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Abstract. We recently developed an audio driver in the FreeBSD oper-
ating system. In this work, we decided to consider compatibility with ex-
isting software interfaces only as a secondary issue, to be implemented at
a later time and only for those applications which could not be adapted
to the new software interface. This turned out to be a significant ad-
vantage, since it let us design the driver (and particularly, its software
interface) looking at the real needs of applications, rather than dupli-
cating existing, old interfaces, and having applications adapt (in many
cases suboptimally) to what the driver could offer.

The main results of our work is the definition of a software interface for
audio devices which is well suited to multimedia applications. The new
interface is small, simple but powerful, and allowed several simplifica-
tions, and significant performance enhancements, in the applications. In
this paper we motivate our design choices, illustrate our interface, and
discuss implementation issues both for the device driver and applica-
tions. The software described in this paper, and appropriate application
routines, are available from the author.
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systems.

1 Introduction

Networked multimedia applications have become very popular in recent years [4,
6, 12, 13], due to a number of enabling factors such as the availability of high
performance computing hardware with multimedia capabilities, which have made
it possible to run in software powerful compression/decompression algorithms,
and advances in network and modem technology, which have made network
connectivity very widespread and with suitable data rates.

Among multimedia applications, the most compelling ones are those requiring
(soft) real-time features, synchronization among streams of different types, or full
duplex operations. Audio/video conferencing systems are typical examples where
these demanding requirements appear.

Operating system support for multimedia devices, however, predates these
applications. Audio CODECS and video grabbers are conceptually simple de-
vices, and in principle they can be easily integrated into an operating system
(e.g. Unix) using standard primitives such as read() and write(), plus a hand-
ful of ioctl() calls to access special device features. Such a primitive audio



device driver' is what is generally available in Unix and other systems, under

the assumption that additional functionalities can be supplied by library rou-
tines, or by passing audio data through a server process which acts similarly to
the X Window server (see Fig. 2).

The reason why the above reasoning fails is that the server will ultimately
need the services of the device driver as well. As more and more functionalities
are put in the hardware (e.g. by offloading operations to a DSP in the audio
card) the software interface of the device driver will need to be extended to
effectively support these functionalities.

But what are really the needs of applications which require support within
the device driver 7 Buffering is often almost all what is needed if one of the
communicating parties has no strong timing requirements (e.g. it is a disk), and
can adapt to the average data rate that the CODEC imposes. However, full
duplex applications, or other applications with real-time constraints (e.g. when
audio must be synchronized with visualization data), have some timing require-
ments, since they need to act upon specific events (e.g. when a given sample is
acquired or played out). This in turn requires the software interface to the de-
vice to support the exchange of synchronization information. When these are not
available (e.g. because they cannot be easily accomodated in some preexisting
device driver structure, or because they would break backward compatibility),
generally the only alternative is to enable non-blocking operation on the audio
device, and implement synchronization-related functionalities in other ways (e.g.
by means of timers). But this is an expensive solution, since it makes applica-
tions busy-wait for events instead of using the synchronization mechanism which
are available in the kernel. Yet this is a common approach, which is bearable
only because today’s workstations are sufficiently overpowered to tolerate even
highly inefficient operating systems and applications.

Recently, we were involved in the development of a new audio driver for the
FreeBSD operating system. FreeBSD did have a freely available device driver for
sound cards, but it lacked support for newer cards, lacked functionalities (e.g. full
duplex support) and had some limitations which applications had to circumvent
at the price of performance, efficiency or program clarity. Our goal was then
to produce a new driver to overcome all these limitations, possibly redefining
the software interface of the driver. On the other hand, the existing software
interface [10] was sufficiently popular to require support in the new driver.

This gave us two alternatives: either build a driver which was compatible
with the existing one, adding new features on top of this; or start the design
without the constraint of backward compatibility, and add a compatibility layer
at a later time, only for those applications for which source code was not avail-
able and adaptation to the new interface was not possible. Clearly the second
approach was more demanding, in that it required a study of existing applica-
tions to determine which features were needed and how they were used, and some

! In this paper we will not consider specialized hardware which exists for generating
music, e.g. F'M or wavetable synthesizers. These devices have a completely different
internal structure and software interface.



porting effort to adapt applications to the new interface. However, this approach
proved to be very fruitful. In fact, the analysis of applications let us understand
what the driver should really do, rather than what the driver used to do. This
analysis, not without surprise, showed that many applications were adapted to
the existing audio driver in a quick and dirty way, by making inconsistent use of
the available functions, calling functions with the same or similar semantics in
mixed or redundant ways, and very often using features (such as non-blocking
I/0) which were not necessary or highly expensive. As a result of this analysis,
we had a chance of identifying which of the existing functionalities were really
needed, which ones were merely duplicates, which ones were probably useless,
and which ones were missing. This served us as a guide to what we should re-
ally implement in our driver and, at the same time, to how the applications we
studied should make use of the audio functions.

Basing on this work, we have defined what we believe to be a simple yet
powerful set of functions to access audio devices. These functions can be easily
and efficiently implemented in device drivers, let applications make full use of
the available synchronization mechanisms, and give very good support for highly
demanding multimedia applications. In this paper we provide a detailed descrip-
tion of the functionality and the semantics of our primitives, motivating their
existence and showing their usefulness. The software interface described in this
paper has been implemented and application have been modified to make use of
it, often with large improvements on the efficiency of the applications, and also
with some simplifications in the code.

The paper 1s structured as follows. We start with a basic overview of the hard-
ware which implements audio devices. In Section 3 we describe the methods to
access the device to transfer data, and motivate our choices in relation with some
existing applications. In Section 4 we discuss the synchronization requirements
between applications and the driver, and show how a small set of calls can be
used to implement them efficiently. Related work is presented in Section 5. Fi-
nally, in Sections 6 we discuss some implementation issues and show how the
new features were used to improve the performance of existing applications.

2 Audio hardware

Figure 1 shows the hardware/software structure of a typical audio device. We
have two logically independent subsystems?, one for audio capture and one for
audio playout.

The capture section contains a mizer to select the input source which is
routed to the Analog to Digital Converter (ADC). The ADC output is stored into
a circular buffer, generally by means of some DMA engine. The hardware dictates
the native resolution (e.g. 8..16 bits), data formats (e.g. linear or companded
using p-law), channels (mono/stereo) and sampling rate, whereas the software

2 except for cases where hardware limitations make the subsystem share resources thus

preventing full duplex operation.
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Fig. 1. A model of audio devices. On the left is the capture section, on the right the
playout section.
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Fig. 2. Possible structure of applications using the audio device. Access can be direct,
through a library, or through a server.

implements the circular buffer and may additionally implement some data format
conversion before passing data to the application program.

The playout section uses a circular buffer to hold data which are sent to
the Digital to Analog Converter (DAC), generally using a DMA engine. The
output of the DAC is routed through a mixer, together with other sources,
to the appropriate output. Again, the operating system software implements
the buffering strategy and possible format conversions to supplement the native
features supplied by the hardware.

The DAC and the ADC are usually part of the same physical device called
CODEC. The transfer of samples between the CODEC and the buffers supplied
by the operating system can be done in several ways. Most of the times, the
audio device uses a DMA channel which is present on the system’s mainboard
(as in the case of Intel-based PC’s). In some other cases, the audio device has
an internal DMA engine which acquires control of the bus and performs the
data transfer (devices on the PCI bus generally operate in this way). As an
alternative, the audio device could have some internal memory where data are



buffered (e.g. under control of a specialized processor), and the main processor
has only to transfer blocks of data at given intervals, possibly using programmed
1/0.

In some cases the audio device has an onboard Digital Signal Processor (DSP)
which can be used to run data compression algorithms, offloading the main
processor from this task. This is in general a good idea since some algorithms
(e.g. GSM or MPEG encoding/decoding) are expensive and it is much cheaper to
run them on a DSP (which has become a commodity device since it is extensively
used in cellular phones and other digital audio devices).

There are large variations in the capabilities of the mixers as well. Some
simple devices just have one input and one output channel, directly connected
to the ADC and the DAC, respectively, with no volume controls. The majority
of audio devices for PC’s have a simple multiplexer with only a master volume
control on the input section, and a full featured mixer with independent volume
controls on the various channels on the output section. Newer devices, finally,
have full-featured mixers on the input path as well, together with a larger se-
lection of sources and the ability of performing miscellaneous functions such as
swapping left and right channels, muting sources, etc.

3 Software interface to the audio device

In this Section we start the presentation of our software interface to audio de-
vices. We focus our attention on the “device driver” layer in Figure 2, and par-
ticularly to the transfer of data between the audio device and the application
program. Synchronization primitives will be discussed in the next Section.

Prior to using the audio device for data transfer, applications will need to ac-
quire the capabilities of the device (supported sampling rates, data formats, num-
ber of channels, full duplex operation, and any other device-specific “feature”3),
and to set the desired data formats. These operations are usually done by means
of some ioctl() calls, whose name and format change from system to system.
Although some approaches (e.g. those where all parameters are read or set at
once, using a single call) appear to be more elegant and efficient than others,
there are in practice no differences since this i1s generally a one-time operation.

Another one-time operation, for audio devices which include a DSP, might
be the downloading of appropriate firmware to the DSP to perform the required
function (e.g. running some compression/decompression algorithm). Dedicated
software interfaces are generally used for this purpose, and efficiency is generally
not a primary concern.

# There are significant differences among audio cards. As an example, some CODECS
can only work in full duplex under some constraints, e.g. using 8-bit format in one
direction and 16-bit in the other one. Other CODECS have bugs which are triggered
by certain operating modes, and so on. The driver can block erroneous requests, but
the only way to make good use of the available hardware is that the driver provides
a unique identifier for the actual hardware and applications (or libraries) can map
these identifiers to a list of features and adapt to them.



Finally, appropriate ioctl() calls are necessary to control the mixers which
are present in the signal paths. This is an area which would really benefit from
some standardization effort, given the significant differences in capabilities of
these devices. However, the control of mixer devices is conceptually simple since
the requested operation (e.g. setting a volume or selecting an input source)
generally takes place in real time, and the only significant issue is to have an
interface which can ease the porting of software to different systems.

We will not discuss the three items above (selecting data format, program-
ming onboard devices, and controlling the mixer) in further detail in this paper.

3.1 Character versus block mode

Traditionally, audio devices have been used as character devices, with the gran-
ularity of access supported by the driver being the single byte. Applications
however often transfer data in blocks of fixed size. This is not only a matter
of convenience, 1t is also a need dictated by the use of compression algorithms
which operate on blocks of samples with a given size. This pattern of access has
implications on the type of operating system support required by such applica-
tions.

Multimedia applications usually have to deal with multiple events (e.g. audio
input, data coming from the network, GUI events, timers, etc.) and they cannot
block on a single source waiting for data to be ready. The usual solution to this
problem is to use a blocking primitive (such as the Unix select()) which allows
the process to block specifying a set of events which the process is waiting for.
If the audio device is treated as a character device, a select() on the device
might return as soon as a single byte can be transferred — at most 125 pus with the
typical sample rate of audioconferencing tool, or even less for high quality audio.
What we would really want, instead, is to specify to the driver the granularity
of the select () operation, so that it will not wake up until the desired amount
of data is ready[12]. Some software interfaces, e.g. OSS (formerly Voxware) [10],
allow this but only indirectly, since they permit to choose among a small number
of block sizes for DMA operations.

To fulfill this goal, our audio driver has two modes of operation, character
and block mode. In character mode, the device produces a stream of bytes, and
select () returns when one byte can be transferred. To enter the block mode (not
to be confused with blocking mode, which is an orthogonal feature), the AIOSSIZE
ioctl() is used to specify the granularity to be used for the select () operation.
The latter will return successfully only when at least a whole block of data can be
transferred. AIOSSIZE can modify the requested value if it is not an acceptable
one (e.g. the requested block size exceeds the size of the internal buffer) and
returns the block size in use. A block size of 0 or 1 will bring the device driver
back into character mode.

We want to point out that the AIOSSIZE function only specifies the behaviour
of the select() call. In our driver, both read() and write() retain the usual
byte granularity. We found this to be a necessary feature because it permits
applications to control the data transfer rate with fine granularity, rather than



being forced to use multiples of the block size. For robustness reasons, by no
means the user should make further assumptions on the behaviour of read() and
write(). In particular, it should not be assumed that they always transfer the
requested amount of data, or that they always work on multiples of the block size.
Similarly, the user should make no assumptions on the internal operation of the
driver (e.g. that the granularity of DMA transfers equals the value specified with
ATI0SSIZE). Such assumptions might make programs not check error conditions
(e.g. read () or write() returning with a short count) which might indeed occur
depending on the internal implementation of the driver or the features of the
hardware.

3.2 Support for non-blocking I/0

Traditionally, device drivers provide support for non blocking 1/O. This oper-
ating mode can be selected at device open time, or by issuing the FIONBIO
ioctl(). In non-blocking mode, read and write operations will never block, at
the price of possibly returning a short transfer count*. Non blocking reads are
possible, even in blocking mode, by invoking the FIONREAD ioctl() first, and
then reading no more than the amount of available data.

There is no standard function which is a dual of FIONREAD for write oper-
ations. In our driver we have implemented such a function, called AIONWRITE®,
which returns the free space in the playout buffer. A write of this many bytes
will not block, even if blocking mode is selected. In our implementation, both
FIONREAD and AIONWRITE track closely the status of a DMA transfer.

4 Synchronization

In this Section we discuss in more detail those which we consider useful features
to support synchronization of audio with other activities.

It is important for some applications to know the exact status of the internal
buffers in the device driver, both in terms of ready and free space, because some
other activities should be synchronized with the audio streams. As an example,
a player program wants to avoid that the playout buffer becomes empty in the
middle of operation; or, a telephone-like application might need to check that
the buffers do not become too full, in order to control the end-to-end delay.

When data transfer occurs at a constant nominal rate, in principle this in-
formation can be derived by using a real time clock. However, this method can
be imprecise because there might be deviations between the nominal and the ac-
tual sample rate, drifts in the two clocks, or buffer overflows/underflows which
cause samples to be missed. Furthermore, variable-rate compression schemes, or

* this could happen anyways even in blocking mode.

5 we should have really used the name FIONWRITE since this function is very general
and not peculiar to audio devices. E.g. it could be useful on tty devices, on network
sockets and everywhere we have some amount of buffering in the hardware or the
kernel.
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Fig. 3. A view of the capture and playout buffers, with the indication of events which
trigger the actions requested with ATOSYNC. The thick vertical bar indicates the current
position of the DMA pointer. Also indicated are the effect of read() and write(), and
the values returned by FIONREAD and AIONWRITE.

dynamically-changing buffer sizes, might render the use of timers for determin-
ing queue occupation completely useless. As an example, it is easy to conceive a
device where some functions (e.g. DFT, compression, rate conversion, filtering)
are performed in the DSP associated to the CODEC, and the application trans-
fers audio data in a transformed domain or with a variable-rate format. In these
cases, deriving timing information is not straightforward.

FIONREAD and AIONWRITE only provide limited information on the status of
buffers, and are of use mainly when the application wants to avoid blocking on
the device. We would also like to have alternative mechanisms which either notify
a process (e.g. using a Unix signal) or wake it up when a specified event occurs.
Figure 3 shows in detail the capture and playout buffers. The boundary between
the FREE and READY regions, which we call the current DMA pointer, moves
with time (in opposite directions for the capture and playout channel). Appli-
cations can, in general, be interested to know when the current DMA pointer
reaches a given position, relative to either the beginning or the end of the buffer,
and have the need to be notified when the event occurs, and to know the exact
position of the current DMA pointer relative to either end of the buffer.

To support these functionalities we have introduced a single new ioctl(),
ATIOSYNC, which takes the specification of an event (the current DMA pointer
reaching a given position in either buffer) and an action to execute when the
event occurs. The event can be specified relative to either end of the buffer,
while the action can be any of the following (in all cases, upon return, the
current DMA pointer will be reported, relative to the same buffer end as used
in the request):

— no operation. This function is blocking (unless the event has already oc-
curred) and will return when the desired event occurs. This function is very
powerful and flexible; 1t can be used to wait for a buffer to drain or fill up to a



certain level, or just to report the status of the transfer (duplicating to some
extent the information supplied by FIONREAD and AIONWRITE, although with
ATIOSYNC we can read the current size of either the FREE or the READY
region of the buffer).

— send a signal. This function is non-blocking. It schedules a signal to be
sent to the process when the buffer reaches a given mark. This provides an
asynchronous notification which can be handled while a process 1s active, or
wakes up a process blocked on a system call.

— wakeup a selecting process. This function is non-blocking. It causes a
process blocked on a select() call to be woken up if 1t is waiting for excep-
tional conditions on the audio file descriptor and the desired event occurs.
Note that this action is not an exact duplicate of the previous one: while a
signal scheduled with the previous function can wake up a selecting process,
there is a potential race condition in that the sequence

ioctl(fd, AIOSYNC, ...);
ret = select( ... );

might be interrupted in the middle, and the signal be delivered before the
select () call. The problem can be solved but at the price of some obfus-
cation in the code. With this function, we simply request a select() for
exceptional conditions on the file descriptor (specified using the fourth pa-
rameter of select()) to wake up when the desired event occurs. This makes
us not affected by timing issues since the event is possibly logged in the de-
vice driver and reported to the application as soon as select() is invoked.

ATIOSYNC covers all practical needs for synchronization, and the cost of imple-
menting the different notification methods is minimal since they share almost
the same code paths.

The resolution of the AIOSYNC calls depends a lot on the features of the un-
derlying hardware. On some devices, the DMA engine can be reprogrammed on
the fly to generate an interrupt exactly when the desired event occurs. On other
devices, this cannot be done, so if the desired event falls within the boundaries
of an already started DMA transfer, there is no alternative but to periodically
poll the status of the transfer. In this case, the resolution which can be achieved
depends on the granularity of the system’s timer, since the poll is generally
done once per timer tick. Common values for the timer frequency correspond
to a granularity of 1..10 ms, which are acceptable for the coarse synchroniza-
tion of streams (consider that 10 ms correspond, at the speed of sound, to about
3 meters, comparable to the distance between players in an orchestra; the refresh
rate of most video devices is in the 10-20 ms range, so a synchronized video out-
put with higher resolution would be useless; moreover, non real-time operating
system would probably make a higher resolution not very useful because of the
jitter in scheduling processes).

The last 10ct1() we use to support synchronization is AIOSTOP. The function
takes the indication of a channel, and 1immediately suspends the transfer on
that channel, flushing the content of the kernel buffer. The return value from



the function is the amount of data queued in the buffer when the channel was
stopped. This function allows the application to suspend a capture as soon as it
decides that no more data are needed, and directly supports the PAUSE function
in audio players. It is responsibility of the application to reload any data that
was not used in the play buffer. There is no ioctl to start a transfer, since this
action is implicit when issuing a read(), write() or select() call.

| Function |Descripti0n |

FIONBIO |Selects blocking or non-blocking mode of operation for the device
FIONREAD |Returns the amount of data which can be read without blocking.
ATONWRITE|Returns the amount of data which can be written without blocking.
ATOSSIZE |Selects character or block mode of operation for the device, setting the

threshold for select() to return. A count of 0 or 1 means the usual
character mode, a count > 1 makes select return only when the specified
amount of data is available. AIOGSIZE returns the size currently in use.

ATOSYNC (Schedules the requested action (return, signal, or enable select) at the
occurrence of the specified event. Returns the current status of the buffer.
ATOSTOP |Immediately stops the transfer on the channel, and flushes the buffer.
Returns the residual status of the buffer.

read() |Returns at most the amount of data requested. Might return a short
count even in blocking mode. In non-blocking mode, it will return im-
mediately with the data already available in the buffer. Also start a
paused capture.

write() |Writes at most the amount of data requested. Might return a short count
even in blocking mode. In non-blocking mode, it will return immediately
after filling up some amount of the free space in the kernel buffer. Also
start a paused playout.

gselect () |In character mode, will return when at least one byte can be exchanged
with the device. In block mode, will return when at least a full block
(of the size specified with AIOSSIZE) can be exchanged with the device.
Also start a paused transfer.

Table 1. Functions supported by our audio driver for data transfer and synchroniza-
tion.

For reference, Table 1 summarizes all the functions related to synchronization
and data transfer supported by our driver. It might surprise that there is no
function to set the size of the buffer in the device driver. We do not believe it to
be useful, for the following reasons:

— the purpose of the buffer in the device driver 1s to avoid that applications
have to be scheduled too often to communicate with the CODEC. A busy
system, or a system where the scheduling clock runs at low frequency, needs
larger buffers than one where timeslices are very short. But these parameters



are not readily available to applications, so it is the operating system which
should decide how big the internal buffers should be;

— being handled by the DMA engine, these buffers must reside in non-pageable
memory, and take resources permanently on the system. As a consequence
the decision of how much buffer space to use in the kernel is not something
that a single application can take, but should be taken by the operating
system itself depending on the actual resources (total memory, buffers used
for other devices, etc.) which are available;

— applications will need to have their own buffering in almost all cases, and
they have much greater control on user-space buffers than on kernel-space
buffers. In order to write more portable and reliable software, it is much
better to force applications to provide their own buffering scheme, suited to
the actual needs, than to rely on resources which might not be available to
the same degree on all systems, and which impose stronger limitations on
their use (e.g. because it is much harder to remove data from the kernel play
buffer than from the user-space play buffer).

As a consequence, we left out such a call on purpose. We believe that portability
and clarity of programs can improve if they do not depend on being able to set
the buffer size in the kernel, and instead provide any required buffering within
themselves. These are the same reasons which suggested not to include functions
to manipulate the content of the internal buffers of the device driver.

5 Related work

There 1s unfortunately relatively little published work on audio device drivers.
Most work on multimedia devices focuses on video acquisition and rendering,
which has more demanding requirements in terms of processing and data-mo-
vement overhead. Most operating systems implement a primitive interface to the
audio hardware, giving only access to the basic features of the CODEC [1], and
with little or no support for synchronization.

The mapping of kernel buffer in the process’ memory space has gained some
popularity in recent times, on the grounds that this technique can save some
unnecessary copies of data [1, 10]. Having the buffer mapped in memory also
gives the (false) sensation that programs can gain functionality. As an example,
the typical use of mmapped buffers in audio conferencing programs is to pre-
initialize the playout buffer with significant data (e.g. white noise, or silence) to
minimize the effect of missing audio packets. For games, things can be arranged
so that some background music is placed in the buffer and played forever without
further intervention.

It is evident that the above are non-problems in a modern system when deal-
ing with audio data. Audio samples have a rate of 192 KB/s at most, whereas
the memory bandwidth of modern systems is 2-3 orders of magnitude higher,
so the copy overhead is minuscule (for video it would be all a different story).
Provided a suitable synchronization mechanism exists, such as AIOSYNC, the



pre-initialization of the buffer described above can be easily implemented in the
application using the conventional read/write interface, also gaining in program-
ming clarity. Additionally, for special applications such as audio conferencing,
pre-filling the buffer can be efficiently done in the driver itself (as we in fact do
in our driver). Finally, separate processes or threads can be used to generate
background audio even in a more flexible way.

In many systems, access to the audio device is mediated through a library [9]
which provides additional functionalities such as mixing multiple streams, play-
ing entire files in the background, etc.. This approach is certainly advisable,
although a libraries can only export and simplify the use of functionalities ex-
isting in the device driver.

Another popular approach for audio applications is to mediate access to the
audio device through a server process [8, 3], similar to the XWindow server. The
very nature of audio poses however some limitations to this approach. Multi-
plexing audio output is not as simple as for video, where multiple independent
windows can be created. Thus, mechanisms are required to move the “focus”
of the server from one application to the other, either manually or automati-
cally. The second, more important, problem is related to the real-time nature
of audio: mediating data transfers through an additional process, and possibly
through a communication channel, can introduce further, unpredictable, delays
in the communication with negative effects on some applications.

6 Discussion and performance

Most of the primitives described in the previous Sections have been implemented
in our audio driver [11] for the FreeBSD operating system [2]. The driver sup-
ports a variety of audio cards, with different features and limitations. All of the
supported cards use the services of the ISA DMA controller to support DMA
operations. As a consequence, most of the functionalities described in this pa-
per could be supported by using some simple code to fetch the transfer status
from the ISA DMA controller. In order to obtain the asynchronous notifications
needed to wake up sleeping processes, two approaches have been followed. In
case the audio device supports interrupting a DMA operation on the fly, then
the device is reprogrammed to generate an interrupt when the desired event
occurs. When this is not possible, a periodic handler is scheduled to process
the event within one timer tick from its occurrence. The overhead for the pe-
riodic handler is very small, and the resolution i1s 10 ms with the default timer
frequency (100 Hz).

6.1 Applications

We have used our new driver in a number of audio applications. In many cases,
source code was available and we could update the applications to make use
of the new interface, or simplify the code because the new functionalities were
simpler to use.



The AIOSIZE call has been used to improve the behaviour of audioconfer-
encing programs such as vat. vat transfers data in blocks of 160 bytes, corre-
sponding to 20 ms of audio sampled at 8 KHz. The choice of the frame size is
related to the compression algorithms (GSM, LPC) used in the program. The
main body of the program calls select() on a set of file descriptors, which
include the network socket, the X server, and the capture audio device. When
operating in character mode, the select() would return after 125 pus, causing
the process to consume a huge amount of CPU time just to read one character
at a time and loop waiting for a full frame to be available. With block mode
operation, we reduced the CPU occupation from about 50% to a mere 3% when
not using compression. The advantage here (and in other similar cases) comes
mostly from the availability of new synchronization mechanisms.

The AIOSYNC call, has been used in vat to control the length of the READY
region of the playout buffer (the same goal can be achieved with AIONWRITE
if the buffer size is known). vat, rat and other audio tools try to control the
length of the playout buffer basing on the assumption that the capture and
playout sections work at exactly the same sample frequency [5, 6, 7]. Under this
assumption, the length of the playout buffer can be kept constant if as many
bytes are written as they have been read from the capture section. There are
situations where the assumption does not hold, e.g:

— when two physically distinct devices are used, sample clocks might be slightly
different or drift over time;

— if DMA transfers are disabled while restarting a DM A operation, the average
sample rate on each channel depends on how samples are lost/delayed while
the DMA engine is restarted.

We have also encountered buggy CODECS which miss samples during regular
operations. In all these cases; using the amount of data read as a measure of
the speed of the write channel does not help,; and in the long term it will cause
underruns to occur, or data to accumulate in the output buffer, with consequent
clicks or delays in full duplex operation. AIOSYNC provides a way to detect the oc-
currence of such events, and compensate them. In fact, before issuing a write()
operation, the queue length can be read. If the value, in the long term, differs
significantly from what is expected, the size of the write is slightly adjusted in
the opposite direction to compensate the difference before the error becomes too
large.

The asynchronous notification mechanisms provided by AIOSYNC have many
other applications. Consider, as an example, a player process being run on a
workstation in the background, e.g. doing MPEG decoding in software. During
normal activities, the process has plenty of CPU available, and can keep the
playout buffer almost full at all times. When the machine becomes loaded (e.g.
during a compilation), the buffers might drain with the risk of having pauses in
the audio output. The player process could then program a signal to be sent
when the buffer reaches some low water mark, and switch to some less expensive
operating mode (e.g. mono instead of stereo) upon reception of the signal.



As another application of AIOSYNC, a multimedia application might want to
launch a free-running animation while some audio description is played on the
audio device. The application could then schedule a signal to be sent when the
buffer becomes almost empty, and start running the animation without worrying
about the audio. This is useful since the animation code might use blocking
primitives (e.g. while reading data from the disk, or sleeping between subsequent
frames), and taking care of the audio would require heavy program restructuring
or a separate thread. In our case, instead, the signal handler will take care
of sending more data to the audio device, or forcing the termination of the
animation when the appropriate conditions occur.

Other applications of the AIOSYNC calls include games and all those programs
where visualizations or other actions (e.g. controlling an external instrument)
should be done synchronously with audio events.

7 Conclusions

We have described a software interface for audio devices to improve support
for multimedia applications. In defining this software interface we have tried to
pursue the following goals:

— look at what could be the real needs of applications, rather than try to
extend some existing software interface;

— only specify the external interface of the device driver, do not rely or make
assumption on the internal structure of the driver or of the hardware. Do
not export information which could lead to non-portable code to be written.

— keep the number of functions small;

— avoid duplication of functionalities in the interface, so that there is no doubt
on what is the preferred method to achieve a given result;

We believe we have achieved the above goals, since our interface is small, powerful
and simple to use, and resulted in a very compact implementation of device
drivers. Our initial experience in porting applications to the new interface has
been highly positive, since in many cases software modules which access the
audio devices could be largely simplified and in some cases improved by making
use of the functions provided by our interface.
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