Irregular lattices for complex shape grammar facade parsing

Hayko Riemenschneider
Sven Havemann

Ulrich Krispel
Dieter Fellner

Wolfgang Thaller Michael Donoser
Horst Bischof

Institute for Computer Graphics and Vision & Computer Graphics and Knowledge Visualization
Graz University of Technology, Austria

(hayko,donoser,bischof)@icg.tugraz.at

(u.krispel,w.thaller, s.havemann,d.fellner)@cgv.tugraz.at

Abstract

High-quality urban reconstruction requires more than
multi-view reconstruction and local optimization. The
structure of facades depends on the general layout, which
has to be optimized globally. Shape grammars are an estab-
lished method to express hierarchical spatial relationships,
and are therefore suited as representing constraints for se-
mantic facade interpretation. Usually inference uses nu-
merical approximations, or hard-coded grammar schemes.
Existing methods inspired by classical grammar parsing
are not applicable on real-world images due to their pro-
hibitively high complexity. This work provides feasible
generic facade reconstruction by combining low-level clas-
sifiers with mid-level object detectors to infer an irregular
lattice. The irregular lattice preserves the logical structure
of the facade while reducing the search space to a manage-
able size. We introduce a novel method for handling sym-
metry and repetition within the generic grammar. We show
competitive results on two datasets, namely the Paris2010
and the Graz50. The former includes only Hausmannian,
while the latter includes Classicism, Biedermeier, Histori-
cism, Art Nouveau and post-modern architectural styles.

1. Introduction

Urban environments contain many man-made objects
which differ from natural objects by exhibiting highly regu-
lar structures. Man-made objects, for example facades, are
typically organized in logical hierarchies, for example, sep-
aration into floors. For the goal of globally consistent 2D
semantic segmentation of such facades, knowledge about
this structure is vital.

A popular method of encoding knowledge about the
high-level structure of facades are shape grammars, in par-
ticular split grammars. Such knowledge is represented in
parse trees which represent the logical facade structures.

978-1-4673-1228-8/12/$31.00 ©2012 IEEE

Figure 1. High quality complex architecture modeling through
shape grammar using symmetry and repetition.

The optimization of parse trees is a hard problem, as the
solution space is very large and has complex structure.

A well-known algorithm for parsing context-free gram-
mars is the Cocke-Younger-Kasami (CYK) algorithm, a dy-
namic programming algorithm which iterates over all sub-
strings of the input and all nonterminals of the grammar.
Schlesinger et al. [19] have adapted this algorithm for two-
dimensional split grammars. Unfortunately, the time com-
plexity of O(w?h?(w + h)|G|) to match a grammar G with
|G| rules to an image with w X h pixels, is prohibitive for
real-world image sizes.

Consequently, research in shape grammar-based facade
segmentation has focused on Markov Chain Monte Carlo
(MCMC) and related methods to optimize the parse tree.
Statistical solutions on a high-dimensional solution space
has the problem of local minima, which requires a reduc-
tion of degrees of freedom and a reasonable initialization
for the optimization. Nevertheless, these sampling methods
can yield good results [2, 12, 25].

In contrast, Schlesinger’s modified CYK algorithm has
different strengths. Its running time depends only linearly
on the number of rules in the grammar, so large grammars
are possible. It is not a sampling-based method, so it can-

1640

not get stuck in local minima, and guessing a good initial
solution is not necessary. Finally, the CYK algorithm has
no problem with added local degrees of freedom, i.e. deci-
sions that are independent between different branches of the
parse tree. For MCMC-based approaches, these increase the
overall complexity of the problem.

For these reasons, it is worthwhile to investigate how the
CYK algorithm’s time complexity problems can be over-
come in practice. The CYK algorithm is efficient enough
for small inputs (w,h < 60), but limiting input resolution
to that size is not feasible.

In this work, we therefore provide two contributions: We
combine the results of low-level classifiers and mid-level
object detectors to build an irregular lattice of sufficiently
low resolution. Further, we propose a novel CYK-based al-
gorithm which supports symmetric and repeating structures,
and is able to handle input noise from the estimated likeli-
hoods of the different classes for every lattice tile.

2. Related Work

Urban modeling has seen a wide range of methods to
produce 3D models. Multi-view reconstructions are used
to derive unstructured point clouds modeling the urban en-
vironment as sets of textured points or models [I, 8, 14].
Consequential works assume planarity and derive piecewise
planar models which greatly reduce the footprint to planar
partitions [15, 10, 29]. This is further refined to partitioning
images in terms of semantic regions [20, 11] and research
with focus on parsing buildings [4, 22, 30] introduced con-
straints and prior knowledge about the 3D scene geometry.

Shape grammars are a formal method well suited to de-
scribe the set of hierarchical partitions (in form of a parse
tree) of an image. They have originally been introduced by
Stiny et al. [21] for expressing the design of 2D line draw-
ings. Based on the concepts from formal grammars (string
replacements), a shape design is expressed by a set of shape
matching and replacement rules. Shape grammars have
been studied in various areas, e.g. architecture design [16]
or brand retaining design of consumer products [7]. In re-
cent years, shape grammars have been successfully applied
in computer graphics for automatic creation of variations
of a class of models. Wonka et al. [28] introduced split
grammars for the semiautomatic generation of architecture.
These concepts have further been extended by Mueller et
al. [17] into a shape grammar system called Computer Gen-
erated Architecture (CGA) shape.

There are a range of algorithms in the literature that de-
termine parse trees for specific grammars [17, 3]. Simi-
larly, the approach of Toshev et al. [20] identifies buildings
from unorganized 3D point clouds via parse trees of roof
structures. However, these approaches require to change
the algorithm if the grammar changes. Vanegas et al. [27]
combine shape grammar and Manhattan planarity for large

building outline modeling. A common approach to obtain
a solution is to formulate rule applications as a statistical
inference problem and use numerical approximation meth-
ods, e.g. Markov Chain Monte Carlo (MCMC). This has
been shown for facade segmentation in the work of Ale-
gre et al. [2] and Ripperda et al. [18]. Recently, these meth-
ods have also been applied in computer graphics to find pro-
ductions of grammar based procedural models given a high
level description of the desired result [23].

Most related to our approach is that of Teboul et al. [25],
where a context-free grammar is used to partition rectified
building facades into semantic image segmentations. The
process involves training a local classifier for the desired
terminal symbols and performing hierarchical splits to par-
tition the image. The splitting process is guided by the low-
level classifier probabilities and is designed to overcome the
limitations of the local structure regularization. However,
the optimization scheme, as well as the shape grammar, are
limited to a simple style of split combinations. In their work
they show results on Hausmannian and skyscraper-style fa-
cades, which contain highly regular structures. Such regu-
lar structures appear in the form of equally spaced window
terminals, simplified door layout and overall low complex-
ity. While it is well-suited for Hausmannian architectural
styles, the approach might not scale well to less regular, but
still highly structured facade layouts which are present in
most other architectural styles.

3. Shape Grammar for Facade Parsing

We now introduced the proposed general grammar for
parsing the 2D facade structure and its relationship with
the 2D image space. A formal grammar is a tuple G =
(N, 3, P, S) consisting of a set N of nonterminal symbols,
a set X of terminal symbols, a set P of production rules of
the form o — 3, where « € (N UX)" and 8 € (N U X)*,
and a starting symbol (axiom) S € N. A context-free gram-
mar is a formal grammar where production rules are limited
to the form A — 3 where A € N.

A split grammar is a context-free grammar where the
right-hand side of each rule consists either of a single non-
terminal symbol, or of a terminal symbol (an operator) fol-
lowed by zero or more non-terminal symbols, where the
number of non-terminal symbols matches the number of ar-
guments expected by the operator.

A parse tree is an ordered tree whose interior nodes are
labeled by nonterminal symbols, and whose leaves are la-
beled by terminal symbols (operators) from the grammar,
and by an attribute a. The meaning of this attribute depends
on the operator. The root of the tree is labeled by the gram-
mar’s starting symbol S. It follows from the restrictions we
have imposed on the rules that for each interior node (non-
terminal), its leftmost child is a leaf (an operator) and its
other children are interior nodes (nonterminals) as well.

1641

We use d = op, d; ...d, to denote a parse tree, and D
for the set of all possible parse trees for a given grammar.
The number of arguments n is a constant for each operator
op. The attribute value a is taken from a set .4, which may
be different for each operator. The subtrees d; through d,,
are themselves parse trees, but with different start symbols.

3.1. Operators and their Graphical Interpretation

A range is a rectangular area of an image that may or
may not be mirrored around the y axis. Formally, a range r
is a tuple (x1, Y1, T2, y2) With y1 < yo. We write p € r for
apointp = (z,y) iff (11 <2z <x2) V(22 <2 < 27)) A
(y1 <y < y2). For the mirrored version of a range, we
write 7 = (22, Y1, Z1,Y2).

To give a graphical interpretation of a parse tree d, we
define a function D(d,r) which maps the parse tree to a
labelling of the rectangular range r. This function can be
defined recursively for each operator.

There is exactly one label operator for each label (wall,
window, door, .. .); a label operator takes no arguments and
represents a rectangular image area belonging to that class.
The remaining operators each split the range r they operate
on into several subranges ;. Our method supports the stan-
dard horizontal and vertical split operators, as well as hori-
zontal and vertical alternating repeat and horizontal mirror
with center operators. The mirror operator describes the
common symmetry pattern ABA. The alternating repeat op-
erators are an indexed family of operators alt(3), alt(5),
... which describe patterns of the form ABA, ABABA, ..., re-
spectively.

Each of these operators defines a set A, of possible at-
tribute values. For a standard split operator, the attribute
value indicates the (relative) position of the split line be-
tween the two parts, for the mirror and the alternating re-
peat operators, it is the position of the split between the A
and B parts. We could have defined a single alternating re-
peat operator whose attribute a also describes the number of
repetitions. Our approach provides more flexibility in that
it allows the grammar to express relations between the rep-
etition counts in different parts of the facade. As we can
establish reasonable upper bounds on the repetition counts,
a variable repetition count can always be expressed by hav-
ing one rule for each possible count.

To generalize, we observe that for each of the above op-
erators, the number m of subranges is either equal to or
greater than the number of arguments n. Each subrange r;
is described by the sub-parse tree d ;). The values of m, r;
and the function f may depend on the operator op, on the
attribute a from the parse tree and range r. We thus write:

m

D(opy dy...dp,r) =) D(dysg),m:) (1)
=1

where she set union operator is used to express the concate-
nation of labellings on adjacent ranges 7;.

Additionally, our method allows each nonterminal sym-
bol in the grammar to be annotated with minimum and/or
maximum sizes. Only parse trees are considered valid if the
extent of the nonterminal falls within the allowed range.

3.2. Grammar Factorization

Methods based on MCMC sampling need to keep the to-
tal degrees of freedom as low as possible. Teboul ef al. [25]
do this by a process called factorization, i.e. where a stan-
dard grammar allows different attribute values in different
subtrees, they demand that all these attributes are assigned
the same value, thus reducing the number of degrees of free-
dom and imposing a more regular facade structure.

Dynamic programming based approaches are not af-
fected by this. Many local decisions in local subproblems
do not pose a problem. Making global choices, however,
violates the optimal substructure condition. Factorization
can nevertheless be applied as a preprocessing step on the
grammar, which increases the number of rules.

Consider a grammar with rules S — split A A, A — b
and A — c¢. The decision between the terminal symbols b
and ¢ is made independently for both occurrences of A. To
force the decision to be the same in both cases, we need to
use a factorized grammar with rules S — split AB AB,
S — split AC AC, AB — b,and AC — c.

We have found this method useful for enforcing con-
straints like, e.g., equal numbers of floors in different parts
of a facade. The repeat and mirror operators also encode
some non-local structure that would otherwise need to be
expressed via grammar factorization.

4. Data-driven terminal symbols

The grammar inference parses the facade layout by valid
transitions between label operator terminals. These are the
basic semantic building blocks of a facade, for example,
wall, window, door, balcony, etc. They are denoted by la-
bels £ and will be used to guide the data-driven high-level
inference process by bottom up merit functions and the split
proposal initialization. Hence, for evaluating the probabil-
ity of a pixel belonging to a final semantic class, we learn
two merit functions to infer class terminal labels 1) without
spatial extent and object terminal label 6 with spatial extent.

4.1. Pixelwise merit

The merit function for the class terminal label is inspired
by semantic scene labeling [20, 13]. We use a pixelwise
classifier on local image features giving the log-likelihood
of each pixel belonging to a class terminal ¢ € ¥, as

U(zi) = —log(P(x]i)) 2

1642

Figure 2. Examples of symmetry, repetition and varying sizes in
Historicism and Art Nouveau facades.

where ¢ € I is a single pixel and P is the probability for
class. For training we use Randomized Forests [6] in combi-
nation with raw RGB pixel intensities calculated over local
patches (size 15x15). Randomized Forests have the abil-
ity to efficiently evaluate high-dimension splitting as well
as handle noise in training data, coupled with low compu-
tational time for the evaluation. They have proven to be
well-suited for the task of semantic image classification, as
the independent low-level features for stuff classes without
specific spatial extent (i.e. sky, wall, roof, shop, etc.) can be
modeled sufficiently well by local patches.

4.2. Terminal merit

The second merit function is built on top of a detection
process, where an object detector is trained for each ob-
ject terminal label. This is a higher-level approach to better
model object terminals with known spatial extent (i.e. win-
dows, doors, etc). Equally, a set of pixels c; is assigned a
log-likelihood of belonging to an object terminal 6 € 3, as

O(xe;) = —log(P(6]ci)) 3)

where ¢; € I is a clique of pixels which defines the pixels
belonging to the same instance of the object terminal 6. The
clique of image pixels are determined by the provided rough
outline in form of bounding boxes by the object detectors.
The merit is usually available as terminal-wise merit, and
we transfer it to a pixelwise merit ©(x;) by evaluating it
for each ¢ € ¢; of the clique. For training we use Hough
Forests [9], where positive and negative object samples are
extracted from the training data. Hough Forests share the
ability to evaluate high-dimension splitting and further in-
corporate object center location in the training.

Figure 3. The irregular lattice is a rectangular splitting of the image
into tiles which depend on terminal symbols.

4.3. Irregular Rectangular Lattice

Classically the labelling solution is sought by the max-
imum a posterior (MAP) solution zx = argmin,, ¥(x;) +
O(x;), however, we are interested in a shape grammar pars-
ing of the image, which incorporates high-level structure in-
formation from class and object terminals labels and logical
structures such as floors, symmetries and repetitions.

Unfortunately, any inference approach in this scenario
suffers from the curse of dimensionality. Contrary to pre-
vious work, which assumes factorization [25], fixed dis-
cretization [17], even equal height/width of terminal sym-
bols [24], we allow a wider range of facade interpretation
and do not restrict the parsing. Our only assumption is
placed on rectified image data, which provides orthogonal
frames for buildings. Unlike the above assumptions, this is
valid for a wide range of architecture styles, see Figure 2.

Our solution to the curse is based on an irregular rectan-
gular lattice. Such a lattice is a splitting of the orthogonal
building frame into lattice tiles of varying width and height.
Roughly speaking, each tile represents the range of a ter-
minal symbol, see Figure 3 for an example lattice overlaid
over the annotation (left) and image data (right).

The lattice is our initialization for the inference process
and is defined by vertical and horizontal split lines. We
solve each dimension independently as we do not constrain
the solution to be regular. A split line is a transition which
divides the image space into tiles, where neighboring tiles
may belong to a different terminal label. Given the joint
distribution of the image from the pixelwise classifiers, we
are looking for the marginalized label transitions for each
dimension, which align well with image data. Based on the
merit functions, we define the problem of finding optimal
label transitions as minimizing the following energy term

E(z) = Z\I/(xl) +Z@(mi) +>\ZT(xi,xj) , @

where U(x;) and ©(x;) are our pixelwise and terminal-wise
likelihoods and Y (z;, ;) is a standard contrast sensitive
Potts model to align the solution to the image data. Since
the likelihoods can be quite noisy, A is set high (20). We

1643

use a standard graph cut to efficiently solve this energy min-
imization problem [5].

To infer the split lines from the label transitions, we de-
fine a transition image 7, where the neighborhood function
between pixels is defined as

0 if z,=ux;
Yz, z) = . ! J 5
(i, 2;) 1 if zy#ax;)
where z; and x; are the inferred labels of two neighboring
pixels. This transition image is an indication of semantic
change between the terminals. To extract split lines, we
marginalize out each dimension by

T(X' =) =Y. T(X' =2 =¢), (6
Yy

where T (X’ = 2’), for example, are the lattice split lines
along the x-axis. Hence, in our facade parsing method
we initialize certain split proposals, which remove a large
portion of the search space. For the remaining space, the
split proposals functions are evaluated to guide the infer-
ence method, described in the next section. As it is difficult
to write a perfect generic detector for each category with
large intra-class variance, the marginalization allows us to
only require one terminal detection per floor and column,
which is enough to provide the layout initialization.

5. Grammar Matching

In this section we describe our novel inference for match-
ing a lattice to the grammar. The modified CYK algorithm
finds a solution by minimizing a cost function ¢(d, I) over
all possible d € D:

d* = argmin c(d, I), @)
deD
where the set D denotes the set of all possible parse trees.
Dynamic programming algorithms like CYK require the so-
called optimal substructure property, i.e. it must be possible
to efficiently calculate the optimal solution from the opti-
mal solutions to its subproblems. A subproblem in our case
means finding the optimal way of matching a given nonter-
minal against a given rectangular subrange of the input. We
write ¢(I,r, S) to denote the optimal match for a nontermi-
nal S on the subrange r of input 1.
We therefore require that given an operator op (that takes
n arguments), an attribute value a and a range r, we can
efficiently determine n subproblems (7, S;), such that

mig clopg dy...dp, I, 7)) =clopydi...dy,I,7), (8)
1...0n

where df = q(I,r;,S;) are the optimal solutions for the
subproblems.

The optimal solution for (r,.S) can thus be determined
by calculating the costs for all rules applicable to S and

for all possible values of a for the operator mentioned in
each rule and choosing the minimum. This assumes that all
subproblems (r;, S;) have already been processed, which
can easily be guaranteed by processing smaller ranges first.

5.1. Cost Function

Let us now define a cost function that implements a max-
imum a posteriori probability estimator.

From the grammar, we get a prior probability distribution
over all facades. As we are not currently using a stochastic
grammar, this distribution is uniform for all segmentations
that can be described by a parse tree, and zero for all “im-
possible” segmentations. Thus, we maximize the posterior
probability over the set of all parse trees D (rather than over
the set of all possible labellings). We want our cost function
to be the log-likelihood of the parse tree:

e(d, I,r)=—log P(D(d,r)|I).)

In order to implement the estimator, we need a cost func-
tion that fulfills the optimal substructure condition (8) and
approximates this “ideal” cost function. First, we check
whether any size constraints for the nonterminal symbol at
the root of the current parse tree are violated. If so, the
parse tree is assigned infinite cost. Otherwise, we proceed
according to the operator used at the root of the parse tree.
For label operators, we calculate ¢ by summing up the pixel-
wise merits U from Section 4.1 for all pixels in the range .
For the other operators, we get (using Equation 1 and the
assumption that the subtrees d; are statistically independent
from each other):

c(opy dy -..dn,I,7) = —log [[P(D(dyei),r:) 1)
=1

= cldpy, I,ri) (10)
i=1

In the case of the standard (vertical and horizontal) split
operators, this boils down to ¢(dy,I,r1) + ¢(de, I,72),
which fulfills the optimal substructure condition (8).

In the general case, which includes the mirroring and al-
ternating repetition operators, we get a cost function that
violates the optimal substructure condition by matching the
same subtree against multiple subranges:

e(mirg dids, I,r) = c(dy, I,7m1) + ¢(da, I,73)

+C(d1,],'f’_3) (11)
c(alt(m), didg, I,r) = e(dy, I,r;)
i=1,3...
+ > eldy, I,mi) (12)
i=2,4...

1644

Clearly, the d; which minimize these costs are not nec-
essarily the optimal solutions df = ¢(I,7;,S;) on any of
the subranges. It is, however, a reasonable approximation
to assume that they are.

Making that assumption still does not make the algo-
rithm efficiently implementable. The cost of the optimal
sub-solutions, ¢(d,I,r;), has already been calculated by
previous iterations of the dynamic programming algorithm,
but the costs c¢(d},I,r;) for i # j have not. We there-
fore estimate these costs based on values that are more read-
ily available, such as the costs c(d}, I, ;) and c(d}, I,7;),
which are already pre-calculated. We also introduce a dis-
similarity estimate A(I,r;,7;), which indicates the proba-
bility that two ranges should have the same labeling:

A(I,74,75) := —logP(z,, = x,,|I) (13)

This can be calculated from W, again assuming statistical
independence between the pixels. In Section 5.3, we will
see how it can be precalculated for efficient lookup.

We can estimate the probability that two ranges can be
explained by the same parse tree using the probability that
one of the ranges can be explained by the parse tree and the
probability that the ranges have the same labelling:

P(xy, = D(dj,r;) Ny, = D(d,r5)|T)
= P(x,, = D(d},r;) Nay, = T, |T)
~ P(x,, = D(d;,r:)|I) Pz, = xrju) (14)

Taking this estimation together with the fact that
c(dy,z,r;) > c(d}, z,7;), we get

c(di, x,rj) = max(c(dj, z,7;), Alw,ri,). (15)
5.2. Inference on the Lattice

For the basic horizontal and vertical split operators, the
irregular lattice amounts to limiting the choices for the at-
tribute values a at the various parse tree nodes. The result
is equivalent to maximizing posterior probability under the
assumption that each lattice tile has a homogenous label.

For mirror and repeat operators, the situation is slightly
more complicated. In an application of the mirror operator,
if the subrange r; is exactly representable on the lattice, the
subrange 73 that is its mirror image might not be, and vice
versa. Likewise, the various subranges r; of a repetition
operator will usually not fit exactly.

The subproblem solutions d are therefore calculated on
the closest range actually available in the lattice, and then
used as an approximation for the exact range. This has the
effect of adding the split lines required by the symmetries
and repetitions to the output labelling, even if they have not
been found during the lattice generation phase. We define
the dissimilarity A on ranges of different sizes to be the A
between the smaller range and the corresponding subrange
in the center of the larger range, plus an extra penalty value
proportional to the difference in areas.

e 5 _'_:]

Figure 4. Left to right: orthophoto, MAP segmentation, grammar
segmentation and ground truth labels (Paris2010).

5.3. Algorithmic Complexity

Given a width w and a height h, the number of subranges
is O(w?h?). The space complexity of a simple implemen-
tation of the algorithm is therefore O(w?h?|N|), where N
is the set of nonterminal symbols.

For every subrange and nonterminal, a rule and the ap-
propriate value for the attribute a € A has to be chosen by
exhaustive search; thus, the total number of cost function
evaluations is O(w?h?|A||G]).

For our set of operators, |A| < w for all horizontal
operators and |A| < h for all vertical operators, yielding
A=0(w+h).

The dissimilarity estimate A(x,7;,7;) can be precalcu-
lated in order to allow constant-time lookup. To achieve
that, we make use of the fact that ; and r; either occupy
the same range of = coordinates (when used by the vertical
alternating repeat operator), or the same range of y coor-
dinates (mirror and horizontal alternating repeat operators).
Furthermore, note that A of a pair of ranges of the same
height is the sum of the A values on the individual rows of
pixels. We therefore need a lookup table with entries for
every y coordinate and for every possible pair of same-size
ranges of x coordinates for the horizontal operators, and an-
other similar lookup table for the vertical operators.

The size of these lookup tables is O(w>h + h3w), filling
the tables takes O(w*h + h*w) time. As w and h are on the
same order of magnitude, this is dominated by the running
time of the CYK algorithm itself.

6. Experimental Evaluation

In this section, we evaluate our method on two datasets,
which show rectified building facades with high intra-class
variance and occlusions. Both consists of semantic classes
such as window, wall, balcony, door, roof, shop and sky.
The images are annotated pixelwise with an additional
(void/outlier) class. The train/test protocol specifies training
on 60% of the images, and testing on the remaining images.

The Ecole Centrale Paris Facades (short: Paris2010) is a
dataset by Teboul et al. [25], which consists of 30 images
taken from rue Monge in the fifth district of Paris, resem-

1645

gridX_9px gridY_9px
' '
1
| _—
k ot
ol g
orfl N ol A
h!
c O -L- S < / “un
2.4 A\] ™y
2 05 3
k4 w 8
a, 1 \\ A]
v
i N . -
g e ~ .
N [p— - g p— ion_t
Detection-based (our)| e, J Detection-based (our)|
01] - — - Gradient-based [18 01 pe N - — - Gradient-based [18
‘ — — Gradient-based [12] ﬁ — — Gradient-based [12]
o 01 0z 03 04 05 06 07 08 08 1 0 o1 o0z 03 04 05 O0s 07 08 09 1
Recall Recall
gridX_9px gridY_9px
' '
07 07
Mﬂn/\«/‘h.
o c
2 S
o ane 8
S T Mo, T, “h
T . N
03] AASa, H-\L"-.H 03[#‘,4 ‘1‘\--
e o A A
AN .1 —— Detection-based (our) o ‘ — Detection-based (our)
ol 7 - — - Gradient-based [18] 01 ot e 2| - = Gradient-based [18]
v | — = Gradient based [12] 71— —Gradient-based [12]

0o 01 02 03 04 05 06 07 08 09 1 0 o1 o0z 03 04 05 06 07 08 08 1
Recall Recall

Figure 5. Lattice confidence: Compared to standard split proposals
based on gradients, our detection-based proposals achieve a higher
precision/ recall (+35% at EER, top: Graz50, bottom: Paris2010).

bling solely Hausmannian architecture with highly regular
structures, where factorization assumptions work well.
Furthermore, we created a new dataset (Graz50) contain-
ing 50 images taken from various locations in the historical
Austrian city of Graz. It includes architectural styles such as
Classicism, Biedermeier, Historicism (neo-renaissance and
neo-baroque), Art Nouveau and as well as various modern
styles, demonstrating a wider range of facade layouts than
the Paris2010 dataset. Therefore, the constraints for fac-
torization and shop-level separation limit the grammar in-
ference more than they help. The ground-level floor con-
tains high variation in layout for shop and residential floors,
which may or may not follow the remaining floor layout.

6.1. Lattice generation

The irregular lattice for each facade provides the splitting
proposals for the grammar inference process. Compared to
related work [14, 25] which uses gradient-based split pro-
posals, we base our proposals on mid-level information of
the terminal detection. To evaluate the effectiveness of such
mid-level information, we compare the ground truth splits
from the annotation data to the split proposals and evaluate
classical recall and precision. As shown in Figure 5 we sub-
stantially outperform (+20-35% at EER) the gradient-based
methods for both split directions (x,y) and both datasets.

6.2. Segmentation

Since the goal is to derive the logical structure of fa-
cade layouts, we want to show how well the facade mod-
els our algorithm infers fit the actual layout. We follow the
segmentation-based evaluation common to semantic scene

Method || MAP | [25] | [24] | Our
Window 29 81 81 68
Wall 63 83 84 87
Balcony 42 72 63 69
Door 90 71 84 56
Roof 62 80 86 83
Sky 95 94 94 95
Shop 26 95 97 97
Average 58 82 84 80

Table 1. Single architecture (Paris2010): Semantic class-wise in-
terpretation evaluation. See text for details.

(@)

Figure 6. (a) Orthophoto, (b) grammar segmentation overlay,
(c) parsed structure with detected symmetry and repetition for this
Historicism example, and d) parse tree transformed into 3D model.

—§ S E 172}

ElZ|8|zl=] &b
Method | 2 | B 5 ZERCRRSREE
MAP 60 | 66 | 57 | 80 || 66 | 65 | 43
Our 60 | 84 | 41 | 91 || 78 | 69 | 58

Table 2. Multi architecture style dataset (Graz50): Semantic seg-
mentation evaluation by global, class-wise, and IoU average.

interpretation and evaluate the accuracy in terms of pixel av-
erage, class-wise pixel average, and the intersection/union
pixel average. As shown in Table 1, we reach competi-
tive performance on the simple Hausmannian architecture.
Figure 4 demonstrates results on a single facade from this

1646

dataset. Additionally, we show that our grammar matching
also works well for more difficult architectural styles using
a different grammar, as shown in Table 2. Since a segmen-
tation may not capture the actual structure, we also show a
qualitative example (see Figure 6) of a parsed facade, which
shows how flexible symmetry and repetition is detected as
opposed to factorization constraints.

7. Conclusion and Future Work

In this work we showed a novel approach to general fa-
cade reconstruction which is not limited to fixed grammar
rules or hard-coded inference implementations. We pro-
posed a method to combine low-level classifiers with mid-
level object detectors to infer an irregular lattice which re-
flects the semantic changes on a facade. This lifts the con-
straints of high complexity of existing methods and allows
practical solutions for real world images and generic gram-
mars. Our matching algorithm supports hierarchical spatial
relationships as well as symmetries and repetitions. The ex-
periments on two datasets with various architectural styles
show, our approach is competitive in terms of segmentation
accuracy, while at the same time is able to handle grammars
with more complex structures at reduced runtime.

Future work is directed at reducing the search space for
valid non-terminal configurations and further introducing
depth and 3D information into the process.

Acknowledgments The authors gratefully acknowledge
the generous support from the Austrian Research Promotion
Agency (FFG) and Microsoft Photogrammetry for the re-
search project CITYFIT (High-Quality Urban Reconstruc-
tions by Fitting Shape Grammars to Images and derived
Textured Point Clouds), grant number 815971/14472.

References

[1] S. Agarwal, N. Snavely, 1. Simon, S. Seitz, and R. Szeliski.
Building rome in a day. In /CCV, 2009.

F. Alegre and F. Dellaert. A probabilistic approach to the
semantic interpretation of building facades. Technical report,
Georgia Institute of Technology, 2004.

(2]

(3]

S. Becker and N. Haala. Grammar supported facade recon-
struction from mobile lidar mapping. In JAPRS, 2009.

[4] A. Berg, F. Grabler, and J. Malik. Parsing images of archi-
tectural scenes. In ICCV, 2007.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. PAMI, 2001.

L. Breiman. Random forests. Machine Learning, 2001.

H. Chau, X. Chen, A. McKay, and A. de Pennington. Eval-
uation of a 3d shape grammar implementation. In Design
Computing and Cognition, 2004.

A. Dick, P. Torr, S. Ruffle, and R. Cipolla. Combining single
view recognition and multiple view stereo for architectural
scenes. In ICCV, 2001.

(5]

(6]
(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]
(15]
(16]
(17]

(18]

[19]
(20]
(21]

(22]

(23]

[24]

[25]

[26]
(27]
(28]
(29]

(30]

1647

J. Gall and V. Lempitsky. Class-specific hough forests for
object detection. In CVPR, 2009.

D. Gallup, J. Frahm, and M. Pollefeys. Piecewise planar and
non-planar stereo for urban scene reconstruction. In CVPR,
2010.

S. Kluckner, T. Mauthner, P. Roth, and H. Bischof. Semantic
image classification using consistent regions and individual
context. In BMVC, 2009.

P. Koutsourakis, L. Simon, O. Teboul, G. Tziritas, and
N. Paragios. Single view reconstruction using shape gram-
mars for urban environments. In /CCV, 2009.

L. Ladicky, C. Russell, P. Kohli, and P. Torr. Associative
Hierarchical CRFs for Object Class Image Segmentation. In
ICCV, 2009.

S.Lee and R. Nevatia. Extraction and integration of windows
in a 3d building model from ground images. In CVPR, 2004.
B. Micusik and J. Kosecka. Multi-view superpixel stereo in
urban environments. IJCV, 2010.

W. Mitchell. The Logic of Architecture: Design, Computa-
tion, and Cognition. 1992.

P. Miiller, G. Zeng, P. Wonka, and L. Van Gool. Image-based
procedural modeling of facades. In SIGGRAPH, 2007.

N. Ripperda and C. Brenner. Application of a formal gram-
mar to facade reconstruction in semiautomatic and automatic
environments. In AGILE, 2009.

M. Schlesinger and V. Hlava¢. Ten Lectures on Statistical
and Structural Pattern Recognition. 1990.

J. Shotton, M. Johnson, and R. Cipolla. Semantic texton
forests for image category segmentation. In CVPR, 2008.
G. Stiny and J. Gips. Shape grammars and the geneative
specification of painting and sculpture. In IFIP, 1972.

P. Sturgess, K. Alahari, L. Ladicky, and P. Torr. Combining
appearance and structure from motion features for road scene
understanding. In BMVC, 2009.

J. Talton, Y. Lou, S. Lesser, J. Duke, R. Méch, and V. Koltun.
Metropolis procedural modeling. ACM Graphics, 2011.

O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and
N. Paragios. Shape grammar parsing via reinforcement
learning. In CVPR, 2011.

O. Teboul, L. Simon, P. Koutsourakis, and N. Paragios. Seg-
mentation of building facades using procedural shape prior.
In CVPR, 2010.

A. Toshev, P. Mordohai, and B. Taskar. Detecting and pars-
ing architecture at city scale from range data. In CVPR, 2010.
C. Vanegas, D. Aliaga, and B. Benes. Building reconstruc-
tion using manhattan-world grammars. In CVPR, 2010.

P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant
architecture. In ACM Graphics, 2003.

J. Xiao, T. Fang, P. Tan, P. Zhao, E. Ofek, and L. Quan.
Image-based facade modeling. In SIGGRAPH Asia, 2008.

P. Zhao, T. Fang, J. Xiao, H. Zhang, Q. Zhao, and L. Quan.
Rectilinear parsing of architecture in urban environment. In
CVPR, 2010.

