking the average of 20 
different training sets. The small numbers are the standard deviation of each recognition rate.  


