
Architecture-Based Reliability Evaluation under
Uncertainty

Faculty of Information and Communication
Technologies, Swinburne University of

Technology
Hawthorn, VIC 3122, Australia

{imeedeniya,imoser,aaleti}@swin.edu.au

Faculty of Computer Science & Center for
Mathematical and Computational Modelling

(CM)2
University of Kaiserslautern, D-67653, Germany

grunske@cs.uni-kl.de

ABSTRACT
The accuracy of architecture-based reliability evaluations
depends on a number of parameters that need to be esti-
mated, such as environmental factors or system usage. Re-
searchers have tackled this problem by including uncertain-
ties in architecture evaluation models and solving them ana-
lytically and with simulations. The usual assumption is that
the input parameter distributions are normal, and that it is
sufficient to report the attributes that describe the system
in terms of the mean and variance of the attribute. In this
work, we introduce a simulation-based approach that can ac-
commodate a diverse set of parameter range distributions,
self-regulate the number of architecture evaluations to the
desired significance level and reports the desired percentiles
of the values which ultimately characterise a specific quality
attribute of the system. We include a case study which il-
lustrates the flexibility of this approach using the evaluation
of system reliability.

Categories and Subject Descriptors
D.2.11 [Software Architectures]; C.4 [Performance of
Systems]; D.2.4 [Software/Program Verification]: Re-
liability

General Terms
Reliability, Design

Keywords
Software architecture evaluation, Reliability, Monte Carlo
simulation, Uncertainty analysis

1. INTRODUCTION
Architecture-based quality evaluation models are an im-

portant asset during design of software intensive embedded
systems. The benefit of these evaluation models is especially
evident in the architectural design phase, since different de-
sign alternatives can be evaluated and software architects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoSA+ISARCS’11, June 20–24, 2011, Boulder, Colorado, USA.
Copyright 2011 ACM 978-1-4503-0724-6/11/06 ...$10.00.

are able to make informed decisions between these alterna-
tives. To date, a number of evaluation models have been
proposed for evaluating specific quality attributes such as
performance [3, 5], reliability [15] and safety [22]. However,
for a considerable number of parameters the architecture
evaluations are based on estimates. These estimations tend
to use field data obtained during testing or operational us-
age, historical data from products with similar functionality,
or reasonable guesses by the domain experts. In practice,
however, parameters can rarely be estimated accurately [2,
13, 21]. In this paper, we investigate different aspects in re-
lation to the parameter uncertainties in architecture based
quality evaluation having specific focus on reliability, and
formulate a framework that constitutes specification, eval-
uation and quantification of probabilistic quality attributes
in the presence of uncertainty. In the context of software-
intensive systems design, the sources of uncertainty can be
classified into two major categories.
Aleatory uncertainty is the inherent variation associated
with the physical system or environment under considera-
tion [30]. This category refers to the sources that are in-
herently stochastic in nature. Physical uncertainties such as
noise in electrical conductors, humidity, temperature, ma-
terial parameters, behaviour and instantaneous decisions of
operators are examples in the domain of embedded systems.
This type of uncertainty can not be avoided [6].
Epistemic uncertainty is uncertainty of the outcome due
to the lack of knowledge or information in any phase or ac-
tivity of the modelling process [30]. This source of uncer-
tainty reflects the lack of knowledge on the exact behaviour
of the system. Uncertainties of this type are subjective and
depend on factors such as maturity of the design and mod-
els, experience of the application domain, and the coverage
and extent of testing.

Manifestations of the above two types of uncertainty exist
in the parameters of software architecture such as software
components, inter-component interactions, hardware com-
ponents, communication links, behavioural distributions, op-
erational profile and use cases. In this paper, we address the
problem of architecture-based quality evaluation of proba-
bilistic properties, when the external and probabilistic model
parameters are subjected to uncertainty. We focus on prob-
abilistic quality attributes and the probabilistic models that
are used to obtain the quantitative metrics from the archi-
tecture. The accuracy of the architecture evaluation models

85

I. Meedeniya, I. Moser
and A. Aleti

L. Grunske

and the goals are not questioned, and considered out of the
scope of this study.
Related Work. In the context of software architecture
evaluation under uncertainty, a considerable amount of work
can be found in the area of sensitivity analysis with respect
to the parameters of probabilistic quality models. Most of
the approaches to date have concentrated on specific quality
attributes. In the area of architecture-based reliability eval-
uation Cheung [9] presented a sensitivity analysis method
for his original reliability model with a composite Discrete-
Time Markov Chain (DTMC) abstraction. The method is
purely analytical and consists of a number of 2nd and 3rd or-
der partial derivatives of system reliabilities which are hard
to estimate in real cases. Goševa-Popstojanova et al. [21]
proposed the method of moments to calculate the sensitiv-
ity of a system’s reliability to component reliabilities and
transition probabilities analytically. Cortellessa et al. [12]
discussed the significance of error propagation to other parts
of the system. Their sensitivity analysis can help identify the
most critical system components. Coit et al. [37, 10] have
used means and variances of reliability estimates of software
components to analytically derive the mean and variance of
the reliability of a redundancy allocation. With the assump-
tion of normal distributions for input, Finodella et al. [13]
derived the distribution of system reliability from a multi-
nomial distribution. Coit et al. [11] presented an analytical
approach to obtain the lowerbound percentile of the reli-
ability in series-parallel systems whereas similar analytical
approach can be seen in evaluation of reliability bounds [7].
All of the above methods have taken an analytical approach
to quantify the sensitivity, where the applicability is limited
to analytically solvable models. However, these analytical
sensitivity analysis methods are hard to generalise. Further-
more, all the discussed approaches assume the parameter
distributions are normal and variations can be characterised
by the mean and variance alone.

Goševa-Popstojanova et al. [20, 19] have shown that an-
alytical methods of uncertainty analysis do not scale well,
and proposed a Monte Carlo (MC) simulation based method.
With the help of experimental validation they demonstrated
that the MC methods scale better than the method of mo-
ments approach [17]. Similarly, Marseguerra et al. [26] have
used mean and variance estimates of component reliabilities
to obtain the mean and variance of the system reliability
using MC simulation. These approaches have extended the
applicability of uncertainty analysis to the analytically solv-
able models, assuming the applicability of specific reliability
models and input distributions. Yin et al. [38] has proposed
a DTMC simulation-based approach to derive system relia-
bility from the probability distributions of component reli-
abilities under the assumption that component and system
reliabilities are gamma-distributed. Axelsson [2] has also
highlighted the significance of MC based approaches in cost
evaluation with uncertainty.

However, the existing MC-simulation-based uncertainty
analysis approaches are based on the assumption that there
is a specific continuous input distribution and that the re-
sulting sample distribution is normal or Weibull. However,
practical experience in connection with some studies [25, 14]
show that the actual distributions are hard to determine.
Mean-and-variance-based quality evaluations are not suffi-
cient for architecture-based decision making in the case of
safety-and-mission-critical systems.

Contribution and Overview of the Paper. In this
paper we introduce a new Monte-Carlo-based architecture
evaluation method, which allows heterogeneous and diverse
uncertainties as they naturally occur in software architec-
ture evaluation models [2, 31, 32, 38]. Figure 1 illustrates
the elements of the novel approach and their relationships.
The leftmost element represents the specification of the soft-
ware components, hardware, usage profile and quality re-
quirements. We introduce the ability to incorporate hetero-
geneous information about the uncertainty of parameters at
the specification phase. Model-based quality evaluations are
used to determine the quality of the prospective system on
the basis of the architecture. Based on the results of multiple
Monte Carlo (MC) simulations, estimates for the quality at-
tributes of the architectures are computed. A novel dynamic
stopping criterion stops the MC simulations when sufficient
samples have been taken.

Probab i l i s t i c
M o d e l

C o n s t r u c t i o n
(S e c . 4)

M o n t e - C a r l o
S i m u l a t i o n

(S e c . 5)

P a r a m e t e r
S p e c i f i c a t i o n

w i t h U n c e r t a i n t y
(S e c . 3)

D y n a m i c
S t o p p i n g
C r i t e r i o n
(S e c . 6)

Q u a l i t y
M e t r i c

 S a m p l i n g

 C o n t r o l

Figure 1: Architecture evaluation under uncertainty

2. EXAMPLE APPLICATION
The example of a deployment architecture which assigns

of software components to a hardware infrastructure of elec-
tronic control units (ECUs) is used to illustrate the concepts
introduced in this paper. The software components belong
to the Anti-lock Brake System (ABS) of a car. ABS is a
system that maintains traction during braking manoeuvres
to prevent skidding. It is therefore a crucial safety features
found in most of contemporary cars. The system and its
parameters are briefly described in this section, and further
details can be found in [28].

2.1 Software Components and Interactions
The software components in this example are treated as

black boxes [23], i.e. a description of the externally visi-
ble parameters such as is available, internal structures are
unknown and not modifiable. The components interact to
implement a set of services, defining the functional units
accessed by the user of the system. The ABS activity is
initiated in one software component (with a given proba-
bility) which may employ many auxiliary components it is
connected to via communication links. The process and log-
ical views of the subsystems are depicted in Figure 2a. The
ABS Main Unit is the major decision making unit regard-
ing the braking levels for individual wheels, while the Load
Compensator unit assists with computing adjustment fac-
tors from the wheel load sensor inputs. Components 4 to 7
represent transceiver software components associated with
each wheel, and communicate with sensors and brake actua-
tors. Brake Pedal is the software component that reads from
the paddle sensor and sends the data to the Emergency Stop
Detection software module.
Software component parameters
(a)Workload (wl): computational load of a software compo-
nent in executing a requested task; expressed in MI (million
instructions).

86

Emergency
Stop
Detector

1

ABS
Main
Unit

0

Load
Compen-
sator

3

5
WSR-F

6
WAC-R

7WAC-F

4
WSR-R

WAC : Wheel Actuator Controllers (Front and Rear)
WSR : Wheel Sensor Readers (Front and Rear)

Cruise
Control

8

Brake
Pedal

2

(a) SW Architecture

B
us

0
(C

A
N

)

B
us

2
(R

ea
r

LI
N

)

B
us

1
(F

ro
nt

 L
IN

)

1
5

7

2

3
8

0
6

4

E
C

U
2

E
C

U
1

E
C

U
4

E
C

U
5

E
C

U
0

E
C

U
3

(b) Deployment

Figure 2: Software components and their deployment to HW
topology in the ABS system

(b)Execution initiation probability (q0): the probability of
the program execution starting at this component.
Interaction parameters
specified for a link from component Ci to Cj .
(a)Data size (ds): the amount of data transmitted from
software component Ci to Cj during a single communication
event; expressed in KB (kilobytes).
(b)Next-step probability (p): the probability that a service
calls component Cj after component Ci.

2.2 Hardware Topology and Deployment
The hardware model used to deploy the software compo-

nents is comprised of a distributed set of certified ECUs hav-
ing different capacities of memory, processing power, access
to sensors, etc. ECUs communicate through buses. Many
types of buses with different data rates and reliability can
be present. The ECUs and the bus system that compose
the hardware architecture for the system is depicted in Fig-
ure 2b. In this example, we consider one of the feasible
deployments of software components to the hardware archi-
tecture. The numbers in Figure 2b refer to the allocated
software components with corresponding ids in Figure 2a.
ECU parameters
(a)Processing speed (ps): the instruction-processing capac-
ity of the ECU; expressed in MIPS (million instructions per
second). This is used to calculate the execution time, which
is a function of processing speed of the ECU and the com-
putation workload of the service.
(b)Failure rate (fr): failure rate (of the exponential distri-
bution [8, 1]) that characterises the probability of a single
ECU failure.
Bus parameters
(a)Data rate (dr): the data transmission rate of the bus; ex-
pressed in KBPS (kilobytes per second). This is used to cal-
culate the latency in for data transmission, as it is a function
of the data rate of the bus and the amount of data transmit-
ted during the communication. (b)Failure rate (fr): failure
rate of the exponential distribution characterising data com-
munication failure of each bus.

2.3 Objectives
The problem in focus is to evaluate the reliability of the

ABS function from the deployment architecture. With re-
spect to the deployment, two sources of failure are consid-

Distribution Specification Syntax Range Example

Normal NORMAL,μ,σ2 (−∞,∞) NORMAL, 3.75, 0.05

Beta BETA, α, β [0,1] BETA, 10, 2

Shifted Beta BETA SHD,x, x, α, β (x, x) BETA SHD, 3, 5, 2, 10

Exponential EXP,λ (0,∞) EXP, 7.5× 10−6

Uniform UNIFORM,x, x (x, x) UNIFORM, 3.5, 4.0

Gamma GAMMA,λ (0,∞) GAMMA, 1.5

Weibull WEIBULL,α (0,∞) WEIBULL, 1.5

Discrete
DISCRETE,
x0, p0, x1, p1, ..., xn, pn

(x0, xn)
DISCRETE,
2, 0.4, 2.1, 0.5, 2.3, 0.1

Table 1: Probability distributions and their specification

ered for reliability evaluation which have been defined in
[28].
Execution failures: Failures may occur in the ECUs dur-
ing execution of a software component, which affects the re-
liability of the software modules running on that ECU. For
this illustration, we assume a fixed deterministic scheduling
of tasks with in the ECU. It is also assumed that the failure
that happens in an ECU while a software component is ex-
ecuting or queued leads to a service execution failure.
Communication failures: Failure of a data communica-
tion bus when a software component communicates with an-
other one over the bus, directly impacts a failure in the ser-
vice that depends on this communication.
The annotations, model and evaluation of the reliability are
presented in later subsections.

3. SPECIFICATION OF UNCERTAIN PARAM-
ETERS

Even when there is uncertainty in the parameter space,
not all the parameters have necessarily probabilistic values.
Often there are considerable dissimilarities between param-
eters whose values cannot be definitively determined. Since
it has been established that the variability of parameter es-
timates significantly affects the quality metric of the archi-
tecture [17, 4, 34], it is important to capture the variability
characteristics as accurately as possible. Given these consid-
erations, we comprehend architecture parameters as a mix
of precise and imprecise sets.

3.1 Probability Distributions
As a means to capture heterogeneous uncertainties in pa-

rameter estimation, we propose to use generalised probabil-
ity distributions. A parameter in an architecture specifica-
tion is considered as a random variable, whose variability
is characterised by its – continuous or discrete – distribu-
tion. For the parameter specifications in the architecture
descriptions we propose a generic notation that can cater
for any distribution. The specification is given as a param-
eter list, starting with a unique identifier assigned to the
distribution. Some examples for Probability Density Func-
tion (PDF) specifications are given at Table 1.

3.2 Mapping Uncertainty into PDFs
The proposed approach allows to combine diverse sources

that affect the nominal value of the parameter, and con-
sider their impact on the quality evaluation in addition to
the conventional point estimates. Some guidelines to ob-
tain the PDFs at the design stage can be given as follows.
• Derive from the source variations. The uncertainty of pa-

87

rameters are often manifestations of different sources. In-
formation from hardware manufactures, third party soft-
ware vendors or system experts is useful in characterising
the uncertainty in specific parameters. In some situations,
the distribution of the source variables can be obtained and
consequently, the desired parameter’s distribution can be
approximated from its sources.

Example � The failure rate (λ) of an ECU is a function
of its ambient temperature (T in Kelvin) [8], such as λ =
4 · 10−6 × T + 100. Consider an automotive electronic sys-
tem where the temperature profile around ECU X varies
between 300K and 400K, has a 370K mode and is skewed
right. The PDF of λ of ECU X can be derived and specified
as λX = BETA SHD, 400× 4 · 10−6 , 500× 4 · 10−6 , 10, 2 �

• Histogram approximation Prior information on the param-
eters may be available. For certain parameters, large num-
bers of raw data may be available as a result of testing. In
such situations, the PDFs can be approximated from the
histograms of the raw data.

Example � In functional test executions of the system model,
the histogram of the test results indicated that the message
transfer probability from component Ci to component Cj is
normally distributed. The average of the samples is 0.2 with
a variance of 0.04. Therefore, the transfer probability can
be given as pi,j = NORMAL, 0.2, 0.04 �

• Uniform approximation It is common to have limited in-
formation on the range of the variation without any specifi-
cation on variation within the range. Uniform distributions
can be used in approximating such situations.

Example � The system has a need to communicate with a
new external service X, of which we only know that its worst
case response time is 1.0s. The communication link takes
at least 5ms for the data transfer. rt = UNIFORM, 5 ·
10−3, 1.0 �

• Specify distinct information as a discrete-sample distribu-
tion : In cases where the a parameter can only vary within
a discrete set, discrete-sample distributions can be used to
capture it. This is a very powerful feature in our approach
as in most of the practical situations, it is relatively easy to
obtain discrete estimates.

Example � Experts have indicated that the request rate (rr)
for a service X can be either 200 or 800 per second. In
75% of the cases it is 200. This will be given as rr =
DISCRETE, 200, 0.75, 800, 0.25 �

3.3 Illustration Using the Example
Not every parameter pertaining to the current example is

subject to uncertainty. For instance, the processing speed(ps)
of an ECU or the computational load(wl) of a software com-
ponent can realistically be considered fixed and determinis-
tic. However, parameters such as the failure rates of ECUs,
failure rates of buses, execution initiation probabilities and
transition probabilities are subject to uncertainty and have
to be estimated. Table 2 shows an example set of parame-
ters.

The probabilistic specification of parameters in the tables
reflect the variability of these parameters in relation to the
automotive ABS system. It is realistic to assume different
distributions for the same parameter in different problem

Comp. wl q0
ID (MI)
0 1.2 0
1 0.6 0
2 0.4 DISCRETE, 0.03, 0.2, 0.3, 0.4, 1.5, 0.2, 3, 0.2
3 1 0
4 0.4 NORMAL, 0.3, 0.075
5 0.4 NORMAL, 0.3, 0.075
6 0.4 0
7 0.4 0
8 0 DISCRETE, 0.01, 0.2, 0.1, 0.4, 0.5, 0.2, 1, 0.2

(a) Software Components

Trans p(ci, cj) ds
ci → cj (KB)
0 → 6 DISCRETE, 0.05, 0.2, 0.5, 0.4, 2.5, 0.2, 5, 0.2 2
0 → 7 DISCRETE, 0.05, 0.2, 0.5, 0.4, 2.5, 0.2, 5, 0.2 2
1 → 3 1 2
2 → 1 1 2
3 → 0 1 2
4 → 0 GAMMA, 0.7 1
4 → 3 GAMMA, 0.3 2
5 → 0 GAMMA, 0.7 1
5 → 3 GAMMA, 0.3 2
8 → 0 1 0

(b) Component Interactions

ECU ps fr
ID (MIPS) (h−1)

1 40 BETA SFT, 4 · 10−5, 4 · 10−3, 10, 2

2 22 BETA SFT, 4 · 10−5, 4 · 10−3, 10, 2

3 22 DISCRETE, 2 · 10−6, 0.2, 2 · 10−5, 0.4, 1 · 10−4, 0.2, 2 · 10−4, 0.2

4 22 DISCRETE, 1 · 10−5, 0.2, 1 · 10−4, 0.4, 5 · 10−4, 0.2, 1 · 10−3, 0.2

5 110 NORMAL, 8 · 10−4, 0.04

6 110 NORMAL, 2 · 10−4, 0.01
(c) ECUs

BUS dr fr
ID (KBPS) (h−1)

0 128 BETA SFT, 3 · 10−6, 3 · 10−4, 10, 2

1 64 BETA SFT, 1.2 · 10−5, 1.2 · 10−3, 10, 2

2 64 BETA SFT, 4 · 10−6, 4 · 10−4, 10, 2
(d) Buses

Table 2: Parameter specification of software and hardware
elements of the architecture

instances [1, 8, 18, 28]. The sources of these values may be
different in each instance. Hence, within the same column,
we may have mentioned different PDFs as well as distinct
values.

4. PROBABILISTIC MODEL CONSTRUC-
TION

4.1 Propagation of Uncertainty in Models
The specification of architectural elements as discussed

above requires a new model for quality evaluation. Different
quality attributes can be evaluated using different modelling
approaches as discussed in related work section in the intro-
duction. In the case of probabilistic quality attributes, the
evaluation models are also probabilistic. The model param-
eters are often derived from the parameters of the architec-
tural elements. This process results in one-to-one, one-to-
many, many-to-one or many-to-many relationships of archi-
tecture parameters to the parameters of probabilistic model.
As we have incorporated probabilistic specification of pa-
rameters of architectural elements, the probabilistic notion
is transformed to the evaluation model parameters. Due to
the fact that the inputs are probability distributions, the
resulting evaluation model parameters become probability
distributions or functions of probability distributions.

4.2 Illustration Using the Example
In order to obtain a quantitative estimation of the reliabil-

ity of the automotive architecture in focus, a well-established
DTMC-based reliability evaluation model [15, 16, 35] is used.
An absorbing DTMC [35] is constructed for each subsystem

88

from the software components and hardware specification,
such that a node represents the execution of a component
and arcs denote the transfer of execution from one com-
ponent to the other. A super-initial node [36] is added
to represent the execution start, and arcs are added from
that node annotated with relevant execution initialisation
probabilities(q0). Figure 3 shows the DTMC for the exam-
ple case. The node labels point to the corresponding nodes
in Figure 2a. The failure rates of the execution elements can

4

5

0

312

6

7
s

8

q0(8)

q0(4)

q0(2)

q0(5)

p(8, 0)

p(4, 0)

p(3, 0)p(4, 3)

p(2, 1)

p(1, 3)

p(5, 3)

p(5, 0)

p(0, 6)

p(0, 7)

Figure 3: Annotated DTMC for service reliability evaluation

be obtained from the ECU parameters. The execution time
is defined as a function of the software–component workload
and the processing speed of its ECU. Similar to the models
used in [1, 27], the reliability of the ABS system considers
both ECU and communication link failures. In detail, the
reliability of a component ci can be computed as:

Ri = e
−fr(d(ci))· wl(ci)

ps(d(ci)) (1)

where d(ci) denotes the ECU allocation relationship of com-
ponent ci. A similar computation can be employed for the
reliability of communication elements [27], which, in our
model, are characterised by the failure rates of hardware
buses, and the time taken for communication, defined as a
function of the buses data rates dr and data sizes ds required
for software communication. Therefore, the reliability of the
communication between component ci and cj is defined as:

Rij = e
−fr(d(ci),d(cj))·

ds(ci,cj)

dr(d(ci),d(cj)) (2)

The expected number of visits of a DTMC node vi : C →
R≥0, quantifies the expectation of use of a component (or
subsystem) during a single system execution. This can be
computed by solving the following set of simultaneous equa-
tions [24, 16]:

v(ci) = q0(ci) +
∑
j∈I

(v(cj) · p(cj , ci)) (3)

The following expansion of the formula (3) can be used to
transform the equation in matrix form:

v(c0) = q0(c0) + v(c0) · p(c0, c0) + v(c1) · p(c1, c0) + ...+ v(cn) · p(cn, c0)
v(c1) = q0(c1) + v(c0) · p(c0, c1) + v(c1) · p(c1, c1) + ...+ v(cn) · p(cn, c1)
v(c2) = q0(c2) + v(c0) · p(c0, c2) + v(c1) · p(c1, c2) + ...+ v(cn) · p(cn, c2)

...
v(cn) = q0(cn) + v(c0) · p(c0, c1) + v(c1) · p(c1, cn) + ...+ v(cn) · p(cn, cn)

In matrix form, the transfer probabilities p(ci, cj) can be
written as Pn×n, and the execution initiation probabilities
q0(ci) as Qn×1. The matrix of expected number of visits
Vn×1 can be expressed as:

V = Q + PT · V (4)

With the usual matrix operations, the above can be trans-
formed into the solution format:

I × V − PT × V = Q (5)

(I − PT)× V = Q (6)

V = (I − PT)−1 ×Q (7)

For absorbing DTMCs, a term that applies to the model
used in this illustration, it has been proved that the inverse
matrix (I − P T)−1 exists [35].

The expected number of visits of a communication link,
v(lij) : C×C → R≥0, quantifies the expected number of oc-
currences of the transition (ci, cj) for each link lij = (ci, cj).
To obtain this value, we have extend the work of Kubat
et al. [24] for computing the expected frequency of system
component access to communication links. In the exten-
sion, we understand communication links as first-class el-
ements of the model, and view each probabilistic transi-

tion ci
p(ci,cj)−−−−−→ cj in the model as a tuple of transitions

ci
p(ci,lij)−−−−−→ lij

1−→ cj , the first adopting the original proba-
bility and the second having probability = 1. Then we can
apply the above, and compute the expected number of visits
of a communication link as:

v(lij) = 0 +
∑

x∈{X}
(v(cx) · p(cx, lij))

= v(cx) · p(cx, cj) (8)

where X is the subset of the indexes of components using
link lij in the deployment under scrutiny.

Based on the relationships obtained in equations (1) and
(2), the reliability of the deployment is calculated as follows:

R ≈
∏
i∈I

R
v(ci)
i ·

∏
i,j∈I

R
v(lij)

ij (9)

Some of the entries for the parameters in Table 2 pi,j , fri,
fri,j , q0i are probability distributions. These parameters
form part of the final reliability calculation in equation (9).
The matrix formula (7) contains entries of heterogeneous
PDFs for pij and q0i . Consequently, the model evaluation
results of vector V of formula (7) becomes probabilistic, and
cannot be solved with numerical matrix operations. Further-
more, Ri and Rij in formulations (1) and (2) are influenced
by the probabilistic specifications of fri and fri,j in Ta-
ble 2. The propagation of parameter uncertainties to the
system reliability R can be further observed in the use of
probabilistic V in combination with uncertain Ri and Rij

in (9).

5. QUALITY METRIC ESTIMATION
The probabilistic model with partially uncertain parame-

ter space has to be evaluated in order to obtain the quantita-
tive metric of the quality of the system architecture at hand.
It has been emphasised before that these models are often
hard to represent as linear mathematical functions. When
many parameters are uncertain with diverse distributions,
the quantitative metric as a distribution cannot be derived

89

analytically. Consequently, the Monte-Carlo(MC)-based ap-
proach presented here draws samples from the probability
distributions of input parameters.

Figure 4 illustrates the architecture evaluation process us-
ing MC simulation. The input of the MC simulation of
the probabilistic model (PM) is a set of parameters spec-
ified as probability distributions (UPs) as well as determin-
istic/certain parameters (DPs).

5.1 Monte Carlo Simulation
The MC simulation takes samples from input probability

distributions of the architectural elements within the proba-
bilistic evaluation model. Any one parameter of an architec-
tural element may contribute to more than one parameter
in the evaluation model. Every time a sample is taken from
input distribution, all model parameters dependent on this
parameter have to be updated. The resulting strategy for a
single run of the MC simulation is explained in the following.
1. Sample: A sample is taken from the Cumulative Distri-
bution Function (CDF) of each parameter. Inverse trans-
formation method [33] can be used for this process.
2. Update: Using the samples drawn from the input dis-
tributions, the numerical values for the evaluation model
parameters are updated. Since more than one parameter
of the probabilistic model may be dependent on a parame-
ter in the architecture, a Publisher-Subscriber paradigm can
be used. Whenever a sample is taken for specific architec-
tural parameter, all the subscribing model parameters are
updated and recomputed.
3. Resolve dependencies: The model specific parameter
dependencies are solved in this phase. The numerical values
for the outgoing transition probabilities are normalised to
comply with the model assumptions.
4. Compute: Analytically solve/simulate the model and
obtain the quantitative metric of the system quality.

The single run of MC simulation results in one numerical
value of the quality attribute (a). Due to the probabilis-
tic inputs (UPs), the values obtained from different runs
({a1, a2, a3, .., aN} = A) are most often not identical. From
the software architect’s point of view, a single statistical
index of a quality metric (â) is desirable despite the uncer-
tainty. The level of tolerance in the statistical estimation de-
pends on the application domain and the quality attribute.
Depending on the character of the system to be designed,
the expected value, variance, quartiles, confidence intervals
and worst case values have been used to describe the quality
of a system.

One important challenge regarding this estimation is that
the actual distribution of the quality metric (A) is unknown.
The existing uncertainty analysis techniques in software ar-
chitecture evaluation have a prior assumption on the distri-
bution of the (A). With some exceptions [11, 38], most
studies assume normal distribution [10, 21]. Due to the
heterogeneity of input parameter uncertainty, and the non-
linearity and complexity of model evaluation techniques, the
resulting quality distribution after MC simulation is unpre-
dictable. For our approach, we introduce a generalised esti-
mation of (â), using the flexible percentiles while supporting
the expected/worst case measures.

5.2 Distribution estimation
From the statistical data (A = {a1, a2, a3, ..., aN}) in the

MC runs, statistical methods can be used to identify param-

eters of a candidate distribution. Possible approaches are
the method of maximum likelihood and the method of mo-
ments, as well as Bayesian estimation [29]. These methods
can be applied when prior information about the distribu-
tion of the resulting quality metric (A) is available. Due
to the diverse nature of input parameter distributions and
the complexity of the quality evaluation models, estimating
prior distribution is hard and computationally expensive,
since it would have to be repeated for each architecture eval-
uation.

5.3 Non-parametric estimation
Non-parametric estimation , has the major advantage of

not requiring any assumptions about the probability distri-
bution of the population (A). Non-parametric methods lend
themselves to providing a generic estimation for flexible per-
centile estimates (Â).

Instantaneous objective values for each MC run (A =
a1, a2, a3, ..., aN) are stored and sorted into ascending or de-
scending order. Percentile estimates can be obtained from
retrieving the correct position in the array.

Example � Assume the quantitative predictions reliability of
an architecture X for each MC run (A) have been inserted
to a ascending-sorted array S = s1, s2, s3, ..., sN . The 95th

percentile of reliability for architecture X is easily obtained
calculating index i = N ∗ 95/100 of the required entry. �

6. DYNAMIC STOPPING CRITERION
All of the estimation techniques discussed above sample

from appropriate distributions and obtain a desired statisti-
cal index of a quality attribute â. However, the accuracy of
the estimate â strongly depends on the sample size, i.e. on
the number of MC trials carried out. One important charac-
teristic of the problem is that the actual value of the estimate
(â) or the distribution of A is not known. Large numbers
of MC runs cannot be conducted because given the large
number of candidate architectures produced in stochastic
optimisation, the computational expense is prohibitive.

6.1 Sequential Statistical Significance Test
To solve this issue, we propose a dynamic stopping crite-

rion based on accuracy monitoring. In this approach, the
assumptions on the monitored distribution (A) are relaxed

by transforming the monitoring phase to the estimate Â. A
statistical significance test is carried out on the samples of
the statistical index (Â).
• A minimum of k MC executions (a1, .., ak) are conducted

before estimating the desired index Â. After k repeats, one
of the methods discussed in Section 5.3 can be used to obtain
each â.
• The variation of the estimate Â = {â1, â2, â3, ..., âk} is
monitored for a sliding window of size k. Only the last k
samples of the estimate Â are monitored, as the accuracy of
the estimation is a changing property. The objective is to
detect if sufficient accuracy is obtained.
• The statistical significance is calculated for the last k es-
timates [33]:

wr =
2z(1−α/2)√

k

√
â2 − (

â
)2

â
(10)

where : wr is the relative error, â is the average of last
k estimates, â2 is the mean-square of the last k estimates,

90

Monte-Carlo Sampling

âi ∈ Â

Estimate
Samples

Probabilistic Quality Model

Uncertain
Parameters

(UPs)

Deterministic
Parameters

(DPs)

4

5

0

3

1

7 Statistical
Estimation

Attribute
Samples

Accuracy
Monitor

ai ∈ A

Quality
Metric

Parameter
Samples

a A â Â Â∗

Figure 4: Monte Carlo simulation

α is the desired significance of the test and z refers to the
inverse cumulative density value of the standard normal dis-
tribution. The relative error wr of the estimate Â is checked
against a tolerance level, e.g. 0.05. The complete algorithm
is explained in Algorithm 1.

Algorithm 1: Monte Carlo simulation with dynamic
stopping criterion

1 i = 1, j = 1;
2 while wr > tolerable wr do
3 ai := conduct one MC execution();
4 if i ≥ k then
5 âj := non-parametric estimate using

(a1, a2, a3, ..., ai);
6 if j ≥ k then

7 â =

j∑
p=j−k

âp

k
;

8 â2 =

N∑
p=j−k

â2
p

k
;

9 wr =
2z(1−α/2)√

k

√
â2−

(
â
)2

â
;

10 end
11 j ++;

12 end
13 i++;

14 end
15 â∗ = âj ;

It should be noted that the parameters of the above algo-
rithm, epoch size (k) and significance (α) can be set inde-
pendently from the architecture evaluation problem.

6.2 Illustration Using The Example
The above algorithm can be applied on the running ex-

ample as the following:
1. The reliability model is constructed from the architecture
specification. The parameters are sampled according to the
specifications in Table 2.
2. Model-specific parameter dependencies are resolved. In
the DTMC-based reliability model, model parameters are
normalised to satisfy the following properties.

• The sum of all outgoing transitions (pij ’s) from any
non-absorbing node should be equal to 1.

• The sum of execution initialisation probabilities(q0’s)
should be equal to 1.

3. These values are subjected to the equation (3) and used

to solve the matrix formulae (7). Then the expected visits
for the links are calculated using equation (8).
4. From the sampled failure rates of ECUs and buses, re-
liabilities can be calculated by using formulae (1) and (2).
Consequently, the system reliability estimate for the sam-
ples obtained in the step (1) can be obtained applying the
equation 9. This process represents a single MC run, which
yields a reliability value ai ∈ A.
5. The steps (1) to (4) are repeated k = 10 times, after
which the accuracy estimation process starts. Assuming a
goal of 90% significance, for k samples, the initial estimate of
reliability (â1) is computed using non-parametric percentile
estimation(5th percentile) described in Section 5.3.
All existing samples are used to estimate â after each MC
run. When k number of estimates â are available, the dy-
namic stopping criterion in equation 10 is applied.
6. If wr is less than a threshold, the last â is considered as
the 5th percentile reliability of the architecture. Otherwise,
the process repeats from step 1. When the stopping crite-
rion is reached, the final estimate of â is taken as the quality
metric â∗ ∈ Â∗.

7. EXPERIMENTS

7.1 Experiments on the Example
The MC simulation process has been explored using the

case study example. The results of 3000 MC trials are pre-
sented in Figure 5. The samples for each MC run, taken as
described in step 4 in Section 6.2, are scattered as depicted
in Figure 5a. It can be seen that the values for the reliability
vary from 0.85 to 0.999, which is a significant variation with
respect to the notion of reliability. The histogram of the re-
liability obtained from 3000 samples in Figure 5b shows that
the conventional assumption of a normal or Weibull distribu-
tion of the system reliability is incompatible with the actual
characteristics of the sample distribution obtained from MC
simulation.

The goal of the MC run was set to the 20th percentile,
i.e. the reliability of the system will be greater than the
estimate for 80% of the cases. The epoch size k was set to
10. The values of each estimation is presented in Figure 5c
(note that the graph starts at sample size of 10). Consid-
erable variations can be observed at the early estimations,
while an observable stabilisation is achieved after around
100 MC runs. These variations are reflected in the error
values (Figure 5d). The stopping criterion uses a signifi-
cance test configuration of α = 0.05 and wr = 0.0005, which
leads to the MC simulation achieving the required accuracy

91

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 500 1000 1500 2000 2500 3000

R
el

ia
bi

lit
y

Samples

(a) Instantanious samples of reliability in MC trials

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

R
el

at
iv

e
F

re
qu

en
cy

Reliability

(b) Histogram of reliability samples

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0 500 1000 1500 2000 2500 3000

20
th

 p
er

ce
nt

ile
 r

el
ia

bi
lit

y
es

tim
at

e

Monte-Carlo Samples

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0 10 20 30 40 50 60 70 80

(c) Variation of the accuracy of the estimation with MC runs

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 500 1000 1500 2000 2500 3000

E
st

im
at

io
n

er
ro

r
(w

r)

Monte-Carlo Samples

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 20 40 60 80 100 120 140 160 180 200

(d) Relative error of sequential accuracy monitoring

Figure 5: Results of the experiments with ABS system example

at 156 runs, with the estimate for 20th percentile reliability
of 0.974527.

7.2 Experiments on Generated Problems
7.2.1 Experiment setup
A series of experiments have been conducted to investi-

gate the presented architecture evaluation approach under
uncertainty. The scalability of the approach is explored by
generating instances from a range of problem sizes. The
objective of each problem is estimation of reliability.
• To represent uncertainties in component reliability figures,
each component’s reliability is specified as a random distri-
butions in the range 0.99−0.9999. For a single problem, the
distributions remain unchanged throughout the experiments
to maintain the comparability of the results.
• Additional distributions are introduced to represent un-
certainties associated with other parameters. The num-
ber of additional uncertainties are varied from 0 to 10 for
each problem size in order to investigate the level or uncer-
tainty in different instances. Parameters with uncertainty
draw their values from Normal, Uniform, Beta, Shifted Beta,
Gamma, Exponential, Weibull and Discrete distributions.
• In order to represent diversity in architecture to model
relationship, the DTMC is constructed using random rela-

tionships between components. Therefore, a parameter may
have an effect on randomly selected transition probabilities
in the generated DTMC.
• The support for different levels of compromise in the es-
timation process is captured by optimising each problem
instance for median, 25th percentile (75% pessimistic), 5th

percentile (95% pessimistic) of the reliability. Dynamic stop-
ping criteria is set to α = 0.05, wr = 0.005 and k = 10.
The configurations for the problem instances are given in
Table 3.

7.2.2 Results
Table 4 lists the results for the expected value, 25th per-

centile (75% pessimistic), 5th percentile (95% pessimistic) of
the reliability using the 16 problem instances and 3 classes
of tolerance described in Table 3. N in the table refers to
the MC runs that first satisfied the stopping criterion. The
estimation of the quality at the stopping condition is listed
in the columns â∗.

The MC simulations are carried out for a large number
of runs (10000), even after the stopping criterion has been
met. The final estimation af obtained from 10000 runs is
compared with the estimation achieved at the stopping con-
dition. The column dr indicates the relative difference be-

92

Case ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DTMC Nodes 10 10 10 10 20 20 20 20 50 50 50 50 100 100 100 100

Additional Uncertainties 0 2 5 10 0 2 5 10 0 2 5 10 0 2 5 10

Table 3: Experiment configurations

tween â∗ and af calculated as:

dr =

(
â∗ − af

af

)2

(11)

In all cases, the relative difference dr is less than the rel-
ative error wr calculated by Equation 10. The results show
that the approach is applicable to different sizes of the prob-
lem as well as diverse levels of uncertainty. The accuracy of
the MC simulations comply with the specified tolerance lev-
els. It should be noted that the novel stopping criterion
controls the process with the effect of saving large number
of computational resources. For example in 5th percentile
estimations, many cases have achieved sufficient accuracy
with a small number of MC runs, while cases like 12 are
automatically continued for longer to obtain an accurate es-
timation.

7.3 Discussion of The Results
Internal validity. The validity of the approach has been
illustrated with respect to the example case study as well
as with a series of random experiments. The new frame-
work’s capability of handling a diverse range of probability
distributions has been validated with the experiments using
random distributions. In the experiments, the DTMC-based
reliability evaluation model takes on a stochastic relation-
ship to the architecture. It has been shown that the new
approach can successfully evaluate a number of very diverse
problem instances, indicating versatile applicability. The
percentiles estimated by the MC-simulator have been cho-
sen to cover moderate and more pessimistic requirements
with the quality attributes in practise. The novel dynamic
stopping criterion has been tested for the 16 random cases
and for three different percentile estimations, and accuracy
of the tests has been validated under the specified tolerance
levels. The experiments have been generated to represent a
maximum possible degree of randomness.
External validity. It should be noted that all the exper-
iments in this paper explore the model of a single system
attribute, reliability. Validity against the spectrum of mod-
els and architecture parameters cannot be claimed without
further experiments. The framework presented in this paper
is deliberately generic and treats the probabilistic evaluation
model as a black box, avoiding a dependency on the internal
complexity of the model. We suggest that the contribution
presented can be applied to any architecture-based evalu-
ation model, even though it has been validated only with
regards to a specific reliability model.

8. CONCLUSIONS
In this paper, we have addressed the high-level problem of

evaluating reliability based on software architectures in the
presence of uncertainty. The evaluation framework intro-
duced in this work provides support for heterogeneous soft-
ware architecture parameters. Probabilistic parameter val-
ues and their evaluation have been accommodated through
the use of an MC simulation. A nonparametric significance
test as a stopping criterion has significantly reduced the
number of trial runs and function evaluations necessary to

achieve the desired confidence level. The functionality of the
framework has been illustrated using a practical case study.
In our future work, we aim to investigate further on gen-
eral applicability of the approach over the other probabilis-
tic properties that are evaluated based on the architecture.
Furthermore, we are currently working on integrating the
uncertainty analysis with design space exploration, towards
robust architecture optimisation.
Acknowledgement. This original research was proudly
supported by the Commonwealth of Australia, through the
Cooperative Research Center for Advanced Automotive Tech-
nology (projects C4-501: Safe and Reliable Integration and
Deployment Architectures for Automotive Software Systems).
Furthermore, the research was supported by the Center for
Mathematical and Computational Modelling (CM)2 at the
University of Kaiserslautern.

9. REFERENCES
[1] I. Assayad, A. Girault, and H. Kalla. A bi-criteria

scheduling heuristic for distributed embedded systems
under reliability and real-time constraints. In Dependable
Systems and Networks, pages 347–356. IEEE, 2004.

[2] J. Axelsson. Cost Models with Explicit Uncertainties for
Electronic Architecture Trade-off and Risk Analysis.
Current Practice, 2006.

[3] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni.
Model-based performance prediction in software
development: A survey. Software Engineering, IEEE
Transactions on, 30(5):295–310, 2004.

[4] M. Basseur and E. Zitzler. A preliminary study on handling
uncertainty in indicator-based multiobjective optimization.
In Appl. of Evol. Computing, pages 727–739. Springer,
2006.

[5] S. Becker, L. Grunske, R. Mirandola, and S. Overhage.
Performance prediction of component-based systems - a
survey from an engineering perspective. In Architecting
Systems with Trustworthy Components, volume 3938 of
LNCS, pages 169–192. Springer, 2006.

[6] H. Beyer and B. Sendhoff. Robust optimization - A
comprehensive survey. Computer Methods in Applied
Mechanics and Engineering, 196(33-34):3190–3218, 2007.

[7] A. Bhunia, L. Sahoo, and D. Roy. Reliability stochastic
optimization for a series system with interval component
reliability via genetic algorithm. Applied Mathematics and
Computation, 216(3):929–939, 2010.

[8] A. Birolini. Reliability engineering: theory and practice.
Springer-Verlag, 2010.

[9] R. Cheung. A user-oriented software reliability model.
Software Engineering, IEEE Transactions on,
6(2):118–125, 1980.

[10] D. Coit, T. Jin, and N. Wattanapongsakorn. System
Optimization With Component Reliability Estimation
Uncertainty: A Multi-Criteria Approach. IEEE
Transactions on Reliability, 53(3):369–380, 2004.

[11] D. W. Coit and A. E. Smith. Genetic algorithm to
maximize a lower-bound for system time-to-failure with
uncertain component Weibull parameters. Computers &
Industrial Engineering, 41, 2002.

[12] V. Cortellessa and V. Grassi. A modeling approach to
analyze the impact of error propagation on reliability of
component-based systems. In Component-Based Software
Engineering, pages 140–156. Springer-Verlag, 2007.

[13] L. Fiondella and S. S. Gokhale. Software reliability with
architectural uncertainties. In Parallel and Distributed
Processing, pages 1–5. IEEE, 2008.

93

Case Median (50th percentile) 25th percentile (75% pessimistic) 5th percentile (95% pessimistic)

ID N â∗ af dr N â∗ af dr N â∗ af dr

1 19 0.952560 0.954734 0.002277 19 0.945523 0.948031 0.002646 19 0.935858 0.002277 0.003700

2 19 0.965903 0.962922 0.003097 19 0.954604 0.957312 0.002828 19 0.949370 0.003097 0.000109

3 19 0.966705 0.968018 0.001356 19 0.962980 0.961934 0.001088 19 0.934353 0.001356 0.018801

4 19 0.942744 0.932468 0.011020 19 0.918319 0.918192 0.000138 23 0.903614 0.011020 0.013062

5 19 0.897277 0.902449 0.005732 19 0.890973 0.892493 0.001703 19 0.880296 0.005732 0.002291

6 19 0.913447 0.907576 0.006469 19 0.900099 0.899102 0.001109 26 0.877142 0.006469 0.011810

7 19 0.912154 0.916944 0.005224 19 0.908060 0.908293 0.000256 19 0.888432 0.005224 0.007256

8 19 0.966131 0.965325 0.000834 19 0.961862 0.960805 0.001101 19 0.948812 0.000834 0.000323

9 19 0.784776 0.785679 0.001149 30 0.767856 0.773189 0.006897 19 0.762634 0.001149 0.007971

10 28 0.739862 0.736462 0.004617 21 0.721135 0.721837 0.000972 19 0.698968 0.004617 0.003520

11 19 0.783287 0.778369 0.006317 19 0.774306 0.762080 0.016042 133 0.725934 0.006317 0.012663

12 19 0.771074 0.748191 0.030584 125 0.727915 0.722666 0.007264 257 0.691504 0.030584 0.013951

13 19 0.592317 0.594764 0.004113 19 0.579529 0.580552 0.001761 48 0.562311 0.004113 0.003324

14 64 0.593832 0.593420 0.000693 34 0.572371 0.579086 0.011595 19 0.545807 0.000693 0.021654

15 33 0.584036 0.589625 0.009480 19 0.576236 0.573726 0.004375 21 0.563660 0.009480 0.020882

16 269 0.536075 0.530330 0.010832 241 0.481548 0.483096 0.003204 19 0.438971 0.010832 0.042167

Table 4: Results of the randomly generated experiments against 16 problem instances and 3 classes of tolerance

[14] M. Förster and M. Trapp. Fault Tree Analysis of
Software-Controlled Component Systems Based on
Second-Order Probabilities. In Int. Symp. on Software
Reliability Engineering, pages 146–154. IEEE, Nov. 2009.

[15] K. Goeva-Popstojanova and K. Trivedi. Architecture-based
approach to reliability assessment of software systems.
Performance Evaluation, 45(2-3):179–204, 2001.

[16] S. Gokhale and K. Trivedi. Reliability prediction and
sensitivity analysis based on software architecture. In Int.
Sym. on Software Reliability Engineering, pages 64–75.
IEEE, 2003.

[17] K. Goseva-Popstojanova and M. Hamill. Architecture-based
software reliability: Why only a few parameters matter? In
Computer Software and Applications Conference, 2007.,
volume 1, pages 423–430. IEEE, 2007.

[18] K. Goseva-Popstojanova, M. Hamill, and R. Perugupalli.
Large empirical case study of architecture-based software
reliability. In Int. Sym. on Software Reliability
Engineering, volume 54, pages 10–52. IEEE, 2005.

[19] K. Goseva-Popstojanova, M. Hamill, and X. Wang.
Adequacy, Accuracy, Scalability, and Uncertainty of
Architecture-based Software Reliability: Lessons Learned
from Large Empirical Case Studies. In Int. Symp. on
Software Reliability Engineering, pages 197–203. IEEE,
2006.

[20] K. Goseva-Popstojanova and S. Kamavaram. Assessing
uncertainty in reliability of component-based software
systems. In ISSRE 2003., pages 307–320. IEEE, 2003.

[21] K. Goseva-Popstojanova and S. Kamavaram. Software
reliability estimation under uncertainty:generalization of
the method of moments. High Assurance Systems
Engineering, 2004., pages 209–218, 2004.

[22] L. Grunske and J. Han. A Comparative Study into
Architecture-Based Safety Evaluation Methodologies Using
AADL’s Error Annex and Failure Propagation Models.
High Assurance Systems Engineering Symposium, pages
283–292, 2008.

[23] A. Jhumka, M. Hiller, and N. Suri. Component-Based
Synthesis of Dependable Embedded Software. Lecture
Notes in Computer Science, 2469:111–128, 2002.

[24] P. Kubat. Assessing reliability of modular software.
Operations research letters, 8(1):35–41, 1989.

[25] P. Limbourg. Multi-objective optimization of generalized
reliability design problems using feature models - A concept
for early design stages. Reliability Engineering & System
Safety, 93(6):815–828, June 2008.

[26] M. Marseguerra, E. Zio, L. Podofillini, and D. Coit.

Optimal Design of Reliable Network Systems in Presence of
Uncertainty. IEEE Transactions on Reliability,
54(2):243–253, 2005.

[27] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske.
Architecture-driven reliability and energy optimization for
complex embedded systems. In Quality of Software
Architectures, QoSA 2010, volume 6093 of LNCS, pages
52–67. Springer, 2010.

[28] I. Meedeniya, B. Bühnova, A. Aleti, and L. Grunske.
Reliability-driven deployment optimization for embedded
systems. Journal of Systems and Software, 84(5):835–846,
2011.

[29] D. Montgomery and G. Runger. Applied statistics and
probability for engineers. Wiley-India, 2007.

[30] W. Oberkampf, J. Helton, C. Joslyn, S. Wojtkiewicz, and
S. Ferson. Challenge problems: uncertainty in system
response given uncertain parameters. Reliability
Engineering & System Safety, 85(1-3):11–19, 2004.

[31] R. Roshandel, S. Banerjee, L. Cheung, N. Medvidovic, and
L. Golubchik. Estimating software component reliability by
leveraging architectural models. In International conference
on Software engineering, page 853. ACM Press, 2006.

[32] R. Roshandel, N. Medvidovic, and L. Golubchik. A
Bayesian Model for Predicting Reliability of Software
Systems at the Architectural Level. LNCS, 4880:108–126,
2007.

[33] R. Rubinstein and D. Kroese. Simulation and the Monte
Carlo method. Wiley-interscience, 2008.

[34] A. Sanchez, S. Carlos, S. Martorell, and J. Villanueva.
Addressing imperfect maintenance modelling uncertainty in
unavailability and cost based optimization. Reliability
Engineering & System Safety, 94(1):22–32, Jan. 2009.

[35] K. Trivedi. Probability & Statistics with Reliability,
Queuing and Computer Science Applications. Wiley-India,
2009.

[36] W. Wang, Y. Wu, and M. Chen. An architecture-based
software reliability model. In Dependable Computing, 1999.
Proceedings. 1999 Pacific Rim International Symposium
on, pages 143–150. IEEE, 2002.

[37] N. Wattanapongskorn and D. W. Coit. Fault-tolerant
embedded system design and optimization considering
reliability estimation uncertainty. Rel. Eng., 92:395–407,
2007.

[38] L. Yin, M. Smith, and K. Trivedi. Uncertainty analysis in
reliability modeling. Reliability and Maintainability
Symposium, pages 229–234, 2001.

94

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

