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Abstract. We survey results in a recent branch of computational geome-
try: folding and unfolding of linkages, paper, and polyhedra.

Contents

1. Introduction 168
2. Linkages 168

2.1. Definitions and fundamental questions 168
2.2. Fundamental questions in 2D 171
2.3. Fundamental questions in 3D 175
2.4. Fundamental questions in 4D and higher dimensions 181
2.5. Protein folding 181

3. Paper 183
3.1. Categorization 184
3.2. Origami design 185
3.3. Origami foldability 189
3.4. Flattening polyhedra 191

4. Polyhedra 193
4.1. Unfolding polyhedra 193
4.2. Folding polygons into convex polyhedra 196
4.3. Folding nets into nonconvex polyhedra 199
4.4. Continuously folding polyhedra 200

5. Conclusion and Higher Dimensions 201
Acknowledgements 202
References 202

Demaine was supported by NSF CAREER award CCF-0347776. O’Rourke was supported by
NSF Distinguished Teaching Scholars award DUE-0123154.

167



168 ERIK D. DEMAINE AND JOSEPH O’ROURKE

1. Introduction

Folding and unfolding problems have been implicit since Albrecht Dürer [1525],

but have not been studied extensively in the mathematical literature until re-

cently. Over the past few years, there has been a surge of interest in these

problems in discrete and computational geometry. This paper gives a brief sur-

vey of most of the work in this area. Related, shorter surveys are [Connelly and

Demaine 2004; Demaine 2001; Demaine and Demaine 2002; O’Rourke 2000].

We are currently preparing a monograph on the topic [Demaine and O’Rourke

≥ 2005].

In general, we are interested in how objects (such as linkages, pieces of paper,

and polyhedra) can be moved or reconfigured (folded) subject to certain con-

straints depending on the type of object and the problem of interest. Typically

the process of unfolding approaches a more basic shape, whereas folding compli-

cates the shape. We define the configuration space as the set of all configurations

or states of the object permitted by the folding constraints, with paths in the

space corresponding to motions (foldings) of the object.

This survey is divided into three sections corresponding to the type of object

being folded: linkages, paper, or polyhedra. Unavoidably, areas with which we

are more familiar or for which there is a more extensive literature are covered

in more detail. For example, more problems have been explored in linkage and

paper folding than in polyhedron folding, and our corresponding sections reflect

this imbalance. On the other hand, this survey cannot do justice to the wealth

of research on protein folding, so only a partial survey appears in Section 2.5.

2. Linkages

2.1. Definitions and fundamental questions. A linkage or framework con-

sists of a collection of rigid line segments (bars or links) joined at their endpoints

(vertices or joints) to form a particular graph. A linkage can be folded by mov-

ing the vertices in R
d in any way that preserves the length of every bar. Unless

otherwise specified, we assume the vertices to be universal joints, permitting the

full angular range of motions. Restricted angular motions will be discussed in

Section 2.5.2.

Linkages have been studied extensively in the case that bars are permitted to

cross; see, for example, [Hopcroft et al. 1984; Jordan and Steiner 1999; Kapovich

and Millson 1995; Kempe 1876; Lenhart and Whitesides 1995; Sallee 1973;

Whitesides 1992]. Such linkages can be very complex, even in the plane. Kempe

[1876] suggested an incomplete argument to show that a planar linkage can be

built so that a vertex traces an arbitrary polynomial curve—there is a linkage

that can “sign your name.” It was not until recently that Kempe’s claim was

established rigorously by Kapovich and Millson [2002]. Hopcroft, Joseph, and

Whitesides [Hopcroft et al. 1984] showed that deciding whether a planar linkage
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can reach a particular configuration is PSPACE-complete. Jordan and Steiner

[1999] proved that there is a linkage whose configuration space is homeomorphic

to an arbitrary compact real algebraic variety with Euclidean topology, and thus

planar linkages are equivalent to the theory of the reals (solving systems of poly-

nomial inequalities over reals). On the other hand, for a linkage whose graph is

just a cycle, all configurations can be reached in Euclidean space of any dimen-

sion greater than 2 by a sequence of simple motions [Lenhart and Whitesides

1995; Sallee 1973], and in the plane there is a simple restriction characterizing

which polygons can be inverted in orientation [Lenhart and Whitesides 1995].

Recently there has been much work on the case that the linkage must remain

simple, that is, never have two bars cross.1 The remainder of this survey assumes

this noncrossing constraint. Such linkage folding has applications in hydraulic

tube bending [O’Rourke 2000] and motion planning of robot arms. There are

also connections to protein folding in molecular biology, which we touch upon in

Section 2.5. See also [Connelly et al. 2003; O’Rourke 2000; Toussaint 1999a] for

other surveys on linkage folding without crossings.

Perhaps the most fundamental question one can ask about folding linkages

is whether it is possible to fold between any two configurations. That is, is

there a folding between any two simple configurations of the same linkage (with

matching graphs, combinatorial embeddings, and bar lengths) while preserving

the bar lengths and not crossing any bars during the folding? Because folding

motions can be reversed and concatenated, this fundamental question is equiv-

alent to whether every simple configuration can be folded into some canonical

configuration, a configuration whose definition depends on the type of linkage

under consideration.

We concentrate here on allowing all continuous motions that maintain sim-

plicity, but we should mention that different applications often further constrain

the permissible motions in various ways. For example, hydraulic tube bending

allows only one joint to bend at any one time, and moreover the joint angle can

never reverse direction. Such constraints often drastically alter what is possible.

See, for example, [Arkin et al. 2003].

In the context of linkages whose edges cannot cross, three general types of

linkages are commonly studied, characterized by the structure of their associ-

ated graphs (see Figure 1): a polygonal arc or open polygonal chain (a single

path); a polygonal cycle, polygon, or closed polygonal chain (a single cycle); and

a polygonal tree (a single tree).2 The canonical configuration of an arc is the

straight configuration, all vertex angles equal to 180◦. A canonical configuration

1Typically, bars are allowed to touch, provided they do not properly cross. However, in-
sisting that bars only touch at common endpoints does not change the results.

2More general graphs have been studied largely in the context of allowing bars to cross,
exploring either aspects of the configurations space (e.g., the Kempe work mentioned earlier),
or the conditions which render the graph rigid. Graph rigidity is a rich topic, not detailed
here, which also plays a role in the noncrossing-bar scenario in Section 2.2.1.
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?

?

?

Figure 1. The three common types of linkages and their associated canonical

configurations. From top to bottom, a polygonal arc
?
→ the straight configu-

ration, a polygonal cycle
?
→ a convex configuration, and a polygonal tree

?
→ a

(nearly) flat configuration.

of a cycle is a convex configuration, planar and having all interior vertex angles

less than or equal to 180◦. It is relatively easy to show that convex configura-

tions are indeed “canonical” in the sense that any one can be folded into any

other, a result that first appeared in [Aichholzer et al. 2001]. Finally, a canonical

configuration of a tree is a flat configuration: all vertices lie on a horizontal line,

and all bars point “rightward” from a common root. Again it is easy to fold any

flat configuration into any other [Biedl et al. 2002b].

The fundamental questions thus become whether every arc can be straight-

ened, every cycle can be convexified, and every tree can be flattened. The answers

to these questions depend on the dimension of the space in which the linkage

starts, and the dimension of the space in which the linkage may be folded. Over

the past few years, this collection of questions has been completely resolved:

Can all arcs be straightened?

2D: Yes [Connelly et al. 2003]

3D: No [Cantarella and Johnston 1998; Biedl et al. 2001]

4D+: Yes [Cocan and O’Rourke 2001]

Can all cycles be convexified?

2D: Yes [Connelly et al. 2003]

3D: No [Cantarella and Johnston 1998; Biedl et al. 2001]

4D+: Yes [Cocan and O’Rourke 2001]

Can all trees be flattened?

2D: No [Biedl et al. 2002b]

3D: No (from arcs)

4D+: Yes [Cocan and O’Rourke 2001]
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The answers for arcs and cycles are analogous to the existence of knots tied

from one-dimensional string: nontrivial knots exist only in 3D. In contrast, the

situation for trees presents an interesting difference in 2D: while trees in the plane

are topologically unknotted, they can be geometrically locked. This observation

is some evidence for the belief that the fundamental problems are most difficult

in 2D.

The next three subsections describe the historical progress of these results

and other results closely related to the fundamental questions. Along the way,

Sections 2.3.1–2.3.4 describe several special forms of linkage folding arising out of

a problem posed by Erdős in 1935; and Section 2.3.8 considers the generalization

of multiple chains. Finally, Section 2.5 discusses the connections between linkage

folding and protein folding, and describes the most closely related results and

open problems.

2.2. Fundamental questions in 2D. Section 2.2.1 describes the development

of the theorems for straightening arcs and convexifying cycles in 2D. Section 2.2.2

discusses the contrary result that not all trees can be flattened.

2.2.1. The carpenter’s rule problem: polygonal chains in 2D. The questions of

whether every polygonal arc can be straightened and every polygonal cycle can

be convexified in the plane have arisen in many contexts over the last quarter

of a century.3 In the discrete and computational geometry community, the arc-

straightening problem has become known as the carpenter’s rule problem because

a carpenter’s rule folds like a polygonal arc.

Most people’s initial intuition is that the answers to these problems are yes,

but describing a precise general motion proved difficult. It was not until 2000

that the problems were solved by Connelly, Demaine, and Rote [Connelly et al.

2003], with an affirmative answer. Figure 2 shows an example of the motion

resulting from this theorem.

More generally, the result in [Connelly et al. 2003] shows that a collection of

nonintersecting polygonal arcs and cycles in the plane may be simultaneously

folded so that the outermost arcs are straightened and the outermost cycles are

convexified. The “outermost” proviso is necessary because arcs and cycles can-

not always be straightened and convexified when they are contained in other

cycles. The key idea for the solution, introduced by Günter Rote, is to look for

expansive motions in which no vertex-to-vertex distance decreases. Bars can-

not cross before getting closer, so expansiveness allows us to ignore the difficult

nonlocal constraint that bars must not cross. Expansiveness brings the problem

into the areas of rigidity theory and tensegrity theory, which study frameworks

of rigid bars, unshrinkable struts, and unexpandable cables. Tools from these

3Posed independently by Stephen Schanuel and George Bergman in the early 1970’s, Ulf
Grenander in 1987, William Lenhart and Sue Whitesides in 1991, and Joseph Mitchell in 1992;
see [Connelly et al. 2003].
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Figure 2. Two views of convexifying a “doubled tree” linkage. The top snap-

shots are all scaled the same, and the bottom snapshots are rescaled to improve

visibility.

areas helped show that, infinitesimally, arcs and cycles can be unfolded ex-

pansively. These infinitesimal motions are combined by flowing along a vector

field defined implicitly by an optimization problem. As a result, the motion is

piecewise-differentiable (C1). In addition, any symmetries present in the initial

configuration of the linkage are preserved throughout the motion. Similar tech-

niques show that the area of each cycle increases by this motion and furthermore

by any expansive motion [Connelly et al. 2003].

Since the original theorem, two additional algorithms have been developed for

unfolding polygonal chains. Figure 3 provides a visual comparison of all three

algorithms.

Ileana Streinu [2000] demonstrated another expansive motion for straight-

ening arcs and convexifying polygons that is piecewise-algebraic, composed of a

polynomial-length sequence of mechanisms, each with a single degree of freedom.

In this sense the motion is easier to implement “mechanically.” It is also possible

to compute the algebraic curves involved, though the running time is exponen-

tial in n. This method also elucidates an interesting combinatorial structure to

2D linkage unfolding through “pseudotriangulations,” which have subsequently

received much attention in computational geometry (see [O’Rourke 2002; Rote

2003], for example).

Cantarella, Demaine, Iben, and O’Brien [Cantarella et al. 2004] gave an

energy-based algorithm for straightening arcs and convexifying polygons. This

algorithm follows the downhill gradient of an appropriate energy function, cor-

responding roughly to the intuition of filling the polygon with air. The resulting

motion is not expansive, essentially averaging out the strut constraints. On the

other hand, the existence of the downhill gradient relies on the existence of ex-

pansive motions from [Connelly et al. 2003], by showing that the latter decrease

energy. The motion avoids self-intersection not through expansiveness but by

designing the energy function to approach +∞ near an intersecting configura-
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(a) Via convex programming [Connelly et al. 2003]

(b) Via pseudotriangulations [Streinu 2000]. Pinned vertices are circled.

(c) Via energy minimization [Cantarella et al. 2004].

Figure 3. Convexifying a common polygon via all three convexification methods.

tion; any downhill flow avoids such spikes. The result is a C∞ motion, easily

computed as a piecewise-linear motion in angle space. The number of steps in

the piecewise-linear motion is polynomial in two quantities: in the number of

vertices n, and in the ratio between the maximum edge length and the initial

minimum distance between a vertex and an edge.

2.2.2. Trees in 2D. It was shown in [Biedl et al. 2002b] that not all trees can be

flattened in the plane. The example there consists of at least 5 petals connected

at a central high-degree vertex. The version shown in Figure 4 uses 8 petals.

Each petal is an arc of three bars, the last of which is “wedged” into the center

vertex.

Intuitively, the argument that the tree is locked is as follows. No petal can be

straightened unless enough angular room has been made. But no petal can be

reduced to occupy less angular space by more than a small positive number unless

the petal has already been straightened. This circular dependence implies that

no petal can be straightened, so the tree is locked. The details of this argument,

in particular obtaining suitable tolerances for closeness, are somewhat intricate

[Biedl et al. 2002b]. The key is that each petal occupies a wedge of space whose

angle is less than 90◦, which is why at least 5 petals are required.
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6→

Figure 4. The locked tree on the left, from [Biedl et al. 2002b], cannot be

reconfigured into the nearly flat configuration on the right. (Figure 1 of [Biedl

et al. 2002b].)

Figure 5. The locked tree from [Connelly et al. 2002]. Based on Figure 1(c) of

[Connelly et al. 2002].

This tree remains locked if we replace the central degree-5 (or higher) vertex

with multiple degree-3 vertices connected by very short bars [Biedl et al. 2002b,

full version]. Connelly, Demaine, and Rote [Connelly et al. 2002] showed that

the tree in Figure 5, with a single degree-3 vertex and the remaining vertices

having degrees 1 and 2, is locked, proving tightness of the arc-and-cycle result in

[Connelly et al. 2003]. In [Connelly et al. 2002] an extension to rigidity/tensegrity

theory is given that permits establishing via linear programming that many

classes of planar linkages (e.g., trees) are locked. In particular, this method is

used to give short proofs that the tree in Figure 4 and the tree with one degree-3

vertex are strongly locked, in the sense that sufficiently small perturbations of

the vertex positions and bar lengths result in a tree that cannot be moved more

than ε in the configuration space for any ε > 0.
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(a)

(b)

Figure 6. (a) Flipping a polygon until it is convex. Pockets are shaded. (b) The

first flip shown in three dimensions.

2.3. Fundamental questions in 3D. Linkage folding in 3D was initiated ear-

lier, by Paul Erdős [1935]. His problem and its solution are described in Section

2.3.1. Sections 2.3.2–2.3.4 consider various extensions of this problem. All of

this work deals with linkages that start in the plane, but fold through 3D. The

more general situation, an arbitrary linkage starting in 3D, is addressed in Sec-

tion 2.3.6. As this problem proves unsolvable in general, additional special cases

are addressed in Section 2.3.7. Finally, Section 2.3.8 considers the generalized

problem of multiple interlocking chains.

2.3.1. Flips for planar polygons in 3D. The roots of linkage folding go back to

[Erdős 1935], a problem posed in the American Mathematics Monthly. Define

a pocket of a polygon to be a region bounded by a subchain of the polygon

edges, and define the lid of the pocket to be the edge of the convex hull con-

necting the endpoints of that subchain. Every nonconvex polygon has at least

one pocket. Erdős defined a flip as a rotation of a pocket’s chain of edges into

3D about the pocket lid by 180◦, landing the subchain back in the plane of the

polygon, such that the polygon remains simple (i.e., non-self-intersecting); see

Figure 6. He asked whether every polygon may be convexified by a finite number

of simultaneous pocket flips.

The answer was provided in a later issue of the Monthly [Nagy 1939]. First,

Nagy observed that flipping several pockets at once could lead to self-crossing;

see Figure 7b. However, restricting to one flip at a time, Nagy proved that a

finite number of flips suffice to convexify any polygon; see Figure 6 for a three-

step example. This beautiful result has been rediscovered and reproved several
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Figure 7. Flipping multiple pockets simultaneously can lead to crossings [Nagy

1939].

Figure 8. Quadrangles can require arbitrarily many flips to convexify [Grünbaum

1995; Toussaint 1999b; Biedl et al. 2001].

times, as uncovered by Grünbaum and Toussaint and detailed in their histories

of the problem [Grünbaum 1995; Toussaint 1999b]; only recently has a subtle

oversight in Nagy’s proof been corrected.

Unfortunately, the number of required flips can be arbitrarily large in terms

of the number of vertices, even for a quadrangle. This fact was originally proved

by Joss and Shannon (1973); see [Grünbaum 1995; Toussaint 1999b; Biedl et al.

2001]. Figure 8 shows the construction. By making the vertical edge of the

quadrangle very short and even closer to the horizontal edge, the angles after

the first flip approach the mirror image of the original quadrangle, and hence

the number of required flips approaches infinity.

Mark Overmars4 posed the still-open problem of bounding the number of flips

in terms of natural measures of geometric closeness such as the diameter (max-

imum distance between two vertices), sharpest angle, or the minimum feature

size (minimum distance between two nonincident edges).

Another open problem is to determine the complexity of finding the shortest

or longest sequence of flips to convexify a given polygon. Weak NP-hardness

has been established for the related problem of finding the longest sequence of

flipturns [Aichholzer et al. 2002].

4Personal communication, February 1998.
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2.3.2. Flips in nonsimple polygons. Flips can be generalized to apply to nonsim-

ple polygons: consider two vertices adjacent along the convex hull of the polygon,

splitting the polygon into two chains, and rotate one (either) chain by 180◦ with

respect to the other chain about the axis through the two vertices. Simplicity

may not be preserved throughout the motion, just as it may not hold in the initial

or final configuration. The obvious question is whether every nonsimple polygon

can be convexified by a finite sequence of such flips. Grünbaum and Zaks [1998]

proved that if at each step we choose the flip that maximizes the resulting sum

of distances between all pairs of vertices, then this metric increases at each flip,

and the polygon becomes convex after finitely many flips. Without sophisticated

data structures, computing these flips requires Ω(n2) time per flip. Toussaint

[1999b] proved that a different sequence of flips convexifies a nonsimple polygon,

and this sequence can be computed in O(n) time per flip. More recently, it has

been established5 that every sequence of flips eventually convexifies a nonsimple

polygon. We expect that each flip can be executed in polylogarithmic amortized

time using dynamic convex-hull data structures as in [Aichholzer et al. 2002].6

2.3.3. Deflations. A deflation [Fevens et al. 2001; Wegner 1993; Toussaint 1999b]

is the reverse of a flip, in the sense that a deflation of a polygon should result in

a simple polygon that can be flipped into the original polygon. More precisely, a

deflation is a rotation by 180◦ about a line meeting the polygon at two vertices

and nowhere else, thus separating the chain into two subchains, such that the

rotation does not cause any intersections. Hence, after the deflation, this line

becomes a line of support (a line extending a convex-hull edge). Wegner [1993]

proposed the notion of deflations, and their striking similarity to flips led him

to conjecture that every polygon can be deflated only a finite number of times.

Surprisingly, this is not true: Fevens, Hernandez, Mesa, Soss, and Toussaint

[Fevens et al. 2001] characterized a class of quadrangles whose unique deflation

leads to another quadrangle in the class, thus repeating ad infinitum.

2.3.4. Other variations. Erdős flips have inspired several directions of research

on related notions, including pivots, pops, and flipturns. See [Toussaint 1999b]

for a survey of this area, with more recent work on flipturns in [Ahn et al. 2000;

Aichholzer et al. 2002; Biedl 2005].

2.3.5. Efficient algorithms for planar linkages in 3D. Motivated by the in-

efficiency of the flip algorithm, Biedl et al. [2001] developed an algorithm to

convexify planar polygons by motions in 3D using a linear number of simple

moves. The essence of this algorithm is to lift the polygon, bar by bar, at all

times maintaining a convex chain (or arch) lying in a plane orthogonal to the

plane containing the polygon; see Figure 9. The details of the algorithm are

significantly more involved than the overarching idea.

5Personal communication with Therese Biedl, May 2001.
6Personal communication with Jeff Erickson.
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Figure 9. A planar polygon partially lifted into a convex arch lying in a vertical

plane (shaded). (Based on Figure 6 of [Biedl et al. 2001].)

A second linear-time algorithm, which is in some ways conceptually simpler,

was developed by Aronov, Goodman, and Pollack [Aronov et al. 2002]. Their

algorithm at all times maintains the arch as a convex quadrilateral. At each

step, the algorithm lifts two edges, forming a “twisted trapezoid,” incorporates

the trapezoid into the arch, makes the arch planar, and reduces it back to a

quadrilateral. Avoiding intersections during the lifting phase requires a delicate

argument.

In contrast to convexifying a cycle, it is relatively easy to straighten a polyg-

onal arc lying in a plane, or on the surface of a convex polyhedron, by motions

in 3D [Biedl et al. 2001]. For an arc in a plane, the basic idea is to pull the

arc up into a vertical line. For a convex surface, the same idea is followed, but

with the orientation of the line changing to remain normal to the surface. The

algorithm lifts each bar in turn, from one end of the arc to the other, at all

times maintaining a prefix of the arc in a line normal to the current facet of the

polyhedron. Each lifting motion causes two joint angles to rotate, so that the

lifted prefix remains normal to the facet at all times, while the remainder of the

chain remains in its original position. Whenever the algorithm reaches a vertex

that bridges between two adjacent facets, it rotates the prefix to bring it normal

to the next facet. This algorithm also generalizes to flattening planar trees and

trees on the surface of a convex polyhedron, via motions in 3D.

2.3.6. Almost knots. What if the linkage starts in an arbitrary position in 3D

instead of in a plane? In general, a polygonal arc or an unknotted polygonal cycle

in 3D cannot always be straightened or convexified [Cantarella and Johnston

1998; Toussaint 2001; Biedl et al. 2001] (page 170). Figure 10 shows an example

of a locked arc in 3D. Provided that each of the two end bars is longer than the

sum s of the middle three bar lengths, the ends of the chain cannot get close

enough to the middle bars to untangle the chain (sometimes called the “knitting
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Figure 10. A locked polygonal arc in 3D with 5 bars [Cantarella and Johnston

1998; Biedl et al. 2001].

needles” example). More precisely, because the ends of the chain remain outside

a sphere with radius s and centered at one of the middle vertices, we can connect

the ends of the chain with an unknotted flexible cord outside the sphere, and

any straightening motion unties the resulting knot, which is impossible without

crossings [Biedl et al. 2001].

Alt, Knauer, Rote, and Whitesides [Alt et al. 2004] proved that it is PSPACE-

hard to decide whether a 3D polygonal arc (or a 2D polygonal tree) can be

reconfigured between two specified configurations. On the other hand, it remains

open to determine the complexity of deciding whether a polygonal arc can be

straightened. The next two sections describe special cases of 3D chains, more

general than planar chains, that can be straightened and convexified.

2.3.7. Simple projection. The “almost knottedness” of the example in Sec-

tion 2.3.6 suggests that polygonal chains having simple orthogonal projections

can always be straightened or convexified. This fact is established by two papers

[Biedl et al. 2001; Calvo et al. 2001]. In addition, there is a polynomial-time

algorithm to decide whether a polygonal chain has a simple projection, and if so

find a suitable plane for projection [Bose et al. 1999].

For a polygonal arc with a simple orthogonal projection, the straightening

method is relatively straightforward [Biedl et al. 2001]. The basic idea is to

process the arc from one end to the other, accumulating bars into a compact

“accordion” (x-monotone chain) lying in a plane orthogonal to the projection

plane, in which each bar is nearly vertical. Once this accumulation is complete,

the planar accordion is unfolded joint-by-joint into a straight arc. We observe

that a similar algorithm can be used to fold a polygonal tree with a simple

orthogonal projection into a generalized accordion, which can then be folded

into a flat configuration.

For a polygonal cycle with a simple orthogonal projection, the convexification

method is based on two steps [Calvo et al. 2001]. First, the projection of the

polygon is convexified via the results described in Section 2.2.1, by folding the

3D polygon to track the shadow, keeping constant the ascent of each bar. Sec-

ond, Calvo, Krizanc, Morin, Soss, and Toussaint [Calvo et al. 2001] develop an

algorithm for convexifying a polygon with convex projection. The basic idea is

to reconfigure the convex projection into a triangle, and stretch each accordion

formed by an edge in the projection. In linear time they show how to compute
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a motion for the second step that consists of O(n) simple moves, each changing

at most seven vertex angles.

2.3.8. Interlocked chains in 3D. Although we have settled on page 170 the

question of when one chain can lock (only in 3D), the conditions that permit

pairs of chains to “interlock” are largely unknown. This line of investigation was

prompted by a question posed by Anna Lubiw [Demaine and O’Rourke 2001]:

into how many pieces must an n-bar 3D chain be cut (at vertices) so that the

pieces can be separated and straightened? It is now known that the chain need

be fractured into no more than dn/2e − 1 pieces [Demaine et al. 2002b] but this

upper bound is likely not tight: the only lower bound known is b(n − 1)/4c.

A collection of disjoint, noncrossing chains can be separated if, for any dis-

tance d, there is a non-self-crossing motion that results in every pair of points

on different chains being separated by at least d. If a collection cannot be sep-

arated, its chains are interlocked. Which collections of relatively short chains

can interlock was investigated in several papers [Demaine et al. 2003c; Demaine

et al. 2002b]. Three typical results (all for chains with universal joints) are as

follows:

(i) No pair of 3-bar open chains can interlock, even with an arbitrary number

of additional 2-bar open chains.

(ii) A 3-bar open chain can interlock with a 4-bar closed chain. (See Figure 11.)

(iii) A 3-bar open chain can interlock with a 4-bar open chain.

The proof of the first result (for just a pair of 3-bar chains) identifies a plane

parallel to and separating the middle bars of each chain, and then nonuniformly

scales the coordinate system to straighten the other links while avoiding in-

tersections. The second result uses a topological argument based on “links”

(multicomponent knots), in a manner similar to the use of knots in the proof

that the chain in Figure 10 is locked. The proof of the third listed result is quite

intricate, relying on ad hoc geometric arguments [Demaine et al. 2002b]. There

are many open problems here, one of the most intriguing being this: what is the

smallest k that permits a k-bar open chain to interlock with a 2-bar open chain?

(See [Glass et al. 2004].)

Figure 11. A 3-bar open chain (grey) interlocked with a 4-bar closed chain

(black).
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2.4. Fundamental questions in 4D and higher dimensions. In all di-

mensions higher than 3, it is known that all knots are trivial; analogously, all

polygonal arcs can be straightened, all polygonal cycles can be convexified, and

all polygonal trees can be flattened [Cocan and O’Rourke 2001] (page 170). Intu-

itively, this result holds because the number of degrees of freedom of any vertex is

at least two higher than the dimensionality of the obstacles imposed by any bar.

This property allows Cocan and O’Rourke [2001] to establish, for example, that

the last bar of a polygonal arc can be unfolded by itself to any target position

that is simple.

Cocan and O’Rourke [2001] show how to straighten an arc using O(n) simple

moves that can be computed in O(n2) time and O(n) space. On the other

hand, their method for convexifying a polygon requires O(n6) simple moves and

O(n6 log n) time to compute.

2.5. Protein folding. Protein folding [Chan and Dill 1993; Hayes 1998; Merz

and Le Grand 1994] is an important problem in molecular biology because it

is generally believed that the folded structure of a protein (the fundamental

building block of life) determines its function and behavior.

2.5.1. Connection to linkages. A protein can be modeled by a linkage in which the

vertices represent amino acids and the bars represent bonds connecting them.

The bars representing bonds are typically close in length, within a factor less

than two. Depending on the level of detail, the protein can be modeled as a tree

(more precise) or as a chain (less precise).

An amazing property of proteins is that they fold quickly and consistently

to a minimum-energy configuration. Understanding this motion has immediate

connections to linkage folding in 3D. A central unsolved theoretical question

[Biedl et al. 2001] arising in this context is whether every equilateral polygonal

arc in 3D can be straightened. Cantarella and Johnston [Cantarella and Johnston

1998] proved that this is true for arcs of at most 5 bars. More generally, can

every equilateral polygonal tree in 3D be flattened?

2.5.2. Fixed-angle linkages. A more accurate mathematical model of foldings

of proteins is not by linkages whose vertices are universal joints, but rather by

fixed-angle linkages in which each vertex forms a fixed angle between its incident

bars. This angular constraint roughly halves the number of degrees of freedom

in the linkage; the basic motion is rotating a portion of the linkage around a

bar of the linkage. Foldings of such linkages have been explored extensively by

Soss and Toussaint [Soss and Toussaint 2000; Soss 2001]. For example, they

prove in [Soss and Toussaint 2000] that it is NP-complete to decide whether a

fixed-angle polygonal arc can be flattened (reconfigured to lie a plane), and in

[Soss 2001] that it is NP-complete to decide whether a fixed-angle polygonal arc

can be folded into its mirror image.
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More positive results analyze the polynomial complexity of determining the

maximum extent of a rotation around a bar: Soss and Toussaint [Soss and Tou-

ssaint 2000; Soss 2001] prove an O(n2) upper bound, and Soss, Erickson, and

Overmars [Soss 2001; Soss et al. 2003] give a 3SUM-hardness reduction, suggest-

ing an Ω(n2) lower bound.

Another line of investigation on fixed-angle chains was opened in [Aloupis

et al. 2002a; Aloupis et al. 2002b]. Define a linkage X to be flat-state connected

if, for each pair of its flat realizations x1 and x2, there is a reconfiguration from

x1 to x2 that avoids self-intersection throughout. In general this motion alters

the linkage to nonflat configurations in R
3 intermediate between the two flat

states. The main question is to determine whether every fixed-angle open chain

is flat-state connected. It has been established that the answer is yes for chains

all of whose fixed angles between consecutive bars are nonacute [Aloupis et al.

2002a], and although other special cases have been settled [Aloupis et al. 2002b],

the main question remains open.

2.5.3. Producible chains. A connection between fixed-angle nonacute chains

and a model of protein production was recently established in [Demaine et al.

2003b]. Here the ribosome— the “machine” that creates protein chains in biolog-

ical cells— is modeled as a cone, with the fixed-angled chain produced bar-by-bar

inside and emerging through the cone’s apex. A configuration of a chain is said

to be α-producible if there exists a continuous motion of the chain as it is created

by the above model from within a cone of half-angle α ≤ π/2. The main result

of [Demaine et al. 2003b] is a theorem that identifies producible with flattenable

chains, in this sense: a configuration of a chain whose fixed angles are ≥ π − α,

for α ≤ π/2, is α-producible if and only if it is flattenable. For example, for

α = 45◦, this theorem says that a fixed-135◦-angle chain (which is nonacute) is

producible within a 90◦ cone if and only if that configuration is flattenable.

The proof uses a coiled cannonical configuration of the chain, which can be

obtained by time-reversal of the production steps, winding the chain inside the

cone. This canonical form establishes that all α-producible chains can be recon-

figured to one another. Then it is shown how to produce any flat configuration

by rolling the cone around on the plane into which the flat chain is produced.

Because locked chains are not flattenable, the equivalence of producible and

flattenable configurations shows that cone production cannot lead to locked con-

figurations. This result in turn leads to the conclusion that the producible chains

are rare, in a technical sense, suggesting that the entire configuration space for

folding proteins might not need to be searched.

2.5.4. The H-P model. So far in this section we have not considered the forces

involved in protein folding in nature. There are several models of these forces.

One of the most popular models of protein folding is the hydrophobic-hydro-

philic (H-P) model [Chan and Dill 1993; Dill 1990; Hayes 1998], which defines

both a geometry and a quality metric of foldings. This model represents a protein
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as a chain of amino acids, distinguished into two categories, hydrophobic (H) and

hydrophilic (P). A folding of such a protein chain in this model is an embedding

along edges of the square lattice in 2D or the cubic lattice in 3D without self-

intersection. The optimum or minimum-energy folding maximizes the number of

hydrophobic (H) nodes that are adjacent in the lattice. Intuitively, this metric

causes hydrophobic amino acids to avoid the surrounding water.

This combinatorial model is attractive in its simplicity, and already seems to

capture several essential features of protein folding such as the tendency for the

hydrophobic components to fold to the center of a globular protein [Chan and

Dill 1993]. While a 3D H-P model most naturally matches the physical world,

in fact it is more realistic as a 2D model for computationally feasible problem

sizes. The reason for this is that the perimeter-to-area ratio of a short 2D chain

is a close approximation to the surface-to-volume ratio of a long 3D chain [Chan

and Dill 1993; Hayes 1998].

Much work has been done on the H-P model [Berger and Leighton 1998;

Chan and Dill 1991; Chan and Dill 1990; Crescenzi et al. 1998; Hart and Istrail

1996; Lau and Dill 1989; Lau and Dill 1990; Lipman and Wilber 1991; Unger and

Moult 1993a; Unger and Moult 1993b; Unger and Moult 1993c]. Recently, on the

computational side, Berger and Leighton [Berger and Leighton 1998] proved NP-

completeness of finding the optimal folding in 3D, and Crescenzi et al. [Crescenzi

et al. 1998] proved NP-completeness in 2D. Hart and Istrail [Hart and Istrail

1996] have developed a 3/8-approximation in 3D and a 1/4-approximation in 2D

for maximizing the number of hydrophobic-hydrophobic adjacencies.

Aichholzer, Bremner, Demaine, Meijer, Sacristan, and Soss [Aichholzer et al.

2003] have begun exploring an important yet potentially more tractable aspect of

protein folding: can we design a protein that folds stably into a desired shape?

In the H-P model, a protein folds stably if it has a unique minimum-energy

configuration. So far, Aichholzer et al. [Aichholzer et al. 2003] have proved the

existence of stably folding proteins of all lengths divisible by 4, and for closed

chains of all possible (even) lengths. It remains open to characterize the possible

shapes (connected subsets of the square grid) attained by stable protein foldings.

3. Paper

Paper folding (origami) has led to several interesting mathematical and com-

putational questions over the past fifteen years or so. A piece of paper, normally

a (solid) polygon such as a square or rectangle, can be folded by a continuous

motion that preserves the distances on the surface and does not cause the paper

to properly self-intersect. Informally, paper cannot tear, stretch, or cross itself,

but may otherwise bend freely. (There is a contrast here to folding other ma-

terials, such as sheet metal, that must remain piecewise planar throughout the

folding process.) Formally, a folding is a continuum of isometric embeddings of

the piece of paper in R
3. However, the use of the term “embedding” is weak:
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paper is permitted to touch itself provided it does not properly cross itself. In

particular, a flat folding folds the piece of paper back into the plane, and so the

paper must necessarily touch itself. We frequently ignore the continuous motion

of a folding and instead concentrate on the final folded state of the paper; in

the case of a flat folding, the flat folded state is called a flat origami. This con-

centration on the final folded state was recently justified by a proof that there

always exists a continuous motion from a planar polygonal piece of paper to any

“legal” folded state [Demaine et al. 2004].

Some of the pioneering work in origami mathematics (see Section 3.3.1) studies

the crease pattern that results from unfolding a flat origami, that is, the graph

of edges on the paper that fold to edges of a flat origami. Stated in reverse,

what crease patterns have flat foldings? Various necessary conditions are known

[Hull 1994; Justin 1994; Kawasaki 1989], but there is little hope for a polynomial

characterization: Bern and Hayes [Bern and Hayes 1996] have shown that this

decision problem is NP-hard.

A more recent trend, as in [Bern and Hayes 1996], is to explore computational

origami, the algorithmic aspects of paper folding. This field essentially began

with Robert Lang’s work on algorithmic origami design [Lang 1996], starting

around 1993. Since then, the field of computational origami has grown signifi-

cantly, in particular in the past two years by applying computational geometry

techniques. This section surveys this work. See also [Demaine and Demaine

2002].

3.1. Categorization. Most results in computational origami fall under one or

more of three categories: universality results, efficient decision algorithms, and

computational intractability results. This categorization applies more generally

to folding and unfolding, but is particularly useful for results in computational

origami.

A universality result shows that, subject to a certain model of folding, every-

thing is possible. For example, any tree-shaped origami base (Section 3.2.2), any

polygonal silhouette (Section 3.2.1), and any polyhedral surface (Section 3.2.1)

can be folded out of a sufficiently large piece of paper. Universality results often

come with efficient algorithms for finding the foldings; pure existence results are

rare.

When universality results are impossible (some objects cannot be folded), the

next-best result is an efficient decision algorithm to determine whether a given

object is foldable. Here “efficient” normally means “polynomial time.” For

example, there is a polynomial-time algorithm to decide whether a “map” (grid

of creases marked mountain and valley) can be folded by a sequence of “simple

folds” (Section 3.3.4).

Not all paper-folding problems have efficient algorithms, and this can be

proved by a computational intractability result. For example, it is NP-hard to

tell whether a given crease pattern folds into some flat origami (Section 3.3.2),
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even when folds are restricted to simple folds (Section 3.3.4). These results imply

that there are no polynomial-time algorithms for these problems, unless some

of the hardest computational problems known can also be solved in polynomial

time, which is generally deemed unlikely.

We further distinguish computational origami results as addressing either

origami design or origami foldability. In origami design, some aspects of the

target configuration are specified, and the goal is to design a suitable detailed

folded state that can be folded out of paper. In origami foldability, the tar-

get configuration is unspecified and arbitrary; rather, the initial configuration

is specified, in particular the crease pattern, possibly marked with mountains

and valleys, and the goal is to fold something (anything) using precisely those

creases. While at first it may seem that understanding origami foldability is a

necessary component for origami design, the results indicate that in fact origami

design is easier to solve than origami foldability, which is usually intractable.

Our survey of computational origami is divided accordingly into Section 3.2

(origami design) and Section 3.3 (origami foldability).

3.2. Origami design. We define origami design loosely as, given a piece of

paper, fold it into an object with certain desired properties, e.g., a particular

shape. The natural theoretical version of this problem is to ask for an origami

with a specific silhouette or three-dimensional shape; this problem can be solved

in general (Section 3.2.1), although the algorithms developed so far do not lead

to practical foldings. A specific form of this problem has been solved for practi-

cal purposes by Lang’s tree method (Section 3.2.2), which has brought modern

origami design to a new level of complexity. Related to this work is the problem

of folding a piece of paper to align a prescribed graph (Section 3.2.3), which can

be used for a magic trick involving folding and one complete straight cut.

3.2.1. Silhouettes and polyhedra. A direct approach to origami design is to

specify the exact final shape that the paper should take. More precisely, suppose

we specify a particular flat silhouette, or a three-dimensional polyhedral surface,

and desire a folding of a sufficiently large square of paper into precisely this

object, allowing coverage by multiple layers of paper. For what polyhedral shapes

is this possible? This problem is implicit throughout origami design, and was

first formally posed in [Bern and Hayes 1996]. The surprising answer is “always,”

as established by Demaine, Demaine, and Mitchell in 1999 [Demaine et al. 1999c;

2000d].

The basic idea of the approach is to fold the piece of paper into a thin strip,

and then wrap this strip around the desired shape. This wrapping can be done

particularly efficiently using methods in computational geometry. Specifically,

three algorithms are described in [Demaine et al. 2000d] for this process. One

algorithm optimizes paper usage: the amount of paper required can be made

arbitrarily close to the surface area of the shape, but only at the expense of in-

creasing the aspect ratio of the rectangular paper. Another algorithm maximizes
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Figure 12. A flat folding of a square of paper, black on one side and white on the

other side, designed by John Montroll [Montroll 1991, pp. 94–103]. (Figure 1(b)

of [Demaine et al. 2000d].)

the width of the strip subject to some constraints. A third algorithm places the

visible seams of the paper in any desired pattern forming a decomposition of the

sides into convex polygons. In particular, the number and total length of seams

can be optimized in polynomial time in most cases [Demaine et al. 2000d].

All of these algorithms allow an additional twist: the paper may be colored

differently on both sides, and the shape may be two-colored according to which

side should be showing. In principle, this allows the design of two-color models

similar to the models in Montroll’s Origami Inside-Out [Montroll 1993]. An

example is shown in Figure 12.

Because of the use of thin strips, none of these methods lead to practical

foldings, except for small examples or when the initial piece of paper is a thin

strip. Nonetheless, the universality results of [Demaine et al. 2000d] open the

door to many new problems. For example, how small a square can be folded into

a desired object, e.g., a k × k chessboard? This optimization problem remains

open even in this special case, as do many other problems about finding efficient,

practical foldings of silhouettes, two-color patterns, and polyhedra.

3.2.2. Tree method. The tree method of origami design is a general approach

for “true” origami design (in contrast to the other topics that we discuss, which

involve less usual forms of origami). In short, the tree method enables design

of efficient and practical origami within a particular class of three-dimensional

shapes, most useful for origami design. Some components of this method, such

as special cases of the constituent molecules and the idea of disk packing, as

well as other methods for origami design, have been explored in the Japanese

technical origami community, in particular by Jun Maekawa, Fumiaki Kawahata,

and Toshiyuki Meguro. This work has led to several successful designs, but a full

survey is beyond the scope of this paper; see [Lang 2003; Lang 1998]. It suffices

to say that the explosion in origami design over the last 30 years, during which

the majority of origami models have been designed, may largely be due to an

understanding of these general techniques.
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Figure 13. Lang’s TreeMaker applied to an 8-vertex tree to produce a lizard

base. (Figure 2.1.11 of [Lang 1998].)

Here we concentrate on Robert Lang’s work [1994a; 1994b; 1996; 1998; 2003],

which is the most extensive. Over the past decade, starting around 1993, Lang

has developed the tree method to the point where an algorithm and computer

program have been explicitly defined and implemented. Anyone with a Mac-

intosh computer can experiment with the tree method using Lang’s program

TreeMaker [Lang 1998].

The tree method allows one to design an origami base in the shape of a

specified tree with desired edge lengths, which can then be folded and shaped

into an origami model. See Figure 13 for an example. More precisely, the

tree method designs a uniaxial base [Lang 1996], which must have the following

properties: the base lies above and on the xy-plane, all facets of the base are

perpendicular to the xy-plane, the projection of the base to the xy plane is

precisely where the base comes in contact with the xy-plane, and this projection

is a one-dimensional tree.

It is known that every metric tree (unrooted tree with prescribed edge lengths)

is the projection of a uniaxial base that can be folded from, e.g., a square. The

tree method gives an algorithm to find the folding that is optimal in the sense

that it folds the uniaxial base with the specified projection using the smallest

possible square piece of paper (or more generally, using the smallest possible

scaling of a given convex polygon). These foldings have led to many impressive

origami designs; see [Lang 2003] in particular.

There are two catches to this result. First, it is currently unknown whether

the prescribed folding self-intersects, though it is conjectured that self-intersec-

tion does not arise, and this conjecture has been verified on extensive examples.

Second, the optimization problem is difficult, a fairly general form of nonlinear

constrained optimization. So while optimization is possible in principle in finite
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Figure 14. Crease patterns for folding a rectangle of paper flat so that one com-

plete straight cut makes a butterfly (left) or a swan (right), based on [Demaine

et al. 2000c; Demaine et al. 1999b].

time, in practice heuristics must be applied; fortunately, such heuristics fre-

quently yield good, practical solutions. Indeed, additional practical constraints

can be imposed, such as symmetry in the crease pattern, or the constraint that

angles of creases are integer multiples of some value (e.g., 22.5◦) subject to some

flexibility in the metric tree.

3.2.3. One complete straight cut. Take a piece of paper, fold it flat, make one

complete straight cut, and unfold the pieces. What shapes can result? This

fold-and-cut problem was first formally stated by Martin Gardner [1960], but

goes back much further, to a Japanese puzzle book [Sen 1721] and perhaps to

Betsy Ross in 1777 [Harper’s 1873]; see also [Houdini 1922, pp. 176–177]. A

more detailed history can be found in [Demaine et al. 2000c].

More formally, given a planar graph drawn with straight edges on a piece of

paper, can the paper be folded flat so as to map the entire graph to a common

line, and map nothing else to that line? The surprising answer is that this is

always possible, for any collection of line segments in the plane, forming noncon-

vex polygons, adjoining polygons, nested polygons, etc. There are two solutions

to the problem. The first (partial) solution [Demaine et al. 2000c; Demaine et al.

1999b] is based on a structure called the straight skeleton, which captures the

symmetries of the graph, thereby exploiting a more global structure of the prob-

lem. This solution applies to a large class of instances, which we do not describe

in detail here. See Figure 14 for two examples. The second (complete) solution

[Bern et al. 2002] is based on disk packing to make the problem more local, and

achieves efficient bounds on the number of creases.

While this problem may not seem directly connected to pure paper folding

because of the one cut, the equivalent problem of folding a piece of paper to

line up a given collection of edges is in fact closely connected to origami design.

Specifically, one subproblem that arises in TreeMaker (Section 3.2.2) is that the

piece of paper is decomposed into convex polygons, and the paper must be folded

flat so as to line up all the edges of the convex polygons, and place the interior
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Figure 15. A locally flat-foldable vertex: θ1 + θ3 + · · · = θ2 + θ4 + · · · = 180◦.

of these polygons above this line. The fold-and-cut problem is a generalization

of this situation to arbitrary graphs: nonconvex polygons, nested polygons, etc.

In TreeMaker, there are important additional constraints in how the edges can

be lined up, called path constraints, which are necessary to enforce the desired

geometric tree. These constraints lead to additional components in the solution

called gussets.

3.3. Origami foldability. We distinguish origami design from origami fold-

ability in which the starting point is a given crease pattern and the goal is to fold

an origami that uses precisely these creases. (Arguably, this is a special case of

our generic definition of origami design, but we find it a useful distinction.) The

most common case studied is when the resulting origami should be flat, i.e., lie

in a plane.

3.3.1. Local foldability. For crease patterns with a single vertex, it is relatively

easy to characterize flat foldability. Without specified crease directions, a single-

vertex crease pattern is flat-foldable precisely if the alternate angles around the

vertex sum to 180◦; see Figure 15. This is known as Kawasaki’s theorem [Bern

and Hayes 1996; Hull 1994; Justin 1994; Kawasaki 1989]. When the angle condi-

tion is satisfied, a characterization of valid mountain-valley assignments and flat

foldings can be found in linear time [Bern and Hayes 1996; Justin 1994], using

Maekawa’s theorem [Bern and Hayes 1996; Hull 1994; Justin 1994] and another

theorem of Kawasaki [Bern and Hayes 1996; Hull 1994; Kawasaki 1989] about

constraints on mountains and valleys. In particular, Hull has shown that the

number of distinct mountain-valley assignments of a vertex can be computed in

linear time [Hull 2003].

A crease pattern is called locally foldable if there is a mountain-valley assign-

ment so that each vertex locally folds flat, i.e., a small disk around each vertex

folds flat. Testing local foldability is nontrivial because each vertex has flexi-

bility in its assignment, and these assignments must be chosen consistently: no

crease should be assigned both mountain and valley by the two incident vertices.
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Bern and Hayes [Bern and Hayes 1996] proved that consistency can be resolved

efficiently when it is possible: local foldability can be tested in linear time.

3.3.2. Existence of folded states. Given a crease pattern, does it have a flat

folded state? Bern and Hayes [Bern and Hayes 1996] have proved that this

decision problem is NP-hard, and thus computationally intractable. Because

local foldability is easy to test, the only difficult part is global foldability, or

more precisely, computing a valid overlap order of the crease faces that fold

to a common portion of the plane. Indeed, Bern and Hayes [Bern and Hayes

1996] prove that, given a crease pattern and a mountain-valley assignment that

definitely folds flat, finding the overlap order of a flat folded state is NP-hard.

3.3.3. Equivalence to continuous folding process. In the previous section we

have alluded to the difference between two models of folding: the final folded

state (specified by a crease pattern, mountain-valley or angle assignment, and

overlap order) and a continuous motion to bring the paper to that folded state.

Basically all results, in particular those described so far, have focused on the

former model: proving that a folded state exists with the desired properties.

Intuitively, by appropriately flexing the paper, any folded state can be reached by

a continuous motion, so the two models should be equivalent. Only recently has

this been proved, initially for rectangular pieces of paper [Demaine and Mitchell

2001], and recently for general polygonal pieces of paper [Demaine et al. 2004]

but overall the number of creases is uncountably infinite. An interesting open

problem is whether a finite crease pattern suffices.

The only other paper of which we are aware that explicitly constructs contin-

uous folding processes is [Demaine and Demaine 1997]. This paper proves that

every convex polygon can be folded into a uniaxial base via Lang’s universal mol-

ecule [Lang 1998] without gussets. Furthermore, unlike [Demaine and Mitchell

2001], no additional creases are introduced during the motion, and each crease

face remains flat. This result can be used to animate the folding process.

3.3.4. Map folding: sequence of simple folds. In contrast to the complex origami

folds arising from reaching folded states [Demaine and Demaine 1997; Demaine

and Mitchell 2001], we can consider the less complex model of simple folds. A

simple fold (or book fold) is a fold by ±180◦ along a single line. Examples

are shown in Figure 16. This model is closely related to “pureland origami”,

introduced by Smith [1976; 1980; 1988; 1993].

We can ask the same foldability questions for a sequence of simple folds. Given

a crease pattern, can it be folded flat via a sequence of simple folds? What if a

particular mountain-valley assignment is imposed?

An interesting special case of these problems is map folding (see Figure 16):

given a rectangle of paper with horizontal and vertical creases, each marked

mountain or valley, can it be folded flat via a sequence of simple folds? Tradi-

tionally, map folding has been studied from a combinatorial point of view; see,
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Figure 16. Folding a 2 × 4 map via a sequence of 3 simple folds.
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Figure 17. Two maps that cannot be folded by simple folds, but can be folded

flat. (These are challenging puzzles.) The numbering indicates the overlap order

of faces. (Figure 12 of [Arkin et al. 2004].)

e.g., [Lunnon 1968; Lunnon 1971]. Arkin, Bender, Demaine, Demaine, Mitchell,

Sethia, and Skiena [Arkin et al. 2004] have shown that deciding foldability of a

map by simple folds can be solved in polynomial time. If the simple folds are

required to fold all layers at once, the running time is at most O(n log n), and

otherwise the running time is linear.

Surprisingly, slight generalizations of map folding are (weakly) NP-complete

[Arkin et al. 2004]. Deciding whether a rectangle with horizontal, vertical, and

diagonal (±45◦) creases can be folded via a sequence of simple folds is NP-

complete. Alternatively, if the piece of paper is more general, a polygon with

horizontal and vertical sides, and the creases are only horizontal and vertical,

the same problem is NP-complete.

These hardness results are weak in the sense that they leave open the exis-

tence of a pseudopolynomial-time algorithm, whose running time is polynomial

in the total length of creases. Another intriguing open problem, posed by Jack

Edmonds, is the complexity of deciding whether a map has some flat folded

state, as opposed to a folding by a sequence of simple folds. Examples of maps

in which these two notions of foldability differ are shown in Figure 17.

3.4. Flattening polyhedra. When one flattens a cardboard box for recycling,

generally the surface is cut open. Suppose instead of allowing cuts to a polyhedral

surface in order to flatten it, we treat it as a piece of paper and fold as in origami.

We run into the same dichotomy as in Section 3.3.2: do we want a continuous

motion of the polyhedron, or does a description of the final folded state suffice?

If we start with a convex polyhedron, and each face of the crease pattern must

remain rigid during the folding, then Connelly’s extension [Connelly 1980] of
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Figure 18. Inverting a tetrahedral cone by a continuous isometric motion. Based

on Figure 2.5 of [Connelly 1993].

Figure 19. Flattening a tetrahedron, from left to right. Note that the faces are

not flat in the middle picture.

Cauchy’s rigidity theorem [1813] (see also [Cromwell 1997, pp. 219–247]) says

that the polyhedron cannot fold at all. Even if we start with a nonconvex

polyhedron and keep each face of the crease pattern rigid, the Bellows Theorem

[Connelly et al. 1997] says that the volume of the polyhedron cannot change,

so foldings are limited. However, if we allow the paper to curve (e.g., introduce

new creases) during the motion, as in origami, then folding becomes surprisingly

flexible. For example, a cone can be inverted [Connelly 1993]; see Figure 18.

A natural question is whether every polyhedron can be flattened : folded into a

flat origami. Intuitively, this can be achieved by applying force to the polyhedral

model, but in practice this can easily lead to tearing. There is an interesting

connection of this problem to a higher-dimensional version of the fold-and-cut

problem from Section 3.2.3. Given any polyhedral complex, can R
3 be folded

(through R
4) “flat” into R

3 so that the surface of the polyhedral complex maps to

a common plane, and nothing else maps to that plane? While the applicability of

four dimensions is difficult to imagine, the problem’s restriction to the surface of

the complex is quite practical, e.g., in packaging: flatten the polyhedral complex

into a flat folded state, without cutting or stretching the paper.

The flattening problem remains open if we desire a continuous folding process

into the flat state. If we instead focus on the existence of a flat folded state of

a polyhedron, then much more is known. Demaine, Demaine, and Lubiw7 have

shown how to flatten several classes of polyhedra, including convex polyhedra

and orthogonal polyhedra. See Figure 19 for an example. Recently, Demaine,



FOLDING AND UNFOLDING IN COMPUTATIONAL GEOMETRY 193

Demaine, Hayes, and Lubiw8 have shown that all polyhedra have flat folded

states. They conjecture further that every polyhedral complex can be flattened.

A natural question is whether the methods of Demaine and Mitchell [Demaine

and Mitchell 2001] and [Demaine et al. 2004] described in Section 3.3.3 can be

generalized to show that these folded states induce continuous folding motions

as in Figure 18.

4. Polyhedra

A standard method for building a model of a polyhedron is to cut out a flat

net or unfolding, fold it up, and glue the edges together so as to make precisely

the desired surface. Given the polyhedron of interest, a natural problem is to

find a suitable unfolding. On the other hand, given a polygonal piece of paper,

we might ask whether it can be folded and its edges can be glued together so as

to form a convex polyhedron. These two questions are addressed in Sections 4.1

and 4.2, respectively. Section 4.3 extends different forms of the latter question to

nonconvex polyhedra. Section 4.4 connects these problems to linkage and paper

folding.

4.1. Unfolding polyhedra. A classic open problem is whether (the surface

of) every convex polyhedron can be cut along some of its edges and unfolded

into one flat piece without overlap [Shephard 1975; O’Rourke 2000]. Such edge-

unfoldings go back to Dürer [1525], and have important practical applications

in manufacturing, such as sheet-metal bending [O’Rourke 2000; Wang 1997]. It

seems folklore that the answer to this question should be yes, but the evidence

for a positive answer is actually slim. Only very simple classes of polyhedra are

known to be edge-unfoldable; for example, pyramids, prisms, “prismoids,”9 and

other more specialized classes [Demaine and O’Rourke ≥ 2005]. In contrast,

experiments by Schevon [Schevon 1989; O’Rourke 2000] suggest that a random

edge-unfolding of a random polytope overlaps with probability 1. Of course,

such a result would not preclude, for every polytope, the existence of at least

one nonoverlapping edge-unfolding, or even that a large but subconstant fraction

of the polytope’s edge-unfoldings do not overlap. However, the unlikeliness of

finding an unfolding by chance makes the search more difficult.

An easier version of this edge-unfolding problem is the fewest-nets problem:

prove an upper bound on the number of pieces required by a multipiece non-

overlapping edge unfolding of a convex polyhedron. The obvious upper bound is

the number F of faces in the polyhedron; the original problem asks whether an

upper bound of 1 is possible. The first bound of cF for c < 1 was obtained by

7Manuscript, March 2001.
8Manuscript in preparation.
9The convex hull of two equiangular convex polygons, oriented so that corresponding edges

are parallel.
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Michael Spriggs,10 who established c = 2/3. The smallest value of c obtained so

far11 is 1/2. Proving an upper bound that is sublinear in F would be a significant

advancement.

We can also examine to what extent edge unfoldings can be generalized to

nonconvex polyhedra. In particular, define a polyhedron to be topologically con-

vex if its 1-skeleton (graph) is the 1-skeleton of a convex polyhedron. Does every

topologically convex polyhedron have an edge-unfolding? In particular, every

polyhedron composed of convex faces and homeomorphic to a sphere is topologi-

cally convex; can they all be edge-unfolded? This problem was posed by Schevon

[Schevon 1987].

Bern, Demaine, Eppstein, Kuo, Mantler, and Snoeyink [Bern et al. 2003] have

shown that the answer to both of these questions is no: there is a polyhedron

composed of triangles and homeomorphic to a sphere that has no (one-piece,

nonoverlapping) edge-unfolding. The polyhedron is shown in Figure 20. It con-

sists of four “hats” glued to the faces of a regular tetrahedron, such that only the

peaks of the hats have positive curvature, that is, have less than 360◦ of incident

material. This property limits the unfoldings significantly, because (1) any set of

cuts must avoid cycles in order to create a one-piece unfolding, and (2) a leaf in

a forest of cuts can only lie at a positive-curvature vertex of the polyhedron: a

leaf at a negative-curvature vertex (more than 360◦ of incident material) would

cause local overlap.

The complexity of deciding whether a given topologically convex polyhedron

can be edge-unfolded remains open.

Another intriguing open problem in this area is whether every polyhedron

homeomorphic to a sphere has some one-piece unfolding, not necessarily using

cuts along edges. It is known that every convex polyhedron has an unfolding

in this model, allowing cuts across the faces of the polytope. Specifically, the

star unfolding [Agarwal et al. 1997; Aronov and O’Rourke 1992] cuts the shortest

paths from a common source point to each vertex of the polytope, and the source

unfolding [Mitchell et al. 1987] cuts the points with more than one shortest path

to a common source. Both of these unfoldings avoid overlap, the star unfolding

being the more difficult case to establish [Aronov and O’Rourke 1992]. The

source unfolding (but not the star unfolding) also generalizes to unfold convex

polyhedra in higher dimensions [Miller and Pak 2003].

But many nonconvex polyhedra also have such unfoldings. For example, Fig-

ure 20 illustrates one for the polyhedron described above. Biedl, Demaine, De-

maine, Lubiw, Overmars, O’Rourke, Robbins, and Whitesides [Biedl et al. 1998]

have shown how to unfold many orthogonal polyhedra, even with holes and

knotted topology, although it remains open whether all orthogonal polyhedra

10Personal communication, August 2003.
11Personal communication from Vida Dujmović, Pat Morin, and David Wood, Febru-

ary 2004.
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Figure 20. (Left) Simplicial polyhedron with no edge-unfolding. (Right) An

unfolding when cuts are allowed across faces.

can be unfolded. The only known scenario that prevents unfolding altogether

[Bern et al. 2003] is a polyhedron with a single vertex of negative curvature (see

Figure 21), but this requires the polyhedron to have boundary (edges incident

to only one face).

v

Figure 21. A polyhedron with boundary that has no one-piece unfolding even

when cuts are allowed across faces. Vertex v has negative curvature, that is,

more than 360◦ of incident material. (Based on Figure 9 of [Bern et al. 2003].)

A recent approach to unfolding both convex and nonconvex polyhedra in any

dimension is the notion of “vertex-unfolding” [Demaine et al. 2003a]; see Fig-

ure 22. Specifically, a vertex-unfolding may cut only along edges of the polyhe-

dron (like an edge-unfolding) but permits the facets to remain connected only at

vertices (instead of along edges as in edge-unfolding). Thus, a vertex-unfolding

is connected, but its interior may be disconnected, “pinching” at a vertex. This

notion also generalizes to polyhedra in any dimension. Demaine, Eppstein, Er-

ickson, Hart, and O’Rourke [Demaine et al. 2003a] proved that every simplicial
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Figure 22. Vertex-unfolding of a triangulated cube with hinge points aligned.

(Based on Figure 2 of [Demaine et al. 2003a].)

manifold in any dimension has a nonoverlapping vertex-unfolding. In partic-

ular, this result covers triangulated polyhedra in 3D, possibly with boundary,

but it remains open to what extent vertex-unfoldings exist for polyhedra with

nontriangular faces. For example, does every convex polyhedron in 3D have a

vertex-unfolding?

4.2. Folding polygons into convex polyhedra. In addition to unfolding

polyhedra into simple planar polygons, we can consider the reverse problem

of folding polygons into polyhedra. More precisely, when can a polygon have

its boundary glued together, with each portion gluing to portions of matching

length, and the resulting topological object be folded into a convex polyhedron?

(There is almost too much flexibility with nonconvex polyhedra for this problem,

but see Section 4.3 for related problems of interest in this context.) A particular

kind of gluing is an edge-to-edge gluing, in which each entire edge of the polygon

is glued to precisely one other edge of the polygon. The existence of such a

gluing requires a perfect pairing of edges with matching lengths.

4.2.1. Edge-to-edge gluings. Introducing this area, Lubiw and O’Rourke [Lubiw

and O’Rourke 1996] showed how to test in polynomial time whether a polygon

has an edge-to-edge gluing that can be folded into a convex polyhedron, and

how to list all such edge-to-edge gluings in exponential time. A key tool in their

work is a theorem of A. D. Aleksandrov [Alexandrov 1950]. The theorem states

that a topological gluing can be realized geometrically by a convex polyhedron

precisely if the gluing is topologically a sphere, and at most 360◦ of material is

glued to any one point— that is, every point should have nonnegative curvature.

Based on this tool, Lubiw and O’Rourke use dynamic programming to de-

velop their algorithms. There are Ω(n2) subproblems corresponding to gluing

subchains of the polygon, assuming that the two ends of the subchain have al-

ready been glued together. These subproblems are additionally parameterized

by how much angle of material remains at the point to which the two ends of

the chain glue in order to maintain positive curvature. It is this parameteriza-

tion that forces enumeration of all gluings to take exponential time. But for the

decision problem of the existence of any gluing, the remaining angle at the ends

only needs to be bounded, and only polynomially many subproblems need to be

considered, resulting in an O(n3) algorithm.
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Figure 23. The five edge-to-edge gluings of the Latin cross [Lubiw and O’Rourke

1996].

A particularly surprising discovery from this work [Lubiw and O’Rourke 1996]

is that the well-known “Latin cross” unfolding of the cube can be folded into

exactly five convex polyhedra by edge-to-edge gluing: a doubly covered (flat)

quadrangle, an (irregular) tetrahedron, a pentahedron, the cube, and an (irregu-

lar) octahedron. See Figure 23 for crease patterns and gluing instructions. These

foldings are the subject of a video [Demaine et al. 1999a].

4.2.2. Non-edge-to-edge gluings. More recently, Demaine, Demaine, Lubiw, and

O’Rourke [Demaine et al. 2000b; Demaine et al. 2002a] have extended this work

in various directions, in particular to non-edge-to-edge gluings.

In contrast to edge-to-edge gluings, any convex polygon can be glued into a

continuum of distinct convex polyhedra, making it more difficult for an algorithm

to enumerate all gluings of a given polygon. Fortunately, there are only finitely

many combinatorially distinct gluings of any polygon. For convex polygons,

there are only polynomially many combinatorially distinct gluings, and they

can be enumerated for a given convex polygon in polynomial time. This result

generalizes to any polygon in which there is a constant bound on the sharpest

angle. For general nonconvex polygons, there can be exponentially many (2Θ(n))

combinatorially distinct gluings, but only that many. Again this corresponds

to an algorithm running in 2O(n) time. Because of the exponential worst-case

lower bound on the number of combinatorially distinct gluings, we are justified

both here and in the enumeration algorithm of [Lubiw and O’Rourke 1996] to

spend exponential time. It remains open whether there is an output-sensitive

algorithm, whose running time is polynomial in the number of resulting gluings,

or in the number of gluings desired by the user. For non-edge-to-edge gluings,

it even remains open whether there is a polynomial-time algorithm to decide

whether a gluing exists.

The algorithms for enumerating all non-edge-to-edge gluings have been imple-

mented independently by Anna Lubiw (July 2000) and by Koichi Hirata [Hirata

2000] (June 2000). These programs have been applied to the example of the
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Latin cross. There are surprisingly many more, but still finitely many, non-edge-

to-edge gluings: a total of 85 distinct gluings (43 modulo symmetry). A manual

reconstruction of the polyhedra resulting from these gluings reveals 23 distinct

shapes: the cube, seven different tetrahedra, three different pentahedra, four

different hexahedra, six different octahedra, and two flat quadrangles [Demaine

et al. 2000a; Demaine and O’Rourke ≥ 2005].

Alexander, Dyson, and O’Rourke [Alexander et al. 2002] performed a case

study of all the gluings of the square, reconstructing all the incongruent polyhe-

dra that result. This situation is complicated by the existence of entire continua

of gluings and polyhedra. Nonetheless, the entire configuration space of the poly-

hedra can be characterized, as shown in Figure 24. Although in this case it is

connected, there are convex polygons of n vertices whose space of all gluings into

polyhedra has Ω(n2) connected components [Demaine and O’Rourke ≥ 2005].

Although it is almost certain that all of these gluings lead to distinct polyhedra,

it seems difficult to establish this property without a method for reconstructing

the three-dimensional structure, the topic of the next section.

4.2.3. Constructing polyhedra. Another intriguing open problem in this area

[Demaine et al. 2002a] remains relatively unexplored: Aleksandrov’s theorem

implies that any valid gluing (homeomorphic to a sphere and having nonnegative

curvature everywhere) can be folded into a unique convex polyhedron, but how

efficiently can this polyhedron be constructed? The key difficulty here is to

determine the dihedral angles of the polyhedron, that is, by how much each

crease is folded. Finding a (superset of) the creases is straightforward:12 every

edge of the polyhedron is a shortest path between two positive-curvature vertices,

so compute all-pairs shortest paths in the polyhedral metric defined by the gluing

[Chen and Han 1996; Kaneva and O’Rourke 2000; Kapoor 1999].

Sabitov [Sabitov 1996] recently presented a finite algorithm for this recon-

struction problem, reducing the problem to finding roots of a collection of poly-

nomials of exponentially high degree. The algorithm is based on another his

results [Sabitov 1998; Sabitov 1996] that expresses the volume of a triangulated

polyhedron as the root of a polynomial in the edge lengths, independent of how

the polyhedron is geometrically embedded in 3-space. (This result was also

used to settle the famous Bellows Conjecture [Connelly et al. 1997].) Sabitov’s

algorithm was recently extended and its bounds improved by Fedorchuk and

Pak [Fedorchuk and Pak 2004] to express the internal vertex-to-vertex diagonal

lengths as roots of a polynomial of degree 4m for a polyhedron of m edges. The

polyhedron can easily be reconstructed from these diagonal lengths.

12Personal communication with Boris Aronov, June 1998. The essence of the argument is
also present in [Alexandrov 1941].
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Figure 24. The continua of polyhedra foldable from a square. (Figure 2 of

[Alexander et al. 2002].)

4.3. Folding nets into nonconvex polyhedra. Define a net to be a con-

nected edge-to-edge gluing of polygons to form a tree structure, the edges shared

by polygons denoting creases. An open problem mentioned in Section 4.2.3 is

deciding whether a given net can be folded into a convex polyhedron using only

the given creases. More generally, we can ask whether a given net folds into a

nonconvex polyhedron. Now Aleksandrov’s theorem and Cauchy’s rigidity the-



200 ERIK D. DEMAINE AND JOSEPH O’ROURKE

orem do not apply, so for a given gluing we are no longer easily guaranteed

existence or uniqueness.

Given the dihedral angles associated with creases in the net, it is easy to

decide foldability in polynomial time [Biedl et al. 1999b; Sun 1999]: we only

need to check that edges match up and no two faces cross. Without the di-

hedral angles, when does a given net fold into any polyhedron? Biedl, Lubiw,

and Sun [Biedl et al. 1999b; Sun 1999] proved a closely related problem to be

weakly NP-complete: does a given orthogonal net (each face is an orthogonal

polygon) fold into an orthogonal polyhedron? The difference with this problem

is that it constrains each dihedral angle to be ±90◦. It remained open whether

this constraint actually restricted what polyhedra could be folded, even for this

particular reduction. More generally, is there a nonorthogonal polyhedron (i.e.,

one that has at least one dihedral angle not a multiple of 90◦) having orthogonal

faces and that is homeomorphic to a sphere? The answer to this question (posed

in [Biedl et al. 1999b]) turns out to be no, as proved by Donoso and O’Rourke

[Donoso and O’Rourke 2002]. The answer is yes, however, if the polyhedron is

allowed to have genus 6 or larger; on the other hand, the answer remains no for

genus up to 2 [Biedl et al. 2002a]. It remains open whether such nonorthogonal

polyhedra with orthogonal faces exist with genus 3, 4, or 5.

4.4. Continuously folding polyhedra. The results described so far for

polyhedron folding and unfolding are essentially about folded or unfolded states,

and not about the continuous process of reaching such states. In the context

of paper folding, we saw in Section 3.3.3 that these two notions are largely

equivalent. In the context of linkages, we saw that the two notions can differ,

particularly in 3D. Relatively little has been studied in the context of polyhedron

folding.

One special case that has been explored is orthogonal polyhedra. Specifically,

Biedl, Lubiw, and Sun [Biedl et al. 1999b; Sun 1999] have proved that there is

an edge-unfolding of an orthogonal polyhedron (which is an orthogonal net) that

cannot be folded into the orthogonal polyhedron by a continuous motion that

keeps the faces rigid and avoids self-intersection. The basis for their example is

the locked polygonal arc in 3D (Figure 10), converted into an orthogonal locked

polygonal arc in 3D, and then “thickened” into an orthogonal tube. A single

chain of faces in the unfolding is what prevents the continuous foldability.

One would expect, analogous to the results described in Section 3.3.3 [Demaine

and Mitchell 2001], that collections of polygons hinged together into a tree can

be folded into all possible configurations if we allow additional creases during

the motion. However, this extension (equivalent to a polygonal piece of paper)

remains open. A particularly interesting version of this question, posed in [Biedl

et al. 1999b], is whether a finite number of additional creases suffice.

An interesting collection of open questions arise when we consider polyhedron

foldings with creases only at polyhedron edges. For example, do all convex
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Figure 25. Folding the Latin cross into an octahedron, according to the crease

pattern in Figure 23(e), by affinely interpolating all dihedral angles. (Figure 2 of

[Demaine et al. 1999a].)

polyhedra have continuous edge-unfoldings? (This question may be easier to

answer negatively than the classic edge-unfolding problem.) Figure 25 shows

a simple example of such a folding, taken from a longer video [Demaine et al.

1999a], based on the simple rule of affinely interpolating each dihedral angle from

start to finish. Connelly, as reported in [Miller and Pak 2003], asked whether the

source unfolding can be continuously bloomed, i.e., unfolded so that all dihedral

angles increase monotonically. Although an affirmative answer to this question

has just been obtained,13 it remains open whether every general unfolding can

be executed continuously.

5. Conclusion and Higher Dimensions

Our goal has been to survey the results in the newly developing area of fold-

ing and unfolding, which offers many beautiful mathematical and computational

problems. Much progress has been made recently in this area, but many impor-

tant problems remain open. For example, most aspects of unfolding polyhedra

remain unsolved, and we highlight two key problems in this context: can all con-

vex polyhedra be edge-unfolded, and can all polyhedra be generally unfolded?

Another exciting new direction is the developing connection between linkage

folding and protein folding.

Finally, higher dimensions are just beginning to be explored. We mentioned

in Section 2.4 that 1D (one-dimensional) linkages in higher dimensions have

been explored. But 2D “linkages” in 4D — and higher-dimensional analogs—

have received less attention. One model is 2D polygons hinged together at their

edges to form a chain. Such a hinged chain has fewer degrees of freedom than

a 1D linkage in 3D; for example, a hinged chain can be forced to fold like a

planar linkage by extruding the linkage orthogonal to the plane. See Figure 26.

Biedl, Lubiw, and Sun [Biedl et al. 1999b; Sun 1999] showed that even hinged

chains of rectangles do not have connected configuration spaces, by considering

an orthogonal version of Figure 10. It would be interesting to explore these

chains of rectangles in 4D.

Turning to the origami context, one natural open problem is a generaliza-

tion of the fold-and-cut problem: given a polyhedral complex drawn on a d-

13Personal communication with Stefan Langerman et al., February 2004.
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Figure 26. Extruding a linkage into an equivalent collection of polygons (rect-

angles) hinged together at their edges.

dimensional piece of paper, is it always possible to fold the paper flat (into d-

space) while mapping the (d−1)-dimensional facets of the complex to a common

(d−1)-dimensional hyperplane? What if our goal is to map all k-dimensional

faces to a common k-dimensional flat, for all k = 0, 1, . . . , d?

Salvador Dali’s famous painting (“Christ”) of Christ on an unfolded 4D hy-

percube suggests the possibilities for unfolding higher-dimensional polyhedra.

All of the unsolved problems related to unfolding 3D to 2D are equally unsolved

in their higher-dimensional analogs. We mentioned in Section 4.1 a rare excep-

tion: the vertex-unfolding algorithm generalizes to unfold simplicial manifolds

without overlap in arbitrary dimensions. Miller and Pak [2003] have established

that the source unfolding generalizes to higher dimensions to yield nonoverlap-

ping unfoldings, but that the most natural generalization of the star unfolding

does not even suffice to unfold, let alone without overlap. Nevertheless, with

one general unfolding available, the natural analog of the edge-unfolding ques-

tion remains: Does every convex d-polytope have a ridge unfolding, a cutting of

(d−2)-dimensional faces that unfolds the polytope into R
d−1 without overlap?
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