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Figure 1: Our result on uniform stochastic point distribution with isotropic spectrum and spatially-varying point density (13,000 points).

Abstract

Stochastic point distributions with blue-noise spectrum are used
extensively in computer graphics for various applications such as
avoiding aliasing artifacts in ray tracing, halftoning, stippling, etc.
In this paper we present a new approach for generating point sets
with high-quality blue noise properties that formulates the prob-
lem using a statistical mechanics interacting particle model. Points
distributions are generated by sampling this model. This new for-
mulation of the problem unifies randomness with the requirement
for equidistant point spacing, responsible for the enhanced blue
noise spectral properties. We derive a highly efficient multi-scale
sampling scheme for drawing random point distributions from this
model. The new scheme avoids the critical slowing down phenom-
ena that plagues this type of models. This derivation is accompa-
nied by a model-specific analysis.

Altogether, our approach generates high-quality point distributions,
supports spatially-varying spatial point density, and runs in time
that is linear in the number of points generated.

Keywords: Poisson disk distribution, stochastic sampling, impor-
tance sampling, blue noise, image synthesis, and anti-aliasing.
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1 Introduction

Stochastic point arrangements, or point distributions, are used
in various computer graphics applications. Originally these dis-
tributions were used to overcome the visually disturbing alias-
ing artifacts, such as Moiré patterns, that arise in regular sam-
pling when the grid spacing fails to meet the signal’s Nyquist
rate. Dippé et al. [1985] and Cook [1986] analyze the spectral
properties of different stochastic point sampling procedures and
demonstrate their ability to produce perceptually superior images
in which the spurious aliasing patterns of regular sampling are con-
verted into featureless noise. Among these stochastic point dis-
tributions, the Poisson disk distribution (a.k.a. minimal-distance
Poisson) stands out for the blue noise characteristics its spec-
trum possess. Such distributions accurately capture the visu-
ally important lower-end frequency content of a signal and scat-
ter the higher frequencies into broadband random noise. Interest-
ingly, Yellott [1983] found that the arrangement of photorecep-
tors in the extra-foveal part of the human retina possesses blue
noise characteristics. Since then, stochastic blue-noise point dis-
tributions were used for various other applications such as popu-
lating plants in virtual ecosystems [Deussen et al. 1998], and ba-
sis functions in procedural textures [Cohen et al. 2003], halfton-
ing and stippling [Deussen et al. 2000; Secord 2002], illumina-
tion quadrature [Kollig and Keller 2003], and geometry process-
ing [Surazhsky et al. 2003]. Recently, the generation of stochas-
tic point distributions was extended to arbitrary manifold sur-
faces [Bowers et al. 2010], multiple classes of samples [Wei 2010]
and anisotropic samples [Li et al. 2010].

The use of the quantization optimization method by Lloyd [1982],
first proposed by McCool et al. [1992], became a popular mean of
enhancing the blue noise properties of a given distribution. Lloyd’s
method is a deterministic iterative procedure that spreads the points
more evenly in space. It is commonly used as a post-processing
step. Being an optimization procedure, Lloyd’s method is known to
converge to compact piecewise hexagonal patterns and reintroduces
periodicity to the sampling pattern. Therefore, only a small number
of iterations is used in practice. However, as pointed out by Balzer
et al. [2009], there is no known satisfactory termination criterion
for Lloyd’s method—a problem that is most acute when patterns of
spatially-varying density are sought for. In their work, Balzer et al.
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present a new variant of Lloyd’s method in which the Voronoi cells,
associated with each point, are constrained to have an equal capac-
ity. This process, which runs until convergence, achieves superb
spectral enhancement and closely matches the target density. This
performance comes at a computational cost; each iteration runs in
O(n2) time where n is the number of points generated.

In this paper we propose a new approach for generating stochastic
blue-noise point distributions that formulates the problem as sam-
pling a statistical mechanics interacting particle model. In this this
model a radially-symmetric kernel function is placed around every
point to produce an approximate density function. The difference
between this approximation and the given target point density func-
tion assigns an energy value to the points configuration. Rather
than minimizing this energy, we use it to define a Boltzmann-Gibbs
statistical model that introduces randomness. Thus, this framework
unifies randomness with the requirement for uniform point spacing
that achieves the enhanced blue noise spectral properties.

Drawing samples from such high-dimensional statistical models
is a non-trivial task and standard samplers suffer from a problem
known as critical slowing down when applied to this type of mod-
els. In this problem, the number of stochastic relaxation sweeps
needed to achieve a single independent sample, grows as a function
of the number of variables in the system and leads to a quadratic
computational complexity. We analyze this problem, in the specific
context of our model, and develop a novel multi-scale sampling
scheme that constructs the samples by adding points progressively.
This strategy eliminates the critical slowing down altogether and
generates high-quality stochastic point distributions in a time that
is linear in the number of points generated.

Our approach does not involve computing Voronoi diagrams, De-
launay triangulations, nor any type of nearest-point searche, and
produces more than 15,000 spatially-varying points per second on
a single CPU core. We validate the quality of the resulting point
distributions against ones produced by state-of-the-art methods.

2 Background

The generation of stochastic sampling patterns became an ac-
tive topic of research in computer graphics since the early
eighties when several works [Whitted 1979; Cook et al. 1984;
Dippé and Wold 1985; Cook 1986; Mitchell 1987] demonstrated
the advantages in using randomized sample locations over regular
grids in the context of ray tracing. In particular, Dippé et al. [1985]
and Cook [1986] study three different random point distributions:
Poisson sampling, where points are uniformly distributed in space,
Jittered sampling, where points are placed on a regular grid (usu-
ally rectangular) with random offsets, and the Poisson disk sam-
pling, where points are also uniformly distributed in space but do
not allow an overlap between disks, of some predefined radius, that
surround them. Both papers point out the Poisson disk model as
the superior over the other two as it has a large low-energy annulus
around the origin in Fourier space and is approximately uninform
at higher frequencies. Spectrum with this shape is known as blue-
noise and sampling patterns that possess it accurately capture the
lower end of a signal’s spectrum and restrict the scattering to the
higher frequency band.

Since then, blue-noise stochastic point distributions were used for
various other applications that we mentioned earlier. Given this
demand, the generation of such point distributions received much
attention over the last two decades and evolved in several di-
rections; very efficient sampling techniques were developed for
sampling the true Poisson disk distribution [White et al. 2007], re-
laxed versions of it were introduced [McCool and Fiume 1992;

Wei 2008], and various tiling-based accelerations were pro-
posed [Shade et al. 2000; Lagae and Dutré 2008]. Here we review
some of this literature.

Cook [1986] describes a simple yet expensive rejection-based pro-
cedure for drawing samples from the Poisson disk distribution,
where a new point is proposed from a uniform (Poisson) distribu-
tion and is accepted only if its surrounding disk does not overlap
any disk around the points laid so far. This procedure is known as
dart throwing and terminates once no point can be further added
or, in practice, when the rejection count becomes large. To avoid
the large number of rejections Jones [2006] encodes the area not
covered by any disk via a tree, constructed using a Voronoi dia-
gram, and generate n points in O(n log n) running time. Dunbar et
al. [2006] achieve a similar asymptotic running time using a unique
data structure called scalloped sectors to encode the vacant space.
By drawing proposal points from a model that keeps track of the
vacant space using a quadtree, White et al. [2007] generate samples
from the true Poisson disk model in O(n) time. Recently, Gamito
et al. [2009] described an accurate multi-dimensional Poisson-disk
sampling method that has O(n log n) time and space complexity.

Other point distributions, beside jittered grids, were proposed
as alternatives to the Poisson disk model. These distributions
also possess blue noise spectral characteristics, they are easier to
generate and control, and some of the methods can adapt their
point density to match arbitrary spatially-varying density function.
Mitchell [1991] describes a variation of dart throwing in which sev-
eral points are thrown at each step and only the one, farthest from
the existing points, is added. McCool and Fiume [1992] also relax
the dart throwing method and reduce the disk radius while con-
structing the pattern. These algorithms avoid the large number of
rejections in dart throwing and allow a precise control over the num-
ber of points generated. Without using any accelerations for the
nearest-point search, these methods run in O(n2) time. By restrict-
ing the addition of new points to the immediate boundary of the
existing ones, Dunbar et al. [2006] construct distributions that obey
a strict minimal-distance in linear-time O(n). A parallel algorithm
based on domain subdivision is proposed by Wei [2008]. Both this
method and the one by McCool and Fiume can adapt their point
density given density functions.

The methods discussed thus far either constrain a minimal distance
between every pair of points or follow a greedy strategy that maxi-
mizes this distance. A full optimization of the inter-point distances
is a coupled n-body problem which was first considered by Mc-
Cool and Fiume [1992]. McCool and Fiume perform this opti-
mization indirectly, through an optimal metric space quantization
method by Lloyd [1982]. Given any initial points configuration, this
process repeats the following iteration: a Voronoi diagram is com-
puted for every point and then the point is shifted to the centroid of
its Voronoi cell. Some connections between Lloyd’s method, cen-
troidal Voronoi tessellations, and quantization error minimization
are given in [Du et al. 1999].

In this process points get spread more evenly in space by equat-
ing the inter-point distances of neighboring points. This reduces
the maximal inter-point distance and allows to capture higher fre-
quencies. Moreover, Lloyd’s method provides a control over the
point density by specifying a target density function. For these rea-
sons Lloyd’s method became a tool-of-choice for generating high-
quality point distributions and is used in many applications. Despite
its popularity, Lloyd’s method suffers from two main shortcom-
ings. The first, which was already recognized by McCool and Fi-
ume [1992], is related to its termination. As the iterations progress,
the points converge to a regular deterministic anisotropic hexagonal
patterns (or piecewise hexagonal in large point sets) which corre-
spond to optima (or local optima) in the sense of spatial quantiza-



tion error. Balzer et al. [2009] demonstrate the lack a reliable termi-
nation criteria and its dependence on the number of points, initial
distribution, and target density. The second drawback, as indicated
by Balzer et al., is the impreciseness at which Lloyd’s method ap-
proximates target spatially-varying density functions, where an ap-
parent blur is observed.

In their work Balzer et al. propose a variant of Lloyd’s method
that solves these issues by imposing a capacity constraint over
the Voronoi tessellation; each Voronoi cell must contain an equal
amount of integrated density. This approach achieves an improved
blue noise characteristics, precise adaptation to density functions,
and shows no regularity artifacts. These high-quality results are ob-
tained at considerable computational costs; each iteration runs in
O(n2 +nm log m

n
) time where m is the number of discrete spatial

coordinates needed for computing the Voronoi cells (m is typically
few hundreds times n). Li et al. [2009] accelerate this method by
reducing its complexity to O(nm) and using various parallelization
and low-level optimizations.

A recent method by Schmaltz et al. [2010] generates halftoning us-
ing an interacting particle model inspired by electrostatics. This
involves global Coulomb interactions between every two points in
the system and hence the running time of this algorithm is O(n2).
This approach was shown to achieve high-quality blue-noise prop-
erties as well as an closely match the target density. In contrast, our
formulation is based on localized kernels which result in a system
with a few and local interactions that allows updating the points in
linear time. We show however that locally-coupled systems, such
as ours, suffer from a slowing down that requires O(n) stochastic
updates in order to produce a valid point set. We avoid this slowing
down using a novel multi-scale sampling scheme and describe an
algorithm whose overall running time is linear.

Error diffusion methods [Floyd and Steinberg 1976] are very effi-
cient low-level half-toning algorithms designed also for hardware
implementation in printers. Similarly to our approach, these meth-
ods approximate the target density using filters that model the pres-
ence of laid points. However, unlike our method and the rest of the
methods mentioned here, these algorithms place the points at dis-
crete integer grid locations and are typically deterministic. Hence
they are not ideal for many of the applications mentioned above.

In the last category, we mention a more recent trend to acceler-
ate the construction of point distributions by tiling precomputed
patterns. This was initially proposed by Shade et al. [2000] who
construct these building blocks such that they obeys the minimal-
distance requirement with the points of all possible neighbor-
ing tiles. This ideas was later refined in several respects and
this approach can even produce spatially adapted distributions,
see [Ostromoukhov et al. 2004] and [Kopf et al. 2006]. For a more
elaborate survey and evaluation of these methods, we refer the read-
ers to the paper by Lagae et al. [2008]. In our context, many of
these methods precompute the tile patches using one of the basic
point generation methods mentioned above. Our work focuses on
the preliminary stage of computing initial point generations.

3 New Approach

We model the target density ρ, whether it is constant or not, as a
sum of nonnegative radially-symmetric kernels that represent the
points. Thus, the presence of each point is represented by the de-
caying profile of the kernel surrounding it. In the context of signal
sampling, these profiles represent the regions covered by the point
samples (when assuming local correlation), and in the context of
density function approximation, the kernels represent the spread of
matter around the points (e.g., black ink in stippling).

Figure 2: 1D example showing the kernels (blue), the resulting ap-
proximation function (red), and the target density function (green).

We postulate that each point is equally important and assign an
equal amount of matter, i.e., integrated density, to every kernel. We
define the j-th kernel centered around the point xj by

1

σd
j

Φ

(

‖x− xj‖
σj

)

, (1)

where σj defines the scale, and x,xj are points in Ω ⊂ R
d where

Ω is the domain of interest. We denote by ‖·‖ the Euclidian norm in
this d dimensional real space. The function Φ is positive, finitely-
integrable, and monotonically decaying away from zero. The nor-

malization factors σ−d
j ensure that the kernels’ integrals are fixed

and independent of their scale. This is easily verified by a variable
transformation y = σjx in R

d when integrating (1).

In d-dimensional space the point density, defined as the num-
ber of points per unit volume, is inversely proportional to the d-
th power of the inter-point distance. Therefore, to get an aver-
age point density proportional to ρ(x), we define the scale func-

tion σ(x) = −d
√

ρ(x), and set the j-th kernel scale to be σj =
σ(xj). Under these definitions, the kernels defined in (1) become
ρ(xj)Φ(‖x − xj‖/σ(xj)), i.e., functions with an amplitude pro-
portional to the density function at their centers xj . This prop-
erty makes the kernels appropriate building blocks for the approx-
imation of ρ(x) and, in fact, a similar type of kernels is used for
scattered-data interpolation in the method of Shepard [1968].

Given any assignment {xj}nj=1 of n points, we can define a corre-
sponding approximation function A(x) that approximates ρ(x) by
summing the kernels together, i.e.,

A(x) =

n
∑

j=1

1

σ(xj)d
Φ

(

‖x − xj‖
σ(xj)

)

. (2)

We define the error of this approximation by

E
(

{xj}nj=1) =

∫

Ω

|A(x)− ρ(x)|γ dx, (3)

where, for reasons we explain below, we use γ = 1 in practice and
use γ = 2 for derivation and theoretical analysis at the Supplemen-
tal Text. This construction is illustrated in Figure 2.

Once the kernels scale is determined (ultimately by ρ) the only re-
maining degrees of freedom in this model are the kernels centers,
i.e., the point locations xj themselves. Minimizing E, with respect
to the kernel centers, in case of a constant ρ in two-dimensional
space, achieves a configuration in which the kernels are arranged
in an hexagonal pattern. This optimum is equivalent to the one
obtained by converged Lloyd’s iterations and is undesirable for its
periodicity. Nonetheless, this connection implies that, besides accu-
rately matching the target density function, low error values achieve
equidistant point arrangement and therefore, similarly to Lloyd’s,
our method has the ability to achieve spectral enhancement.

Unlike the standard practice of Lloyd’s method where a limited
number of deterministic minimization iterations are performed over
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Figure 3: Comparison between samples obtained from different
temperature values. As the temperature decreases the more ordered
the points become.

an initial point set, constructed by an unrelated random step, we
unify error minimization and randomness by defining a statisti-
cal mechanics particle model using E. This is done by interpret-
ing the error E as an energy function and assigning each config-
uration {xj}nj=1 a probability density according to the following
Boltzmann-Gibbs distribution

P
(

{xj}nj=1

)

∝ e−E
(

{xj}
n
j=1

)

/T , (4)

where T is a temperature parameter that defines the disorder or ran-
domness in the system. Low temperatures concentrate the mea-
sure around the low-energy point configurations and at the limit of
zero temperature, P converges to a delta function around the low-
est energy configuration, known as the ground state—the hexago-
nal pattern mentioned above in case of two-dimensional constant
target density. Increasing the temperature ‘flattens’ the distribution
P and allows states that are less energetically-favorable to realize
and thus randomness increases. As T → ∞, all configurations are
made equally probable, ρ ceases to affect, and a (uniform) Pois-
son distribution is obtained. This effect of the temperature param-
eter is demonstrated in Figure 3 and 13. The optimum of a sim-
ilar kernels-based model is used for uniformly sampling surfaces
in [Öztireli et al. 2010].

The choice L1 norm (γ = 1 in (3)) ensures the following scale
invariance: if ρ is mapped to cρ with c > 0, then σ 7→ σ/ d

√
c and

hence the kernels normalization factors σ(xj)
−d are also multiplied

by c, meaning that the pointwise error in 3 is multiplied by c. On the
other hand, the kernels scale divides by d

√
c along each axis. Thus,

if we consider the same number of kernels, the integrated volume
divides by c and therefore E and hence P remain unchanged. This
property guarantees that the same relative disorder will be produced
for every density value ρ, e.g., if we stretch a point set produced by
a constant ρ, we obtain a set whose scale and disorder correspond
to a different values of target ρ.

In practice we use a rectangular domain Ω and approximate the
integral in (3) by discretizing it over a grid of nodes we call compu-
tational grid, defined by G = {∆x, 2∆x, .., m∆x}d ⊂ Ω, where
∆x is the grid spacing and m is the number of grid points along
each axis. To simplify notations we assume an equal spacing and
number of grid points along axis. Note that the kernel centers,
i.e., the points xj we are interested in, have continuous coordi-

nates and are not limited by this discretization. The grid spacing
is determined by the minimal kernel scale σmin, and set such that
∆x < 2/3σmin in order to properly capture the Gaussian kernels
we use. Without loss of generality, we can assume that 0 < ρ ≤ 1,
which means that σmin ≥ −d

√
ρ ≥ 1 allowing us to use ∆x = 1

with kernels defined by Φ(x) = e−(2x/3)2 . The total number of
points can be controlled, indirectly, through m, the resolution at
which we represent ρ. As we noted earlier, the number of points in

a finite domain is n ∝ σ−1/d meaning that m ∝ n1/d and therefore
the total number of grid points we use, md, is O(n). Since we need
to discretize the entire computational domain our method grows ex-
ponentially as function of the dimension d. Note that in many prac-
tical scenarios the expected number of points n also grows at this
rate and hence our algorithm is not necessarily asymptotically inef-
ficient. In the next sections we describe the difficulties in drawing
samples from P and derive a new algorithm which we summarize
in Section 3.3.

3.1 Drawing Samples

In order to fully define the model given by (4), the number of ker-
nels or points n must be specified. We will explain how this is done
later, in Section 3.3, and for now assume it is known. Given this
probability model, generating stochastic point patterns amounts to
sampling it, i.e., generating point configurations {xj}nj=1 at prob-
ability P ({xj}nj=1). Sampling high-dimensional probability dis-
tributions is a non-trivial task that lies behind the Markov-chain
Monte Carlo (MCMC) method for approximating high-dimensional
integrals [Robert and Casella 2005].

The idea behind this method is to construct a random Markov
chain (MC) of configurations by applying simple, typically low-
dimensional, random change to the configuration in each step.
These small transitions in the configuration space are designed such
that, given any initial configuration, later configurations will dis-
tribute according to P . The density P in this case is known as the
equilibrium distribution of the chain. The following four condi-
tions are sufficient for producing a chain with P as its equilibrium
distribution: (i) the chain is a Markov process; the distribution of
the next configuration given the current is independent of any past
configuration, (ii) the chain is irreducible; it can switch between
every two configurations within a finite number of steps, (iii) the
chain is aperiodic; it can return to a configuration at irregular times,
and (iv) the chain obeys the detailed balance condition with re-
spect to P ; the chance that the chain moves from configuration X

to Y times P (X) must be equal to the chance for the reverse tran-
sition times P (Y). In practice, a proposal distribution that obeys
conditions (i)-(iii) is first constructed. Then, its transitions are ac-
cepted or rejected based on a Metropolis-Hastings (MH) test that
‘corrects’ the chain such that condition (iv) is met. More detail on
the theory of MC and the related sampling methods can be found
in [Robert and Casella 2005; Landau and Binder 2005].

One possible MC construction is the random walk that generates
the proposal configuration by adding a random offset vector to the
current configuration. In our case, the manifold of configurations
that are likely according to P is rather ‘slender’ as the points must
be kept almost uniformly apart. Large random offsets violate this
relation and lead to high rejection rates, whereas small offsets re-
quire long running times. The Gibbs sampler is another common
choice in which the conditional distribution along every coordi-
nate is sampled sequentially. However, the conditional distributions
of (4) do not correspond to simple analytical models that we can di-
rectly draw samples from. Instead, we use the Langevin method to
approximate these conditional distributions and use a Metropolis-
Hastings correction [Besag 1994; Robert and Casella 2005] to sam-
ple them sequentially.



Algorithm 1: Single-level MH-corrected Langevin relaxation.

for every point j = 1...n do

compute xk+1
j according to Eq. (5);

if MH test in Eq. (6) fails then

set xk+1
j = xk

j ;

end

end

We denote the point configuration at the k-th step of
the chain by Xk = {xk

j }nj=1, and use the Langevin
method [Grenander and Miller 1994] to produce a new con-
figuration by altering only a single point, the j-th point, of the
current state by

x
k+1
j = x

k
j − ∆tj

2T
∇xj

E(Xk) +
√

∆tjξ
k
j , (5)

and set xk+1
j′ = xk

j′ for j′ 6= j, where ξk
j ∈ R

d are vectors of

random variables drawn independently from the standard Normal
distribution in R

d, and ∇xj
denotes the partial derivative vector

with respect to the coordinates of the j-th point. We set the step
size ∆tj = Tσ(xj)∆t so that the same expected change in proba-
bility will occur regardless of the kernel scale and temperature. The
overall step size factor is set by ∆t. At every step k, a different
point is chosen sequentially, i.e., j = k mod n.

Grenander and Miller [1994] use this update rule to produce
the final chain, based on the fact that as ∆t → 0 (and hence
∆tj → 0), this process converges to the Langevin equation.
This is a continuous-time stochastic differential equation that de-
scribes a Brownian motion that distributes according to P (X),
see [Binney et al. 1986]. In computer simulation, only a finite time
step size ∆t > 0 can be used and, in fact, the larger ∆t is, the far-
ther we move and the faster we explore the configuration space and
reach equilibrium. However, any finite ∆t introduces some errors
that cause the chain to deviate from P . Accurate sampling of P can
still be obtained by treating the configuration Xk+1 defined above
as a proposal configuration and using an MH test [Besag 1994;
Robert and Casella 2005] to determine the next configuration of the
chain. In this test Xk+1 is accepted with probability

P (Xk+1)

P (Xk)

e
−

∥

∥

√
∆tj

2T

(

∇xj
E(Xk)+∇xj

E(Xk+1)
)

+ξkj

∥

∥

2
/2

e−‖ξk
j
‖2/2

, (6)

and otherwise rejected, by setting Xk+1 = Xk. This step ensures
that the chain obeys the detailed balance condition with respect
to P , see [Robert and Casella 2005]. This test is implemented by
drawing a uniform variable u ∼ U [0, 1] and comparing it to (6).

This original MH-corrected Langevin sampler, described
in [Besag 1994; Robert and Casella 2005], updates all the points
xk
j , where j = 1..n, according to (5) in each time step before per-

forming the MH test. In this case, as the number of points n grows,
the magnitude of the random vector {ξk

j }nj=1 added to the current

state Xk in (5) grows as well. Roberts and Rosenthal [1998] show

that for a large class of models time steps of order ∆t = O(n−1/3)
must be used in order to maintain a constant acceptance rate.
In contrast, the MH-corrected Langevin method we described
operates sequentially, by updating a single point xj before every
MH test. Thus in our approach, much like in the Gibbs sampler
it approximates, the magnitude of the stochastic fluctuation ξj is
independent of n. This strategy does not involve performing much
more calculations than the traditional MH-corrected Langevin
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Figure 4: Left plots show the autocorrelation of the lowest non-
trivial Fourier mode (real part), computed from models containing
different number of points n (matching a constant density in 2D
space). Right plot shows how the number of chain steps k, required
to achieve the same correlation value (Rk = 0.5), grows linearly
with n. These tests were performed with γ = 2. Qualitatively
equivalent behavior is observed for γ = 1.

method, yet since ∆t is independent of n larger and thus fewer
chain steps are needed for reaching the equilibrium. Unfortunately,
as we show in the next section, the sampling complexity of this
scheme is still unsatisfactory. However, we use this stochastic
relaxation as a component in our final sampling scheme and
therefore summarize it in Algorithm 1.

We conclude with two important implementation remarks. We
speedup computations by ignoring the change in σ(xj) comput-
ing the gradient term ∇xj

E in (5) and (6) and approximate it by

∇xj
E≈ γ

σ(xj)d

∫

xj−x

‖x−xj‖
Φ′

(‖x−xj‖
σ(xj)

)

(

A(x)−ρ(x)
)γ−1

dx,

(7)
where for γ = 1 we define the power (·)0 = sign(·). This change
in the proposal configuration does not effect the equilibrium distri-
bution P nor does it introduce any noticeable decrease in the accep-
tance rate. Secondly, when we evaluate the integral (7) above we
do not need to access all the nodes of the computational grid. The
only relevant nodes are at distance ∝ σ(xj) from xj , where Φ is
above some epsilon.

Critical Slowing Down. The distribution of the initial configu-
ration X0 is different from P and, in fact, most MCMC meth-
ods start with a predetermined (deterministic) initial configuration.
Therefore, the main concern when developing an MCMC sampling
method is how fast the distribution of the k-th step of the chain
P(Xk) converges to P . This rate is typically estimated empirically
from the correlation of various measures at different time steps. We
estimate the following time autocorrelation function

Rk(ω) =
cov

(

|Â0(ω)|, |Âk(ω)|
)

√

var
(

|Â0(ω)|
)

var
(

|Âk(ω)|
)

, (8)

where Ak is the approximation function that corresponds to the k-th

configuration, Xk, and Âk(ω) is its Fourier transform at frequency
coordinates ω.

The correlation time measures the number of chain steps separating
two statistically uncorrelated states. It is typically defined as the
number of steps beyond which the autocorrelation is small, i.e.,

τ (ω) = argmink{Rk(ω) < ε}, (9)

where ε is a small number below which we consider the config-
urations to be uncorrelated. In practice, this correlation time is
used to estimates the burn-in time; the number of chain steps that
must be computed before the chain loses its correlation with the
initial configuration X0 and reaches its equilibrium distribution P .
Therefore, in the MCMC method the first k < k0 = maxω τ (ω)



Figure 5: (left) Show the effect a displacement of a single point
has on low and high frequency modes. The high-frequency mode
shows a greater change in response than the low-frequency mode.
(right) The effect of low- and high-frequency displacements, of an
equal magnitude, have on the inter-particle distance. Positive val-
ues correspond to right offsets and negative to left ones. The high-
frequency offset has a greater effect over the inter-point distances
and violates more the local point density.

steps are usually discarded, and in our application, where we need
only a single configuration of points, we stop at k0 and pick Xk0

as the stochastic point set we output. The definitions and mea-
surements we used here are standard tools, commonly used to
study and estimate MCMC convergence, see [Binney et al. 1986;
Goodman and Sokal 1989] for more information.

Figure 4 shows plots of Rk that correspond to the lowest non-trivial
frequency ω, computed from configurations containing different
number of points n. The graphs show that the correlation time τ ,
and hence the number of MC steps needed, grow linearly with n, or
equivalently, τ ∝ m2 in this two-dimensional test. This long burn-
in time implies that the current solution is suboptimal and runs in
O(n2) time (since each relaxation sweep, in this test, updates all the
n points). Indeed, this phenomenon plagues many lattice and off-
lattice statistical physics models and it is known as critical slowing
down [Goodman and Sokal 1989].

In the Supplemental Text we formally study the convergence rate of
the Langevin sampling scheme, defined in (5), applied to our proba-
bility model P . This analysis shows that we expect relaxation time
τ ∝ m2 in every space dimension d and confirms the empirical
finding we saw here. We show that every iteration has an effect of

O(‖ω‖2) over Â(ω), i.e., the low frequencies are weakly affected
by the stochastic update and that this slowing factor results from
two reasons. Small movements in point locations have lower effect
on low-frequency modes, of order O(‖ω‖), since these functions

change slowly in space (e.g., it has no effect on Â(0)). The second
O(‖ω‖) results from the fact that smooth low-frequency changes in
the point locations do not change the inter-point distances by much
and therefore the local point density and the energy that measures it,
in (3), are weakly effected by these modes. Thus, the energy gradi-
ent, ∇xj

E in (5), which points to the direction of maximal change,
barely contains these low-frequency modes. These effects are il-
lustrated in Figure 5. The critical slowing down is observed since
as the number of points n grows, lower frequency components are
introduced to the system, min ‖ω‖ = O(2π/m), and hence more
chain steps are needed to relax and decorrelate these modes. This
cannot be solved by increasing the time step ∆t, in (5), since this
will also increase the change along the high-frequency components
which will, in turn, lead to large energy fluctuations and hence a
higher rejection rate.

3.2 Multi-Scale Sampling

The critical slowing down, we observed here, appears in a board
range of statistical mechanics particle models. There are a
few related works that address it by applying global modifica-
tions, that target low-frequency modes, when constructing proposal
states. In the context of molecular dynamics of fluids, Dress and

Krauth [1995] construct the proposal configuration by rotating all
the points about an arbitrary pivot point and replace particles be-
tween the rotated and the original configurations. Liu et al. [2004]
use the pivot to reflect points around it until an acceptable state is
found. Both these methods are designed to operate on stationary
spatially-invariant models and cannot be used in our application.
Goodman and Sokal [1989] perform stochastic relaxation at mul-
tiple scales using the Multigrid machinery, originally designed for
solving elliptic linear systems, to treat the slowing down in lattice
models. Applying this strategy to non-structured models, like our
kernels model, will be costly; it will require us to perform repeated
linearizations, particle connectivity searches, and construct the mul-
tiple matrices needed in the Multigrid method. Based on our under-
standing of the slowing down, we derive a very simple and efficient
coarse-to-fine sampling procedure that obtains stochastic relaxation

at progressively shorter wavelengths of Â(ω).

The idea is to adapt the Multigrid concepts [Trottenberg et al. 2001]
into our context by deriving a hierarchy of probability models that
contain fewer points which are discretized on coarser computational
grids. These models are constructed such that the low frequencies

of Â(ω) distribute in these models the same way they did in the
original model P . Once there are only few points in the coars-
est model, the Langevin relaxations are able to generate an inde-
pendent sample with all its frequencies in equilibrium. Then, we
refine this point configuration to a finer level in the hierarchy, by
adding new points while preserving its low-frequency response. In
the finer level, the new high frequencies are relaxed efficiently us-
ing the Langevin sampler. This process continues recursively and
higher and higher frequency bands reach their equilibrium distribu-
tion, and terminates once the finest level is reached. In this section
we describe the two components needed for this sampling strategy:
the coarser models and the configuration refinement scheme.

Model Coarsening. The derivation of a coarser model is done in
Fourier space for γ = 2, where we can express the energy in terms

of Â and ρ̂ using Parseval identity,

E =

∫

Ω

(

A(x)− ρ(x)
)2
dx=

1

2π

∫

[−π,π]d

∣

∣Â(ω)− ρ̂(ω)
∣

∣

2
dω. (10)

The integration in Fourier space can be divided into the lower
L = [−π/2, π/2]d and the remaining higher H = ([−π,−π/2] ∪
[π/2, π])d frequency bands. The energy E can then be expressed

as the sum of E(Â|L, ρ̂|L) and E(Â|H, ρ̂|H), where Â|L and ρ̂|L
are Â and ρ̂ restricted to L respectively, and set to be zero outside

these sets. Â|H and ρ̂|H are the analog restriction to H. This de-
composition of the energy leads to the following factorization of P

P (Â, ρ̂) = e−E(Â,ρ̂)/T = e−E(Â|L,ρ̂|L)/T e−E(Â|H,ρ̂|H)/T ,
(11)

i.e., Â|L and Â|H are statistically independent sets of coordinates.

The key point is that according to the sampling theorem the en-

ergy term E(Â|L, ρ̂|L), that contains the highly-correlated low-

frequencies of Â|L, can be expressed at half the spatial resolution;
over m/2 grid points along each axis. In other words, the low-
frequency factor of the model gives rise to a coarse model, de-
fined at a coarser spatial resolution by subsampling ρ|L(x), the
ideally low-passed ρ. We denote this density by ρC(y) where

y ∈ [0, m/2]d and define, similarly to (4), the following coarse
grid model

PC

(

{yj}nC

j=1

)

= e−2dE(AC,ρC)/T , (12)

where AC is the approximation function defined by (2) using the
kernels centered at {yj}nC

j=1 ⊂ [0, m/2]d. As a matter of conven-
tion, we assume the coarse grid has the same spacing as the fine



(i) (ii) (iii)

Figure 6: Three refinement rules where a point belonging to a
coarse configuration divides into four points (black circles) in two-
dimensional space. In all cases the center of mass of the new points
falls at the original point.

grid (∆x = 1) and therefore the kernels have roughly the same
dimensions as in the finer model (since ρC has roughly the same
values as ρ). As we shall see later, this model is expected to contain
fewer points, roughly quarter in d = 2. The 2d in (12) compensates
for having fewer nodes at the coarse grid that the fine (2−d times
less). By its derivation, this model is consistent with P and assigns
the same (relative) probabilities for ω ∈ L. The fact that {yj}nC

j=1

span, through ÂC , the equivalent potion of L that {xj}nj=1 span in

L ∪ H (through Â) is explained by a similarity argument; as we
shall see, the number of points in the coarse grid nC compared to n
is roughly the same proportion as the number of computational grid
nodes in ρC compared to ρ, i.e., the two models have the same ra-
tio between their degrees of freedom and target objectives. Finally,
given PC , even coarser models are obtained by computing coarser
and coarser target density functions.

Refinement Scheme. It remains to show how a sample {yj}nC

j=1

drawn from a coarser model, PC , is mapped to a valid sample
{xj}nj=1 at the finer configuration space while keeping its low fre-
quencies sufficiently unchanged. In case of functions defined on
grids, such as AC , this can be achieved via standard interpola-
tion. However, the values of AC are not free parameters but de-
termined via {yj}nC

j=1. Implementing this by doubling the kernels
coordinates and scale will lead to an inconsistency with the ker-
nel scales dictated by the target density at the finer grid. This is
because the target density functions in the two grids have approx-
imately the same values (e.g., exactly the same in case of constant
ρ). The difference must therefore be in the number of kernels; ev-
ery point yj must be translated to 2d points in the finer model. In
the Supplemental Text we show that a spectrally-correct refinement
is achieved by mapping every yj as follows

yj 7→ 2yj + σ(yj)z
l, (13)

where zl for 1 ≤ l ≤ 2d are small offset vectors in R
d such that

∑

l z
l = 0, i.e., the center of mass of the new points falls at 2yj .

Figure 6 shows several refinement rules in two-dimensional space
that preserve the center of mass. A Fourier analysis, which we de-
tail at the Supplemental Text, shows that the accuracy of the ap-
proximation function resulting from this refinement is

Â(ω) = 2dÂC(2ω) +O
(

‖ω‖2
)

. (14)

This applies for the low frequencies ω we are most concerned about

and for kernels that admit the admissibility condition Φ̂′(0) = 0,
which is obeyed by any symmetric function that is differentiable
at zero, including the Gaussian kernels we use. Experiments show
that setting ‖zl‖ = 1 in the first two options shown in Figure 6
requires the smallest number of Langevin iterations (we use 15) to
relax at every scale. The third option requires considerable more
iterations (about 50) in order to smooth the high-frequency inter-
polation aliasing it produces. To produce the results shown in the
paper, we used the the second (square) refinement rule in Figure 6.

The refinement error in (14) is proportional to the Langevin re-
laxation correction size ‖ω‖2 we saw. Hence, a fixed number
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Figure 7: The lowest non-trivial Fourier mode (real part) of the ap-
proximation function is shown at every chain step. Red plots show
relaxations at the finest scale of configurations created at that scale
(using our initialization step) and green plots show the relaxation at
the same scale of configurations that were relaxed at coarser scales
and refined to the finest scale.

of stochastic iterations are needed in order to reach equilibrium
across the entire spectrum—implying the critical slowing down is
eliminated. Indeed, this is the main principle behind the Multi-
grid MCMC [Goodman and Sokal 1989] as well as its determinis-
tic case [Trottenberg et al. 2001]. For this reason it is not needed
to compute ρ|C as an ideal low-passed version of ρ and any stan-
dard compact filtering that transfers the low-frequency content to
the coarse grid with an error proportional to ‖ω‖2 is sufficient. The
high-frequencies introduced at the finer scale are not assumed to
be close to equilibrium but are relaxed efficiently by the Langevin
iterations at that grid.

Validation. Given these two ingredients we can now test the fol-
lowing multi-scale sampling scheme. Given an initial set of points
at the coarsest grid we repeat the following two steps: we perform
several Langevin iterations using (5) and then refine the resulting
configuration to the next (finer) grid by mapping every point to 2d

points according to (13). This process repeats itself until the finest
grid is reached. In order to evaluate the effectiveness of this scheme,
we compare it to applying the Langevin iterations only at the finest
scale. Figure 7 shows the evolution of the lowest non-trivial Fourier

coefficient of Â at the finest grid computed by both strategies. It is
clear from the plots that as the number of points n grows, it takes the
single-scale approach more iterations in order to reach equilibrium
values while in the multi-scale strategy the low-frequency compo-
nent is already at equilibrium when the iterations of the finest level
start. This independence of the number of points n indicates that the
critical slowing down is eliminated using the multi-scale sampling.
This empirical behavior is shared by both models γ = 1, 2.

3.3 Proposed Algorithm

Initial Configuration. In order to fully define the model given
by (3) and (4), the number of points n must be determined. This
is done by scanning the computational grid in a random order and
testing whether a kernel should be place at every node. The point
is accepted if it leads to a reduction in the energy (3) and discarded
otherwise. Note that, as we discussed in Section 3, the change in
energy can be computed by considering only the nodes where Φ is
non-negligible. Moreover, a vast majority of the nodes can be effi-
ciently tested and rejected if the pointwise error does not decrease
when adding the (center) kernel value at that node. Thus when ac-
cepting a kernel, nodes in a neighborhood of size proportional to the



Algorithm 2: Multi-scale sampling scheme.

compute ρq , for q = 1...p by smoothing and sampling 2dqρ ;
for every node y (scanned randomly) do

set q = ⌈(− log2 ρp(y))/d⌉ ;

compute kernel with σ= −d
√

ρq(y)/w and w = 2d(p−q) ;
if kernel with σ and w reduces energy then

add point y ;
end

end
relax points Y using Algorithm 1 ;
for q = p− 1...1 do

for every point y do
if w > 1 then

create points xl = 2y +−d
√

ρq−1(y)/w zl ;

with wl = w/2d, where l = 1...2d;

else
create point x = 2y with w = 1 ;

end

set new kernels scale σ= −d
√

ρq(x)/w ;

end
swap Y = X ;
relax points Y with σ < σmax using Algorithm 1 ;

end

kernel scale around its center are eliminated from the list of candi-
date point locations. While we use this initialization at the coarsest
level (containing a fixed number of grid nodes), the running time of
this initialization procedure is linear even if computed at the finest
grid. The construction of a random permutation over the nodes in-
dices is also done in linear time; the list of indices is scanned once
and every index is swaped with another index chosen randomly and
uniformly from the list. Finally, while the kernels centers are ini-
tialized at integer grid coordinates, this ceases to be the case after
the first Langevin iteration took place.

While this initialization produces a sufficient coverage of the do-
main and can be used as the starting point for the coarse-to-fine
scheme we described, we would like to introduce one modifica-
tion that will make the entire algorithm more efficient. The factor
2d multiplying the energy in the coarse model (12) can be inserted
inside the energy term. In the case of γ = 1, the integrand will
become |2dAC − 2dρC|. This can be interpreted as if the coarser

density ρC is 2d times denser than ρ, and similarly, 2dAC can be
viewed as if every kernel is assigned with 2d times more mass.
Now, assume ρ is smaller than 2−d in some region, then 2dρC < 1
in the corresponding region of the coarse grid. Recall that, as we
discussed in Section 3, densities below one define kernel scales that
are properly captured by the computational grid resolution. The

scale resulting from this density is σ = −d
√

2dρC = −d
√
ρC/2, i.e.,

half the scale produced by ρC. Thus, when constructing the initial
coarse-grid point configuration we can place 2d kernels of half the
size, each weighing a unit, instead of placing one large kernel that
weighes 2d. Clearly, these kernels must not be split in the refine-
ment step and therefore we must keep track of the kernels weights.
Note that, when computing the initial configuration, we do not need
to explicitly create the 2d kernels. By placing smaller kernels of less
mass, more such kernels will be created automatically.

We shall now describe our modified scheme. Suppose we are about
to operate on p grid levels. In our implementation we use m =
32 grid points at the coarsest level and set p = log2 m − 5. We
denote by ρq the target density function reduced to the q-th scale
(via filtering and subsampling) including the multiplication by the

quadratic density

Balzer et al. [2009]

our

0.83% 9.05% 59.32%30.8%

4% 15.4% 48.9%31.7%

0.9% 8.9% 59.3%30.9%

0.8% 10.2% 59.4%29.6%

Lloyd

0.83% 9.05% 59.32%31.80%

Figure 8: A quadratic density profile approximated using 1000
points using Lloyd’s method, Balzer et al. [2009], and our method.

factor 2d(q−1) . When proposing to place a new kernel at some node
x in the coarsest grid, we compute the maximal q ≤ p such that
2dqρp(x) ≤ 1, which is given by q = ⌈(− log2 ρp)/d⌉. We set

the weight w of this point to w = 2d(p−q) and its scale to σ =
−d
√

ρp/w. The number q specifies the number of refinement steps
in which this point must not be split as it is represented by a kernel
small enough.

Configuration Refinement. When refining a point configuration,
every point with weight w greater than one must be split into 2d

points that weigh w/2d. The kernels scales are defined, in every

level q, by σ = −d
√

ρq/w. When a weight reaches one, the point
ceases to split when transferred to a finer grid. In this case, the

kernel scale start growing exponentially (due to the factor 2d(q−1)

in ρq). Therefore, after a few non-splitting refinement steps, when

the kernel gets large enough σ ≥ σmax, its contribution to Â is
confined to the low-frequency band which, by now, reached equi-
librium. Hence, we can stop relaxing it using the Langevin update
and thus avoid processing large kernels. This properly makes our
scheme much more efficient and in practice when updating a point
we do not access more than 16-by-16 grids nodes.

This makes our method well-suited for handling target densities of
a high dynamic range where very large kernels are rendered on grid
resolution that is fine enough to capture the smaller kernels. Be-
sides the computational cost, also the memory requirements can be
reduced using an adaptive computational grid where the nodes res-
olution depends on the target density. We discuss this option as
future work. Despite these detailed considerations, our scheme is
based on very simple steps that we summarize in Algorithm 2.

4 Results

We implemented our algorithm in C++ and ran it on a Pen-
tium 2.83GHz CPU. Our single-core implementation produces
more than 15,000 spatially-varying points per second. We use 15
Langevin iterations at each scale (each sweep scans all the points at
that scale). The coarsest grid resolution we use is 32-by-32 nodes.
Unless specified otherwise, the results are computed with the tem-
perature set to T = 1/2.

In Figure 11 we compare the results we obtain for a constant target
density with the results of Lloyd’s method and the state-of-the-art
method of Balzer et al. [2009]. This test shows that our result com-
puted with T = 1/2 meets the blue-noise qualities of Balzer et al.,



Figure 9: Galileo’s Tomb, Santa Croce, Florence; (left) high-
dynamic range luminance map used as target density for generating
an importance sampling map. (right) A blowup of the main window.
Blue dots indicate samples. Map contains 1784 points.

both in terms of isotropy and annulus dimension. Another impor-
tant test is shown in Figure 8 where a quadratic density function is
set as the target density. Our method optimizes explicitly, through
the definition of the energy (3), the approximation of this density,
and therefore achieves close numbers. Further comparisons with
the methods of Secord [2002] and Balzer et al. are shown in Fig-
ure 12, where spatially-varying densities are matched. A compari-
son with the method of Schmaltz et al. [2010] is shown at Figure 13
where we also demonstrate our method at different temperatures. In
Figure 9 we place samples according to high-dynamic range target
ρ with density ratio of 1 : 5000. These 1784 points were generated
in 2/3 of a second. This is about fives times slower than stippling
(spatially-varying) images with intensity ratio of 1 : 200 due to
the fine computational grid resolution needed. Finally in Figure 10
we verify the linear running-time of our method and compare it to
the running time of Balzer et al., which is three orders of magni-
tude higher on point sets of moderate size. We also compare to the
running time of Schmaltz et al. on a GPU that crosses our linear
performance also at moderate sizes, lower then 103 points.

5 Conclusions

We presented a new formalism for generating multi-dimensional
blue-noise stochastic point distributions. In this approach random-
ness is unified with an equidistance requirement by defining a sta-
tistical interacting particle model. Point sets are then produced by
drawing samples from this model. We described an efficient multi-
scale sampling procedure that generates proper samples from this
model in running times that are linear in the number of points gen-
erated. To achieve this, we analyzed the critical slowing down oc-
curring in our model and used this understanding to develop a very
simple and effective multi-scale coarse-to-fine sampling scheme
that eliminates this deficiency.

While the number of points n produced can be controlled by the
computational grid resolution m, it cannot be set explicitly. The
proportionate relation between the two numbers allows approxi-
mating n in one or two extra trial-and-error iterations. As we noted
earlier, an adaptive computational grid in the form of quadtree or
naive (spatially-varying) random nodes arrangement can be used
for reducing memory costs when dealing with high-dynamic range
target densities. We leave these investigations as well as the option
of a parallelizing our algorithm for future work.

We believe that defining random models explicitly offers a gen-
eral framework that allows specifying detailed requirements. While
sampling such models may require some thought, very efficient so-
lutions can be found. Hopefully, this paradigm be found useful for
other computer graphics applications.
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Figure 10: Running time dependency on the number of points.
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method’s of Balzer et al. [2009] and Schmaltz et al. [2010] com-
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we verify the linear running time of our algorithm on spatially-
dependent target density.
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