
The FreeBSD Audio DriverLuigi RizzoDip. di Ingegneria dell'InformazioneUniversit�a di Pisavia Diotisalvi 2 { 56126 Pisa (Italy)email: l.rizzo@iet.unipi.itAbstract. We recently developed an audio driver in the FreeBSD oper-ating system. In this work, we decided to consider compatibility with ex-isting software interfaces only as a secondary issue, to be implemented ata later time and only for those applications which could not be adaptedto the new software interface. This turned out to be a signi�cant ad-vantage, since it let us design the driver (and particularly, its softwareinterface) looking at the real needs of applications, rather than dupli-cating existing, old interfaces, and having applications adapt (in manycases suboptimally) to what the driver could o�er.The main results of our work is the de�nition of a software interface foraudio devices which is well suited to multimedia applications. The newinterface is small, simple but powerful, and allowed several simpli�ca-tions, and signi�cant performance enhancements, in the applications. Inthis paper we motivate our design choices, illustrate our interface, anddiscuss implementation issues both for the device driver and applica-tions. The software described in this paper, and appropriate applicationroutines, are available from the author.Keywords: Multimedia, audio conferencing, audio devices, operatingsystems.1 IntroductionNetworked multimedia applications have become very popular in recent years [4,6, 12, 13], due to a number of enabling factors such as the availability of highperformance computing hardware with multimedia capabilities, which have madeit possible to run in software powerful compression/decompression algorithms,and advances in network and modem technology, which have made networkconnectivity very widespread and with suitable data rates.Amongmultimediaapplications, the most compelling ones are those requiring(soft) real-time features, synchronization among streams of di�erent types, or fullduplex operations. Audio/video conferencing systems are typical examples wherethese demanding requirements appear.Operating system support for multimedia devices, however, predates theseapplications. Audio CODECS and video grabbers are conceptually simple de-vices, and in principle they can be easily integrated into an operating system(e.g. Unix) using standard primitives such as read() and write(), plus a hand-ful of ioctl() calls to access special device features. Such a primitive audio

device driver1 is what is generally available in Unix and other systems, underthe assumption that additional functionalities can be supplied by library rou-tines, or by passing audio data through a server process which acts similarly tothe X Window server (see Fig. 2).The reason why the above reasoning fails is that the server will ultimatelyneed the services of the device driver as well. As more and more functionalitiesare put in the hardware (e.g. by o�oading operations to a DSP in the audiocard) the software interface of the device driver will need to be extended toe�ectively support these functionalities.But what are really the needs of applications which require support withinthe device driver ? Bu�ering is often almost all what is needed if one of thecommunicating parties has no strong timing requirements (e.g. it is a disk), andcan adapt to the average data rate that the CODEC imposes. However, fullduplex applications, or other applications with real-time constraints (e.g. whenaudio must be synchronized with visualization data), have some timing require-ments, since they need to act upon speci�c events (e.g. when a given sample isacquired or played out). This in turn requires the software interface to the de-vice to support the exchange of synchronization information.When these are notavailable (e.g. because they cannot be easily accomodated in some preexistingdevice driver structure, or because they would break backward compatibility),generally the only alternative is to enable non-blocking operation on the audiodevice, and implement synchronization-related functionalities in other ways (e.g.by means of timers). But this is an expensive solution, since it makes applica-tions busy-wait for events instead of using the synchronization mechanism whichare available in the kernel. Yet this is a common approach, which is bearableonly because today's workstations are su�ciently overpowered to tolerate evenhighly ine�cient operating systems and applications.Recently, we were involved in the development of a new audio driver for theFreeBSD operating system. FreeBSD did have a freely available device driver forsound cards, but it lacked support for newer cards, lacked functionalities (e.g. fullduplex support) and had some limitations which applications had to circumventat the price of performance, e�ciency or program clarity. Our goal was thento produce a new driver to overcome all these limitations, possibly rede�ningthe software interface of the driver. On the other hand, the existing softwareinterface [10] was su�ciently popular to require support in the new driver.This gave us two alternatives: either build a driver which was compatiblewith the existing one, adding new features on top of this; or start the designwithout the constraint of backward compatibility, and add a compatibility layerat a later time, only for those applications for which source code was not avail-able and adaptation to the new interface was not possible. Clearly the secondapproach was more demanding, in that it required a study of existing applica-tions to determine which features were needed and how they were used, and some1 In this paper we will not consider specialized hardware which exists for generatingmusic, e.g. FM or wavetable synthesizers. These devices have a completely di�erentinternal structure and software interface.

porting e�ort to adapt applications to the new interface. However, this approachproved to be very fruitful. In fact, the analysis of applications let us understandwhat the driver should really do, rather than what the driver used to do. Thisanalysis, not without surprise, showed that many applications were adapted tothe existing audio driver in a quick and dirty way, by making inconsistent use ofthe available functions, calling functions with the same or similar semantics inmixed or redundant ways, and very often using features (such as non-blockingI/O) which were not necessary or highly expensive. As a result of this analysis,we had a chance of identifying which of the existing functionalities were reallyneeded, which ones were merely duplicates, which ones were probably useless,and which ones were missing. This served us as a guide to what we should re-ally implement in our driver and, at the same time, to how the applications westudied should make use of the audio functions.Basing on this work, we have de�ned what we believe to be a simple yetpowerful set of functions to access audio devices. These functions can be easilyand e�ciently implemented in device drivers, let applications make full use ofthe available synchronization mechanisms, and give very good support for highlydemanding multimedia applications. In this paper we provide a detailed descrip-tion of the functionality and the semantics of our primitives, motivating theirexistence and showing their usefulness. The software interface described in thispaper has been implemented and application have been modi�ed to make use ofit, often with large improvements on the e�ciency of the applications, and alsowith some simpli�cations in the code.The paper is structured as follows.We start with a basic overview of the hard-ware which implements audio devices. In Section 3 we describe the methods toaccess the device to transfer data, and motivate our choices in relation with someexisting applications. In Section 4 we discuss the synchronization requirementsbetween applications and the driver, and show how a small set of calls can beused to implement them e�ciently. Related work is presented in Section 5. Fi-nally, in Sections 6 we discuss some implementation issues and show how thenew features were used to improve the performance of existing applications.2 Audio hardwareFigure 1 shows the hardware/software structure of a typical audio device. Wehave two logically independent subsystems2, one for audio capture and one foraudio playout.The capture section contains a mixer to select the input source which isrouted to the Analog to Digital Converter (ADC). The ADC output is stored intoa circular bu�er, generally by means of some DMA engine. The hardware dictatesthe native resolution (e.g. 8..16 bits), data formats (e.g. linear or compandedusing �-law), channels (mono/stereo) and sampling rate, whereas the software2 except for cases where hardware limitations make the subsystem share resources thuspreventing full duplex operation.

ADC

DMA
RDY FREE

DAC

CDCD

AUX

Input
Mixer Mixer

Output

Capture buffer Playout buffer

DMA
RDY FREEFig. 1. A model of audio devices. On the left is the capture section, on the right theplayout section.

Appl.

Hardware (CODEC, DSP, ...)

Device driver

Library

Appl.

Server

Appl.

Fig. 2. Possible structure of applications using the audio device. Access can be direct,through a library, or through a server.implements the circular bu�er and may additionally implement some data formatconversion before passing data to the application program.The playout section uses a circular bu�er to hold data which are sent tothe Digital to Analog Converter (DAC), generally using a DMA engine. Theoutput of the DAC is routed through a mixer, together with other sources,to the appropriate output. Again, the operating system software implementsthe bu�ering strategy and possible format conversions to supplement the nativefeatures supplied by the hardware.The DAC and the ADC are usually part of the same physical device calledCODEC. The transfer of samples between the CODEC and the bu�ers suppliedby the operating system can be done in several ways. Most of the times, theaudio device uses a DMA channel which is present on the system's mainboard(as in the case of Intel-based PC's). In some other cases, the audio device hasan internal DMA engine which acquires control of the bus and performs thedata transfer (devices on the PCI bus generally operate in this way). As analternative, the audio device could have some internal memory where data are

bu�ered (e.g. under control of a specialized processor), and the main processorhas only to transfer blocks of data at given intervals, possibly using programmedI/O.In some cases the audio device has an onboard Digital Signal Processor (DSP)which can be used to run data compression algorithms, o�oading the mainprocessor from this task. This is in general a good idea since some algorithms(e.g. GSM or MPEG encoding/decoding) are expensive and it is much cheaper torun them on a DSP (which has become a commodity device since it is extensivelyused in cellular phones and other digital audio devices).There are large variations in the capabilities of the mixers as well. Somesimple devices just have one input and one output channel, directly connectedto the ADC and the DAC, respectively, with no volume controls. The majorityof audio devices for PC's have a simple multiplexer with only a master volumecontrol on the input section, and a full featured mixer with independent volumecontrols on the various channels on the output section. Newer devices, �nally,have full-featured mixers on the input path as well, together with a larger se-lection of sources and the ability of performing miscellaneous functions such asswapping left and right channels, muting sources, etc.3 Software interface to the audio deviceIn this Section we start the presentation of our software interface to audio de-vices. We focus our attention on the \device driver" layer in Figure 2, and par-ticularly to the transfer of data between the audio device and the applicationprogram. Synchronization primitives will be discussed in the next Section.Prior to using the audio device for data transfer, applications will need to ac-quire the capabilities of the device (supported sampling rates, data formats, num-ber of channels, full duplex operation, and any other device-speci�c \feature"3),and to set the desired data formats. These operations are usually done by meansof some ioctl() calls, whose name and format change from system to system.Although some approaches (e.g. those where all parameters are read or set atonce, using a single call) appear to be more elegant and e�cient than others,there are in practice no di�erences since this is generally a one-time operation.Another one-time operation, for audio devices which include a DSP, mightbe the downloading of appropriate �rmware to the DSP to perform the requiredfunction (e.g. running some compression/decompression algorithm). Dedicatedsoftware interfaces are generally used for this purpose, and e�ciency is generallynot a primary concern.3 There are signi�cant di�erences among audio cards. As an example, some CODECScan only work in full duplex under some constraints, e.g. using 8-bit format in onedirection and 16-bit in the other one. Other CODECS have bugs which are triggeredby certain operating modes, and so on. The driver can block erroneous requests, butthe only way to make good use of the available hardware is that the driver providesa unique identi�er for the actual hardware and applications (or libraries) can mapthese identi�ers to a list of features and adapt to them.

Finally, appropriate ioctl() calls are necessary to control the mixers whichare present in the signal paths. This is an area which would really bene�t fromsome standardization e�ort, given the signi�cant di�erences in capabilities ofthese devices. However, the control of mixer devices is conceptually simple sincethe requested operation (e.g. setting a volume or selecting an input source)generally takes place in real time, and the only signi�cant issue is to have aninterface which can ease the porting of software to di�erent systems.We will not discuss the three items above (selecting data format, program-ming onboard devices, and controlling the mixer) in further detail in this paper.3.1 Character versus block modeTraditionally, audio devices have been used as character devices, with the gran-ularity of access supported by the driver being the single byte. Applicationshowever often transfer data in blocks of �xed size. This is not only a matterof convenience, it is also a need dictated by the use of compression algorithmswhich operate on blocks of samples with a given size. This pattern of access hasimplications on the type of operating system support required by such applica-tions.Multimedia applications usually have to deal with multiple events (e.g. audioinput, data coming from the network, GUI events, timers, etc.) and they cannotblock on a single source waiting for data to be ready. The usual solution to thisproblem is to use a blocking primitive (such as the Unix select()) which allowsthe process to block specifying a set of events which the process is waiting for.If the audio device is treated as a character device, a select() on the devicemight return as soon as a single byte can be transferred { at most 125 �s with thetypical sample rate of audioconferencing tool, or even less for high quality audio.What we would really want, instead, is to specify to the driver the granularityof the select() operation, so that it will not wake up until the desired amountof data is ready[12]. Some software interfaces, e.g. OSS (formerly Voxware) [10],allow this but only indirectly, since they permit to choose among a small numberof block sizes for DMA operations.To ful�ll this goal, our audio driver has two modes of operation, characterand block mode. In character mode, the device produces a stream of bytes, andselect() returns when one byte can be transferred. To enter the block mode (notto be confused with blocking mode, which is an orthogonal feature), the AIOSSIZEioctl() is used to specify the granularity to be used for the select() operation.The latter will return successfully only when at least a whole block of data can betransferred. AIOSSIZE can modify the requested value if it is not an acceptableone (e.g. the requested block size exceeds the size of the internal bu�er) andreturns the block size in use. A block size of 0 or 1 will bring the device driverback into character mode.We want to point out that the AIOSSIZE function only speci�es the behaviourof the select() call. In our driver, both read() and write() retain the usualbyte granularity. We found this to be a necessary feature because it permitsapplications to control the data transfer rate with �ne granularity, rather than

being forced to use multiples of the block size. For robustness reasons, by nomeans the user should make further assumptions on the behaviour of read() andwrite(). In particular, it should not be assumed that they always transfer therequested amount of data, or that they always work on multiples of the block size.Similarly, the user should make no assumptions on the internal operation of thedriver (e.g. that the granularity of DMA transfers equals the value speci�ed withAIOSSIZE). Such assumptions might make programs not check error conditions(e.g. read() or write() returning with a short count) which might indeed occurdepending on the internal implementation of the driver or the features of thehardware.3.2 Support for non-blocking I/OTraditionally, device drivers provide support for non blocking I/O. This oper-ating mode can be selected at device open time, or by issuing the FIONBIOioctl(). In non-blocking mode, read and write operations will never block, atthe price of possibly returning a short transfer count4. Non blocking reads arepossible, even in blocking mode, by invoking the FIONREAD ioctl() �rst, andthen reading no more than the amount of available data.There is no standard function which is a dual of FIONREAD for write oper-ations. In our driver we have implemented such a function, called AIONWRITE5,which returns the free space in the playout bu�er. A write of this many byteswill not block, even if blocking mode is selected. In our implementation, bothFIONREAD and AIONWRITE track closely the status of a DMA transfer.4 SynchronizationIn this Section we discuss in more detail those which we consider useful featuresto support synchronization of audio with other activities.It is important for some applications to know the exact status of the internalbu�ers in the device driver, both in terms of ready and free space, because someother activities should be synchronized with the audio streams. As an example,a player program wants to avoid that the playout bu�er becomes empty in themiddle of operation; or, a telephone-like application might need to check thatthe bu�ers do not become too full, in order to control the end-to-end delay.When data transfer occurs at a constant nominal rate, in principle this in-formation can be derived by using a real time clock. However, this method canbe imprecise because there might be deviations between the nominal and the ac-tual sample rate, drifts in the two clocks, or bu�er overows/underows whichcause samples to be missed. Furthermore, variable-rate compression schemes, or4 this could happen anyways even in blocking mode.5 we should have really used the name FIONWRITE since this function is very generaland not peculiar to audio devices. E.g. it could be useful on tty devices, on networksockets and everywhere we have some amount of bu�ering in the hardware or thekernel.

DMAFREE READY

trigger

PLAYOUT

DMA FREEREADY

trigger

CAPTURE

FIONREAD

AIONWRITE

read()

write()Fig. 3. A view of the capture and playout bu�ers, with the indication of events whichtrigger the actions requested with AIOSYNC. The thick vertical bar indicates the currentposition of the DMA pointer. Also indicated are the e�ect of read() and write(), andthe values returned by FIONREAD and AIONWRITE.dynamically-changing bu�er sizes, might render the use of timers for determin-ing queue occupation completely useless. As an example, it is easy to conceive adevice where some functions (e.g. DFT, compression, rate conversion, �ltering)are performed in the DSP associated to the CODEC, and the application trans-fers audio data in a transformed domain or with a variable-rate format. In thesecases, deriving timing information is not straightforward.FIONREAD and AIONWRITE only provide limited information on the status ofbu�ers, and are of use mainly when the application wants to avoid blocking onthe device. We would also like to have alternative mechanisms which either notifya process (e.g. using a Unix signal) or wake it up when a speci�ed event occurs.Figure 3 shows in detail the capture and playout bu�ers. The boundary betweenthe FREE and READY regions, which we call the current DMA pointer, moveswith time (in opposite directions for the capture and playout channel). Appli-cations can, in general, be interested to know when the current DMA pointerreaches a given position, relative to either the beginning or the end of the bu�er,and have the need to be noti�ed when the event occurs, and to know the exactposition of the current DMA pointer relative to either end of the bu�er.To support these functionalities we have introduced a single new ioctl(),AIOSYNC, which takes the speci�cation of an event (the current DMA pointerreaching a given position in either bu�er) and an action to execute when theevent occurs. The event can be speci�ed relative to either end of the bu�er,while the action can be any of the following (in all cases, upon return, thecurrent DMA pointer will be reported, relative to the same bu�er end as usedin the request):{ no operation. This function is blocking (unless the event has already oc-curred) and will return when the desired event occurs. This function is verypowerful and exible; it can be used to wait for a bu�er to drain or �ll up to a

certain level, or just to report the status of the transfer (duplicating to someextent the information supplied by FIONREAD and AIONWRITE, although withAIOSYNC we can read the current size of either the FREE or the READYregion of the bu�er).{ send a signal. This function is non-blocking. It schedules a signal to besent to the process when the bu�er reaches a given mark. This provides anasynchronous noti�cation which can be handled while a process is active, orwakes up a process blocked on a system call.{ wakeup a selecting process. This function is non-blocking. It causes aprocess blocked on a select() call to be woken up if it is waiting for excep-tional conditions on the audio �le descriptor and the desired event occurs.Note that this action is not an exact duplicate of the previous one: while asignal scheduled with the previous function can wake up a selecting process,there is a potential race condition in that the sequenceioctl(fd, AIOSYNC, ...);ret = select(...);might be interrupted in the middle, and the signal be delivered before theselect() call. The problem can be solved but at the price of some obfus-cation in the code. With this function, we simply request a select() forexceptional conditions on the �le descriptor (speci�ed using the fourth pa-rameter of select()) to wake up when the desired event occurs. This makesus not a�ected by timing issues since the event is possibly logged in the de-vice driver and reported to the application as soon as select() is invoked.AIOSYNC covers all practical needs for synchronization, and the cost of imple-menting the di�erent noti�cation methods is minimal since they share almostthe same code paths.The resolution of the AIOSYNC calls depends a lot on the features of the un-derlying hardware. On some devices, the DMA engine can be reprogrammed onthe y to generate an interrupt exactly when the desired event occurs. On otherdevices, this cannot be done, so if the desired event falls within the boundariesof an already started DMA transfer, there is no alternative but to periodicallypoll the status of the transfer. In this case, the resolution which can be achieveddepends on the granularity of the system's timer, since the poll is generallydone once per timer tick. Common values for the timer frequency correspondto a granularity of 1..10 ms, which are acceptable for the coarse synchroniza-tion of streams (consider that 10 ms correspond, at the speed of sound, to about3 meters, comparable to the distance between players in an orchestra; the refreshrate of most video devices is in the 10-20 ms range, so a synchronized video out-put with higher resolution would be useless; moreover, non real-time operatingsystem would probably make a higher resolution not very useful because of thejitter in scheduling processes).The last ioctl()we use to support synchronization is AIOSTOP. The functiontakes the indication of a channel, and immediately suspends the transfer onthat channel, ushing the content of the kernel bu�er. The return value from

the function is the amount of data queued in the bu�er when the channel wasstopped. This function allows the application to suspend a capture as soon as itdecides that no more data are needed, and directly supports the PAUSE functionin audio players. It is responsibility of the application to reload any data thatwas not used in the play bu�er. There is no ioctl to start a transfer, since thisaction is implicit when issuing a read(), write() or select() call.Function DescriptionFIONBIO Selects blocking or non-blocking mode of operation for the deviceFIONREAD Returns the amount of data which can be read without blocking.AIONWRITEReturns the amount of data which can be written without blocking.AIOSSIZE Selects character or block mode of operation for the device, setting thethreshold for select() to return. A count of 0 or 1 means the usualcharacter mode, a count > 1 makes select return only when the speci�edamount of data is available. AIOGSIZE returns the size currently in use.AIOSYNC Schedules the requested action (return, signal, or enable select) at theoccurrence of the speci�ed event. Returns the current status of the bu�er.AIOSTOP Immediately stops the transfer on the channel, and ushes the bu�er.Returns the residual status of the bu�er.read() Returns at most the amount of data requested. Might return a shortcount even in blocking mode. In non-blocking mode, it will return im-mediately with the data already available in the bu�er. Also start apaused capture.write() Writes at most the amount of data requested. Might return a short counteven in blocking mode. In non-blocking mode, it will return immediatelyafter �lling up some amount of the free space in the kernel bu�er. Alsostart a paused playout.select() In character mode, will return when at least one byte can be exchangedwith the device. In block mode, will return when at least a full block(of the size speci�ed with AIOSSIZE) can be exchanged with the device.Also start a paused transfer.Table 1. Functions supported by our audio driver for data transfer and synchroniza-tion.For reference, Table 1 summarizes all the functions related to synchronizationand data transfer supported by our driver. It might surprise that there is nofunction to set the size of the bu�er in the device driver. We do not believe it tobe useful, for the following reasons:{ the purpose of the bu�er in the device driver is to avoid that applicationshave to be scheduled too often to communicate with the CODEC. A busysystem, or a system where the scheduling clock runs at low frequency, needslarger bu�ers than one where timeslices are very short. But these parameters

are not readily available to applications, so it is the operating system whichshould decide how big the internal bu�ers should be;{ being handled by the DMA engine, these bu�ers must reside in non-pageablememory, and take resources permanently on the system. As a consequencethe decision of how much bu�er space to use in the kernel is not somethingthat a single application can take, but should be taken by the operatingsystem itself depending on the actual resources (total memory, bu�ers usedfor other devices, etc.) which are available;{ applications will need to have their own bu�ering in almost all cases, andthey have much greater control on user-space bu�ers than on kernel-spacebu�ers. In order to write more portable and reliable software, it is muchbetter to force applications to provide their own bu�ering scheme, suited tothe actual needs, than to rely on resources which might not be available tothe same degree on all systems, and which impose stronger limitations ontheir use (e.g. because it is much harder to remove data from the kernel playbu�er than from the user-space play bu�er).As a consequence, we left out such a call on purpose. We believe that portabilityand clarity of programs can improve if they do not depend on being able to setthe bu�er size in the kernel, and instead provide any required bu�ering withinthemselves. These are the same reasons which suggested not to include functionsto manipulate the content of the internal bu�ers of the device driver.5 Related workThere is unfortunately relatively little published work on audio device drivers.Most work on multimedia devices focuses on video acquisition and rendering,which has more demanding requirements in terms of processing and data-mo-vement overhead. Most operating systems implement a primitive interface to theaudio hardware, giving only access to the basic features of the CODEC [1], andwith little or no support for synchronization.The mapping of kernel bu�er in the process' memory space has gained somepopularity in recent times, on the grounds that this technique can save someunnecessary copies of data [1, 10]. Having the bu�er mapped in memory alsogives the (false) sensation that programs can gain functionality. As an example,the typical use of mmapped bu�ers in audio conferencing programs is to pre-initialize the playout bu�er with signi�cant data (e.g. white noise, or silence) tominimize the e�ect of missing audio packets. For games, things can be arrangedso that some background music is placed in the bu�er and played forever withoutfurther intervention.It is evident that the above are non-problems in a modern system when deal-ing with audio data. Audio samples have a rate of 192 KB/s at most, whereasthe memory bandwidth of modern systems is 2-3 orders of magnitude higher,so the copy overhead is minuscule (for video it would be all a di�erent story).Provided a suitable synchronization mechanism exists, such as AIOSYNC, the

pre-initialization of the bu�er described above can be easily implemented in theapplication using the conventional read/write interface, also gaining in program-ming clarity. Additionally, for special applications such as audio conferencing,pre-�lling the bu�er can be e�ciently done in the driver itself (as we in fact doin our driver). Finally, separate processes or threads can be used to generatebackground audio even in a more exible way.In many systems, access to the audio device is mediated through a library [9]which provides additional functionalities such as mixing multiple streams, play-ing entire �les in the background, etc.. This approach is certainly advisable,although a libraries can only export and simplify the use of functionalities ex-isting in the device driver.Another popular approach for audio applications is to mediate access to theaudio device through a server process [8, 3], similar to the XWindow server. Thevery nature of audio poses however some limitations to this approach. Multi-plexing audio output is not as simple as for video, where multiple independentwindows can be created. Thus, mechanisms are required to move the \focus"of the server from one application to the other, either manually or automati-cally. The second, more important, problem is related to the real-time natureof audio: mediating data transfers through an additional process, and possiblythrough a communication channel, can introduce further, unpredictable, delaysin the communication with negative e�ects on some applications.6 Discussion and performanceMost of the primitives described in the previous Sections have been implementedin our audio driver [11] for the FreeBSD operating system [2]. The driver sup-ports a variety of audio cards, with di�erent features and limitations. All of thesupported cards use the services of the ISA DMA controller to support DMAoperations. As a consequence, most of the functionalities described in this pa-per could be supported by using some simple code to fetch the transfer statusfrom the ISA DMA controller. In order to obtain the asynchronous noti�cationsneeded to wake up sleeping processes, two approaches have been followed. Incase the audio device supports interrupting a DMA operation on the y, thenthe device is reprogrammed to generate an interrupt when the desired eventoccurs. When this is not possible, a periodic handler is scheduled to processthe event within one timer tick from its occurrence. The overhead for the pe-riodic handler is very small, and the resolution is 10 ms with the default timerfrequency (100 Hz).6.1 ApplicationsWe have used our new driver in a number of audio applications. In many cases,source code was available and we could update the applications to make useof the new interface, or simplify the code because the new functionalities weresimpler to use.

The AIOSIZE call has been used to improve the behaviour of audioconfer-encing programs such as vat. vat transfers data in blocks of 160 bytes, corre-sponding to 20 ms of audio sampled at 8 KHz. The choice of the frame size isrelated to the compression algorithms (GSM, LPC) used in the program. Themain body of the program calls select() on a set of �le descriptors, whichinclude the network socket, the X server, and the capture audio device. Whenoperating in character mode, the select() would return after 125 �s, causingthe process to consume a huge amount of CPU time just to read one characterat a time and loop waiting for a full frame to be available. With block modeoperation, we reduced the CPU occupation from about 50% to a mere 3% whennot using compression. The advantage here (and in other similar cases) comesmostly from the availability of new synchronization mechanisms.The AIOSYNC call, has been used in vat to control the length of the READYregion of the playout bu�er (the same goal can be achieved with AIONWRITEif the bu�er size is known). vat, rat and other audio tools try to control thelength of the playout bu�er basing on the assumption that the capture andplayout sections work at exactly the same sample frequency [5, 6, 7]. Under thisassumption, the length of the playout bu�er can be kept constant if as manybytes are written as they have been read from the capture section. There aresituations where the assumption does not hold, e.g:{ when two physically distinct devices are used, sample clocks might be slightlydi�erent or drift over time;{ if DMA transfers are disabled while restarting a DMA operation, the averagesample rate on each channel depends on how samples are lost/delayed whilethe DMA engine is restarted.We have also encountered buggy CODECS which miss samples during regularoperations. In all these cases, using the amount of data read as a measure ofthe speed of the write channel does not help, and in the long term it will causeunderruns to occur, or data to accumulate in the output bu�er, with consequentclicks or delays in full duplex operation. AIOSYNC provides a way to detect the oc-currence of such events, and compensate them. In fact, before issuing a write()operation, the queue length can be read. If the value, in the long term, di�erssigni�cantly from what is expected, the size of the write is slightly adjusted inthe opposite direction to compensate the di�erence before the error becomes toolarge.The asynchronous noti�cation mechanisms provided by AIOSYNC have manyother applications. Consider, as an example, a player process being run on aworkstation in the background, e.g. doing MPEG decoding in software. Duringnormal activities, the process has plenty of CPU available, and can keep theplayout bu�er almost full at all times. When the machine becomes loaded (e.g.during a compilation), the bu�ers might drain with the risk of having pauses inthe audio output. The player process could then program a signal to be sentwhen the bu�er reaches some low water mark, and switch to some less expensiveoperating mode (e.g. mono instead of stereo) upon reception of the signal.

As another application of AIOSYNC, a multimedia application might want tolaunch a free-running animation while some audio description is played on theaudio device. The application could then schedule a signal to be sent when thebu�er becomes almost empty, and start running the animation without worryingabout the audio. This is useful since the animation code might use blockingprimitives (e.g. while reading data from the disk, or sleeping between subsequentframes), and taking care of the audio would require heavy program restructuringor a separate thread. In our case, instead, the signal handler will take careof sending more data to the audio device, or forcing the termination of theanimation when the appropriate conditions occur.Other applications of the AIOSYNC calls include games and all those programswhere visualizations or other actions (e.g. controlling an external instrument)should be done synchronously with audio events.7 ConclusionsWe have described a software interface for audio devices to improve supportfor multimedia applications. In de�ning this software interface we have tried topursue the following goals:{ look at what could be the real needs of applications, rather than try toextend some existing software interface;{ only specify the external interface of the device driver, do not rely or makeassumption on the internal structure of the driver or of the hardware. Donot export information which could lead to non-portable code to be written.{ keep the number of functions small;{ avoid duplication of functionalities in the interface, so that there is no doubton what is the preferred method to achieve a given result;We believe we have achieved the above goals, since our interface is small, powerfuland simple to use, and resulted in a very compact implementation of devicedrivers. Our initial experience in porting applications to the new interface hasbeen highly positive, since in many cases software modules which access theaudio devices could be largely simpli�ed and in some cases improved by makinguse of the functions provided by our interface.AcknowledgementsThe work described in this paper has been supported in part by the Commissionof European Communities, Esprit Project LTR 20422 { \Moby Dick, The MobileDigital Companion (MOBYDICK)", and in part by the Ministero dell'Universit�ae della Ricerca Scienti�ca e Tecnologica of Italy.

References1. P. Bahl, \The J300 Family of Video and Audio Adapters: Software Architecture",Digital Technical Journal vo.7 n.4, 1995, pp.34-512. The FreeBSD operating system Web page, http://www.freebsd.org/3. J. Fulton, G. Renda, \The Network Audio System", 8th Annual X Technical Con-ference, in \The X Resource, Issue Nine, January 1994".4. V.Hardman, M.A.Sasse, M.Handley, A.Watson: \Reliable audio for use over theInternet", INET'95 conference.5. V.Hardman, I.Kouvelas, M.A.Sasse, A.Watson: \A packet loss Robust Audio Toolfor use over the Mbone", Research Note RN/96/8, Dept. of Computer Science,University College London, 1996.6. V.Jacobson, S.McCanne: \The LBL audio tool vat", Manual page(ftp://ftp.ee.lbl.gov/conferencing/vat/)7. I.Kouvelas, V.Hardman: \Overcoming Workstation Scheduling Problems in a Real-Time Audio Tool", Proc. of Usenix 1996.8. T.M. Levergood, A.C. Payne et al., \AudioFile: Network-Transparent System forDistributed Audio Applications", USENIX Summer Conference 1993, June 1993.9. Microsoft Corp., Documentation on the DirectSound SDK, available athttp://www.microsoft.com/DirectX/10. The Open Sound System (OSS) Web page, http://www.4front-tech.com/11. L.Rizzo, Sources for the new FreeBSD audio driver, available fromhttp://www.iet.unipi.it/~luigi/FreeBSD.html12. H.Schulzrinne: \Voice communication across the Internet: A Network Voice Termi-nal", Technical Report TR 92-50, Dept. of Computer Science, University of Mas-sachusets, Amherst, July 1992.13. T.Turletti: \The inria videoconferencing system (ivs)", ConneXions { The Inter-operability Report, 8(10):20-24, October 1994.

