ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Journal of Structural Biology 157 (2007) 47-55

Journal of

Structural
Biology

www.elsevier.com/locate/yjsbi

SPARX, a new environment for Cryo-EM image processing

Michael Hohn ?, Grant Tang ®, Grant Goodyear ¢, P.R. Baldwin ¢, Zhong Huang ©,
Pawel A. Penczek ¢, Chao Yang ¢, Robert M. Glaeser ¢, Paul D. Adams ?, Steven J. Ludtke >*

* Lawrence Berkeley National Laboratory, Physical Bioscience Division, Berkeley, CA 94720, USA
Y National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology,
Baylor College of Medicine, Houston, TX 77030, USA
¢ The University of Texas, Houston Medical Center, Department of Biochemistry and Molecular Biology, Houston, TX 77030, USA
4 The University of California, Department of Molecular and Cell Biology, Physical Biosciences Division,
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
¢ Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, CA 94720, USA

Received 9 May 2006; received in revised form 1 July 2006; accepted 7 July 2006
Available online 16 July 2006

Abstract

SPARX (single particle analysis for resolution extension) is a new image processing environment with a particular emphasis on
transmission electron microscopy (TEM) structure determination. It includes a graphical user interface that provides a complete graphi-
cal programming environment with a novel data/process-flow infrastructure, an extensive library of Python scripts that perform specific
TEM-related computational tasks, and a core library of fundamental C++ image processing functions. In addition, SPARX relies on the
EMAN?2 library and cctbx, the open-source computational crystallography library from PHENIX. The design of the system is such that
future inclusion of other image processing libraries is a straightforward task. The SPARX infrastructure intelligently handles retention of
intermediate values, even those inside programming structures such as loops and function calls. SPARX and all dependencies are free for

academic use and available with complete source.
© 2006 Elsevier Inc. All rights reserved.

Keywords: CryoEM; TEM; Single particle analysis; 3-D reconstruction; Image processing

1. Introduction

Numerous excellent software packages are available for
the TEM community, including SPIDER (Frank et al.,
1996), IMAGIC (van Heel et al., 1996), BSOFT (Heymann,
2001), FREALIGN (Grigorieff, 1998), EM (Hegerl, 1996),
IMIRS (Liang et al., 2002), SUPRIM (Schroeter and Bre-
taudiere, 1996), IMOD (Kremer et al., 1996), PHOELIX
(Carragher et al.,, 1996), PFT (Baker and Cheng, 1996), the
MRC reconstruction tools (Crowther etal, 1996) and
Xmipp (Sorzano et al.,, 2004). Each of these packages has its
own strengths and weaknesses, and although the general

* Corresponding author.
E-mail address: sludtke@bcm.edu (S.J. Ludtke).

1047-84771$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jsb.2006.07.003

thrust of the methodologies is the same, each has its own set
of particularly well developed methods used to achieve a
final reconstruction. However, because of varying file for-
mats, different conventions for Euler angles and the param-
eterization of the contrast transfer function (CTF) of the
instrument, parameters of the image formation process,
etc., moving between packages in order to take advantage
of their respective strengths can be an exceedingly difficult
and time consuming process.

Over the last two decades, single particle reconstruction
has gone from a technique that initially was capable of
achieving structures in the 20-30A range to a versatile
mainstream tool frequently producing structures at subna-
nometer resolution, and in a few pioneering projects,
approaching 4-5A resolution. One of the requirements to
achieve high resolution is to limit the electron dose

mailto: sludtke@bcm.edu
mailto: sludtke@bcm.edu

48 M. Hohn et al. | Journal of Structural Biology 157 (2007) 47-55

delivered to the specimen in order to minimize the impact
of radiation damage. Reduction of the dose causes a corre-
sponding decrease in the signal-to-noise ratio in the image.
Therefore, the techniques required to achieve high resolu-
tion structures must become ever more sophisticated in
order to cope with very noisy data and at the same time to
deliver highly accurate alignment parameters.

Numerous computational methods are used in a single
particle reconstruction, and for each there are various
choices of competing algorithms. For example, it is possible
to compute a 3-D reconstruction from projection data
using algebraic real-space methods often implemented as
iterative algorithms, such as ART (Gordon et al., 1970) or
SIRT (Lakshminarayanan and Lent, 1979), filtered back-
projection methods, or direct Fourier inversion methods
implemented in Fourier space (for detailed review see
(Vainshtein and Penczek, 2006)). For 2-D alignment of
noisy particles to low-noise projections, there are exhaus-
tive search algorithms, iterative algorithms which separate
the rotational alignment from the translational alignment,
methods based on moments of the two images, and many
others. Beyond this, there are choices between different
methodologies for the overall reconstruction process, some
of which use so-called ‘inverse’ methods, and avoid the
reconstruction step entirely, as discussed below. In no case
can a single algorithm be selected and make a claim to be
‘the best’ algorithm for all situations. Different algorithms
react differently to variations in overall signal-to-noise
ratio, shape of the object and CTF parameters. To discover
the optimal methods for a particular reconstruction, it is
often necessary to try many possible variants of the avail-
able algorithms. Incorporation of all or most possibilities
into a single environment would dramatically ease this pro-
cess of determining what works best in a particular experi-
ment, and, in fact, may lead to a better understanding of
why specific algorithms perform better in specific situa-
tions.

An additional difficulty arising in virtually all of the
aforementioned software is the difficulty in organizing
datasets which often consist of tens if not hundreds of thou-
sands of particles drawn from tens to thousands of micro-
graphs or CCD frames. Frequently, obtaining a final
reconstruction involves gradually paring the data down to
include only the highest quality micrographs, and/or only
the highest quality particles from each micrograph. This
process is a substantial data organization task, generally
handled manually through careful organization of tiered
directories containing hundreds of files each. This rapidly
becomes untenable as reconstructions grow from a few
thousand particles from tens of images to hundreds of
thousands of particles from thousands of images. Develop-
ment of an automatic data tracking system integrated with
the reconstruction software has become an important task
in the further development of single particle processing.

The goal in creating SPARX is to provide a uniform
environment for end-users, in which to combine elements of
different structure determination strategies, and develop

their own approaches, without being forced to acquaint
themselves with all available software suites. High-level
strategies can be easily modified using a graphical program-
ming approach, which does not require detailed knowledge
of algorithms made available by the designers of the system.
Issues such as file format conversion and Euler angle con-
ventions are dealt with as automatically and transparently
as possible. SPARX offers a core of robust image processing
capabilities and an easy to use programming environment.

X-ray crystallography and cryo-EM single particle
reconstruction are powerful techniques for macromolecular
structure determination at intermediate to high resolutions.
One of the goals of SPARX is to provide an integrated
computational environment for both methods. This is of
increasing importance as they are now often used concur-
rently. Crystallographic reconstructions of components of a
macromolecular assembly can be readily combined with
lower resolution structures of intact complexes solved by
cryo-EM. In the future, as cryo-EM methods move to
higher resolution it will be possible to take advantage of
existing crystallographic tools for electron density interpre-
tation. Conversely, crystallographic methods can benefit
from the use of cryo-EM envelopes for phasing.

2. SPARX design

In recent years, a wide range of scientific disciplines have
adopted the Python scripting language (http:/
www.python.org) in conjunction with low-level C++ code
to address the need for flexibility without sacrificing perfor-
mance. As discussed in Section 3, as an easy to learn object-
oriented scripting language, Python permits very rapid
development and debugging of new routines. Thus,
SPARX makes use of C++ for compute-intensive code,
while Python is used to implement complex higher level
image processing tasks. The link between C++ and Python
is generated using the Boost Python Library (Abrahams
and Grosse-Kunstleve, 2003). This same approach has been
used successfully in the PHENIX software suite for auto-
mated crystallographic structure determination (Adams
et al., 2002, 2004).

The overall design of SPARX is diagrammed in Fig. 1.
Users can interact with SPARX in three different ways: (i)
through a graphical programming interface, which requires
no formal programming background, (i) through use of
pre-written scripts from a command shell, (iii) through a
text-based customized Python interpreter. The SPARX
C++ core library integrates three components: a set of
algorithms written specifically by SPARX developers, the
core image processing library from the EMAN2 package
(see the companion piece in this issue) and cctbx (Grosse-
Kunstleve et al., 2002) from the PHENIX project, provid-
ing tools for manipulating crystallographic data and molec-
ular models. Expanding SPARX by adding simple links to
other image processing packages is a simple process. To
demonstrate this, a partial wrapper for SPIDER (Frank
et al., 1996) is provided, making use of the file format and

http://www.python.org
http://www.python.org
http://www.python.org

M. Hohn et al. | Journal of Structural Biology 157 (2007) 47-55 49

GUI Scripting Interface]
L3 [Python
y
Python Modules
Sparx, EMAN2, cctbx
.

Libraries (C++)
Sparx, EMAN2, cctbx

External programs
SPIDER

Fig. 1. Diagram of the overall design of SPARX. SPARX is built on top of
several other toolkits including EMAN2 and cctbx from the PHENIX
project through bindings to the Python programming language. External
software suites not available as libraries (such as SPIDER) can be inte-
grated through Python wrapper scripts.

mathematical convention conversions in SPARX. This
wrapper gives access to many SPIDER algorithms from
any SPARX interface. In the future, additional wrappers
may be written by the SPARX developers or outside users
for other image processing suites as the need arises.

2.1. EMAN2 library

The EMAN2 library provides the basic image processing
functionality in SPARX, such as transparent read/write
support for over 20 different image file formats, and several
hundred image processing algorithms ranging from simple
filtration to sophisticated 3-D reconstruction routines. The
shared SPARX/EMAN?2 library design makes use of an
easy to use modular extensible class structure. All of these
extensible classes support calling functions by name and
passing of arbitrary parameters. Full introspection is avail-
able, meaning applications can get a list of available func-
tions from the library when the GUI is executed. This
permits the GUI to immediately become aware of any
newly added algorithms, their parameters, and full docu-
mentation. As a simple example of the library interface, to
apply a low-pass Gaussian filter to an image, one would
simply call:

new_img=1img. process (“filter. lowpass.

gauss”, {“sigma” : 0.2}),
where img is the input image that will be filtered, new_img
is the output image, filterlowpass.gauss specifies the filter,
which is a member of the process class, sigma is the name of
the input parameter, i.e., the standard deviation in Fourier
space of the filter Gaussian function, and 0.2 is the sigma
value given in absolute frequency units, in which 0.5 is the
Nyquist frequency.

The ‘process()’ and ‘process_inplace()’ functions provide
access to a wide range of image processing algorithms, each

accessed by name. Other algorithm categories also exist,
and use a similar structure, such as ‘cmp()’ for comparing
two image objects using a named similarity metric with
optional parameters, or ‘align()’ for performing 2-D or 3-D
registration of one image to a reference image. Documentation
for each of the algorithms can be obtained interactively, for
example, ‘dump_processors()’, through the on-line manual
(http://www.macro-em.org/sparxwiki) or for programs
making use of the library, through a set of introspection
function calls. More details on this modular extensible class
structure can be found in the companion manuscript on
EMAN2 in this issue.

2.2. The computational crystallography toolbox (cctbx)

The cctbx is an open-source C++ library for crystallog-
raphy and other scientific calculations (Grosse-Kunstleve
et al.,, 2002). It provides a wealth of fundamental algorithms
drawn from the PHENIX package (Adams et al., 2002,
2004), and is the source of the necessary crystallographic
tools for SPARX. Consistent with the design goals of
SPARX, it provides high-level interfaces to the underlying
C++ algorithms via the Python scripting language. Indeed,
the cctbx has been designed with an open and flexible archi-
tecture to promote extendibility and easy incorporation
into other software environments. As with the other cores,
the package is organized as a set of C++ classes with
Python bindings. The cctbx project currently consists of the
following modules, many of which are already available in
SPARX:

libtbx: A build system common to all other modules
(based on the open-source Scons software construction
tool) and some associated general Python utilities for build-
ing and testing libraries and applications. The libtbx also
includes PHIL, the Python-based Hierarchical Interchange
Language (Grosse-Kunstleve et al., 2005) for user-friendly
processing of input parameters.

boost_adaptbx: A very small adaptor toolbox with plat-
form-independent instructions for building the Boost.
Python library (Abrahams and Grosse-Kunstleve, 2003), a
crucial tool for the efficient integration of Python and C++.

scitbx: Libraries for general scientific computing (i.e., not
specific to crystallographic applications): a family of high-
level C++ array types, matrix/vector manipulations, special
functions, a fast Fourier transform library, and a C++ port
of the popular L-BFGS quasi-Newton minimizer, all
including Python bindings.

cctbx: Libraries for general crystallographic applica-
tions, useful for both small-molecule and macro-molecular
crystallography. The libraries in the cctbx module cover
everything from algorithms for the handling of unit cells to
high-level building blocks for refinement algorithms and
maximume-likelihood molecular replacement.

mmtbx: Libraries specific to macromolecular crystallog-
raphy: absolute and relative scaling of protein and nucleic
acid datasets, high-level PDB interpretation, automatic
bulk-solvent correction, Cartesian molecular dynamics,

http://blake.bcm.tmc.edu/SPARX
http://blake.bcm.tmc.edu/SPARX

50 M. Hohn et al. | Journal of Structural Biology 157 (2007) 47-55

non-crystallographic symmetry restraints, and maximum-
likelihood refinement targets.

iotbx: Input/output utilities to support the cctbx and
mmtbx modules: automatic recognition and processing of
all common reflection file formats, low-level PDB interpre-
tation.

2.3. SPARX core

The core algorithms provided by the EMAN?2 core and
cctbx are augmented by a large set of algorithms reflecting
the unique expertise of the contributors to the SPARX pro-
ject. These include, for example, addition of highly accurate
methods based on non-uniform Fourier transform, also
known as gridding (Penczek et al.,, 2004) and a comprehen-
sive set of 3-D reconstruction algorithms (for details see
(Vainshtein and Penczek, 2006)). In addition, an implemen-
tation of a unified approach to the 3-D structure and pro-
jection orientation refinement using quasi-Newton
algorithm (Yang et al., 2005) is being developed. In this
method, the 3-D map and projection directions are updated
simultaneously resulting in a rapid convergence rate, i.e.,
high resolution structures can be obtained faster than using
standard 3-D projection alignment methods. These varied
contributions will continue to expand as SPARX develop-
ment continues.

3. Interactive SPARX (Python) interpreter

Over recent years, the Python scripting language has
become increasingly popular in the scientific programming
community, mainly because it dramatically shortens the
turnaround time between concept and application. Com-
plex ideas can be realized in a relatively easy to learn, but
powerful scripting language opening many possibilities to
non-specialists. Therefore, Python constitutes an ideal plat-
form on which to base a modern scientific software pack-
age. As methodologies of EM structure determination are
under continuous development, coding in Python makes it
possible to rapidly implement, test and integrate new algo-
rithms and strategies, making them immediately available
to the EM community.

Python has been successfully used in numerous scientific
visualization packages, for example, Vision (Sanner et al.,
2002), Chimera (Pettersen et al., 2004) and Pymol (DeLano
Scientific, http://www.pymol.org). The typical design pat-
tern is the creation of a library in C++ or Fortran, contain-
ing compute-intensive operations. This library is then
bound to the Python language in which all of the higher
level logic of the final program is implemented. Python has
native support for lists, dictionaries (hashes), sets and a
variety of other data types, as well as string processing
capabilities rivaling those of Perl. It also has an extensive
set of standard libraries on all supported platforms, includ-
ing a wide range of network protocols and mathematical
operations. In many ways it represents a superior cross-
platform development language to Java. Its object-oriented

bmb138> sparx

Welcome to SPARX.

In [1]: img = EMData()

In [2]: img.read image("img00l.spi")

In [3]: info(img)

Real image: nx = 64, ny = 64, nz =1
avg = 131.628, std dev = 27.7929,
min = 43.192, max = 228.321

In [4]: i=EMImage (img)

In [5]: img*=-1

Fig. 2. A sample of an interactive text-based session in SPARX. This sim-
ple example, reads a file from disk, displays various image properties, ren-
ders the image in a new window, then inverts the contrast in the image.

capabilities make it an ideal companion language to C++
based libraries.

The SPARX interpreter is an enhanced Python shell,
and provides access to three distinct types of callable func-
tions:

Level 1: Direct access to the C++ core image processing
routines from Python. Calling syntax is almost identi-
cal between Python and C++. This includes opera-
tions such as image i/o, basic image processing,
Fourier transforms, filters, and so on.

Level 2: Python scripts built using Level 1 functions, writ-
ten as a shell command. For example, performing a 3-
D reconstruction from a set of projection images
could be implemented in a command-line program
called ‘reconstruct.py’. This program could then be
used directly from the system shell, or imported into
the interactive interpreter and then called directly as a
Python function.

Level 3: Higher level Python scripts consisting of Level 2 or
level 1 functions. These scripts can be written by hand
or be constructed using the graphical programming
tool described below. Once tested and built through
the graphical programming interface, such algorithms
may also be called from the interactive interpreter.

Now, consider the simple example of an interactive
SPARX session in Fig.2. This script will (1) create an
image object, (2) read ‘img001.spi’ from disk, (3) display
basic image information using a user-defined utility func-
tion, (4) display the image in an window on the screen with
a control panel permitting adjustment of brightness, con-
trast, ..., and (5) invert the contrast of the image data. Note
step 5 will also produce an immediate screen update in the
displayed image. Any operation applied in-place to img will
be immediately reflected in the image display window.

In writing level 2 Python scripts, the concept is similar,
but the style has to be slightly more expansive. Fig. 3 has an
example of a command-line program that reads a stack of
images, filters each image with a low-pass Gaussian filter,
and writes the filtered images to a new stack file. The
‘sigma’ parameter specifies the full width of the low-pass
Fourier filter expressed in units where Nyquist frequency is

http://www.pymol.org
http://www.pymol.org

M. Hohn et al. | Journal of Structural Biology 157 (2007) 47-55 51

#!/bin/env python
from EMAN2 import *
from sparx import *

from optparse import OptionParser

import sys

def main() :

progname = os.path.basename (sys.argv[0])

usage = progname + "inputfile outputfile --sigma=<sigma>"
parser = OptionParser (usage,version="1.0")

parser.add option("--sigma", type="float", help="sigma")

(options, args) = parser.parse_args()
if len(args) != 2:
print "usage: " + usage
print "Run '" + progname + " -h' for detailed options"

sys.exit (1)

filt (args[0],args[1l],options.sigma)

def filt(infile,outfile,sigma) :

imgs=EMData.read images (infile)

for i in imgs:

i.process ("filter.lowpass.gauss", {"sigma":sigma})

i.append image (outfile)

if name == " main ":

main ()

Fig. 3. An example of a level 2 SPARX program. This program can be used directly from GUI, from the command prompt, or imported into Python as a
callable function. This simple example will read a set of images from a file, low-pass filter them, then write the results to a new file, which may be in any

supported file format.

0.5. The definition of any of the named parameters, like
‘sigma’ are part of the built-in documentation system avail-
able both in the manual and via introspection. Note that
the actual script functionality is embodied in the ‘filt()’
function, and the remaining code simply deals with parsing
command-line options.

If this program were in a file called ‘filter.py’, one could
simply execute:

filter.py input.spi output.hdf -- sigma=0.5
from the command-line. Alternatively, one could achieve
identical results from Python/SPARX with:

from filter import filt
filt(“input. spi”, “output.hdf”, 0.5H)

The script could also be used from within the SPARX
GUI and take advantage of all of the features this interface
provides.

4. The SPARX interface
4.1. The design

The main motivation for the development of the
SPARX GUI is to provide an interface with the ease-of use
of a graphical programming environment as well as a range
of capabilities usually found only in language-based sys-
tems. First, the environment provides full retention of all
intermediate values in a user-controllable way. Second, it
supports parallelism and disconnected operation, meaning
the user interface can be exited and restarted while a com-

putational job is being executed. Third, it supports loops
and conditionals with automatic dependency checking.

A few of these features have long been available in tools
such as AVS (www.avscom) and Iris Explorer
(www.nag.co.uk/welcome_iec.asp), allowing non-program-
mers to write simple programs graphically without having
to learn the syntax of an actual programming language.
These tools represent specific tasks as boxes. A network is
formed by interconnecting boxes representing data flow
between different tasks. For example, one box might repre-
sent reading an image from a file, and a second box might
represent displaying an image on the screen. The two boxes
are connected to form a network that reads a file from disk
and displays it on the screen. In general, when the network
is executed, data interdependencies are checked, and all of
the individual boxes perform their respective tasks. How-
ever, certain constructs needed in tasks like single particle
reconstruction, such as data-dependent (dynamic) loops,
are difficult to implement in such strict data-flow systems.

In order to address specific needs for EM data process-
ing, a new language called L3 was designed for SPARX. L3
is a full programming language (manuscript in preparation)
with numerous features, but briefly, L3 embeds Python,
providing Python syntax and allowing direct access to all of
Python’s functions, including the SPARX library. The
design of L3 adds certain capabilities such as retention of
computed values and variables, the ability to resume an
interrupted computation, the ability to execute only the
portion of a program where dependencies have changed,
and other refinements necessary to build the GUI. The low-
est level tasks in the GUI, such as filtering an input image,
are simple calls to the functions in the underlying SPARX

http://www.avs.com
http://www.avs.com
http://www.nag.co.uk/welcome_iec.asp
http://www.nag.co.uk/welcome_iec.asp

52

library. More complex tasks can then be constructed graph-
ically by combining existing low-level tasks, naturally form-
ing a hierarchy of tasks. Further, there is no distinction
between user-defined tasks and tasks distributed with
SPARX, so users can build their own custom task collec-
tions. All tasks have dual graphical and textual representa-
tion, regardless of how they were created. Thus, sharing
assembled tasks with others can be as simple as e-mailing
the textual representation. All of the image processing
capabilities in the SPARX core are provided as visual tasks,
so the end-user will rarely need to directly write L3 code.

The programming environment provides full retention of
all intermediate values, in a user-controllable way. Every
datum computed during execution is archived in a local data-
base structure. In effect, a full history of the script execution
is available for later investigation. For example, if a script
representing an iterative reconstruction process is created
and then executed for five iterations, the intermediate results
produced during each iteration will be available. Since stor-
age of all intermediate files in a large reconstruction would be
prohibitive, the user can specify intermediates for which only
the most recent value should be available. This mechanism
also provides persistent sessions. That is, if the user builds a
(visual) script for iterative reconstruction, executes four itera-
tions, then exits, he or she can return later and reload the
same script. Everything will be in the same state as when he
or she last exited, including the full history of intermediate
values for each of the four iterations.

File Edit
1.0 41.0

List Program

M. Hohn et al. | Journal of Structural Biology 157 (2007) 47-55

To support parallelism and disconnected operation, the
graphical interface is separated from execution. The user
starts the GUI, builds a script visually, specifies which tasks
can be executed in parallel, then executes the script. The
actual execution is then handled by an independent process,
which executes the script on the appropriate parallel
resources, such as nodes of a computational cluster. The
GUI then interactively displays the progress of the running
script. Even if the GUI were terminated, the task would
continue executing and the user could later restart the GUI
and monitor the task’s progress or access intermediate
results.

To support long-term projects in which scripts evolve
over time, tasks are executed only when data or parameters
they depend on change. For example, if a long-running
script containing ten iterations were interrupted during the
sixth iteration, ordinarily, the entire script would have to be
re-executed. Using L3, execution resumes after the last suc-
cessful command, with all previously computed results pre-
served. If some parameters were changed before restarting
the job, only intermediate values relying on the changed
parameters would be recalculated.

4.2. The GUI
A screenshot of the current GUI is shown in Fig. 4. The

main window consists of two panes. On the left is the
library of available tasks. On the right is the canvas in

anonymous - 36601
>

+

em_tasks = [[ist
-‘VBEB
‘getInage
‘anglist2doc
'fsc
‘getInage
‘gridproj
‘imglist2stack
:spldhprg

programming = [[jst

=
Function.
|symboli'a’)]
Int(1L).

Float(1.108600000600080"

define a.
call_function.
List.

¢

\Map..

1f.)

'

Raw Python.|

Program.

support functions and environment setup.

dtheta-36518.

start external processes..
¢
Get reference volume. .
iterate delta theta
100p dtheta
dt

iteration| }
deltheta | 2

from

=
Calculate angles. .
.

Form projections.

proj_List = gridproj
ref_vol,
2anglist
&
.1‘75

.

Backproject. .

Compare volumes.

cross_corr = [cee

“back_projection
ref_vol

¢
(freqs, fsc_vals, err

Iterate if necessary..

Idlheta—39656-
Idlheta—BOSBZ-
dtheta-36948 .|
Idli\e[a—ila‘h

run. blck-31695
“volume
'Frojecﬁons
errs
‘anglist
‘proj_list
‘back_projection
'cmq-;_carr
volfile
freqs
nun_angles
angle_file
fsc_vals
iteration
deltheta
dtheta
‘spi
ref_vol

Progran

5) = |fsc =1
Tback_projection
ref_vol

plot
L2,
List
‘42L
34L
260
18L
6L
|
List
0.86459201574325562
0.30516208010673523
0.15032164752483368
6.28214696049690247
0.54982537031173706

Fig. 4. A snapshot of the current SPARX GUI. The interface in the current version is still somewhat minimalistic, but it is undergoing continual improve-
ments. The frame on the left contains available tasks and programming constructs that may be copied and used to form scripts. The frame on the right is
used to construct scripts using the library tasks from the left. Shown in the right of this snapshot is the sample problem described in the text: the initial
script to compute projections and backprojections (on the left), the hierarchy of computed data (on the upper right), and a second script constructed using
data (delta theta and the cross-correlation coefficient) accumulated by the initial script.

M. Hohn et al. | Journal of Structural Biology 157 (2007) 47-55 53

0.9

0.8 /
0.7 /
0.6 /
s N\ /

BN /
0.3 \ /

N
0.2 \\ \///

0.1

10 15 20 25 30 35 40 45

Fig. 5. The plot produced when the script in the lower right of Fig. 2 was
executed. The current version lacks axis labels and other refinements,
which will be added in future releases.

which the user constructs their program(s) from the tasks in
the library. The canvas holds multiple scripts; each script is
constructed vertically and is hierarchical. For example, a

loop is represented by a box. The tasks that are executed
multiple times as part of the loop are boxes inside the loop
box. Each task has associated parameters/values. Analo-
gous to the way a directory structure is browsed, parame-
ters and contained elements can be displayed or hidden
from view.

Note that the library portion of the display can also be
expanded. The user can build a small collection of tasks to
perform a specific function, name it and move it back into
the library for later use in other scripts. Because tasks can
be nested, whole programs can be contained in single task,
and added to the library in the same way.

We demonstrate the workings of the GUI by following
the simple example session shown in Fig. 4. Inside the
loop, projections of a 3-D model are generated and then
used to reconstruct a model. Begin by considering the left-
most ‘Program’ box in the canvas on the right. This exam-
ple begins with a 3-D model, generates a set of projections
with a specific angular step, reconstructs the model from
the projections, then compares the reconstructed model
with the original. The loop in this example executes this
overall process multiple times for different angular steps

list "support functions and environment setup":

list "start external processes":
spi = init_spider()

list "Get reference volume.":
ref vol = getImage("volext.spi")

list "iterate delta theta":

loop dtheta(iteration, deltheta) from

list "Calculate angles.":
anglist = voea(deltheta)

num_angles = len(anglist)/3

if (num angles > 200):
return 0

else:
0

list "Form projections.":

proj_list = gridproj (ref vol,
anglist,

6,
1.75)

list "Backproject.":

(1, 42):

projections = imglist2stack(proj_ list)
angle file = anglist2doc(anglist)

volume = spi.bprg(projections,

volfile = volume.save ()

[1, len(anglist) /3], angle file, "*")

back projection = getImage(volfile)

list "Compare volumes.":

cross_corr = ccc(back projection, ref vol)

(fregs, fsc_vals, errs) =

list "Iterate if necessary.":

fsc(back_projection, ref vol)

if (iteration <= 4) and (deltheta > 8):
return dtheta(iteration + 1, deltheta - 8)

else:
return 0

Fig. 6. The text corresponding to the upper left visual program in Fig. 2. This script can be executed independently of the GUI while maintaining continu-

ous data and execution tracking.

54 M. Hohn et al. | Journal of Structural Biology 157 (2007) 47-55

(deltheta). One could use such a simple script in order to
examine the possible artifacts introduced by projection/
reconstruction algorithms, and to establish a reasonable
choice for angular sampling when performing a single
particle reconstruction.

Once the script has been executed, the results are exam-
ined through the same interface—the script itself. For
example, in order to inspect the reconstructed 3-D objects
for each possible angular step, one simply goes to the ‘back-
project’ box, selects the output image, and chooses ‘display’
from its menu. This will then display the list of images pro-
duced by all loop iterations. The full results are shown par-
tially expanded in the ‘anonymous’ box in the upper right
of Fig. 4.

Instead of just displaying a value, the value can itself be
used as part of a new script. This introduces a convenient
way of examining one’s data. Continuing the example, by
selecting the cross_corr box and choosing ‘insert
values’, a list of values is put on the canvas. Then, select-
ing the deltheta box and again choosing ‘insert values’, a
second list of values is put on the canvas. Now, a ‘program’
task and a ‘plot’ task (not visible in the figure) are added to
the canvas, and a plot script is assembled (Fig. 4, lower
right). This derived script is then executed to produce the
plot in Fig. 5.

As mentioned above, a program constructed in the GUI
is equivalent to an L3 script, which is what is actually exe-
cuted. In Fig. 6, the textual script corresponding to the
main visual script in Fig. 4 is shown. These scripts, whether
typed by hand or produced by the GUI, can be executed as
stand-alone programs outside the SPARX GUI, and still
maintain history tracking capabilities, because even in the
GUI, they are executed by the underlying L3 interpreter,
not by the GUT itself.

4.3. Integration with other software

The SPARX GUI is basically a user-friendly wrapper
for Python. To bring other (non-graphical) software into
the SPARX environment and gain its benefits only requires
writing a custom Python wrapper. The core library already
supports multiple file formats and several data structuring
conventions used by other packages, so conversion to/from
an internal SPARX format by the wrapper is greatly sim-
plified. This approach provides seamless integration of a
variety of tools. As concrete example, a Python-SPIDER
connection called pyspi is included with SPARX. This
experimental module makes ~40 SPIDER commands
available in Python and the SPARX GUI.

This capability will be gradually expanded as SPARX
matures to allow direct mixing of algorithms between
EMAN?2, SPIDER, FREALIGN and possibly other TEM
software packages. The process of integrating standalone
programs into the GUI is usually straightforward. One of
the great benefits of development within SPARX is the
ability to take advantage of an existing package by incor-
porating it into a structure determination project.

5. Conclusions

SPARX will be an attractive environment for those users
who wish flexibility in their image processing, but do not
wish to learn a full programming language or to those with
some programming skills who wish to integrate algorithms
from multiple packages. It combines the ease of graphical
programming as used in packages such as IRIS Explorer or
AVS with process-flow features such as loops, historical
data tracking and inspection, and parallelization capabili-
ties. SPARX is not designed to supplant existing software,
such as SPIDER and EMAN, but to unify access to such
existing tools in a common environment, including novel
algorithms developed in SPARX itself.

The core infrastructure of SPARX is largely complete
and tested, and a usable prototype of the GUI has been
completed. The first beta version of the complete package
which will incorporate SPARX, the EMAN?2 core, cctbx
and all dependencies is expected in late-2006. Full docu-
mentation, details and contact information is available
from the SPARX web site at http://blake.bcm.tmc.edu/
SPARX. Both EMAN?2 and the cctbx are also indepen-
dently available at http://blake.bcm.tmc.edu/EMAN2 and
http://cctbx.sourceforge.net, respectively.

Acknowledgments

This research has been supported by NIH Grant
PO1GMO064692 and by the US Department of Energy
under Contract No. DE-AC02-05CH11231. Support for
the core EMAN?2 libraries is provided by ROIGM080139
and P41RR02250.

References

Abrahams, D., Grosse-Kunstleve, R.W., 2003. Building hybrid systems
with Boost Python. CC Plus Plus Users Journal 21, 29-36.

Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., loerger, T.R., McCoy,
A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., Terwil-
liger, T.C., 2002. PHENIX: building new software for automated crys-
tallographic structure determination. Acta. Cryst. D 58, 1948-1954.

Adams, P.D., Gopal, K., Grosse-Kunstleve, R.W., Hung, L.W., loerger, T.R.,
McCoy, A.J., Moriarty, N.W., Pai, R.K., Read, R.J., Romo, T.D., 2004.
Recent developments in the PHENIX software for automated crystallo-
graphic structure determination. J. Synchrotron. Radiat. 11, 53-55.

Baker, T.S., Cheng, R.H., 1996. A model-based approach for determining
orientations of biological macromolecules imaged by cryoelectron
microscopy. J. Struct. Biol. 116, 120-130.

Carragher, B., Whittaker, M., Milligan, R.A., 1996. Helical processing
using PHOELIX. J. Struct. Biol. 116, 107-112.

Crowther, R.A., Henderson, R., Smith, J.M., 1996. MR C image processing
programs. J. Struct. Biol. 116, 9-16.

Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., Leith,
A., 1996. SPIDER and WEB: processing and visualization of images in
3D electron microscopy and related fields. J. Struct. Biol. 116, 190-199.

Gordon, R., Bender, R., Herman, G.T., 1970. Algebraic reconstruction
techniques (ART) for three-dimensional electron microscopy and
X-ray photography. J. Theor. Biol. 29, 471-481.

Grigorieff, N., 1998. Three-dimensional structure of bovine NADH:ubi-
quinone oxidoreductase (complex 1) at 22 A in ice. J. Mol. Biol. 277,
1033-1046.

http://blake.bcm.tmc.edu/SPARX
http://blake.bcm.tmc.edu/SPARX
http://blake.bcm.tmc.edu/SPARX
http://blake.bcm.tmc.edu/EMAN2
http://blake.bcm.tmc.edu/EMAN2
http://cctbx.sourceforge.net
http://cctbx.sourceforge.net

M. Hohn et al. | Journal of Structural Biology 157 (2007) 47-55 55

Grosse-Kunstleve, R.W., Sauter, N.K., Moriarty, N.W., Adams, P.D., 2002.
The computational crystallography toolbox: crystallographic algo-
rithms in a reusable software framework. J. Appl. Cryst. 35, 126-136.

Grosse-Kunstleve, R.W., Afonine, P.V., Sauter, N.K., Adams, P.D.
2005. cctbx news: Phil and friends. Newsletter of the Commission
on Crystallographic Computing, International Union of Crystal-
lography, 5.

Hegerl, R., 1996. The EM program package: a platform for image
processing in biological electron microscopy. J. Struct. Biol. 116, 30-34.

Heymann, J.B., 2001. Bsoft: image and molecular processing in electron
microscopy. J. Struct. Biol. 133, 156-169.

Kremer, J.R., Mastronarde, D.N., McIntosh, J.R., 1996. Computer visuali-
zation of three-dimensional image data using IMOD. J. Struct. Biol.
116, 71-76.

Lakshminarayanan, A.V., Lent, A., 1979. Methods of least squares and
SIRT in reconstruction. J. Theor. Biol. 76, 267-295.

Liang, Y., Ke, E.Y., Zhou, Z.H., 2002. IMIRS: a high-resolution 3D recon-
struction package integrated with a relational image database. J. Struct.
Biol. 137, 292-304.

Penczek, P.A., Renka, R., Schomberg, H., 2004. Gridding-based direct
Fourier inversion of the three-dimensional ray transform. J. Opt. Soc.
Am. A 21, 499-509.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt,
D.M., Meng, E.C., Ferrin, T.E., 2004. UCSF Chimera—a visualiza-
tion system for exploratory research and analysis. J. Comput. Chem.
25,1605-1612.

Sanner, M.F., Stoffler, D., Olson, A.J. 2002. ViPEr, a visual Programming
Environment for Python, Paper presented at: Proceedings of the 10th
International Python conference.

Schroeter, J.P., Bretaudiere, J.P., 1996. SUPRIM: easily modified image
processing software. J. Struct. Biol. 116, 131-137.

Sorzano, C.O., Marabini, R., Velazquez-Muriel, J., Bilbao-Castro, J.R.,
Scheres, S.H., Carazo, .M., Pascual-Montano, A., 2004. XMIPP: a new
generation of an open-source image processing package for electron
microscopy. J. Struct. Biol. 148, 194-204.

Vainshtein, B.K., Penczek, P.A., 2006. Three-dimensional reconstruction.
In: Shmueli, U. (Ed.), International Tables for Crystallography. Klu-
wer, Dordrecht.

van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R., Schatz, M., 1996. A
new generation of the IMAGIC image processing system. J. Struct.
Biol. 116, 17-24.

Yang, C., Ng, E.G,, Penczek, P.A., 2005. Unified 3-D structure and projec-
tion orientation refinement using quasi-Newton algorithm. J. Struct.
Biol. 149, 53-64.

	SPARX, a new environment for Cryo-EM image processing
	Introduction
	SPARX design
	EMAN2 library
	The computational crystallography toolbox (cctbx)
	SPARX core

	Interactive SPARX (Python) interpreter
	The SPARX interface
	The design
	The GUI
	Integration with other software

	Conclusions
	Acknowledgments
	References

