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REVIEW ARTICLE 

Molecular Thanatopsis: A Discourse on the BCLZ Family and Cell Death 

By Elizabeth Yang and Stanley J. Korsmeyer 

BCL2 PREVENTS MULTIPLE FORMS OF CELL DEATH 
AND DEFINES A NEW CLASS OF ONCOGENES 

IGHTY-FIVE PERCENT of follicular lymphomas and E 20% of diffuse B-cell lymphomas have a characteristic 
t( 14; 18) translocation.’.’ In this translocation, the proto-on- 
cogene BCL2 at chromosome segment 18q21 is juxtaposed 
with the Ig heavy chain locus at 14q32, resulting in deregu- 
lated expression of BCL2.3-6 The discovery that BCL2, unlike 
oncogenes studied previously, functions in preventing pro- 
grammed cell death (PCD) instead of promoting proliferation 
established a new class of  oncogene^.^.^ 

The initial observation of 
BCL2’s ability to enhance cell survival was that overex- 
pression of BCL2 increased the viability of certain cytokine- 
dependent cells upon cytokine withdrawal. In interleukin-3 
(IL-3)-dependent pro-B -cell lines and promyeloid cell 
lines, BCL2 overexpression prolonged cell survival upon IL- 
3 withdrawal and maintained the cells in Go7,’ The observa- 
tion was extended to IL-4- and granulocyte-macrophage 
colony-stimulating factor (GM-CSF)-dependent cells’ and 
in certain IL-2-dependent” and IL-6-dependent” cells. 
BCL2 was also capable of protecting T cells against a variety 
of apoptotic signals, including glucocorticoids, y -irradiation, 
phorbol esters, ionomycin, and cross-linking of cell surface 
molecules by anti-CD3 antibody. The protective effects were 
observed in T-cell hybridomas transfected with BCL2 and 
in thymocytes and peripheral T cells from transgenic mice 
with expression of BCL2 under the control of the proximal 
promoter of lck (ZC~J’?’~ or the Ig heavy chain enhancer 

Overexpression of BCL2 alters lymphoid development and 
leads to neoplasia. The in vivo effects of BCL2 were ini- 
tially investigated using transgenic mice with BCL2 overex- 
pression targeted to B cells or to T cells. Transgenic mice 
bearing a BCL2-Zg minigene harbor expanded B-cell com- 
partments. Mice in which the BCLZ transgene expression is 
targeted to T cells by the lck proximal promoter exhibit 
increased CD3med and increased CD4-CD8+ single-positive 
thymocytes compared with littermate  control^.'^ When the 
BCL2 transgene is expressed in B lymphocytes, the mice 
develop follicular hyperplasia, some of which progress to 
high-grade monoclonal (Fig 1). When ex- 
pression is directed to T cells, fully one third of the mice 

BCLZ prolongs cell survival. 
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develop peripheral T-cell lymphomas” (Fig 1). A long la- 
tency and progression from polyclonal hyperplasia to mono- 
clonal malignancy are consistent with the hypothesis that 
oncogenic events in addition to BCL2 overexpression are 
necessary for tumor formation. In lymphomas arising in 
BCL2-Zg transgenic mice, a common second hit is transloca- 
tion of the Myc oncogene.I6 (The interaction between Myc 
and BCLZ will be specifically discussed in a later section.) 
These transgenic mice experiments illustrated that cell death 
is normally a well-regulated process in lymphoid develop- 
ment and that lack of cell death is tumorigenic. Deleterious 
mutations that would have resulted in cell death can be re- 
tained when apoptosis is inhibited. The progression to 
lymphoma in these BCL2 transgenic mice constitutes in vivo 
evidence that the t( 14;18) and BCL2 overexpression play a 
primary role in oncogenesis. 

Prompted 
by these studies, BCL2 has been found to protect against 
death in a variety of cell types. Notably, BCL2 protects 
against neuronal cell death induced by various apoptotic 
stimuli. BCL2 inhibited apoptosis in PC 12 pheochromocy- 
toma cells after nerve growth factor (NGF) withdrawal.”.” 
Microinjection of a BCLZ construct driven by the neuron- 
specific enolase promoter into cultured rat sympathetic neu- 
rons also resulted in the prevention of programmed death 
after NGF deprivation.22 Other experiments suggested that 
not all neuronal cell deaths are inhibitable by BCL2. For 
example, BCL2 rescued embryonic chick sensory neurons 
dependent on nerve growth factor, brain-derived neuro- 
trophic factor, and neurotrophin-3, but not ciliary neurons 
dependent on ciliary neurotrophic factor.z3 In addition to 
growth factor dependency, BCL2 has been shown to counter 
death in a neuronal cell line after serum and glucose with- 
drawal, membrane peroxidation, and treatment with calcium 
ionophore and menadione, an inducer of free radical forma- 
tion.” In animal models, overexpression of BCL2 under the 
neuron-specific enolase or phosphoglycerate kinase pro- 
moter led to neuronal hypertrophy by decreasing naturally 
occurring cell death. The brains from transgenic animals 
were larger than wild-type littermates by 12%.25 The number 
of motoneurons in the facial nucleus and the ganglion cell 
layer of the retina was increased by 40% to 50%.25 Overex- 
pression of BCL2 in these animals also protected against 
experimental cell death. This is evidenced by a 50% reduc- 
tion in the volume of brain infarction in transgenic mice after 
occlusion of the middle cerebral arteryz5 and by continued 
survival of facial motoneurons after axotomy in transgenic 
animals, whereas those in wild-type mice degeneratesz6 The 
role of BCLZ in normal neuronal physiology has been ex- 
plored in Bcl2-deficient mice. Superior cervial ganglion cells 
from Bc12-’- mice died more rapidly after NGF deprivation 
than those from wild-type mice,27 suggesting that BCLZ is 
an important regulator of sympathetic neuron survival during 
the period of naturally occurring programmed neuronal 
death. 

BCL2 protects against neuronal cell deaths. 
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Fig 1. BCU overexpression leads to neoplasia, which is syner- 
gized by EMYCoverexpression. Cumulative tumor incidence in BCLZ- 
ig, Ickp'-BCLZ, and E,-MYC transgenic mice and BCLZ-lg + E,-MYC 
double transgenic mice compared with littermate c o n t r o l ~ . ' ~ ' ~ ~ ' ' ~  

Virus-induced cell death can be blocked by BCL2. Upon 
infection of host cells, adenovirus expresses several virally 
encoded genes. Expression of the adenovirus E1A oncogene 
alone stimulates host cell proliferation accompanied by 
apoptosis, which can be p53 dependent.28*29 Simultaneous 
expression of the E1B 19-kD protein suppresses E1A-in- 
duced apoptosis,2* allowing foci formation after adenovirus 
infection. BCL2 shares limited homology with E1B 19-kD 
protein and can substitute for its ability to inhibit E1A-in- 
duced cell death.30,3' This is an example of BCL2's ability 
to repress cell death due to abnormal proliferation. BCL2 
can also block apoptosis in serum-deprived cells expressing 
the Tax protein of human T-cell leukemia virus human T- 
cell lymphotropic virus type 1 (HTLV-1).32 In another sys- 
tem, BCL2 is able to inhibit programmed cell death induced 
by lytic infection of the alphavirus, Sindbis, allowing the 
establishment of persistent viral infection.33 

Numer- 
ous examples now exist in which apoptosis due to external 
toxic stimuli can be rescued by BCL2 (Table 1). An interest- 
ing system is the "apoptosis" of nuclei in cell-free Xenopus 
oocyte extracts, which can be inhibited by BCL2.34 This in 
vitro system offers the potential for dissecting individual 
components of apoptosis. Other examples in which BCL2 
plays a role include transforming growth factor 0 (TGFP)- 
induced growth arrest and cell death in M1 
and chemotherapeutic drug-induced apoptosis in cancer 

Despite numerous 
positive examples, BCL2 does not prevent every cell death. 
BCL2 does not have a substantial effect on negative selection 

BCL2 functions in multiple cell death systems. 

BCL2 does not repress all cell deaths. 

of  thymocyte^.'^ Also, it does not easily prevent apoptosis 
in targets of cytotoxic T-cell killing."5 However, observations 
that BCL2 can occasionally affect outcomes by these stimuli 
suggest that results can be dose-related. Because BCL2 is 
able to inhibit apoptosis resulting from so many different 
signals and intracellular pathways, it must act after the con- 
vergence of many signals in the apoptotic pathway. Because 
overexpression of BCL2 does not protect every example of 
cell death, it is theorectically possible that more than one 
distal pathway of cell death exists. Alternatively, individual 
BCL2 family members may prove more effective in certain 
contexts than others. 

BIOCHEMICAL AND CELL BIOLOGICAL STUDIES 
OF BCL2 ACTIVITY 

BCL2's ful l  activity requires an integral membrane posi- 
tion. The carboxy terminus of BCL2 contains a hydropho- 
bic 19-amino acid stretch reminiscent of a membrane 
spanning domain. Subcellular fractionation, immuno- 
fluorescence, and confocal microscopy studies using anti- 

Table 1. Cell Deaths Repressed by BCL-2 

Lymphoid 
Factor withdrawal-IL-2, IL-3, IL-4, IL-6, GM-CSF 
Glucocorticoid 
y Irradiation 
Phorbol esters 
Calcium 
Cross-linking by anti-CD3 

Factor withdrawal-NGF, BDNF, Neurotrophin-3 
Serum withdrawal 
Calcium 
Infarction 
Axotomy 
Naturally occurring cell death 

Fibroblasts 
Serum deprivation and MYC induction 

Oncogene-related 
MYC-induced 
E l  A-induced 
p53-mediated 

Viral infections 
Adenovirus 
Sindbis virus 

Neuronal 

HTLV-1 
Chemotherapeutic drugs 

DNA synthesis inhibitors 
Alkylating agents 
Topoisomerase inhibitors 
Microtubule inhibitors 
Antimetabolites 

Oxidant stress 
H A  
Menadione 
Membrane peroxidation 

Others 
TGF-8 
Staurosporine 
Loss of extracellular matrix 

 use only.
For personal at PENN STATE UNIVERSITY on February 20, 2013. bloodjournal.hematologylibrary.orgFrom 

http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


388 YANG AND KORSMEYER 

BCL2 antibodies indicated that BCL2 is an intracellular 
membrane protein whose distribution varies somewhat de- 
pending on cell type. BCL2 has been most convincingly 
localized to mitochondria, its predominant site in hematopoi- 
etic cells, as well as smooth endoplasmic reticulum and peri- 
nuclear m e m b ~ a n e . ' ' * ~ ~ ~  Targeting studies using purified mi- 
tochondria and in vitro-translated BCL2 protein showed that 
the carboxy terminus functions as a signal anchor sequence 
responsible for targeting and insertion into the mitochondrial 
outer membrane. This exposes most of the polypeptide to the 
cytosol, in which it remains sensitive to protease dige~tion.~' 
BCL2 devoid of the signal anchor sequence is only partially 
functional in protection against apoptosis. However, a por- 
tion of the truncated BCL2 is still bound to its membrane- 
associated heterodimerizing partner, BAX.51 Substitution of 
the BCL2 mitochondrial anchor sequence with the yeast 
outer membrane protein Mas70p signal anchor sequence re- 
targets the protein into the mitochondrial outer membrane 
and fully restores BCL2's activity, as measured by the ability 
to inhibit E l  A-induced cytotoxi~ity.~~ A fusion protein of 
BCL2pm-2 receptor transmembrane domain produced sim- 
ilar results.53 These studies argue that BCL2's full function 
depends on its subcellular membrane localization. Most of 
the amino portion of BCL2 is exposed, in which it may 
interact with proteins in the cytosol or other BCL2-like mole- 
cules similarly anchored in the mitochondria. BCL2 function 
is not dependent on an intact electron transportloxidative 
phosphorylation chain, as is shown by BCL2's ability to 
block apoptosis in cells lacking mitochondrial DNA and 
unable to carry out electron 

The mito- 
chondrial outer membrane, the endoplasmic reticulum, and 
the nuclear envelope are all sites implicated in the production 
of reactive oxygen species (ROS). The localization of BCL2 
to these sites prompted investigation into the role of ROS 
in programmed cell death. BCL2 can protect cells against 
H202 and t-butyl hydroperoxide or menadione, which gener- 
ate 02-.s's5s At low concentrations, these oxidant stresses kill 
cells by an apoptotic process. Agents that decrease reactive 
oxygen species, such as N-acetylcysteine, glutathione perox- 
idase, and desfemoxamine, can partially protect against 
apopt~sis.~' Furthermore, BCL2 can protect against death 
induced by agents that decrease intracellular glutathione 
(GSH), such as buthionine sulfoximine and ethacrynic 
This suggests that reactive oxygen species may be involved 
in apoptotic pathways rescuable by BCL2. The endogenous 
production of intracellular peroxides, as measured by the 
conversion of the oxidation-sensitive fluorescent dye DCFH 
to DCF, is not significantly changed in the presence of BCL2. 
BCL2 also does not have a significant effect on the genera- 
tion of superoxide, 02-. BCL2 does inhibit lipid peroxida- 
tion, a downstream event in oxidative damage and a frequent 
accompaniment of apopt~sis.~' However, subsequent reports 
of BCL2's ability to rescue cells from programmed cell death 
occurring under hypoxic conditions in which the generation 
of ROS is greatly reduced suggest that ROS are not essential 
for PCD.56,57 Thus, BCL2's death repressor function does 
not solely depend on the protection of cellular constituents 
from oxidative damage. Although BCL2 can block oxidant- 

BCL2 can inhibit oxidant induced apoptosis. 

induced apoptosis, in the absence of a proven biochemical 
activity, it remains an open question whether BCL2 has a 
direct or indirect role on the oxidant pathway. 

Another area of 
investigation into BCL2 function that relates to BCL2's lo- 
calization to the endoplasmic reticulum is intracellular cal- 
cium homeostasis. Caz+ has been implicated in apoptosis 
because of the Ca" dependence of certain internucleosomal 
DNA fragmentations and the ability of Ca ionophores 
A23187 and ionomycin to induce lymphocyte apoptosis. Al- 
though the total cellular Ca2+ content has not been consis- 
tently shown to change with the induction of cell death, a 
redistribution of intracellular Caz+ can result.s8 Studies using 
thapsigargin, an inhibitor of the ER-associated Ca2+ pump, 
indicated that apoptosis is associated with an efflux of Ca2+ 
from the ER into the cytosol and that BCL2 can block this 
flux of CaZ+ across the ER Although intrigu- 
ing, mobilization of intracellular Ca" stores is but one step 
in the complex cell death pathway. Whether BCL2's effect 
on calcium homeostasis is direct or indirect is still uncertain. 

BCL2 and intracellular calcium fluxes. 

BCLZ FOUNDS A FAMILY OF CELL 
DEATH REGULATORS 

BAX, a heterodimerizing partner of BCL2, is a death pro- 
moter. Identification of a number of BCL2 homologs, some 
of which bind to BCL2, suggests that BCL2 functions, at 
least in part, through protein-protein interactions. The first 
of these homologs, BAX, was identified by coimmunopreci- 
pitation with BCL2 protein. BAX is a 21-kD protein that 
shares homology with BCL2 principally clustered in two 
conserved regions, BH1 and BH2 (Fig 2). In addition, an 
exon juncture in BH2 is conserved. BAX heterodimerizes 
with BCL2 and homodimerizes with itself.6' Site-directed 
mutagenesis of BH1 and BH2 in BCLZ showed that these 
two domains were important for binding to BAX. When 
binding was disrupted, BCL2's protective function was also 
eliminated, suggesting that BCL2 must bind BAX to exert 
its effect. Most noteworthy are the substitutions of a single 
amino acid Gly145 in BH1 with either alanine or glutamic 
acid and Trp188 with alanine in BH2, which completely 
disrupted binding to BAX and abrogated BCL2's death-re- 
pressor effect.62 When BAX was overexpressed in cells, apo- 
ptotic death in response to a death signal was accelerated, 
earning its designation as a death promoter. When BCL2 
was overexpressed, it heterodimerized with BAX and death 
was repressed.6' Thus, the ratio of BCL2 to BAX determines 
the amount of BCL2BAX heterodimers versus BAX/BAX 
homodimers and is important in determining susceptibility 
to apoptosis (Fig 3). BAX protein contains a hydrophobic 
carboxy terminus like BCL2 and has been colocalized to 
mitochondria with BCL2 (unpublished observations). BAX 
is widely expressed in tissues, including a number of sites 
in which cells die during normal matura t i~n .~ ' .~~  Moreover, 
the BCL2 to BAX ratio varies during the developmental 
history of a given lineage, such as T lymphocytes. For exam- 
ple, BCL2 is present in the immature, double-negative thy- 
mocytes and in the mature, single-positive T cells. However, 
it is absent at the double-positive stage when selection oc- 
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BHI 

Fig 2. The BCL2 family. Align- 
ment of  BCLZ homologs in BH1 
and BH2  domains. Numbers de- 
note amino acid  positions.  Iden- 
tical amino acids are outlined in 
black  and  conserved  residues 
are  shaded.  Dashes denote gaps 
in the sequence to maximize 
alignment. 

BCL-2 
BAX 

BAK 
MCL- 1 
A1 
BAD 
LMW5-HL (ASFV) 
BHRF 1 (EBV) 
CED-9  (C-elegans) 

BCL-X L 

BCL-2 
BAX 

BAK 

A 1  
BAD 
LMW5-HL (ASFV) 
BHRF 1 (EBV) 
CED-9  (C.elegans) 

BCL-X L 

MCL- 1 

136 
98 

129 
117 
252 

77 
138 
76 
89 

159 

187 
150 
180 
169 
304 
132 
182 
126 
142 

213 

C U ~ S . ~ ~ . ' ~  The lack of BCL2 may enable thymocytes to die if 
they fail to receive an appropriate signal. 

BCL-X is similar to BCLZ but shows different lineage 
spec$city. Another homolog that is functionally similar 
to BCL2 is BCL-X, which was cloned by low stringency 
hybridization using BCL2 as a probe. BCL-X displays 44% 
amino acid identity to BCL2. The gene product exists in 
two forms, BCL-XL, which encodes 233 amino acids and 
contains the highly conserved BHI and BH2 domains (Fig 
2), and an alternatively spliced form,  BCL-X,, which lacks 
a 63 amino acid stretch encompassing BH1 and BH2.663'7 
BCL-XL, similar to BCL2, inhibits apoptosis in many assay 

Fig 3. Susceptibility to PCD. The relative ratios of BCLZ and  BAX 
heterodimers to homodimers determine the susceptibility to PCD. 

BH2 
2  02 
165 
195 
184 
319 
147 
196 
141 
157 
228 

systems. BCL-Xs, on the other hand, counters the protective 
effect of BCL2 or BCL-XL. Overexpression of BCL-XL in 
FL5.12 cells protects them from apoptosis upon IL-3 with- 
drawal just as BCL2 does.66 In vivo, thymocytes from mice 
expressing the BCL-X transgene under the Zck proximal pro- 
moter show increased survival and are protected against glu- 
cocorticoid-, y-irradiation-, and anti-CD3-induced death." 
Moreover, BCL-XL overexpression altered thymocyte matu- 
ration in a pattern essentially identical to BCL2 overex- 
pression, ie, ZcV"BCL-XL mice had increased CD3i"'h' thy- 
mocytes and an excess of CD8 single-positive thymocytes, 
just as were found in lcP-BCL2 transgenic mice.'',"8,6' BCL- 
X,. can heterodimerize with BAX in mammalian cells, and 
single amino acid substitutions in BH1 abolished binding to 
BAX and abrogated the death-repressor effect.70 In addition, 
the introduction of a BCL-X,, transgene that was expressed 
in T-cell development rescued T-cell survival in bcZ2"- ani- 
mals," showing the genetic capacity of BCL-XL, to substitute 
for BCL2. Like  BCL2,  BCL-X has a hydrophobic carboxy 
terminal transmembrane domain and its subcellular distribu- 
tion is similar to  BCL2.7' 

Despite their similarities, functional differences do exist 
between BCL-X and BCL2. WEHI-23 1.7 cells undergo pro- 
grammed cell death upon cross-linking of IgM and upon 
exposure to immunosuppressants CsA,  FK506, and rapa- 
mycin, all of which can  be suppressed by  BCL-XL but not 
by BCL2." Activation of peripheral T cells leads to rapid 
induction of BCL-X,- but not BCL2." Most recently, experi- 
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Table 2. Lineage-Specific Roles for BCL-2 and BCL-XL 

BCL-2 BCL-XL 

B-cell memory B-cell maturation 
Mature B-cell survival 
Mature T-cell survival T-cell activation 
Kidney development Brain development 
Melanocyte survival 

Double-positive thymocyte survival 

ments of human peripheral T-cell activation using anti-CD3 
and anti-CD28 in the presence of IL-2 showed that costimu- 
lation by these two molecules significantly enhances BCL- 
XL, but not BCL2, expres~ion .~~ Differences in expression 
patterns also exist. During thymocyte development, BCL2 
is expressed in immature CD4-CD8- double-negative cells, 
but not in CD4+CD8+ double-positives, and again in mature 
CD4' or CD8+ s ingle-po~i t ives .~~~~ BCL-XL expression, on 
the contrary, has a reciprocal pattern. Expression is present 
during the double-positive stage, but is lost as thymocytes 
mature to single-positive T ~ e l l s . ~ ' , ~ ~  The patterns of expres- 
sion suggest that BCL2 may be most important in main- 
taining the homeostasis of resting T cells, whereas BCL-XL 
may be more important in postactivation survival decisions. 
BCL-XL expression is also notably higher than that of BCL2 
in the adult brain.7',7',76 Therefore, BCL-XL and BCL2 dis- 
play differences in cell-type specificity and perhaps their 
physiologic roles provide an explanation for their comainten- 
ance (Table 2). 

Other BCL2-like 
genes are expressed in response to definable signals. MCLl 
was cloned from a myeloid leukemia line after induction by 
phorbol ester. It shares homology with BCL2 mostly at the 
carboxy region, including BH1 and BH2 (Fig 2), but differs 
from BCL2 towards the amino terminus at which two PEST 
sequences reside.77 A l ,  another BCL2 family member (Fig 
2), is a hematopoietic-specific early response gene induced 
by GM-CSF and lipopolysaccharide (LPS).78 Both MCLl 
and A1 show strong binding to BAX in the yeast two-hybrid 
~ y s t e m , ~ ' . ~ ~  suggesting that heterodimers of MCLUBAX and 
A 1BAX may exist. However, attempts to coimmunoprecipi- 
tate MCLl and BAX in mammalian cells have been unsuc- 
cessful to date.80 MCLl exhibits minimal or no effect on 
cell death in the limited systems examined thus far."~s' 
Therefore, the precise roles of MCLl and A1 in cell death 
paradigms are still under exploration. 

BAK antagonizes BCL2 activity. A new player in the cell 
death death pathway, BAK (BCL2 homologous antagonist/ 
killer), was found by three independent groups through inter- 
action with E1B-19k protein or degenerate polymerase chain 
reaction (PCR) c l ~ n i n g . ~ ~ - * ~  BAK is a BCL2 family member 
with BH1 and BH2 domains (Fig 2) and is functionally 
similar to BAX. BAK interacts with BCL2 and BCL-XL, 
in addition to ElB-lgk, and opposes their death-repressor 
activity when coexpressed in IL-3-dependent FL5.12 
~ e l l s ~ ~ . ~ ~  and NGF-dependent rat sympathetic neurons.82 One 
experimental exception did exist in an Epstein-Barr virus- 
transformed lymphoblastoid cell line WI-L2, in which BAK 
actually enhanced survival after serum deprivation and men- 
adione treatment.x4 This may reflect a context dependence 

MCLl and A1 are inducible genes. 

of this protein's effect. BAK also has the capacity to activate 
a cell death pathway when induced in Rat-1  fibroblast^.'^ 
Thus, there are multiple death repressors (BCL2, BCL-XL, 
and E1B-19K) and multiple death promoters (BAX, BCL- 
Xs, and BAK; Table 3). BAK seems to differ from BAX in 
its preference for heterodimerizing partners. For example, 
BAK appears to prefer BCL-XL over BCL2." BAK and 
BAX may also have different cell-type specificities, as has 
been shown for BCL2 and BCL-XL. 

Conservation 
of the BCLZ family of genes is remarkable in that BCL2 has 
homologs in the DNA viruses. In addition to the adenovirus 
ElB-19k gene already mentioned, the BHRFl gene of EBV 
that is expressed early in lytic and some latent infections is 
homologous to BCL2 in the BH1 and BH2 domains6," (Fig 
2). Recently, an open reading frame (ORF16) in the T- 
lymphotropic herpesvirus saimiri (HVS) was reported as a 
novel member of the BCL2 family.86 The African swine fever 
virus encodes a homologous gene, LMWS-HL (Fig 2), which 
is also expressed early in infection of mononuclear phago- 
c y t e ~ . ~ ~  The function of these viral homologs may be to 
maintain host cell viability while infection is being estab- 
lished. 

Yeast two-hybrid assays show speci$city of heterodimer 
formation among BCL2 family members. The increasing 
number of BCL2 homologs prompted the use of the yeast 
two-hybrid system to assess which members could dimerize. 
Each family member was fused to the DNA binding domain 
and the transcription activation domain of the yeast GAL4 
gene, and all the possible combinations were scored for lacZ 
activation in (Table 4). BAX was found to strongly 
heterodimerize with BCL-XL, MCLl, and AI, in addition 
to BCL2, suggesting that it may be a common partner in the 
regulation of cell death. In contrast, BCL-Xs, which opposes 
BCL-XL and BCL2, only heterodimerizes with BCL-X,< and 
BCL2, suggesting that this alternatively spliced form that 
reverses protection by BCL-XL and BCL2 may do so by 
sequestering these molecules. Similarly, BAK heterodimer- 
izes more strongly with BCL-XL than with BCL2." Homodi- 
mers of BAX and BCL2 were also recapitulated in this sys- 
tem. The results from yeast two-hybrid assays showed that 
there is selectivity in heterodimer formation within the BCL2 
family of proteins and that there is a hierarchy to the strength 
of binding between the various partners. Therefore, within 
a given mammalian cell, the presence and the concentration 
of each member might determine the predominant dimer 
species. Although BHl and BH2 domains in BCLZ are es- 
sential for heterodimer formation, deletion mapping in yeast 

BCL2 homology extends to DNA viruses. 

Table 3. BCL-2 Family Death Repressors and Death Promoters 

Death Repressors Death Promoters 

BCL-2 
BCL-XL 
EIB-19K 
CED-9 

BAX 

BAK 
BAD 

BCL-Xs 

Only molecules with established cell death functions in mammalian 
cells are shown. 
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Table 4. Dimer Formation in Yeast Two-Hybrid h a y  

GAL 4-Activating Domain 
GAL4-DNA 

Binding Domain BCL-2 BAX BCL-XL BCL-X. MCL-1 A1 BAD 

BCL-2 + + -I+* + -I+* + + 
BAX + + + + + 

+ + + -I+* -I+* - BCL-XL 
MCL-1 - 

BAD + - 

* Differences between findings in two r e p o ~ t s ? ~ ~ ~ ~  

- - 

- 
- + - - - - 

+ - - - - 

two hybrid indicates that other regions of molecules in this 
family also regulate dimer formation. 

ADDITIONAL BCLZ- AND BCL-XL-INTERACTING 
PROTEINS MODULATE CELL DEATH 

BAD negatively regulates BCLZ and BCL-X, and dis- 
places BAX. Efforts to further examine BCL2’s ability to 
interact with other proteins in the cell death pathway uncov- 
ered additional BCL2-interacting proteins that modulate 
BCL2’s activity. Yeast two-hybrid screening and A expres- 
sion cloning both showed a new heterodimerizing partner of 
BCL2 and BCL-XL, called BAD (BCL2/BCL-XL-associated 
death promoter).88 This player in the cell death pathway 
differs from other family members with homology limited 
to the most conserved amino acids in the BH1 and BH2 
domains (Fig 2). BAD also lacks the typical carboxy terminal 
transmembrane domain, suggesting that it is not an integral 
membrane protein. BAD’S interaction with BCL2 and BCL- 
XL was verified in mammalian cells. Although BAD was 
discovered by virtue of its interaction with BCL2, it binds 
BCL-X, more strongly. When expressed in FL5.12 cells, 
BAD countered the death-repressor effect of BCL-XL effi- 
ciently and that of BCLZ to a lesser extent. The strong inter- 
action between BAD and BCL-XL sequesters BCL-X,, re- 
sulting in freed BAX, and cell death is restored. BAD 
displaces BAX from BCL-XJBAX or BCL2/BAX hetero- 
dimers in a concentration-dependent manner. In one cell line 
examined, when approximately 50% of all cellular BAX is 
heterodimerized with BCL-XL or BCL2, the cell is resistant 
to apoptosis. Conversely, in cells in which 80% of BAX i s  
found in homodimers, an apoptotic signal results in cell 
death.88 This finding suggests that BAD negatively regulates 
cell death by modulating the amount of BAX in homodimers 
versus heterodimers (Fig 4). Formally, it is not certain 
whether the active moiety in regulating cell death is the 
BAX/BAX homodimer or each BCL-XJBAX or BCL2/ 
BAX heterodimer. Alternatively, both may be active, and 
the ratio of the heterodimers to the homodimers may be the 
critical determinant. The discovery of BAD showed that the 
cell death regulators BCL2 and BCL-X, themselves are regu- 
lated by protein-protein interactions. 

Another 
protein found by interactive cloning, BAG1, positively mod- 
ulates BCL2’s death-repressor activity.89 BAGl has been 
shown to interact with BCL2 in vitro. BAGl is not homolo- 
gous to BCL2 family members and contains an ubiquitin- 
like domain, suggesting that its mechanism might involve 

BAGl can positively modulate BCL2 activity. 

effects on protein stability. Curiously, coexpression of BAGl 
assisted BCL2 in protecting Jurkat T cells against anti-Fas 
antibody and cytotoxic T-cell killing. This finding suggests 
that death signals that appear to be BCL2-independent may 
be repressed by BCL2 if the appropriate modulatory proteins 
are present. 

CAENORHABDITIS ELEGANS SHARES CONSERVED CELL 
DEATH GENES WITH MAMMALS 

CED-9 is a homolog of BCL2 in C elegans. Important 
contributions to the understanding of programmed cell death 
have come from the genetic studies of the nematode C eleg- 
ans. In the development of the hermaphrodite worm, 131 of 
the 1,090 somatic cells undergo programmed cell death in a 
genetic pathway defined by 14 genes. Two of these genes, 

cell suruiual 

\\ r /  
@ 

cell death n w 
250% of BAX heterodimerized 
with BCL-2 or BCL-XL=Survival 

Fig 4. BAD is a negative regulator of apoptosis. BAD displaces 
BAX from BCU/BAX or BCL-Xr/BAX heterodimen, allowing more 
BAX/BAX homodimer formation, which promotes death. 
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ced-3 and ced-4, are required for cell death to occur. In ced- 
3 or ced-4 mutants, all 131 cells that are normally destined 
to die live. A third gene, ced-9, represses the death pathway 
and protects cells that are destined to In C elegans, 
the phenotype of ced-3, ced-9 double mutants is the same 
as ced-3 single mutants, ie, cells live. This indicates that 
ced-9 is not downstream of ced-3, but ced-9 could be an 
upstream negative regulator of ced-3 and ced-4. Epistasis 
mapping has also established that ced-4 is upstream of ced- 
3. ced-9 is a regulator of cell death, whereas ced-3, and 
maybe ced-4, encode effector molecules of cell death. In a 
gain-of-function (gf) ced-9 mutant, all 131 cells live, 
whereas loss-of-function (If) mutations cause cells that nor- 
mally should live to die.92,93 CED-9 shows significant struc- 
tural and functional homology to BCL2. CED-9 and BCL2 
amino acid sequences share 24% identity and 49% similarity. 
They have similar hydrophobicity profiles, including the car- 
boxy terminal signal anchor sequence. CED-9 has the highly 
conserved amino acids of BHl and BH2 domains and the 
conserved exon junction in BH2" (Fig 2). Functionally, 
transgenic BCL2 can block some cell deaths in C elegans 
and can partially substitute for ced-9 by preventing ectopic 
deaths in ced-9(lf) Interestingly, the same amino 
acid mutation of Gly145Glu in BCL2 results in loss of func- 
tion, but is a gain-of-function mutation in CED-9. This con- 
firms the critical functional role of the BHl domain, but 
also indicates differences over this evolutionary gap. The 
sequence and functional conservation between ced-9 and 
BCL2 suggests that, in its basic tenets, the genetic pathway 
of cell death may be common to all multicellular organisms. 

CED3KE FAMILY OF PROTEINS ACT AS EFFECTOR 
MOLECULES OF CELL DEATH 

CED-3 is homologous to IL-l&converting enzyme (ICE). 
Cloning of the C elegans ced-3 gene showed that the protein 
is homologous to the mammalian enzyme ICE?' ICE is a 
cysteine protease that cleaves the 33-kD pro-IL-Ip at an 
aspartic acid residue into the biologically active 17.5kD IL- 
lp .  Active ICE is composed of two subunits, p10 and p20, 
which associate to form a heterotetramer. The homology 
between CED-3 and ICE suggested that ICE may function 
as a mammalian cell death gene. Indeed, overexpression of 
ICE causes Rat-1 fibroblasts to undergo apoptosis, which 
can be inhibited by BCL2 and ~ r m A , 9 ~  a cowpox virus pro- 
tein that inhibits ICE-like cysteine proteases. ICE itself has 
not proven to be directly affected by BCL2, and many cells 
that undergo apoptosis do not express IL-1p. Mice deficient 
in ICE can not synthesize mature IL-Ip, but their thymocytes 
are able to undergo apoptosis induced by dexamethasone 
and y-irradiation, suggesting that ICE is not essential for 
these cell death proces~es.~' .~~ Ice-l- thymocytes show 
some improved survival after treatment with high doses of 
anti-Fas in vitro.w However, there is no evidence that the 
Fas pathway is normally used in thymocyte selection. Over- 
expression of ICE can also accelerate anti-Fas-induced 
apoptosis in tissue culture cells expressing Fas, which can 
be inhibited by ~ r m A . ' ~ . ' ~ '  Thus, ICE or an ICE-like mole- 
cule is involved in Fas-mediated apoptosis. 

Diflerentially processed ICH- I can induce or inhibit 

Table 5. CED3IICE Homologs 

Death-Repressing Death-Promoting 

ICH-ls CED-3 
ICE 
ICE-1JNEDD 2 
CPPBZ/Yama/Apopain 

apoptosis. A homolog of ICE, NEDD2,"' also called ICH- 
1,'03 contains the cysteine protease active site motif QACRG 
and comes in two differentially processed forms, ICH- 1 and 
ICH-1s. ICH-1s diverges from ICH-IL immediately after the 
conserved QACRG motif and truncates shortly downstream. 
Initially identified as a highly expressed gene in early embry- 
onic brain development," ICH- lL induces apoptosis when 
overexpressed in fibroblasts and neuroblastoma cells, 
whereas ICH-1, has the opposite effect of inhibiting death 
due to serum ~tarvation. '~~ If ICH-1 is similar to ICE in 
subunit structure, then ICH-ls may act as a dominant nega- 
tive by binding to ICH- lL and preventing functional tetramer 
formation. This programmed cell death gene is reminiscent 
of BCL-X, which also encodes for two differentially pro- 
cessed gene products that have opposite effects on cell death. 
ICH-1,-induced death can be inhibited by BCL2, but mini- 
mally inhibited by crmA.'03 The natural substrates of ICH- 
1 are not yet known. 

CPP32Nama cleaves PARPandpromotes celldeath. An- 
other ICE-like enzyme found through homology searches is 
the human 32-kD cysteine protease CPP32, also called Yama 
or apopain.'M-'06 Proteolytic cleavage of the 32-kD inactive 
zymogen gives two subunits p18 and p12, the equivalents 
of the p20 and p10 subunits of ICE, which appear to associate 
to form the CPP32 complex. When coexpressed in Sf9 cells, 
these two CPP32 subunits induce apoptosis, whereas each 
subunit alone is ineffective." Extracts from cells committed 
to apoptosis or purified CPP32, but not ICE, can cleave 
poly(ADP-ribose) polymerase (PARP) at an Asp site to gen- 
erate the signature 85-kD fragment, a proteolytic event 
known to occur early in many forms of PCD.106.'07 In addi- 
tion, crmA, which can block apoptosis, can block the cleav- 
age of P A W  by CPP32Nama in vitro.'05 CrmA also inhibits 
PARP cleavage when transfected into lymphoma cells 
treated with anti-Fas and breast carcinoma cells treated with 
TNF.'" CPP32Nama may prove to be a physiologic media- 
tor of apoptosis in hematopoietic cells, in which its expres- 
sion is high and ICE expression is low. 

A mammalian ZCWced-3 family of programmed cell death 
genes are being identified whose products function as ef- 
fectors of cell death"' (Table 5). These CED-3LCE effector 
molecules and those yet to be cloned are likely to interact 
with the BCL2 pathway directly or indirectly to execute 
apoptosis (Fig 5). The physiologic substrates of these cys- 
teine proteases have not all been identified, but PARP serves 
at least as a molecular marker of this process. Different 
physiologic roles may be fulfilled by different ICE proteases; 
for example, ICE itself is likely to be mainly involved in 
the inflammatory response. The existence of multiple ICE 
proteases may also reflect different lineage specificity or 
different substrate specificity. 
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C. elegans 

Fig 5. C elegans and mammals share a common 
genetic cell death pathway. CED-9 represses cell 
death and CED-4 and CED-3 are required for the ex8- 
cution of cell death. Similarly, BCK protects cells 
from apoptosis, whereas the ICE-like proteases 
(mammalian homologs of CED-31 are cell death ef- 
fectors. 

Mammals 

GENETIC KNOCKOUT STUDIES SHOW LINEAGE- 
SPECIFIC ROLES FOR BCLS, BCL-X, AND BAX 

Bcl2-dejcient mice develop polycystic kidneys, immuno- 
dejciency, and hair hypopigmentation. The normal devel- 
opmental role of the BCL2 family members can be addressed 
by gene disruption animal models. BCL2 is initially widely 
expressed during embryogenesis. However, in the nervous 
system, eg, BCL2 expression decreases and becomes much 
more restricted postnatally.'Og Newbom Bc12-'- knockout 
mice are viable, but within 1 week of life become distin- 
guishable from Bc12+/+ littermates in appearance. The major- 
ity of the BcZ2-/- mice then become ill and die at a few 
weeks of age. They develop polycystic kidney disease with 
marked dilatation of proximal and distal tubules and collect- 
ing ducts, resulting in renal failure."@"2 In the normal fetal 
kidney, detection of strong BCL2 expression in the devel- 
oping subcapsular condensations of mesenchymal cells des- 
tined to differentiate into proximal nephrons suggested that 
BCL2 may be important in maintaining cell survival during 
inductive interactions between epithelium and mesen- 
chyme.113 Comparisons of embryonic kidneys from Bc12+/+ 
and Bc12-/- mice showed that Bc12-'- kidneys contain many 
fewer nephrons and greatly increased apoptosis within meta- 
nephric blastemas of metanephroi at embryonic day 12. 
Growth and development of Bc12-'- embryonic metanephroi 
are also reduced in culture, indicating that the abnormality in 
Bc12-'- kidneys is cell autonomou~."~ The lymphoid organs, 
thymus and spleen, are initially normal in Bc12-/- mice. 
Thymocyte development is normal, and B and T cells un- 
dergo selection successfully. However, at 4 to 8 weeks of 
age, the lymphoid organs undergo massive cell death and 
involution, showing a failure to maintain homeostasis in both 
the B- and T-cell populations in the absence of BCL2.l'@'l2 
The Bc12-/- mice also turn gray at 5 to 6 weeks of age, at 
the time of the second hair follicle The hypopig- 
mentation in the Bc12-" mice may reflect increased sensitiv- 
ity to free radicals generated during melanin synthesis or 
decreased melanocyte survival at a time when endogenous 
growth factors for melanocytes, such as MSH, are limiting. 
The phenotype of the knockout mice proves that embryonic 
development can proceed in most lineages in the absence of 

ced-4 + ced-3 - Cell death 
(effectors) 

m 
P 
I; 
I 
+ICE(s) - Cell death 

(Interleukin-1p 
Converting 

Enzyme) 

BCL2. However, BCL2 is required for normal embryonic 
metanephrogenesis. Postnatally, it is critical for the mainte- 
nance of lymphocytes and melanocytes. 

Bcl-x-dejcient mice exhibit mamive cell death in the cen- 
tral nervous system (CNS) and reduced lymphoid matura- 
tion. While the absence of BCLZ allows viable pups to be 
born, the absence of BCL-X results in embryonic lethality. 
Bcl-x-/- mice are dead around embryonic day 13 (E13).'15 
There is extensive cell death throughout the brain and spinal 
cord in regions of postmitotic, differentiating neurons, in 
which BCL-X is normally highly expressed. In contrast to 
BCL2, BCL-X appears to be essential for brain development. 
In the hematopoietic system, massive cell death is observed 
in the developing liver. In chimeric mice derived from Bcl- 
x-'- ES cells injected into Rag-2-deficient blastocysts, im- 
mature B cells are dramatically reduced, but the maturation 
of T cells is not affected." The survival of Bcl-x-/- immature 
T and B cells are both decreased. Bcl-x-/- thymocytes died 
more rapidly than wild-type or Bcl-x+/- thymocytes in re- 
sponse to dexamethasone, y-irradiation, or anti-CD3. De- 
creased survival is found in the double-positive thymocytes 
in which BCL-X is normally highly expressed, whereas the 
single-positives and peripheral T cells showed comparable 
survival to Bcl-x+/-  heterozygote^."*"^ Thus, BCL-X seems 
to be important in immature double-positive thymocytes, 
whereas BCL2 is more important in the maintenance of ma- 
ture single-positive lymphoid cells. Offspring from matings 
between transgenic IcW-BCL-XL mice and Bc12-/- mice 
showed that BCL-X, can rescue the apoptotic loss of periph- 
eral T cells in Bc12-'- mice?* Even though transgenic BCL- 
X, can functionally substitute for BCL2, the reciprocal pat- 
tem of expression of BCU and BCL-XL suggests that the 
two genes differ in their physiologic roles. Consistent with 
the dramatic difference in the phenotypes of the Bc12 and 
BcZ-x knockout mice, these two highly homologous genes 
are not simply redundant, but rather exhibit clear differences 
in lineage specificity (Table 2). 

Bax-de$ciency results in lymphoid hyperplasia and male 
germ cell hypoplasia. Several cell death repressors, includ- 
ing BCL2, BCL-XL, and ElB-l9K, have been shown to 
function through heterodimerization with BAX. Yeast two- 
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hybrid assays also showed that BAX interacts widely with 
other family members. These findings suggested that BAX 
may have a central role in the regulation of apoptosis. One 
prediction is that BAX may be necessary for cell death; 
alternatively, heterodimers of BAX may be required for 
death repression. Interestingly, whether BAX deficiency re- 
sults in hyperplasia or hypoplasia appears to be tissue spe- 
cific. Bar-'- mice appear to be healthy, indicating that BAX 
is not essential for development of the organism. Thymocyte 
numbers of Bax-/- mice are increased 1.6-fold over wild- 
type controls, and the splenic B cells are similarly increased 
l.&fold. On the other hand, male Bax-/- mice are infertile, 
and BUY- testes exhibited a marked increase in cell death 
clustered in the germ cells. The seminiferous tubules were 
abnormal, and multinucleated giant cells and pyknotic cells 
were present. The complete cessation of mature sperm cell 
production was accompanied by an expansion of the premei- 
otic 2N cell population, suggesting a role for BAX in meio- 
sis. However, Bax-/- ovaries display an accumulation of 
atrophic granulosa cells that presumably failed to undergo 
apoptosis. Thus, the phenotypic abnormalities of Bar-'- can 
be either hyperplasia or hypoplasia, depending on the cell 
type. Because the affected tissues of Bax-'- mice are not 
identical to the affected tissues of Bc12-'- mice, BCLZ may 
not always act through interaction with BAX. The Bar? 
mice dramatically illustrated that not only is there lineage 
specificity in the BCL2 family members, but that, depending 
on cell type, the same molecule can have a positive or a 
negative effect on cell death.Iz7 

BCLZ FAMILY COOPERATES WITH OTHER 
CANCER GENES 

BCL2 cooperates with MYC by inhibiting MYC-induced 
apoptosis. An early functional study of BCL2 showed that 
it can cooperate with the oncogene c-Myc to immortalize 
pre-B cells.' Subsequently, it was found that inappropriate 
c-Myc expression under conditions such as heat shock in 
Chinese hamster ovary (CHO) cells or serum deprivation 
of Rat-1 fibroblasts lead to rapid onset of apopto~is."'~"~ 
Constitutive expression of BCL2 inhibited MYC-induced 
apoptosis,' I 7 . ' l 9  allowing immortalization by MYC to occur. 
Most recently, cell culture experiments using inducible 
MYC-constructs in serum-deprived fibroblasts showed that 
expression of MYC activated both proliferation and 
apoptosis and that the survival of the cell was dependent on 
survival factors.lZ0 Factors such as IGF-1 suppress the inher- 
ent genetic apoptotic program. The induction of apoptosis 
and its inhibition by specific cytokines were not dependent 
on new protein synthesis. MYC-induced apoptosis may be 
a consequence of the imbalance of proliferative pathways, 
ie, a conflict of signals. Alternatively, it may be the result 
of the lack of a survival factor, such as a cytokine or BCLZ, 
when MYC has induced a dual signal, proliferation and 
apoptosis'" (Fig 6). The dual signal hypothesis predicts that 
accumulation of mitogenic mutations alone may result in 
cell death when paracrine factors are depleted, but simultane- 
ous or additional acquisition of events suppressing cell death, 
such as upregulation of BCL2, will lead to carcinogenesis. 
Double transgenic mice expressing both BCL2 and Myc ex- 

I conflict mode 

High serum 
Proliferation Y + MYC .-> Growth promoting 

\ signal 

Low serum y L  Apoptosis 

Dual signal model 

Proliferation 

/ 
/ 

MYC 

Fig 6. MYCinduced apuptoris. Conflict mod&. MYC induces a 
growth signal that results in proliration in high serum conditions, 
but in serum starvation, cells are unable to proliierate and apoptods 
results. Dual signal model: MYC induces both a profierative and an 
apoptotic program. The apoptotie response can be suppressed by 
survival factors in serum or by death repressor molecules such as 
BCK. 

hibited hyperproliferation of pre-B and B cells and devel- 
oped tumors of a hematolymphoid cell type at a markedly 
increased (Fig 1). Synergy between these oncogenes 
of two different classes results in more potent transformation 
than by either oncogene alone. 

BCL2 can inhibit p53-dependent andp53-independent cell 
death pathways. The tumor-suppressor gene p53 can in- 
duce apoptosis. For many genotoxic death pathways, wild- 
type p53 activity is required. The first direct evidence of this 
is the inability of p53-/- thymocytes to undergo apoptosis in 
response to y-irradiation or etoposide, although they remain 
susceptible to killing by glucocorticoid and calcium.1213122 
However, the dependence on p53 can be overcome at high 
doses of the toxic agents, suggesting a threshold effect,Iz3 or 
if the cells are cycling, as in the case of activated T cells.lz4 
Thus, there are p53-dependent and p53-independent mecha- 
nisms of cell death, and both can be inhibited by BCL2. 
Recently, it has been shown that BAX expression is modu- 
lated at the transcription level during p53-mediated apoptosis 
in selected  cell^.^^,'^ In MI myeloid leukemia cells, expres- 
sion of p53 induces apoptosis. This is correlated with upregu- 
lation of BAX, resulting in increased BAXIBCL2 ratio. In 
a survey of cell lines with wild-type, mutant, and deficient 
p53 status, BAX was induced in response to y-irradiation 
in cell lines that are both apoptosis competent and have 
wild-type ~ 5 3 . ' ~  However, there is no evidence that bax is 
required for p53 induced deaths.'" In an in vivo model of 
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choroid plexus tumor progression comparing p53+'- with 
p53-'- mice, it was found that aggressive tumor progression 
occurred in the absence of p53 function attributable to de- 
creased apoptosis.12' The function o f p 5 3  as a tumor-suppres- 
sor gene may be largely explained by its role in promoting 
cell death. 

CLINICAL ASPECTS OF BCLZ 

Studies of t(14;18) in lymphomas support the multi-hit 
oncogenesis model. BCL2 was first described as the dereg- 
ulated oncogene in t(14; 18) lymphomas. One initial study 
of 20 patients with follicular lymphoma possessing a large- 
cell component correlated the presence of the t(14; 18) with 
a poor response to therapy.'29 Subsequent larger studies com- 
posed of both large-cell and small-cleaved cell follicular 
lymphomas have not shown a prognostic significance of hav- 
ing a t( 14; 18).130-'32 However, many B-cell lymphomas that 
lack the t(14; 18) also have high levels of BCL2 p r ~ t e i n . ' ~ ~ . ' ~ ~  
Clones harboring the t( 14; 18) translocation are commonly 
found in normal individuals. A large percentage of normal 
tonsils were found to contain cells positive by PCR for 
t( 14; 18),'35,136 and many healthy individuals harbored 
t( 14; 18)-containing B cells in their peripheral bl00d.l~' An- 
other study found peripheral blood lymphocytes from 55% 
of normal individuals and 35% of autopsied spleens con- 
tained cells with PCR-detectable t( 14; 18).13' These findings 
confirm the conclusion from transgenic mice experiments 
that translocation involving BCL2 alone is not sufficient to 
cause cancer, ie, additional events are necessary for malig- 
nant transformation to occur. Moreover, the frequency of 
translocations increased significantly with age, being 40 
times greater in the spleen and 13 times greater in the periph- 
eral blood in the oldest age group (>60 years) compared 
with the youngest age group (<20 years)."' The increase in 
the frequency oft( 14; 18) cells with age parallels the increase 
in lymphoma incidence with age. It is likely that both 
t(14; 18)-bearing cells and secondary hits increase over time. 
These epidemiologic correlates illustrate the importance of 
extended cell survival as a primary event in a multihit onco- 
genesis model. 

The presence of t(14;18) provides a convenient way to 
observe patients after therapy. It has been shown that cells 
positive for t( 14; 18) persist in patients in prolonged com- 
plete r e m i s ~ i o n , ' ~ ~ . ' ~  but whether this predicts imminent re- 
lapse remains uncertain. More recently, investigators have 
looked for the disappearance of translocation-bearing cells 
from bone marrows after myeloablative therapy or in vitro 
p ~ r g i n g . ' ~ ' , ' ~ ~  Detection of the translocation by PCR provides 
a means to assess the success of the elimination of the 
lymphoma clone upon myeloablation or purging. The litera- 
ture suggests that detection of cells with translocation may 
correlate with shorter remission. 

BCL2 expression is found in tumors of some hormonally 
responsive epithelium. BCL2 expression has been investi- 
gated in nonlymphoid tumors. It is well established that some 
breast carcinomas, prostate cancers, and non-small-cell lung 
cancers express BCL2. In breast carcinoma, BCL2 expres- 
sion is positively correlated with estrogen receptor and pro- 
gesterone receptor positivity. Conversely, loss of BCL2 ex- 

pression is associated with known poor prognostic 
indicators, such as estrogen receptor negativity, epidermal 
growth factor receptor positivity, p53 mutation, and high 
histologic grade. 143-145 The normal epithelium from which 
breast carcinoma arises expresses BCL2, suggesting that 
BCL2 expression allows cells to live longer and accumulate 
genetic alterations. Loss of BCL2 is likely to be a late event 
accompanied by additional genetic changes. In multivariate 
analysis, it appears that the prognostic role of BCL2 is re- 
lated to p53 status, which itself has independent prognostic 
significance. 

BCL2 expression is also found in cancers of another hor- 
monally responsive tissue, the prostate. High levels of BCL2 
are observed in androgen-independent tumors, 146 in particu- 
lar those tumors that persist after androgen ablation ther- 
apy,14' leading to the speculation that BCL2 function allows 
the neoplastic prostate cells to survive in a hormonally de- 
prived environment. 

High BCL2 expression is correlated with poor response 
to chemotherapy. Programmed cell death is not only an 
important normal physiological process, but it is also how 
cancer cells die when treated with a variety of chemothera- 
peutic drugs, including inhibitors of DNA synthesis, alkylat- 
ing agents, topoisomerase inhibitors, microtubule inhibitors, 
and antimetabolites. The ability of BCL2 to inhibit cell death 
induced by many of these agents with different mechanisms 
of action is consistent with BCL2 being a downstream mole- 
cule in the apoptotic  pathway."^“" Cell lines transfected with 
BCL2 show increased resistance to nitrogen mustard, camp- 
tothecin, VP- 16, platinum compounds, methotrexate, Ara-C, 
adriamycin, and cyclophosphamide.4043." These observa- 
tions are borne out in the clinical arena. High BCLZ expres- 
sion is associated with low remission rate in acute myeloid 
1e~kemia.I~' In an analysis of acute lymphocytic leukemia 
(ALL) and acute myeloid leukemia (AML) patients at diag- 
nosis and relapse, it was found that both the percentage of 
BCL2 expressing cells and the intensity of BCL2 staining 
were higher at relapse than at presentation. In de novo AML 
and ALL, the intensity of BCL2 staining and the number of 
positive cells were lower in cases that responded to chemo- 
therapy than in nonresponders; therefore, high BCL2 expres- 
sion is an indicator of poor response in acute 1e~kemia . I~~ 

In a cell line model, cells selected for acquired resistance 
to cytotoxic drugs associated with overexpression of the 
MDRl gene showed induction of BCL-XL. These cells were 
also resistant to y-irradiation induced apop to~ i s . ' ~~  Thus, in- 
duction of BCL-XL may play a role in the etiology of chemo- 
therapy and radiation-resistant tumors and may prove to have 
prognostic significance as well. 

Given that inappropri- 
ate survival can be a primary event in tumorigenesis and 
that cells undergo apoptosis in response to chemotherapy, 
the outcome of cancer may be affected by changing the 
setpoint at which cells undergo apoptosis in response to a 
signal (Fig 7). In cancers that overexpress BCL2, decreasing 
BCL2 expression may allow a cell that contains otherwise 
intolerable genetic alterations to die. Altering the threshold 
for cell death, one may render the cancer cell more sensitive 
to chemotherapeutic agents. This might be approached by 

Apoptosis as a therapeutic target. 
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downregulating BCL2 expression in cancer cells, either by 
targeting BCL2 directly or indirectly through an upstream 
regulator of BCL2. Because the susceptibility to cell death 
can be determined by competing positive versus negative 
regulators in the BCL2 family, the threshold of death could 
be altered by changing the ratio of these members. For exam- 
ple, small molecules that selectively disrupt certain dimer- 
ized pairs might accelerate tumor cell death in response to 
therapy. As with all therapy, one needs to maximize targeting 
to the cancer cell and minimize systemic toxicity. The lin- 
eage-specific expression of some members of the BCL2 fam- 
ily provides hope that cell-type-specific therapies might be 
possible. The various members of the ICE family of enzymes 
or their substrates may also have cell-type specificity that 
may be exploited as targets of drug therapy. Small molecules, 
such as the chloromethylketone tetrapeptides, already exist 
that can inhibit ICE activity in vitro and in cell culture sys- 
tems. Small molecules that activate select cysteine proteases 

Fig 7. Schematic of the cell death pathway. Vari- 
ous stimuli generate a cell death signells1, the ratio 
of heterodimers of the cell doath regulators dater- 
mine the wwtibility to death, and cell death ef- 
fectors execute PCD. The precise intermediate steps 
and the critical protease substrates are not known. 

but not others might also provide the desired specificity of 
a useful therapeutic. 

CONCLUSION 

Since its discovery in the mid-l980s, the proto-oncogene 
BCL2 has been proven to be a central player in mammalian 
cell death pathways. The extension of cell death research to 
include organisms such as C elegans has shown remarkable 
conservation of the basic priniciples of apoptosis across evo- 
lution, arguing that the genetic pathway of cell death is com- 
mon to all multicellular organisms. The last few years have 
witnessed an expansion of molecules involved in cell death, 
in both BCL2 homologs and other classes of proteins, includ- 
ing new proteins of the ICE family and known proteins such 
as p53. The ever-increasing number of BCL2 homologs can 
be categorized into those that extend cell survival, such as 
BCL2, BCL-XL, ElB-l9k, BHRFl, and CED-9, or those 
that promote death, such as BAX, BCL-Xs, BAD, and BAK. 
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Knockout mice argue that each member of the BCL2 family 
will serve a pivotal role in select tissues. In addition, the 
identification of new proteins, such as BAD, which modulate 
BCL2 and BCL-XL activity, suggests that the multiple cell 
death proteins must be tightly regulated. Although the pre- 
cise biochemical activity of BCL2 remains uncertain, genetic 
studies of the BCL2 family members have established the 
importance of these genes in the normal development and 
maintenance of the organism. Inappropriate cell survival re- 
sulting from the deregulation of cell death genes can be a 
first step in oncogenesis. Once a tumor is established, its 
response to therapy can also be affected by its propensity to 
undergo programmed cell death. A remaining challenge is to 
define the intermediate steps that connect the sets of signals, 
regulators, and effectors that comprise apoptosis (Fig 7). 
Perhaps this knowledge will provide the basis for designing 
effective cancer therapies that target the cell death pathway. 
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