
Abstract The traditional paradigm for studying the
magical number is questioned and a new approach is
sought in order to obtain a better conceptual under-
standing of this phenomenon. Building on earlier work,
a theory is proposed whereby the results of an absolute
identi®cation experiment can be characterized by a
single parameter to a reasonable approximation. This
parameter is the variance in the subject's response to a
sensory input. By reducing the magical number to a
single parameter, we see that the value of the upper limit
in information transmission depends not so much on the
absolute magnitude of the response error, but actually
on how fast this error grows with range. The theory also
predicts a little known characteristic of the magical
number. If this prediction can be demonstrated exper-
imentally, we shall need to reinterpret the magical
number.

1 Introduction

While a modern measuring device can estimate physical
dimensions with astounding accuracy, a human being
without additional accessories cannot do nearly as well.
It appears that human sensory performance is restricted
by certain fundamental limitations. These limits have
been the subject of a great deal of interest for sensory
scientists, particularly during the 1950s and 1960s, and
are still being studied to this day. Beginning with the
work of Garner (1953) and Miller (1956), it was
demonstrated that humans could, at best, classify
single-dimensional stimuli into ®ve or six non-overlap-
ping categories spanning a ®xed range. Hence the title of
Miller's celebrated paper: ``The magical number 7, plus

or minus 2: Some limits on the capacity for processing
information.''

Perhaps the most impressive feature of the magical
number is that it is obeyed universally by almost all
sensory modalities. The same limit which governs the
judgement of line length will, to a good approximation,
also limit the judgement of loudness.

To analyse experiments determining the magical
number, Garner and Hake (1951) borrowed information
theory from communications engineering for application
with absolute identi®cation experiments. In such ex-
periments, the subject's task is to correctly identify
randomly presented stimuli using a pre-assigned classi-
®cation scheme. This classi®cation associates a single
stimulus to each category: increasing category number
corresponds to increasing stimulus magnitude. For ex-
ample, in the absolute identi®cation of loudness, we
might conduct an experiment of four categories where
category no.1 corresponds to a stimulus of intensity 10
dB, no.2 to 15 dB, no.3 to 20 dB and no. 4 to 25 dB. The
subject, upon hearing a randomly selected tone from any
of the four categories, is required to identify the stimulus
correctly (1±4).

In the context of Shannon's information theory
(Shannon and Weaver 1949), a source communicates
information across a noisy channel. The source message
is denoted as X and the received message as Y . If
transmission were error-free, the source information
H�X � would equal the transmitted or received informa-
tion It. However, the presence of noise obfuscates the
transmitted message and there is invariably a loss in
information. Thus, the transmitted information can be
expressed as

It � H�X � ÿ H�X jY � �1�
where H�X jY � is the loss in information and is calculated
from the number of times the input was incorrectly
identi®ed. If the source input is random and drawn from
a uniform distribution, then H�X � is just log m, the
Shannon information for m equally probable events.

Returning to the absolute identi®cation experiments,
when the input is correlated to the subject's response, the
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results can be summarized in a confusion matrix where
correct responses de®ne the main diagonal. From this
matrix, the value of the information can be calculated
using (1). This value corresponds to the information
required by the subject to classify a single stimulus, and
it rarely exceeds 1.6 natural units or 2.3 bits of infor-
mation corresponding to the 22:3 ' 5 categories. For
example, in Fig. 1 the results of Garner (1953) are
plotted, showing how information transmitted to the
subject varies with the stimulus or input information
H�X �. We note that when the input information exceeds
2 bits or so, the transmitted information approaches an
asymptote and cannot be further increased.

In addition to experimental work, there are several
theoretical studies which attempt to explain the magical
number phenomenon (Braida and Durlach 1972, 1988;
Laming 1984; Luce et al. 1976; Marley and Cook 1984;
Treisman 1985). They are all based on a Thurstonian
model with signal detection theory (i.e. statistical deci-
sion theory) in which sensory e�ects of the stimulus in-
put are represented by normal distributions on a
decision axis. In their models, the limits to absolute id-
enti®cation performance (magical number phenomenon)
result from cognitive factors such as imprecise memory
of the context by which judgements are made (Braida
and Durlach 1972, 1988; Laming 1984; Marley and
Cook 1984), ¯uctuation of attention over the stimulus
range (Luce et al. 1976) and trial-by-trial shifting of
response criteria (Treisman, 1985). Mainly because they
attempt to explain other phenomena in absolute id-
enti®cation as well (such as sequential dependencies and
edge e�ects) their models are complex and require the
assessment of several parameters. Recently, Lacouture
and Marley (1995) proposed a connectionist neural

network model which accounts for the magical number
and edge e�ects in absolute identi®cation.

In this paper, we propose a new approach to under-
standing the magical number phenomenon in which its
salient features can be explained with only a single pa-
rameter. Because this approach is largely conceptual in
nature, it is simpler than any of the earlier approaches.
Furthermore, the entire theory is based within an in-
formation framework, making it easy to compare with
existing experimental studies. However, the theory is
similar in several respects to many of the earlier studies
(particularly signal detection theory), and a paper has
been submitted elsewhere dealing with these issues
(Wong and Mori, 1998, in press).

We con®ne the scope of the paper to a single issue: to
understand better the principles behind the magical
number phenomenon. Just as we can learn more about
geometry by translating the parallel line axiom into
other equivalent, but equally valid statements, we hope
to learn more about the magical number by simplifying,
where possible, the problem at hand, stripping it down
to its core and examining it from another perspective.
This would involve, among other things, asking ques-
tions such as: ``In Fig. 1, what aspect of this graph is
purely mathematical and what aspect is perceptual in
origin?'' ``How many parameters are required to con-
struct the information curve found in Fig. 1?'' Along the
way, we will also suggest ways in which future experi-
ments can be conducted more e�ectively, as well as o�er
new predictions which can be veri®ed through future
experiments.

We make no attempt here to take into account se-
quential dependencies (tendency of the current response
to be correlated to past responses and past stimuli, see
Mori 1989) or drift in the subject's response during the
course of an experiment (see Treisman 1985). Further-
more, we shall ignore the e�ects of feedback in absolute
identi®cation. These are all factors that can be consid-
ered in future studies.

2 Background

We begin with a close examination of how absolute
identi®cation experiments are used to study the magical
number. We shall illustrate this experiment for the
judgement of loudness, keeping in mind that similar
results can be obtained with other sensory stimuli and
modalities. In this experiment, the range of the stimulus
input (i.e. sound intensity) is ®xed at R and the
continuum is divided into m equal categories in decibel
space. For example, a 30±70 dB range can be divided
into 5 equally spaced categories by assigning category 1
= 30 dB, 2 = 40 dB, 3 = 50 dB, 4 = 60 dB, 5 = 70 dB,
etc. Let us denote the input variable as X . The possible
values spanned by X are given by the set fxjg, where
j � 1 . . . m. They are randomly presented to the subject,
who must try to correctly identify the category to which
the tone belongs.

The output variable Y spanning the set fykg can be
de®ned similarly. We shall only consider here the case

Fig. 1. The loudness data of Garner (1953) showing how transmitted
information varies with input information. Input information is
de®ned as the base 2 logarithm of the number of categories. The
plateau in information as shown by the horizontal line represents an
upper limit in transmitted information of approximately 2.3 bits. The
diagonal line shows transmitted information in the case of error-free
transmission. In other words, transmitted information equals input
information
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where there are the same number of output categories as
input categories (although they do not, in general, have
to be equal; see Eriksen and Hake 1955). Thus, the set
fykg consists of m possible responses (k � 1 . . . m). The
input and response pairs obtained from an experiment
can be summarized in a confusion matrix with elements
njk being the frequencies of the responses yk when
stimulus xj is presented. A trial is de®ned as a single
presentation and classi®cation of a tone. Of course, the
sum of all the elements in the matrix must equal the total
number of trials N carried out in the experiment. Thus,Xm

j�1

Xm

k�1
njk � N �2�

When a su�cient number of trials have been collected,
various probabilities can be estimated from the matrix.
Let p�xj� denote the probability of presenting stimulus xj
and p�yk� the probability of responding yk. p�yk� is
evaluated from the expression for total probability

p�yk� �
Xm

j�1
p�xj�p�ykjxj� �3�

where p�ykjxj� is the conditional probability of respond-
ing yk when xj is presented. For later use, we also de®ne
s2eff;j as the sample variance along the jth row of the
confusion matrix, namely the variance of the responses
yk given stimulus xj.

Returning to the equation of transmitted information
(1), one can easily demonstrate that

It � H�X � ÿ H�X jY �
� H�Y � ÿ H�Y jX � �4�

where It is now calculated from the response information

H�Y � � ÿ
X

k

p�yk� log p�yk� �5�

and equivocation

H�Y jX � � ÿ
X

j

p�xj�
X

k

p�ykjxj� log p�ykjxj� �6�

We now turn our attention to deriving a simple
expression for the transmitted information from (4) in
the case where the experiment is carried out over a large
number of categories, m� 1. We present a formal list of
assumptions to be used in the derivation. They are
introduced in turn followed by certain remarks and
comments.

2.1 Assumptions of the theory

(1) Edge or anchor e�ects can be neglected. A typical
confusion matrix obtained experimentally is shown in
Table 1. The data were collected for the absolute
identi®cation of pitch and will be discussed in Sect.
3.1. Edge e�ects are due to the boundaries of the matrix
and can be most prominently observed in the ®rst and
last rows. The subject has a greater chance of giving the
correct response when the stimulus is located at the
edges of the stimulus range.

(2) p�ykjxj� can be approximated by a normal distri-
bution for all ranges R. With reference to Table 1, we see
that the distribution of response along each row can be
approximated by a normal distribution except for the
very ®rst and last rows. To approximate the discrete
response distribution p�ykjxj� by a normal distribution,
we must ®rst partition the normal distribution into the m
categories of response and then integrate the distribution
between endpoints calculated from the location of the
categories. Mathematically speaking, if y denotes the
random variable representing the response, then

p�ykjxj� �
Z ak

akÿ1
N�y; lj; rj� dy �7�

where N�y; lj; rj� is a normal distribution with mean lj

and variance r2j . lj is the mean response when xj is
presented. When the subject does not drift, the average
response equals the correct response, lj � xj. The
endpoints of the integration are de®ned by the midway
points between adjacent categories as mapped onto the
stimulus range �0;R�,

Table 1. A typical confusion matrix summarized from the results
of a pitch experiment. The input categories are speci®ed by the
variable xj and the output categories by yk. Notice that the dis-
tribution of xj is uniform. yk follows a similar pattern and can be

approximated by a uniform distribution. Furthermore, the re-
sponse along each row is observed to be approximately normally
distributed and centred along the main diagonal

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 xj
total

x1 60 0 0 0 0 0 0 0 0 0 60
x2 2 53 4 1 0 0 0 0 0 0 60
x3 0 3 42 11 4 0 0 0 0 0 60
x4 0 3 7 36 10 4 0 0 0 0 60
x5 0 0 1 8 33 17 1 0 0 0 60
x6 0 0 0 0 4 35 18 3 0 0 60
x7 0 0 0 0 1 4 43 11 1 0 60
x8 0 0 0 0 0 2 14 38 6 0 60
x9 0 0 0 0 0 0 1 3 55 1 60
x10 0 0 0 0 0 0 0 0 5 55 60

yk
total 62 59 54 56 52 62 77 55 67 56
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a0 � 0
ak � �2k ÿ 1�R=2�mÿ 1�; k � 1 . . . �mÿ 1�

am � R
�8�

In general, we note that rj may be di�erent for di�erent
xj; however,

(3) rj � r for all j. Both the assumption of the ®xed
variance and the assumption of the normal distribution
of response N�y; lj; rj� have been used by other in-
vestigators in other studies as well (i.e. Durlach and
Braida 1969). Since rj is the standard deviation of
N�y; lj; rj�, we can similarly de®ne reff;j to be the stan-
dard deviation of p�ykjxj�. Furthermore, we would ex-
pect that

(4) The response variance r2eff is the same for all xj
(that is, reff;j � reff for all j). So s2eff;j, de®ned earlier as

the sample variance along the jth row of the confusion
matrix, are estimates of r2eff. While the last two as-
sumptions are motivated in part by experimental data
(i.e. Table 1 and others), they are expected to hold in
general and not just for a particular data set.

(5) p�xj� � 1=m, where m is the number of stimulus/
response categories. p�xj� is a uniform distribution con-
trolled by the experimenter.

2.2 Derivation of an analytical expression for It

With these assumptions we can now derive two lemmas.

Lemma 1 To a good approximation, p�yk� is given by a
uniform distribution

From the second assumption, if the subject's response
does not drift, p�ykjxj� can be approximated by a normal
distribution with mean response equal to xj. Recall that
a normal distribution is symmetrical about the indepen-
dent variable (in this case, yk) and the mean value (in this
case,xj). These two variables can be interchanged
without a�ecting the value of the function. Thus,

p�ykjxj� � p�xjjyk� �9�
However, by Bayes theorem we know that

p�xj�p�ykjxj� � p�yk�p�xjjyk� �10�
and as a consequence of (9) and the last assumption, we
have

p�yk� � 1=m �11�
The response is uniformly distributed. For example, in
Table 1 we observe that the total probability of response
is uniform to a good approximation in agreement with
(11).

Lemma 2 H�Y jX � ' ÿP
k

p�ykj�x� log p�ykj�x� where �x �
�m� 1�=2 is the middle category of the matrix.

Returning to (6), we see that the nested equation

ÿ
X

k

p�ykjxj� log p�ykjxj� �12�

represents the entropy or information along the jth row
of the matrix, and to calculate H�Y jX � we need only to
average (12) across all rows. Since p�ykjxj� can be
approximated by the normal distribution, (12) is,
roughly speaking, the entropy of a normal distribution.

When the width of the category Dy � R=m is su�-
ciently small, the sum in (12) can be approximated by an
integral. Let us also replace p�ykjxj� with the probability
density function p�yjxj�Dy. Equation (12) would then
take the form of

ÿ
X

k

p�ykjxj� log p�ykjxj�

' ÿ
Z R

0

p�yjxj� log p�yjxj� dy ÿ log�Dy� �13�

This equation is derived in greater detail in Wong and
Norwich (1997), Appendix A. At this point, we refer to
the results of Shannon and Weaver 1949 (also Norwich
1993) where it was demonstrated that the entropy of a
normal distribution depends only on the variance of the
distribution and not on the mean. That is,

ÿ
Z 1
ÿ1

p�yjxj� log p�yjxj� dy � 1

2
log�2per2j � �14�

where r2j is the variance of p�yjxj�. We have de®ned
p�yjxj� � 0 outside the range �0;R�. Thus, (13) becomes
ÿ
X

k

p�ykjxj� log p�ykjxj� ' log �
��������
2pe
p

rj=Dy� �15�

By an earlier assumption rj � r for all values of j ;
equation (15) would imply that the value of (12) is equal
for all j and can therefore be calculated using only a
single row of the matrix. For simplicity, we shall use the
middle row de®ned by �x � �m� 1�=2. Returning to (6)
and using p�xj� � 1=m, we have

H�Y jX � � ÿ
X

j

p�xj�
X

k

p�ykjxj� log p�ykjxj�

� ÿ 1

m

X
j

X
k

p�ykjxj� log p�ykjxj�

' ÿ
X

k

p�ykj�x� log p�ykj�x� �16�

That is, the calculation of the equivocation from the
confusion matrix, under these approximations, is re-
duced to the calculation of the entropy of a single,
representative row of the matrix (i.e. the middle row).

We conclude this lemma with three additional re-
marks. The ®rst refers to a limitation in the use of (16).
Since �x � m� 1� �=2 can take on only integer values, m
must be an odd number. Consequently, the use of (16) is
restricted to matrices with only an odd number of cat-
egories. This is one limitation of the proposed theory.
The second remark refers to (13). Since p y j xj

ÿ �
is a

distribution with variance r2, a relationship between r
and R has been implicitly assumed in this equation.
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While R is a parameter controlled by the experimenter, r
is a parameter characterizing the human subject. We
leave the discussion of r � r R� � to Sect. 3.2. Finally, it is
important to remember that, in writing (14), we have
®xed the base of the logarithm to be e � 2:718::: We
shall continue to use natural logarithms for the re-
mainder of the paper.

We now proceed to the seminal result of this section:
the derivation of an analytical equation governing the
transmitted information as de®ned by (4) in the limit of
large m.

Theorem In the asymptotic limit of large m, the equa-
tion for transmitted information takes the form of
It � log m=reff� � ÿ 1

2 log 2pe� �.
From (4), we evaluate It in two parts. First, using
p yk� � � 1=m from Lemma 1 we have

H Y� � � ÿ
X

k

p yk� � log p yk� �

� log m� �: �17�
Next, we substitute (15) into (16) and use rj � r to
obtain

H Y j X� � � log
��������
2pe
p

r=Dy
� �

� log
��������
2pe
p

reff
� �

�18�

We have used the result reff � r=Dy � rm=R to convert
between discrete and continuous probabilities. This
equation will be derived in the following section (3.1).

Finally, substituting (17) and (18) into (4), we have

It ' log m� � ÿ log
��������
2pe
p

reff
� �

� log m=reff� � ÿ 1
2 log 2pe� � �19�

This equation was ®rst derived in Wong and Norwich
(1997). It predicts the unbiased information for large
values of m (�30) and has been demonstrated to work
quite well (see Wong and Norwich 1997; Norwich et al.
1998 (in press)).

Empirically speaking, many investigators have found
that It typically saturates for m > 5 (for example, see
Fig. 1). Thus, (19) must also follow this trend and, for
large values of m, we would expect reff to be a linear
function of m. Furthermore, since reff is also a function
of the full range R, it might appear at ®rst glance that reff
is a rather complicated function defying simple theo-
retical description. However, this is not the case. As we
shall demonstrate in the following section, reff, for the
most part, follows a rather simple and elegant equation.

3 A conceptual approach to the magical number 7

3.1. reff as a function of m

At this point, we make one further re®nement to the
approach we have developed thus far: Corresponding to

any stimulus input, we assume that there is an under-
lying continuous distribution to the subject's response.
Furthermore, this response is normally distributed with
variance r2. The normal distribution N y; xj; r

ÿ �
approx-

imating the discrete probability of response p yk jxj
ÿ �

in
the second assumption would therefore correspond to
the newly introduced underlying response distribution.

This distribution is illustrated schematically in Fig. 2.
We have de®ned a new variable a which is one-half the
range (R � 2a). Since it was established earlier that the
entropy of a normal distribution is not dependent on the
mean of the distribution [cf. (14)], we have arbitrarily set
the mean equal to zero. Thus, the distribution is centred
at the origin with variance r2. The abscissa is labelled y
to represent the continuous response axis. Once again, it
is important to bear in mind the di�erence between r
and reff. r is the standard deviation of a continuous
distribution and has the units of the stimulus magnitude
(i.e. dB in this case). reff, on the other hand, is calculated
from the discrete categorical responses from the matrix
and is, by de®nition, unitless.

To explore how reff changes with m, we ®rst look at
an illustrative example where an experiment is con-
ducted over 5 categories. These 5 categories are placed at
equal distances within the range �ÿa; a�. Thus, categories
1 through 5 are located at y � ÿa, ÿa=2, 0, a=2 and a
(Fig. 3). Next we must establish a set of criteria by which
the subject chooses a category for response. Assuming
that no systematic response bias is introduced, it would
seem plausible to set the criteria at the midway point
between adjacent categories (see Treisman 1985). Thus,
in the case with 5 categories, the criteria would be placed
at y � ÿa, ÿ3a=4, ÿa=4, a=4, 3a=4 and a. These are
shown by the dotted lines in Fig. 3. To evaluate the
probability that the subject would verbally classify the
stimulus as category 1, we integrate the normal distri-
bution between �ÿa;ÿ3a=4�. Probability for responding
category 2 is de®ned by the area under �ÿ3a=4;ÿa=4�,
and so forth.

Fig. 2. The underlying continuous response distribution shown to be
normally distributed: y is the response variable and has units of the
stimulus magnitude (dB in the case of loudness judgements), a is
de®ned as one-half of the total range of the experiment. The response
along each row of the matrix is obtained by partitioning the
continuous response distribution. See also Fig. 3
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Generally speaking, we can de®ne a function g k� �
(k � 1 . . . m) which quanti®es the probability of response
with the kth category (Appendix A). Returning to our
previous example with m � 5, we see that g�1� equals the
area under the normal distribution for the range
�ÿa;ÿ3a=4�, g�2� is the area under �ÿ3a=4;ÿa=4� , etc.
In fact, g�k� is just p yk j�x� � , the conditional probability
of verbal response. We have identi®ed k with yk, with
both functions centred at �x � m� 1� �=2.

For later use, we rewrite the equivocation, (16), in
terms of g k� � to obtain

H Y j X� � � ÿ
X

k

g k� � log g k� � �20�

and substituting into (4), we ®nd

It � log m� � �
X

k

g k� � log g k� � �21�

where H Y� � � log m� � [cf. (17)]. Next, we calculate reff
with the function g k� �. Recall that k has a mean value
equal to m� 1� �=2. Using the standard equation for
variance, we have

r2eff �
Xm

k�1
k ÿ 1

2
m� 1� �

� �2
g k� � �22�

This is the form of the expression for r2eff if g k� � �
p yk j�x� � is assumed to be normal (second assumption).
Note that (22) essentially relates reff to r, where r is
embedded within g k� � [see (33) in Appendix A].

Equation (22) is, by itself, a powerful statement. It
implies that there is only one ``true'' value of variance r2

associated with the response distribution. For a single
subject, r is the only parameter that requires experi-
mental determination. In principle, all associated values

of reff for m � 1, 2, 3 . . . can then be calculated from r
using (22) without conducting further experiments.

Experiments have been conducted by one of us which
can be used to demonstrate the compatibility of (22)
with experimental data. As described elsewhere (Mori
1991), these experiments were conducted on the absolute
identi®cation of pitch. The frequency range spanned
100±8000 Hz and was ®xed throughout all experiments.
The range was divided in equal logarithmic divisions
into 4, 6, 10 and 16 categories with 240, 360, 600 and 960
trials collected for each experiment, respectively. All ®ve
subjects participated in the four experiments. reff was
extracted for each subject at m � 4, 6, 10 and 16 (see
Appendix B for details). Since the individual data
showed quite a bit of scatter, the values were averaged
between subjects and are plotted in Fig. 4. Matters of
intersubject variability are discussed in Sect. 4.3. The
solid-line ®t corresponds to the prediction of (22) using a
single parameter r=a � 0:17. The compatibility of the
theory with the experimental data in Fig. 4 con®rms our
hypothesis that essentially all values of reff can be pre-
dicted from a single value of r.

When m is large (corresponding to reff=m being small,
cf. Fig. 4), there is a very simple and intuitive equation
relating reff to m and r and R. As outlined in Appendix
A, we can expand reff for very large values of m (m � 10
categories) to obtain

reff ' mr=R: �23�
Recall that R=m is the width between each category.
Thus, (23) says very simply that reff multiplied by the
width of each category will give you the true value of
the standard deviation as we know from basic

Fig. 3. The same response distribution as in Fig. 2, illustrating the case
of 5 categories. We introduce a set of criteria that the subject uses to
determine his or her response category. If there is no systematic bias in
response, it is reasonable to assume that the criteria are placed at the
midway point between adjacent categories. See text for more detail

Fig. 4. Graph demonstrating the critical feature of the theory. The
e�ective standard deviation (reff) in response was measured at several
categories for the absolute identi®cation of pitch and are shown by the
points. The theoretical curve was obtained from (22) using only a
single parameter (the variance of the continuous response). This ®gure
demonstrates that the standard deviation of response for any number
of categories can, in principle, be calculated with only a single
parameter r
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statistics. This is the result we used in the proof of
Lemma 2. In the case where m is numerically equal to
R, R=m is the unit dimension ± in our case 1 dB (for
loudness) ± and r is numerically equal to reff.

Substituting (23) into (19), we ®nd, for large m,

It � log R=r� � ÿ 1
2 log 2pe� � �24�

This is just the information of a continuous system with
a uniformly distributed input of range R and normally
distributed error of variance r2. We could have,
essentially, begun the paper with the statement of (24).
However, the ideas and tools developed in this section
will not be wasted. We shall make full use of them at a
later point.

For a ®xed range R, It de®nes the unbiased informa-
tion transmitted from an absolute identi®cation experi-
ment with a large number of categories. However, as it
stands, it is not clear how It will change as a function of
the range. This would depend on how r changes as a
function of R. We shall explore this avenue in the
following section.

3.2. r as a function of R

In the previous section we saw how a normal distribu-
tion (as illustrated in Fig. 2) can be used to approximate
a subject's underlying response distribution. This distri-
bution is characterized by a single parameter r2, the
variance in response. The mean of the distribution plays
no part in the calculations and has been set arbitrarily
equal to zero. That is, N y; xj; r

ÿ � � N y; r� �, a function
with only one free parameter.

We are now interested in determining how the re-
sponse variance changes with the range of the experi-
ment R � 2a. First, we observe that the subject's total
response is always normalized regardless of the range of
the experiment. That is,Z a

ÿa
N y; r� �dy ' 1 �25�

The equation is written with an approximate equality
because the real response distribution is de®ned over a
®nite range while the true normal distribution N y; r� �
extends over �ÿ1;1�. Next, we recall that from the
second assumption the response distribution is always
normal-like regardless of the range of the experiment.
Since we have assumed that the distribution itself does
not vary with range, the standard deviation of response
r must change in order to preserve the relationship in
(25) (r is the only free parameter). From intuition, we
would expect the standard deviation to change linearly
with the range of the experiment. We now look at a
precise mathematical statement of this idea.

Mathematically speaking, we introduce a linear
transformation y � bu or u � y=b, where b > 0 is a
scaling constant. Next we choose b � a=c, where c > 0 is
another constant and a � R=2 is half the range. Thus,

Var y� � � r2

� b2Var u� �
� Var u� �a2=c2 �26�

Since the constants are arbitrary, we can ®x the values of
both Var u� � and c to use to scale r and a. This would
imply that

r � AR �27�
where R � 2a and A � ��������������

Var u� �p
=2c. The standard

deviation is linearly proportional to the range to which
the distribution is scaled.

Consequently, if the subject always utilizes the full
stimulus range to make his or her response, as a con-
sequence of (25) and the second assumption, the sub-
ject's standard deviation must increase linearly with
range. Equation (27) has in fact been observed experi-
mentally. However, to examine fully how the standard
deviation in response varies with range would require
elaboration beyond the scope of this article. As it turns
out, (27) is correct only for large values of R. When the
range is small, the variance is a�ected by other factors
including edge e�ects which are not considered in this
paper. The resulting response distribution would no
longer remain normal-like, violating the assumption of
normality. When we include these e�ects in our calcu-
lations, we ®nd that the standard deviation is then given
by r � AR� B, where B is an intercept. This equation is
in good agreement with experimental results. In the case
where R is large, r can be approximated by (27). A
publication addressing these issues is currently in prep-
aration.

We can now use (27) to predict the absolute upper
bound for the magical number in the limit of large m and
large R. Substituting (27) into (24), we ®nd

It � ÿ logAÿ 1
2 log 2pe� �: �28�

This equation predicts the unbiased, asymptotic value of
information. Notice that in (28), apart from A, there are
no other unevaluated parameters. Since A measures the
rate of change of r with respect to R, we see that
the magical number is dependent only on how fast the
standard deviation of response grows with stimulus
range.

3.3. Information transmission as a function
of the input information

We are now in a better position to understand what is
perhaps one of the most celebrated results of psycho-
physics: the graph showing the limit of transmitted
information with increasing number of stimulus catego-
ries. To derive this curve from the theory developed thus
far, all we require is to choose a single value for the
underlying variance r2 . As demonstrated in Sect. 3.1,
we can then, in principle, predict the probability of
verbal response, g k� �, for any number of categories m.
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While it is tempting to use (19), this will not in fact
work. Recall that (19) was derived in the limit of large m.
In the case where mK10, this equation is a poor
approximation. We can, however, use (21) since no as-
sumptions were made in the derivation of this equation
regarding the size of m.

One can, of course, ®t this equation to the data to
obtain a ``best-®t'' value of r. However, it would be
much more interesting to go about it by another ap-
proach. Let us return to Fig. 1 and the data of Garner
(1953). Input information on the abscissa is de®ned as
log2 m� �. If we assume that the transmitted information
has reached the asymptotic value by m � 20 (the very
last point), we can use (24) to solve for the value of r
with the range used by Garner (R � 95 dB). Solving
backwards, we ®nd r � 4:66 dB. Substituting this value
into g k� � (see Appendix A) and then calculating It for
di�erent values of m using (21), we obtain the result
shown in Fig. 5. Once again we emphasize that the
theoretical curve was obtained without curve-®t, using
only a single parameter calculated from the asymptote.
Surprisingly, the theory even predicts a nadir and apex
in the information curve in agreement with Garner's
data.

4 Discussion

4.1. Is information transmission the primary variable?

Having involved ourselves with so many di�erent
equations and calculations, it is easy to lose sight of
the original purpose of the paper. We sought primarily
to ask the question: What is the nature behind the

magical number phenomenon? Is it the changing value
of the variance in the verbal response corresponding to
experiments conducted at m � 1; 2; 3; . . . (i.e. reff as a
function of m)? Does the magical number phenomenon
arise simply because there is error in the subject response
(i.e. p yk jxj

ÿ �
quanti®es the non-zero probability of

incorrect responses)? Should information transmission
It be the primary variable of investigation?

The results of this study indicate that the answer to all
of these questions is ``No''.

As we have seen from Fig. 5, It is actually a func-
tion only of a single parameter r. From r, all values of
reff can in principle be calculated. Moreover, it is not
the absolute magnitude of r which determines the
magical number but actually how fast it grows with
range [cf. (24)]. Thus, the single most important vari-
able determining the magical number is the rate of
change of the error. Quite simply, all we really need to
obtain is

dr
dR
� A �29�

which follows from the linear relationship between r and
R [cf. (27)]. It is then a simple matter to calculate the
upper bound for It using (28). This would imply that r is
the most fundamental variable for study and not
information transmission as previously assumed.

One can also derive this conclusion from quite a
di�erent perspective. Throughout the entire paper we
have been dealing with unbiased estimates of informa-
tion transmission. To obtain these values experimentally
one would require many thousands of trials ± the reason
being that, for small sample sizes (e.g. K250 points per
row), the calculated information is biased and will
overestimate the ``true'' upper limit of It, defeating the
purpose of the experiment. While several attempts have
been made to address the statistical bias (Miller and
Madow 1954; Rogers and Green 1955; Carlton 1969), a
viable method for obtaining unbiased estimates of It is
still lacking to this day.

More recently, with the widespread availability of
computers, various investigators have proposed that
such ``missing'' data can in fact be simulated by com-
puter (i.e. Houtsma 1983; Mori 1991; Wong and Nor-
wich 1997). Wong and Norwich proposed a normal
distribution for the conditional probability p yk jxj

ÿ �
,

demonstrating that real data can be simulated quite
accurately using only a single value of variance r2eff. All
that is required experimentally are a su�cient number of
trials (MacRae 1970) or data points to estimate reff for a
given number of categories, and then the remainder of
the ``missing'' data can be simulated using reff. This
approach underwent further re®nements in which a chi-
squared test was introduced to analyse the variability in
the estimate of reff from a limited number of trials
(Norwich, 1997 Pers. Comm.). It was demonstrated that
the variability in reff is far smaller than the bias in the
information for an equivalent number of trials.

We have continued this approach in this paper, albeit
from a theoretical rather than a computational point of

Fig. 5. The data of Garner (1953) along with the prediction by the
theory. The theoretical curve was obtained without curve-®t.
Assuming that the data have reached the asymptotic value by the
very last point, we used (24) to solve for the value of r. This value was
then used to calculate the theoretical curve from (21). Note that the
entire information curve was calculated from a single parameter alone.
The theory predicts the existence of critical points in the information
curve in agreement with Garner's data
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view. Since it was demonstrated that reff for any number
of categories can, in principle, be derived from a single
value of r, the determination of the magical number
ideally involves only the determination of r with a rel-
atively few number of trials (say only 500 for r, com-
pared with potentially 105 or more to determine an
entire matrix).

4.2. Violation of the magical number?

Contrary to the common belief that transmitted infor-
mation should increase monotonically with increasing
number of categories, we saw in Fig. 5 that the theory
actually predicts that there is a point which transmits a

higher quantity of information than the asymptote. To
demonstrate theoretically that such a critical point can
exist under nominal parameter values turned out to be
very di�cult. Furthermore, we cannot, at present,
con®rm whether these critical points will remain upon
further re®nement of the theory to include edge-e�ects.

However, there does appear to be some experimental
evidence which con®rms our prediction. We examine
several results quoted by Miller in his 1956 paper: the
experiment of Beebe-Center et al. (1955), and of Pollack
(1952). As with Fig. 5, we ®t transmitted information as
a function of m with a single parameter r=a using (21).
Both the data and the theoretical predictions are shown
in Fig. 6a (r=a � 0:14) and b (r=a � 0:094). Except for
the last point in Fig. 6a, the theory seems to do ex-
ceedingly well despite its simplicity.

To our knowledge, many if not all of the earlier
studies on the magical number phenomenon predict that
transmitted information should rise monotonically with
increasing input information. Therefore, it would be of
some interest to compare the various studies to under-
stand what is the cause for this di�erence. However, it
has been noted that several of the older experiments
have not yet been corrected for statistical bias due to an
insu�cient number of trials (MacRae 1970). This is an
important point to keep in mind when our theory is
compared to experimental data.

4.3. Sources of error

By and large, we believe that many of the errors that
limit the comparison between theory and experiment
enter at the level of the single subject. While the
estimation of information or variance is constrained by
certain basic principles of statistics (like chi-squared
statistics), there is a substantial variability not accounted
for by statistics alone, including drift in the subject's
response (mean response changing with time), shifting of
the response criteria and di�erences in performance level
± say, r improving with experience (see, for example,
Weber et al. 1977) or worsening with fatigue as the
experiment proceeds. Thus, the consistency of response
(between trials or between di�erent sessions) is di�cult
to quantify and would not only a�ect the results of the
measurements, but also lead to questioning the validity
of the assumptions of the theory (®xed criteria, ®xed
mean response, etc.). Furthermore, the e�ects of se-
quential dependencies to past inputs and responses
remain di�cult to quantify or to take into consideration,
but may very well a�ect the estimation of transmitted
information.

With respect to the theory, we have ignored all
e�ects of the boundary on the subject response. This is
certainly not a realistic assumption. However, the
results tend to indicate that this is in fact not a bad
approximation. Future studies can perhaps address this
issue and o�er a more realistic approach to edge-e�ects
although perhaps at the expense of even greater
mathematical complexity.

Fig. 6 a The data of Beebe-Center, Rogers and O'Connell (1955) for
taste. The theoretical curve was obtained by curve-®tting the data with
(21) for a single parameter r. b The data of Pollack (1952) for pitch.
Again, the theoretical curve was obtained by curve-®tting the data
with (21) for r. Apart from the very last point in Fig. 6a, we see that
the theory does quite well
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5. Conclusions

We have attempted to simplify the paradigm by which
the upper limit in information transmission has been
explored in order to better understand the perceptual
characteristics determining the magical number. By
proposing a theory which assumes that the subject's
response to a sensory input is both continuous and
normally distributed, we have demonstrated that an
entire categorical matrix can, under approximate condi-
tions, be characterized by a single value of variance
associated with the response distribution. Thus, the
results of almost any experiment spanning any number
of categories can be predicted with this single value of
variance provided that the range of the experiment
remains unchanged. As demonstrated theoretically, the
upper limit in transmitted information de®ning the
magical number for both large range and large number
of categories is a function only of how quickly the
variance of response grows with range.

We have also made several proposals on how exper-
iments on absolute identi®cation (particularly for the
determination of the magical number) can be more ef-
fectively conducted in future investigations. Further-
more, the theory predicts a little known characteristic of
the magical number in which the transmitted informa-
tion does not follow a monotonic rise with increasing
input information.
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Appendix A

The integrated response, g k� �
In Fig. 2, recall that the response distribution was assumed to be
normally distributed with zero mean and variance r2. Thus, we
de®ne the response distribution N y; r� � to be

N y; r� � � exp ÿy2=2r2
ÿ �

=
����������
2pr2
p

�30�

We now set up the criteria (cf. Fig. 3) for the case of m categories.
Let us denote categories 1; 2 . . . m by the index k. The criteria are
placed at the midway point between adjacent stimulus categories,

Criteria Category

ÿa;ÿa� a
mÿ1

� �
k � 1

ÿa� a
mÿ1� 2 kÿ2� �a

mÿ1 ;ÿa� a
mÿ1� 2 kÿ1� �a

mÿ1
h i

k � 2; 3; . . . mÿ 1

aÿ a
mÿ1 ; a

� �
k � m

�31�

Next, we de®ne the function g k� �, which is the area underneath the
normal distribution N y; r� � between the points akÿ1 and ak ,

g k� � �
Z ak

akÿ1
N y; r� �dy � 1

2
erf ak=

��������
2r2
p� �

ÿ 1

2
erf akÿ1=

��������
2r2
p� �

�32�

where akÿ1 and ak are the endpoints de®ned by the criteria. Thus,

g k� � �
1
2 erf

a�����
2r2
p
� �

ÿ 1
2 erf

a mÿ2� ������
2r2
p

mÿ1� �

� �
; k � 1 and k � m

1
2 erf

a 2kÿm� ������
2r2
p

mÿ1� �

� �
ÿ 1

2 erf
a 2kÿmÿ2� ������
2r2
p

mÿ1� �

� �
; k � 2; 3 . . . mÿ1

8<:
�33�

Recall that g k� � is a probability function centered about
k � m� 1� �=2. Since k is an integer, we see that g k� � is de®ned only
for odd values of m. Thus, at best, we can calculate g k� � at odd
values and then introduce a spline to obtain the even values. This is,
unfortunately, one limitation of the theory. The same problem is
encountered in the calculation of the variance r2eff from g k� �:

Demonstrating equation (23)

The variance r2eff as calculated from g k� � takes on the form

r2eff �
X

k

k ÿ 1

2
m� 1� �

� �2
g k� � �34�

Using the Euler-MacLaurin summation formula, we have, ap-
proximately,

Xm

k�1
k ÿ 1

2
m� 1� �

� �2
g k� � '

Z m

1

k ÿ 1

2
m� 1� �

� �2
g k� � dk �35�

Next, we take an asymptotic expansion of this equation for large m.
While this calculation is simple conceptually, it is exceedingly te-
dious to compute and can be best carried out with a symbolic
manipulator like Maple or Mathematica. An expansion to highest
order in m would yield

r2eff '
r2erf a������

2r2
p
� �
4a2

ÿ
��������
2r2
p

4
���
p
p

a exp a2=2r2� �

24 35m2 �36�

where we have ignored all terms of order m or lower. We then
observe that since almost all of the response distribution lies be-
tween the boundaries of the matrix, we have

���
2
p

r=a� 1 (standard
deviation is much smaller than the range). Thus, erf�a=

��������
2r2
p

� ' 1
and exp�ÿa2 =2r2� ' 0, and (36) becomes

r2eff ' m2r2=4a2 �37�
Using R � 2a, we can write

reff � mr=R �38�
which is (23).

We can now check the validity of our assumption
���
2
p

r=a� 1.
For example, in Fig. 5, the value of r � 4:66 dB was used to
generate the theoretical curve. Since the experiment was conducted
over a R � 95 dB range, we have

���
2
p

r=a ' 0:14 with erf�a=
��������
2r2
p

�
' erf 7� � ' 1 and exp ÿa2=2r2

ÿ � ' exp ÿ52� � ' 0.

Appendix B

To extract the average row variance r2eff, we used the following
method. Since it is assumed that the variance along each row is
constant, we ignored the edge-e�ects and pooled the data from all
rows to obtain a more robust estimation of r2eff. In doing so, the
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values of yk had to be adjusted for the di�erent mean xj along each
row. Thus, we took the response yk and subtracted away the value
of the mean response xj. The data from all rows were then pooled
to obtain a single distribution pk;pooled with zero mean. k spans the
range ÿ mÿ 1� � . . . mÿ 1� � to account for all the data that have
been shifted. The variance was then calculated by the usual for-
mula,

r2eff �
Xmÿ1

k�ÿ�mÿ1�
k2pk;pooled �39�
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