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Abstract. Different eigenspacebased approaches have
been proposed for the recgnition of faages. They differ
mostly in the kind o projedion method keen used and in
the similarity matching criterion employed. A first goal of
this paper is to present a comparison ketween some of
these different approaches. A secondgoal isto ouline an
adaptive, neura -based Seaurity AccessControl System.

1. Introduction

Among the most succesdul approaches used in face
recognition we car mention eigenspace-based methods,
which are mostly derived from the Eigenface-algorithm.
These methods projed the input faces onto a dimensional
reduced space where the recognition is caried out,
performing a holistic analysis of the faces. Different
eigenspacebased approaches have been proposed. They
differ mostly in the kind of projedion/decompasition
method keen used, and in the similarity matching
criterion employed. A first goal of this paper is to present
a omparison between some of these different
approaches. The @mparison considers the use of three
different projedion methods (Principal Comporent
Analysis, Fisher Linear Discriminant and Evolutionary
Pursuit) and four different similarity matching criteria
(Euclidean-, Cosines- and Maha anohis-distance and Self-
Organizing Map). A second goal of the paper isto outline
an adaptive, neural-based Seaurity Access Control
System, whose main charaderistic is the aaptive
leaning d changesin the faceof the database persons.

The aticle is gructured as follows. Different
eigenspaceapproaches are described in sedion 2 In
sedion 3 these different approaches are mpared.
Finally, in sedion 4 a neural-based Seaurity Access
Control System is outlined and some cnclusions of this
work are given.

2. Eigenspace-based Approaches

Eigenspacebased approaches approximate the vedor
faces (image faces) with lower dimensional feaure
vedors. The main supposition behind this procedure is
that the face space (given by the fedure vectors) has a
lower dimension than the image space (given by the
number of pixels in the image), and that the reagnition

These gproades consider an dff-line phase or training,
where the face database is creaed and the so-cdled
projection matrix, the one that achieve the dimensiona
reduction, is obtained from all the database face image. In
the off-line phase ae dso oltained the reduced
representations of ead database images. These
representations are the ones to be used in the recognition
process

2.1. General Approach

Figure 1 shows the block diagram of a generic
eigenspacebased face remgnition system. A
preprocessing module performs a normalizaion to
transform the face image into a unitary vedor and then a
subtradion of a so-cdled mean face (X). Normalizaionis
necessary to initialize eab facevector x with the same
energy. The mean faceis previously obtained in the off-
line training phase.

After that, x is projeded using the projedion matrix
w ORN*™ that depends on the e@genspacemethod been
used (seesedion 22). This projedion corresponds to a
dimensional reduction d theinpu, starting with veaors x

in R (with N the vector image dimension), and

obtaining projected vedors q in R™ with m<N (usually
m<<N). Depending on the égenspace @proach been
used, the topdogy of the original face spacewould be
preserved or not, and the reconstruction o the face vecor
x will be possble. For face recognition tasks is not
criticd the reconstruction ability of the projection.

The Smilarity Matching modue mpares the
similarity of the reduced representation of the query

vedor face q with the reduced vedors pk OR™ that
represent the facesin the database (seefigure 1 again). By
using a given criterion of similarity (see sedion 23), this
modue determines the most similar vedor pk in the
database. The dass of this vedor is the result of the
recognition process, i.e. the identity of the face In
addition, a Rejection System for unknown faces is used if
the similarity matching measure is nat good enough. The
rejedion parameter of this s/stem could be determined
using the Bayesian Optimal Criterion proposed in [3].

of the faces can be performed in this reduced space
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Figure 1. Block diagram of the recognition system based on Eigenspaceprojedion.
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2.2. Projection/Decomposition M ethods

2.2.1. Principal Components Analysis - PCA

PCA is a general method to identify the principal
differences between signals and after that to make a
dimensional reduction of them. In order to oltain the
eigenfaces (face vedors in the reduced space, we first
neal to oltain the projedion axes in which exists the
largest variance of the projeded faceimages. Then, we
repea this procedure in the orthogonal spacethat is gill
uncovered, until we redizethat there is no more variance
to take into acmurt. The theoreticd solution d this
problem is well known and is obtained by solving the

eigensystem of the arrelation matrix R O RN*N -
R =E{(x-%)(x-%)'} )

where X represent the normalized image vedors, X is
the mean face image, and N is the original vedor image
dimension. The @genvedors of this g/stem represent the
projedion axes or eigenfaces, and the dgenvalues
represent the projedion variance of the wrrespondent
eigenface Then by sorting the @genfaces in descendent
order of eigenvalues we have the successive projedion
axes that solve our problem.

The main problem is that ROR™M istoo kg fora
ressonable pradicd implementation. We have adatabase
of NT faceimages (the training set), and then we need to
estimate the rrelation matrix just by taking the
correspording averages in the training set. Let

X = l(x1 =X)(x? =X)--(x"" —i)] be the matrix of the
normalized training vedors. Then, the R estimator will

be given by R= XX". We auld say that the number of
eigenfaces must be less than, or equal to, NT, because
with NT training images al the variance must be
projeded into the hyperplane subtended by the training
images. In other words the rank of R is lessthan, or
equal to, NT. Theredter they could have more null or

dependence of the vedorsin the training set. In addition,
the égensystem of X' X OR""*NT has the same non-zero
eigenvalues of R, because X XTX vk = X vk

represent both systems at the same time.
Now we can solve the reduced eigensystem of

X"x ORNNT The rrespondent eigenvalues are just
the e@genvalues of the original system, and the égenfaces

are represented by wX =X v¥, and to be normalized they

must be divided by J Ay . This procedure is shown in

figure 2.

To improve the dimensiond reduction is
recommendable to apply a given criterion for negled the
components with small projedion variance If we just
ignore anumber of components, the mean square eror of
the given representation is the sum of the égenvalues not
used in the representation. Therefor a good criterion
would be to choase only m comporents, obtained by the
normalized Residual Mean Square Error [2]:

RMSE(m) = i/\k/ZN A
k

k=m+1 =1

)

Considering m given by RMSE(m)<5% will be good
for standard applications.

2.2.2. Fisher Linear Discriminant - FLD

FLD seaches for the projection axes on which the
faceimages of different classes are far from ead ather
(similar to PCA), and at the same time where the images
of a same dass are dose from ead other. In order to
define the mathematica structure under FLD, first we
define the parameter y(u) to be maximized on the
successve projection axes as.

S, (U)
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Figure 2. PCA procedure used to oltain the projedion matrix and the faceprojedions vedors of the database.



s, (u) = < P(C, ){(m(” —m)],l}2 ) 4

s,(U) = iP(CJE[{(x“) -mo)uf] )
where ml_is the global mean vector, P(C,) are the

probabilities aswciated to eath class C,, m® are the

averagevedorsof C,, and X are the vedors associated
to C. s, (u) measures the separation between the

individual class means resped to the global mean face
and s, (u) measure the separation ketween vedors of

ead classresped to their own classmean. Alternative we
define the scater matrices:

S, = N P(Ci)(m(” —me‘” —m)T (6)

S, :i P(Ci)E[(x‘” —m“)Xx(” - m‘”)T] (7)
then: :

u'S.u
= b= . (8)
usS,u

At this point is nat difficult to demonstrate that the
solution for our problem is the solution o the generali zed
eigensystem:

s,w¥=2,S,w" ©)

Then w* would be the fisherfaces and A, are the
successve Y parameters asciated with each fisherface

y(u) =

Notice that the dégensystem of S’ S, does not have

orthogonal eigenvectors because this matrix is not
symmetric in general, then the fisherfaces would na be
an othogonal projedion set. Ancther implementation

problems are: the matrices S and S, are too hig, and

aso S, could be singular and then noninvertible. An
easy way to solve these two problems at the sametimeis
to use PCA previous to the FLD procedure. Then, the size
of the scater matrices would be large enough and

depending on the aiterion for dimensional reduction S,

will became non-singular. Figure 3 shows the FLD
procedure. Theredter we could adjust a aiterion for the
Fisher-spacedimensional reduction. In analogy with PCA
a good criterion would be to choase only m comporents
obtained by the normalized Residual Fisher Parameter:

RFR(M) = %/\k/i/\k (10

k=m+1

Considering m given by RFP(m) < 10° % wil | be goodfor
standard applications. The alvantage of FLD against PCA
is that the information kept in the dimensional reduction
is better for recgnition purposes. Although there exists
some drawbadks, becaise FLD use the particular class
information and then is recmmended to have alot of
images per class in the training, or at least a good
charaderization d ead ore. In aher words, in PCA the
convergence of the R estimator depends mostly on the
total number of training images N, but in FLD the
convergence of the scatter matrices estimators depends
also onthe numbers of images per class Then, the main
drawbadk of FLD is that could be over-adjusted onthe
training images, and then the recognition system may
have an important ladk of generalizaion that may be
naticein the recognition rate.

2.2.3. Evolutionary Pursuit - EP

The @genspacebased adaptive gproach proposed in
[1], seaches for the best set of projedion axesin order to
maximize afitnessfunction, measuring at the same time
the dasdficaion acaracy and generalization ability of
the system. Because the dimension o the solution-space
of this problem is too large, it is ©lved using a spedfic
kind d Genetic Algorithm cdled Evolutionary Pursuit
(EP). In the proposed representation, we are going to cdl
the projedion axes (image vedors) as EP-faces.

In order to dbtain the EP-faces first we do an initial
dimensional reduction using PCA, and then we use the
Whitening Transformation (equivalent to a Mahalanobis
metric system, see 2.3). In the Whitened-PCA spacewe
do severa rotations between pair of axes and then we
seled a subset of the rotated Whithened-PCA axes. This
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Figure 3. FLD procedure used to oltain the projedion matrix and the faceprojedions vedors of the database.



transformation is coded uwsing a diromosome
representation, the chromosome structure use 10 bt for

eah angle 0, (between Oand 77/ 2), and a number of

bits &, egual to the number of Whithened-PCA

components (m), in order to seled a subset of axes.
Noticethat the number of possble rotations between axes
would be m(m-1)/2, so the number of bits for ead

chromosome is 5m(m-1)+m, and the size of the

genome-space (too large to seach it exhaustively) is
25m(m—1)+m

Each chromosome represents a cetain projedion
system. Then in oder to evauate this g/stem the
following fitnessfunctionis used:

{(ak.a ) =dalak,a) +A {s(ak,a) (11)

Ca(ay,a) measures the acoracy, {s(ay.&)
measures the generalization ability, and A is a positive
constant that determines the importance of the second

term against the first one. The generalization ability is
computed as:

Zs(ak:ai):JNzC (m(i) —m)T(m(i)—m)-
Ei

where m is the global mean and m(” is the mean of the
corresponding classC;. The accuracy measure (a(Qk, ;)

proposed in [1] isjust the recognition rate of training face
images as the top choice But in ou implementation we
redize that this measure becane dways 100% when the
number of clasesis gnal resped to the dimension o the
reduced space (we use only 15 classes against the 369
used in [1]). Then we use the top 2identity for that.

As usual, in order to find the maximal value of the
fitness function, we start with a random set of
chromosomes and we seach for the best using the GA
iteration procedure. The operators used to crede anew
set of chromosomes per iteration are: proportionate

(12

seledion, pre-seledion of parents in proportion to their
relative fitness;, two-point crossover, exchange the
seledion between the aossover points; and fixed
probability mutation, ead hit of the chromosomeisgiven
afixed probability of flipping. The wholetraining process
is represented in figure 4.

2.3. Similarity M atching M ethods
2.3.1. Euclidean Distance

13

From a geometricd point of view this distance
measures: the difference between the reduced facevedors
and the difference between the remnstruction error of
ead vedor, given by the diff erence of norm of ead one.

2.3.2. Cosine Distance

T
cosf,y) . . (19
RV

Given that the image vedors are normaized and
locaed over an hyper-sphere surface the angle between
them represents the distance @ove this surface Although
in the reduced space the norm of the vedors deaease
depending on the reconstruction error. This distance does
not take into acount the recnstruction error of ead
vedor.

2.3.3. Mahalanobis Distance

d(x,y)=(x=y)" R™ (x-y),
where R isde oorrelation matrix of faceimages.
From a geometricd point of view this distance as a
different metric system, has a scding effed in the image
space Taking into consideration the faceimage subset,
diredions in which a greder variance «ist are

compressd and drections in which a smaller variance
exist are expanded.

(19
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Figure 4. EP procedure used to ohtain the projedion matrix and the faceprojedions veaors of the database.



In (15) we suppose X and Yy are vedors in the
image space Noticethat R™ =W/ "W, , then:

d(x,y) :{WEF (X - Y)}T r _l{WEF (X - Y)} (16)

So, in the PCA space the Mahaanobis distance is
equivaent to the Euclidean distance weighting ead
component by the inverse mrrespordent eigenvalues (or
projedion variance). In general this happened when the
different comporents are uncorrelated between them.
Ancther way to do this normalizaion is using the
standard PCA and after that changing the egenface

matrix by Wg . This is cdled Whitening
Transformation of PCA [1]. Then using the Euclidean

distance over the whitened PCA vedors, we have the
same dfed as using the Mahalanolis distance.

2.3.4. SOM Clustering

In Self-Organizing Maps (SOM) are used as
asciative networks to match the projeded query face
with the @rrespondng projected database face The use
of a SOM to implement this modue improves the
generalizaion ability of the system. The SOM approach

uses reference vedors M,, the so-cdled SOM

codewords, to approximate the probability distribution d
the facesin a 2D map. In the training phase of the SOM a
clustering of the reduced vedor faces is carried out.
Thereafter the SOM is transformed in an asciative
network by alabeling of all his nodes.

There are two aternatives to implement this module;
the standard SOM agorithm and the Dot-Product SOM
(DP-SOM) [4]. Using either of these two approaches to
find the reference vedors, the following step isto find the
best matching of ead training image and to seein which
placeof the map they are going to be located. After that a
so-cdled labeling algorithm allows to associate afixed
faceidentity for ead nock in the map.

3. Comparison among the approaches

In order to test the described methods we made
several simulations based in the Yae University - Face
Image Database, which corresponds to a database with a
low number of classes (15). We use 150 images of 15
different classes (only 10 d the 11 images per class
where mnsidered). First we preprocessed the images by
masking them in windows of 100 x 200 pixels placing the
several facefeduresin the same relative places.

Infigure 5 we show the results of several simulations
using different kind d representations and similarity
matching methods. The aiterion wed for the PCA
representation is RMSE<1.5%. In the Fisher
representation we dways use RFP<10°% but in the PCA
starting spacewe change the RMSE criterion depending
on the numbers of training images used until the S,
matrix becane nonsingular. In the EP representation we
always garted with RMSE<7% to improve the initial
dimensional reduction. Notice that we never fix the

number of axes used in eacdh representation, and theredter
thisis always aresult of the training process

For eath simulation we used a fixed number of
training images, using the same types of images per class
(the 10 images per class are: center-light, w/glasses,
happy, left-light, w/no glasses, right-light, sad, sleepy,
surprised, and wink). We take the average of 20 dfferent
set of images for ead fixed number of training images.
All the images not used for training are used for testing.
Also becaise the number of axes are dways a result of
training, the number of axes hown in figure 5 are the
round average of several simulations.

In ou results we can notice that the number of axes
seleded are dmost ever equal or more than the number of
classs (15). We can dso seethat the best models always
are obtained with the Fisher representation, and the
difference ajainst the other representations deaeases
when the number of training images per class deaeases,
showing that the FLD discrimination ability strongly
depends on the number of training images per class The
best results are dmost always obtained with FLD- cosine,
and the only exception was using 2 training images per
classwhen the Withening-FLD-cosine wins. The systems
that seam to be & efficient as FLD-cosine ae SOM,
Withening-DP-SOM, and Withening-cosine.

The SOM and DP-SOM systems considerably
deaease their recognition rate a the number of training
images deaease. This probably happened because we
aways use amap of 20x20 rodes, and when the training
images are few, the recognition ability depends mostly on
the labeling procedure, which became very unpredictable.
The Withening-FLD-cosine system has maintained its
recognition ability more than the other systems when the
number of trainingimages per classdeaeases.

We can aso see that the EP-systems aways
performed worse than the FLD systems. At the same
time, we redized that the number of axes sleded are
always of the same order of the number of classs, then
the acaracy pursuit (mostly dependent on the top 2)
seams to fail for this reason, and then FLD kept the
advantage. The worst results sems to be the obtained
with Whithening-PCA-Euclidean and Whithening-PCA-
SOM, and against the result of the msine-based systems
we can seethat the changes in the norms of the vedors
seems to confuse the recognition ability.

4. Conclusions and System Outline

We made an extensive analysis of the recognition
cgpabilities of different Eigenspacebased approaches,
separating the representation problem from the similarity
matching method employed and using a database with a
low number of classes! We dso use the Whitening
Transformation as a Mahaanobis metric system before
the initial PCA processng, in order to match PCA and
FLD against EP. We saw important differences between
the recognition rated readed using Euclidean and cosine
similarity matching methods. Without the whitening



processng we cnfirm that this is due the mnsideration
of reconstruction error on the similarity measure, becaise
the difference between them becane gpredable when
the number of projedion axes deaease. Using whitening
processng the difference mnsiderably increase becaise
the vedors norm changes due the scding effed of this
procedure. In order to obtain the best recognition rates we
saw that the cosine similarity matching works better, and
that the whitening-cosine based methods seems to keep
their recognition ability with fewer training images.
Concerning the lower recognition ability of our EP
implementation, we nclude that this is nat the best
representation methodfor a small number of classs, or at
least the accuracy measure is not appropriate.

An important goal of this paper was to change the
standard block of similarity matching for a SOM. Notice
that in this way the structure of the identificaion system
(see figure 1) changes because we do not need the
database reduced representation anymore, becaise now
this information would be gpropriately included in the
SOM reference vedors (codewords). In ou simulations
we redizethat this kind d identification system works as
good as the standard ones, concerning the recognition
rates. But an interesting feaure of this approach is the
possbility to adapt itself to the changes of faces. This has
a dired applicaion in adaptive seaurity access ystems
where the persons to be recgnized would be @nstantly
viewed by the system. Spedficdly when a new person
arrive, the neural system will carried out the recognition,
and after that the SOM will perform one training

of @ and modifying only the nearest neighbors. The
labeling procedure will be re-applied. In this way the
SOM map will adapt itself to the changes of faceslikethe
change due the bea, hair, or even age evolution. In this
sense this gstem represent a robust control access
identification system.

As future work we want to perform our comparative
study on a larger training database, like FERET. We want
also to implement the here-outlined adaptive seaurity-
accesscontrol system.
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Figure 5. Mean recognition rates using different numbers of training images per class and taking the average of 20
different training sets. The small numbers are the standard deviation d eat recognition rate.



