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Abstract

Computer systems hosting critical e-commerce
applications must typically satisfy stringent quality-of-
service (QoS) requirements under dynamic operating
conditions and workloads. Also, as such systems increase
in size and complexity, maintaining the desired QoS by
manually tuning the numerous performance-related
parameters will become very difficult. This paper
addresses the design of self-optimizing computer systems
using a generic online control framework in which the
control actions governing the operation of the system are
obtained by optimizing its behavior, as forecast by a
mathematical model, over a limited time horizon. As a
specific application of this control technique, we show
how to minimize the power consumed by a single
computer processing a time-varying workload. Assuming
a processor capable of operating at multiple frequencies,
we design an online controller to satisfy the QoS
requirements of the workload while operating the
processor at the lowest possible frequency. We describe
the processor model, formulate the power management
problem, and derive the online control algorithm. The
performance of the controller is evaluated using
representative e-commerce workloads. Finally, we discuss
how the proposed technique can be applied to other
resource management problems in computer systems.

1 Introduction

Computer systems hosting applications crucial to com-
merce and banking, transportation, military command and
control, among others, have several distinguishing char-
acteristics, which collectively pose some new and impor-
tant research challenges: (1) Networks comprising
hundreds of computers are now commonplace due to
cheaper (and faster) processors and similar advances in
data storage and communication bandwidth. However,
increasing numbers of skilled personnel are required to
design, operate, and maintain such complex systems; (2)

since these systems can consume up to several megawatts
of electricity, power management is a major design issue
[20]; and (3) the computers must respond continuously to
external events in real time and satisfy stringent QoS
requirements; they must accommodate a dynamic work-
load while ensuring predictable response times to users.

In the forementioned computer systems, multiple per-
formance-related parameters must be continuously tuned
to achieve the desired QoS under dynamic operating con-
ditions and workloads. The current state-of-the-art
involves substantial human effort, and as the system com-
plexity increases, achieving good performance via manual
tuning will become very difficult [13]. Therefore, this
paper develops an approach to designing self-optimizing
computer systems using online control. The proposed
method provides a systematic way to manage resources in
a general setting; if the computer system is correctly mod-
eled and its operating environment accurately estimated,
the control actions required to maintain a certain QoS by
optimizing a given cost function can be derived [3].

The problem of interest is to efficiently manage com-
puter resources to meet specified performance objectives
under dynamic operating conditions. Control theory has
been successfully applied to such problems as task sched-
uling [15] [10], QoS adaptation in web servers [2], load
management in e-mail and file servers [21] [16], network
flow control [18], and power management [17]. The
above methods all use classical feedback control to first
observe the current system state and then take corrective
action, if any, to achieve the specified QoS.

We propose an online control technique where the
actions governing system operation are obtained by opti-
mizing its forecast behavior, described by a mathematical
model, for the specified QoS criteria over a limited look-
ahead prediction horizon. The sequence of control actions
resulting in the best system behavior over this horizon is
obtained, and the first action within this sequence is
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applied as input during the current time instant while the
rest are discarded. This process is repeated each time step.

Our method is conceptually similar to both model pre-
dictive control (MPC) which is widely used in the process
control industry [9], and the limited look-ahead supervi-
sion of discrete-event systems [11]. The MPC approach
allows the control objectives and operating constraints to
be represented explicitly in the (multi-variable) optimiza-
tion problem and solved at each control instant. It is used
to control a variety of processes, from those with rela-
tively simple dynamics to more complex ones, including
systems with long delay or dead times, and those exhibit-
ing non-linear behavior. Limited look-ahead supervision
[11] considers the online control of a system with discrete
events (inputs and outputs), where after each event occur-
rence, the next control action is determined using the pro-
jected behavior of the process over a limited look-ahead
horizon represented as a search tree.

As a specific case study, we apply our control method
to manage the power consumed by a computer processing
a time-varying workload comprising HTTP and e-com-
merce related requests. Assuming a processor with multi-
ple operating frequencies , an online controller is
developed to achieve a specified response time for these
requests while minimizing the operating frequency.
Power consumption relates quadratically to the supply
voltage which can be reduced at lower frequencies [20].
Therefore, energy savings can be quite significant. Fur-
thermore, many processors such as the AMD-K-2 [1] and
StrongARM [23] support multiple operating frequencies.

A control-theoretic approach to managing the power
consumed by processors executing multimedia applica-
tions has been proposed in [17]. The authors assume a
continuous frequency domain and use a feedback control-
ler to scale the processor operating frequency appropri-
ately to maintain the desired application QoS. This
assumption, however, may not always hold in practice;
for example, both the AMD-K-2 and StrongARM proces-
sors offer only a limited number of discrete frequency set-
tings, eight and ten, respectively.

Unlike classical feedback control where a continuous
input (output) domain is assumed, the controller proposed
in this paper optimizes processor operation over a discrete
state space comprising a small number of control inputs.
We describe the processor model, formulate the power
management problem, and develop the online controller
to operate the processor within a limited and discrete fre-
quency domain. Controller performance is evaluated
using representative e-commerce workloads. We also dis-
cuss how online control can be applied to other resource
management problems in computer systems [14].

The rest of this paper is organized as follows. Section 2
discusses system modelling assumptions and online con-
trol concepts while Section 3 develops the control algo-
rithm. Section 4 evaluates controller performance and we
conclude the paper with a discussion on future work as
well as other applications of online control in Section 5.

2 Preliminaries

This section describes the assumed processor model
and introduces key online control concepts.

Processor Model. Figure 1(a) shows the queuing model
corresponding to processor P’s operation where λ(t) and
µ(t) denote the arrival and processing rates, respectively,
of requests {dj}, and q(t) denotes the queue size at time
instant t. We do not assume an a priori arrival-rate distri-
bution for {dj}, and requests are processed by P in a first-
come first-serve fashion.

We assume a processor capable of operating within a
limited number of frequency settings {fi}. The time
required to process dj while operating at the maximum
operating frequency fmax is given by cj. Then, the corre-
sponding processing time while operating at some instan-
t an e o u s  f r e q u e n cy   i s   w h e r e

 i s the  scaling factor.  The average
response time of requests arriving at P during a time t is
denoted by ω(t) and includes both the waiting time in the
queue and the processing overhead on P. We use the
model proposed in [26] to estimate the average energy
consumed by processor P while operating at f(t) as

Figure 1. (a) A queuing model of the processor and
(b) the overall structure of the online controller
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. This simple model provides reasonably accu-
rate estimates of energy consumption.

Online Control Concepts. Du ri ng  any  g iv en  t ime
period, the controller aims to satisfy a designer-specified
response time ωref for request arrivals while minimizing
P’s operating frequency f(t). Figure 1(b) shows its overall
structure where a mathematical model describes proces-
sor behavior in terms of the average response time ω(t)
and energy consumption E(t), and an optimizer minimizes
the given cost function. The basic ideas behind the con-
troller are as follows:
• Future processor outputs, in terms of average

response time and energy consumption
, for a pre-determined prediction (look-

ahead) horizon  steps are estimated dur-
ing each sampling instant t using the behavioral
model. These predictions depend on known values
(past inputs and outputs) up to the sampling instant t,
and on the future control signals which are inputs to
the processor that must be calculated.

• A sequence of control signals { } resulting in
the desired processor behavior is obtained for each
step of the prediction horizon by optimizing a QoS-
related cost function .

• The control signal corresponding to the first
frequency in the above sequence is applied as input to
the processor during sampling instant t; the other
inputs are rejected. During the next sampling instant,

 and  are known and the above steps
are repeated again.

3 Controller Design

This section develops the behavioral model of the pro-
cessor and the online control algorithm.

Workload Forecasting. In order to estimate processor
behavior over the prediction horizon, request arrival and
processing rates must first be estimated. Various predic-
tion models have been previously proposed for perfor-
mance estimation of computer systems. In [25], an
autoregressive model to predict trends in network traffic
is developed, while [28] combines a Kalman filter with an
autoregressive model to detect changes in web server
workloads. The authors of [27] presents short- and long-
term prediction algorithms to estimate various perfor-
mance variables in a computer system including abnormal
events such as QoS violations and system failures.

We now develop an appropriate forecasting model to
predict request arrival rates using key characteristics of
some representative e-commerce applications. Figure 2
shows HTTP requests made to a computer at ClarkNet, an
Internet service provider in the Washington DC area over

a week [4]. This workload clearly shows cyclical trends,
as do many other published ones [4] [5] [19]. Therefore,
we conclude that such workloads may be predicted using
a trend model, used when the increase (decrease) in a
series of values persists for an extended time. The follow-
ing equations describe this forecasting model [12]:

(1)

(2)

(3)

where  and  denote the observed and estimated
arrival rates for time t, respectively. The estimated arrival
rate  is obtained by Equation 1 using a weighted
moving average of recent past estimates and the current
observation. The smoothing constant α determines the
weight given to past observations and controls the rate of
averaging. The trend δ(t) present in the arrival rate is
detected by Equation 2 using a smoothed average of first
differences, i.e., the change in arrivals from period 
to t. Finally, Equation 3 gives the forecast rate for time

 within the prediction horizon. This model is
validated using a real-world workload in Section 4.

Model Dynamics. The following equations describe the
dynamics of the processor model:

(4)

(5)

(6)

Given the observed queue length q(t) at time t, Equation 4
estimates its length during the time interval [t, ]. The
estimated processing time  is obtained as

 where c(t) and  denote
the actual and estimated values at time t, respectively, and
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Figure 2. HTTP requests made to an Internet 
service provider showing cyclical variations in the

arrival rate

λ̂ t( ) α λ t( )· 1 α–( ) λ̂ t 1–( ) δ t 1–( )+( )·+=

δ t( ) β λ̂ t( ) λ̂ t 1–( )–( )· 1 β–( ) δ t 1–( )·+=

λ̂ t k+( ) λ̂ t( ) k δ t( )·+=

λ t( ) λ̂ t( )

λ̂ t( )

t 1+

t k+

q̂ t 1+( ) q t( ) λ̂ t 1+( ) α t 1+( )
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γ is the smoothing constant. The sampling period of the
controller is denoted by ts. The response times of requests
arriving during the interval [t, ] is estimated by
Equation 5. The energy consumed by the processor while
operating at frequency is given by Equation 6
where .

Control Algorithm. Given the average response time
and energy consumption at sampling time t, the controller
explores the prediction horizon comprising discrete states

,  to determine
the best frequency input to apply at time . Each esti-
mated state  within the horizon is evaluated using
the cost function  as defined by:

(7)

(8)

Figure 3 shows the online control algorithm where,
during each t, it accepts the initial state estimate  and
arrival rate λ(t), and returns an operating frequency

. The initial estimate  comprises the observed
E(t) and ω(t) values. Starting from this state, the control-
ler constructs, in breadth-first fashion, a tree comprising
all possible future states up to the specified horizon as fol-
lows. Given an  we first estimate the workload

, and generate the next set of reachable processor
states by applying all input frequencies from {fi}. The
cost function  corresponding to each generated

state  is then computed. Once the prediction hori-
zon is fully explored, a sequence of reachable states

,...,  with the minimum cumulative cost

is obtained. The operating frequency 
corresponding to  (the first state in this sequence)
is provided as input to the processor while the rest are
discarded. The above control action is repeated each
sampling step. In our experiments, the weights in
Equation 7 were set to  and  to achieve a
behavior where the controller is heavily penalized if a
chosen operating frequency fails to satisfy ωref. However,
if ωref is satisfied by multiple frequencies, the lowest
frequency is chosen to minimize energy consumption.

Since the controller exhaustively evaluates all possible
operating states within the prediction horizon to deter-
mine the best input to apply at time t, the overhead due to
this approach must be analyzed. If  denotes the size
of the input set {fi}, and n the prediction horizon depth,
then the number of explored states is given by

When both the look-ahead horizon and the number of
control inputs is small, the computational overhead is
negligible−as confirmed by the experiments in Section 4.

Since control actions are taken after exploring only a
limited number of states, we must guarantee that the
underlying physical system is online controllable [3]. Our
system is, since given a state , it is always possible to
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Procedure PWMGR( , λ(t)) /*  := initial estimate; λ(t) := arrival rate */
st := { }; /* Initial state */
for (each t within a prediction horizon of depth n) begin/* n is the depth of the prediction horizon */

 := Forecast arrival rate using λ(t);
st+1 := ∅;
for (each  in st) begin /* Expand the search tree one level */

Generate all valid (reachable) states ; 
st+1:= st+1 ∪ { };

end;
for (each  in st+1) begin /* Evaluate states at search level t + 1 */

Estimate  and ;
Calculate the corresponding cost function ;

end;
t := t + 1;
end; 
Obtain a sequence of reachable states ,...,  having minimum cumulative cost;

 := Operating frequency corresponding to ; 
return ; /* Return the control action for time t + 1 */
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find a control input that forces the system into a different
state. This implies that the controller can make continuous
progress towards achieving the desired QoS objective
without deadlocking. 

We does not explicitly analyze the stability of the on-
line controller here. However, when both the operating
frequency and queue size are bounded, and if requests are
simply dropped when the queue is full, then stability can
be guaranteed in terms of worst-case queue size and
request response times. A more detailed analysis of con-
troller stability is left as future work.

4 Performance Evaluation

The performance of the controller is now evaluated
using a representative e-commerce workload. We first
describe how the workload is generated, and then discuss
the obtained results.

As noted in the introduction, [17] proposes a feedback
controller to balance both energy consumption and QoS
requirements on a processor executing multimedia appli-
cations. Our approach cannot be directly compared to [17]
since the authors assume a processor capable of operating
at arbitrary frequencies. By contrast, we assume a proces-
sor having a limited number of frequency settings−an
AMD Athlon with possible operating frequencies of 532,
665, 798, 1197, and 1529 MHz [24].

Workload Generation. Our experiments simulated a
busy server processing a synthetic yet realistic workload
comprising HTTP requests. To generate the workload, we
require a time-varying request arrival rate, execution
times of the individual requests, and their distribution
within the arrival stream. The workload arrival rate shown

in Fig. 4(a) was obtained by combining real-world traces−
HTTP requests made to a computer at Clarknet over a
week [4]. (Unfortunately, the published log files do not
have any execution time information for these requests). 

Using the rate information in Fig. 4(a), the distribution
of individual requests within the arrival sequence was
determined using two important characteristics of most
web workloads: popularity and temporal locality. First,
we generated a virtual store comprising 10,000 objects,
and the time needed to process an object request was ran-
domly chosen from a uniform distribution between

 ms. Simulated requests to the store had the fol-
lowing characteristics:
• Popularity: It has been widely observed that some

files are more popular than others, and that the popu-
larity distribution commonly follows Zipf’s law [4].
(A few files are extremely popular while many others
are very rarely requested). Therefore, we partitioned
the virtual store in two−a “popular” set with 1000
objects receiving 90% of all requests, and a “rare” set
containing the remaining objects in the store receiv-
ing only 10% of requests.

• Temporal locality: This is the likelihood that once an
object is requested, it will be requested again in the
near future. In many web workloads, temporal local-
ity follows a lognormal distribution [6].

Analysis of Results. We first calibrated the trend model
used to forecast arrival rates (described in Section 3). The
best fit to the arrival pattern in Fig. 4(a) was obtained for
smoothing constants of  and ; the good-
ness-of-fit measure was  and the predicted val-
ues had a mean absolute percentage error of 16% when
compared to observed ones. Figure 5(a) shows the
observed and predicted values overlaid on each other.
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Figure 4. (a) Synthetic workload arrivals generated using the HTTP logs of an Internet service provider; (b) 
requests received by the computer during a day plotted in 30 second intervals
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Though the trend model predicts the arrival rate well in
most cases, it fails to track sudden surges (or spikes) in
request arrivals. We compared the performance of the
trend model with another widely used forecasting tech-
nique; a Box-Jenkins ARIMA model [7] was generated
using Freefore [29] to best fit the observed data in Fig.
4(a). The generated model had  and an average
error of 15% between predicted and observed values.
Therefore, we conclude that the trend model provides an
adequate fit to the data used in our experiments; the sud-
den spikes simply correspond to noise in the data values.
Request processing times were estimated using .

The performance of the controller was evaluated over a
smaller portion of the overall workload, shown in Fig.
4(b), where the requests received by the computer during
one day are plotted in 30 second observation intervals. We
note that this interval is sufficient to smooth the variabil-
ity in arrival rates and adequately track them using the
prediction model. Therefore, the sampling period of the
controller was set to −no smaller that the observa-
tion interval. Also, the overhead due to controller execu-
tion as well as the system dead time (the delay between
changing the operating frequency and its completion) is
negligible and therefore ignored in our experiments. The
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response time to be achieved by the controller was set to
 sec.

Figures 5(a)-(c) summarize the performance of the
controller for a prediction horizon of two time steps. Fig-
ure 5(b) shows how the controller changes the operating
frequency of the processor to accommodate the time-
varying workload in Fig. 5(a). The achieved response
times are shown in Fig. 5(c). The controller does not
achieve the desired QoS during some time periods since it
cannot predict sudden (and short-term) spikes in the
arrival rate. The frequent switching activity in Fig. 5(b)
occurs since the cost function in Equation 7 does not
include a corresponding switching penalty. Though con-
trol actions in general systems typically incur some pen-
alty, in the specific case of power management, this
penalty is negligible; for example, a frequency change in
the AMD-K-2 processor incurs a time overhead of only
41 µs [22]. Therefore, our cost function ignored this
switching penalty.

The overall controller performance is promising; in our
experiments, it achieved the desired response time

 sec for about 91% of the received requests. Fig-
ure 6 shows the effect of different prediction horizons on
controller performance in terms of the percentage of
requests satisfying their QoS requirement. Increasing the
horizon does not improve performance; in fact, perfor-
mance suffers slightly. This may be due to the fact that for
this specific workload, model forecasting errors accumu-
late with increasing horizon depth, thereby degrading
controller performance.

To summarize this section, our experiments imply that
optimal solutions for such online control problems do not
exist, particularly when the arrival rates are unpredictable
and potentially unbounded. The system designer must,
therefore, decide upon an acceptable controller configura-
tion after sufficient experimentation. In this specific case,
a short-term forecasting horizon of depth two appears
appropriate. Also, controller performance may be further
enhanced by improving the behavioral model of the pro-
cessor and/or the cost function−both are topics for future
work. Finally, the controller overhead corresponding to
the prediction horizons in Fig. 6 was found to be negligi-
ble, and hence not reported.

5 Discussion

This paper has addressed the design of self-optimizing
computer systems using a generic online control frame-
work. As a specific application of this technique, we
showed how to minimize the power consumed by a com-
puter by designing a controller to satisfy the QoS require-
ments of a time-varying workload while operating the
processor at the lowest possible frequency. Its perfor-
mance was evaluated using representative e-commerce
workloads with encouraging results.

As future work, we plan to further improve controller
performance. The QoS violations seen in Fig. 5(c) suggest
that Equations 4, 5, and 6 describing the model dynamics
are somewhat sensitive to noise in the observed data. We
will enhance model accuracy and robustness by including
the appropriate prediction error while forecasting the
arrival and processing rates. Also, the controller can be
designed to operate within a QoS region instead of the
single reference point ωref considered in this paper.

The proposed control approach is very general and is
applicable to other resource management problems in
computer systems. In [14], we developed an online con-
troller to operate a distributed computer system in energy-
efficient fashion while satisfying the QoS requirements of
a dynamic workload; computers are switched on (off) as
needed to accommodate the time-varying workload.
Online predictive control is especially useful when con-
trol actions have substantial dead times (such as switching
on a computer). We have evaluated this approach on real-
world e-commerce workloads with encouraging results.
We also believe a similar control approach can help
design self-healing distributed systems. Certain computer
failures may be predicted shortly before their occurrence
by analyzing the corresponding performance variables
[27]. The controller can then initiate the appropriate
reconfiguration action such as switching on a backup
computer in anticipation of such failures to prevent ser-
vice disruptions.
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