
Streaming Algorithms for k-core Decomposition

Ahmet Erdem Sarıyüce†⇧, Buğra Gedik‡, Gabriela Jacques-Silva⇤, Kun-Lung Wu⇤, Ümit V. Çatalyürek†�

sariyuce.1@osu.edu, bgedik@cs.bilkent.edu.tr, g.jacques@us.ibm.com, klwu@us.ibm.com, umit@bmi.osu.edu

†Department of Biomedical Informatics, The Ohio State University
⇧Department of Computer Science and Engineering, The Ohio State University
‡Department of Computer Engineering, İhsan Doğramacı Bilkent University

�Department of Electrical and Computer Engineering, The Ohio State University
⇤IBM Thomas J. Watson Research Center, IBM Research

ABSTRACT
A k-core of a graph is a maximal connected subgraph in which ev-
ery vertex is connected to at least k vertices in the subgraph. k-core
decomposition is often used in large-scale network analysis, such
as community detection, protein function prediction, visualization,
and solving NP-Hard problems on real networks efficiently, like
maximal clique finding. In many real-world applications, networks
change over time. As a result, it is essential to develop efficient
incremental algorithms for streaming graph data. In this paper, we
propose the first incremental k-core decomposition algorithms for
streaming graph data. These algorithms locate a small subgraph
that is guaranteed to contain the list of vertices whose maximum
k-core values have to be updated, and efficiently process this sub-
graph to update the k-core decomposition. Our results show a sig-
nificant reduction in run-time compared to non-incremental alterna-
tives. We show the efficiency of our algorithms on different types
of real and synthetic graphs, at different scales. For a graph of
16 million vertices, we observe speedups reaching a million times,
relative to the non-incremental algorithms.

1. INTRODUCTION
Relationships between people and systems can be captured as
graphs where vertices represent entities and edges represent con-
nections among them. In many applications, it is highly beneficial
to capture this graph structure and analyze it. For instance, the
graph may represent a social network, where finding communities
in the graph [14] can facilitate targeted advertising. As another
example, the graph may represent the web link structure and find-
ing densely connected regions in the graph [12] may help identify
link spam [24]. In telecommunications, graphs are used to cap-
ture call relationships based on call detail records [22], and locat-
ing closely connected groups of people for generating promotions.
Graph structures are widely used in biological systems as well, such
as in the study of proteins. Locating cliques in protein structures
can be used for comparative modeling and prediction [25].

Many real-world graphs are highly dynamic. In social networks,
users join/leave and connections are created/severed on a regular
basis. In the web graph, new links are established and severed as
a natural result of content update and creation. In customer call
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 6
Copyright 2013 VLDB Endowment 2150-8097/13/04... $ 10.00.

graphs, new edges are added as people extend their list of contacts.
Furthermore, many applications require analyzing such graphs over
a time window, as newly forming relationships may be more im-
portant than the old ones. For instance, in customer call graphs,
the historic calls are not too relevant for churn detection. Looking
at a time window naturally brings removals as key operations like
insertions. This is because as edges slide out of the time window,
they have to be removed from the graph of interest. In summary,
dynamic graphs where edges are added and removed continuously
are common in practice and represent an important use case.

In this paper, we study the problem of incrementally maintaining
the k-core decomposition of a graph. A k-core of a graph [26] is a
maximal connected subgraph in which every vertex is connected to
at least k other vertices. Finding k-cores in a graph is a fundamental
operation for many graph algorithms. k-core is commonly used as
part of community detection algorithms [16], as well as for finding
dense components in graphs [2, 4, 19], as a filtering step for finding
large cliques (as a k-clique is also a k-1-core), and for large-scale
network visualization [1].

The k-core decomposition of a graph maintains, for each vertex,
the max-k value: the maximum k value for which a k-core contain-
ing the vertex exists. This decomposition enables one to quickly
find the k-core containing a given vertex for a given k. Algorithms
for creating k-core decomposition of a graph in time linear to the
number of edges in the graph exist [6]. For applications that man-
age dynamic graphs, applying such algorithms for every edge inser-
tion and removal is prohibitive in terms of performance. Further-
more, batch processing takes away the ability to react to changes
quickly – one of the key benefits of stream processing [28].

In this paper, we develop streaming algorithms for k-core de-
composition of graphs. In particular, we develop algorithms to up-
date the decomposition as edges are inserted into and removed from
the graph (vertex additions and removals are trivial extensions).
There are a number of challenges in achieving this. The first is
a theoretical one: determining a small subset of vertices that are
guaranteed to contain all vertices that may have their max-k val-
ues changed as a result of an insertion or removal. The second is
a practical one: finding algorithms that can efficiently update the
max-k values using this subset. Last but not the least, we have to
understand the impact of the graph structure on the performance of
such streaming algorithms.

We address these challenges by developing the first incremental
k-core decomposition algorithm for streaming graph data, where
we efficiently process a small subgraph for each change. We de-
velop a number of variations of our algorithm and empirically show
that incremental processing provides a significant reduction in run-
time compared to non-incremental alternatives, reaching 6 orders
of magnitude speedup for a graph of size of around 16 million.

We showcase the efficiency of our algorithms on different types of
real and synthetic graphs at different scales and study the impact of
graph structure on the performance of algorithm variations.

In summary, we make the following major contributions:

• We identify a small subset of vertices that have to be visited
in order to update the max-k values in the presence of edge
insertions and deletions.

• We develop various algorithms to update the k-core decom-
position incrementally. To the best of our knowledge, these
are the first such incremental algorithms.

• We present a comparative experimental study that evaluates
the performance of our algorithms on real-world and syn-
thetic data sets.

The rest of this paper is organized as follows. Section 2 gives
the background on k-core decomposition of graphs. Section 3 in-
troduces our theoretical findings that facilitate incremental k-core
decomposition. Section 4 introduces several new algorithms for
incremental maintenance of a graph’s k-core decomposition. Sec-
tion 5 provides discussions on implementation details. Section 6
gives a detailed experimental evaluation of our algorithms. Sec-
tion 7 reports related work, Section 8 provides possible directions
for future work, and Section 9 concludes the paper.

2. BACKGROUND
In this work, we focus on incremental maintenance of k-core
decomposition of large networks modeled as undirected and un-
weighted graphs. Here, we start by giving several definitions that
are used throughout the paper as part of our theorems and proofs.

Let G be an undirected and unweighted graph. For a vertex-
induced subgraph H ✓ G, �(H) denotes the minimum degree of
H , defined as the minimum number of neighbors a vertex in H has
(i.e., �(H) = min{�H(u) : u 2 H}, where �H(u) denotes the
number of neighbors of a vertex u in H). As a result, any vertex in
H is adjacent to at least �(H) other vertices in H and there is no
other value larger than �(H) that satisfies this property.

DEFINITION 1. If H is a connected graph with �(H) � k, we say
that H is a seed k-core of G. Additionally, if H is maximal (i.e.,
@H 0 s.t. H ⇢ H 0 ^ H 0 is a seed k-core of G), then we say that H
is a k-core of G.

OBSERVATION 1. Let H be a k-core that contains the vertex u.
Then, H is unique in the sense that there can be no other k-core
that contains u.

We denote the unique k-core that contains u as Hu
k .

DEFINITION 2. The maximum k-core associated with a vertex u,
denoted by Hu, is the k-core that contains u and has the largest
k = �(Hu) (i.e., @H s.t. u 2 H ^ H is an l-core ^ l > k).
The maximum k-core number of u (also called the K value of u),
denoted by K(u), is defined as K(u) = �(Hu).

OBSERVATION 2. If H is a k-core in graph G, then there exists
one and only one (k � 1)-core H 0 ◆ H in G.

OBSERVATION 3. A vertex u with K(u) = k takes part in cores
Hu

k ✓ Hu
k�1 ✓ Hu

k�2, . . . ,✓ Hu
1 by Observation 2.

Building the core decomposition of a graph G is basically the
same problem as finding the set of maximum k-cores of all vertices
in G. The following corollary shows that given the K values of all
vertices, k-core of any vertex can be found for any k.

Algorithm 1: FINDKCOREDECOMPOSITION(G(V,E))
Data: G: the graph
Compute �G(v) (i.e., the degree) for all vertices v 2 V
Order the set of vertices v 2 V in increasing order of �G(v)
for each v 2 V do

K(v) �G(v)
for each (v, w) 2 E do

if �G(w) > �G(v) then
�G(w) �G(w)� 1

Reorder the rest of V accordingly
return K

COROLLARY 1. Given K(v) for all vertices v 2 G and assuming
K(u) � k, the k-core of a vertex u, denoted by Hu

k , consists of u
as well as any vertex w that has K(w) � k and is reachable from
u via a path P such that 8v2P , K(v) � k. Hu

k can be found by
traversing G starting at u and including each traversed vertex w
to Hu

k if K(w) � k.

Intuitively, in Corollary 1, all the traversed vertices are in Hu
k due

to maximality property of k-cores, and all the vertices in Hu
k are

traversed due to the connectivity property of k-cores, both based
on Definition 1. Thus, the problem of maintaining the k-core de-
composition of a graph is equivalent to the problem of maintaining
its K values, by Corollary 1. The algorithm for constructing the
k-core decomposition of a graph from scratch is based on the fol-
lowing property [26]: To find the k-cores of a graph, all vertices of
degree less than k and their adjacent edges are recursively deleted.
We provide its pseudo-code in Algorithm 1 for completeness.

Figure 1: Illustration of k-core concepts.

Figure 1 illustrates concepts related to k-core decomposition. In
the sample graph, we see the K values of the vertices printed next
to them, which is simply the k-core decomposition of the graph.
We see a vertex labeled u. A seed 2-core that contains u is also
shown. Moreover, the entire graph is the 2-core of u, i.e., G = Hu

2 .
The figure further shows a 3-core of u, that is Hu

3 , which happens
to be its max-k core, that is Hu

3 = Hu. Note that Hu
3 ✓ Hu

2 .

3. THEORETICAL FINDINGS
In this section, we introduce our theoretical findings. These results
facilitate incremental maintenance of the k-core decomposition of a
graph. Since our incremental algorithms rely on finding a subgraph
and processing it, we prove a number of theorems that can be used
to find a small subgraph that is guaranteed to contain all the vertices
whose K values change after an update.

OBSERVATION 4. Let G = (V,E) be a graph and u, v 2 V . If
there is an edge e 2 E between u and v and if K(u) > K(v), then
e 62 Hu and e 2 Hv , by Corollary 1.

THEOREM 1. If an edge is inserted to or removed from graph G =
(V,E), then the K value of vertex u 2 V can change by at most 1.
PROOF. We first prove the insertion case. Assume that after the
insertion of edge e, K(u) = m is increased by n to K+(u) =
m + n, where n > 1. Let us denote the max k-core of u after the
insertion as Hu

+, and before insertion as Hu. It must be true that
e 2 Hu

+, as otherwise Hu
+ forms a seed m + n-core before the

insertion as well, which is a contradiction. Let Z = Hu
+ \ e. If Z

is not disconnected, then it must form an m+n�1-core, since the
degree of its vertices can decrease by at most 1 due to removal of
a single edge. This leads to a contradiction since m+ n� 1 > m
and Hu is maximal. In the disconnection case, each one of the
resulting two connected components must be a seed m + n � 1-
core as well, since the degree of a vertex can reduce by at most one
in each component. Furthermore, since e is the only edge between
the two disconnected components, the vertices must still have at
least m+ n� 1 neighbors in their respective components. One of
these components must contain u, which is again contradiction

Next, we prove the removal case. Assume K(u) is decreased by
n after edge e is removed, where n > 1. Adding e back to the
graph increases the K value of u by n, which is not possible, as
shown in the first part of the proof (i.e., a contradiction).

THEOREM 2. If an edge (u, v) is inserted to or removed from G =
(V,E), where u, v 2 V and K(u) < K(v), then K(v) cannot
change.
PROOF. We first prove the insertion case. Assume that K(v) = n
increases and so becomes K+(v) = n + 1 by Theorem 1. Then
we have e 2 Hv

+ and consequently u 2 Hv
+. However, K(u) < n

before insertion and K+(u) can be at most n after insertion (The-
orem 1), implying that u cannot be in a seed n + 1-core, i.e., a
contradiction.

For the removal case, assume that K(v) = n decreases and be-
comes K�(v) = n� 1 by Theorem 1. Inserting (u, v) back to the
graph should increase the K value of v to K(v) = n. We must
also have e 2 Hv and thus u 2 Hv . But this is a contradiction due
to Observation 4, since K(u) < K(v) and u 62 Hv .

From Theorem 2, we can say that when an edge (u, v) is inserted
into or removed from the graph, K(u) can change by at most 1 if
K(u) K(v), or stay the same.

THEOREM 3. If an edge (u, v) is inserted into G = (V,E), where
u, v 2 V , then all of the vertices whose K values have changed
should form a connected subgraph G

0
⇢ G [(u, v). Similarly,

if an edge (u, v) is removed from G = (V,E), where u, v 2 V ,
then all the vertices whose K values have changed should form a
connected subgraph G

00
⇢ G.

PROOF. We prove the insertion case first. Assume that the updated
vertices do not form a connected subgraph. Then, there are at least
2 non-overlapping subgraphs of updated vertices, S1 and S2. Since
there is only one edge insertion, only one of these subgraphs, say
S1, can have a vertex who gets a new neighbor in G. Then S2

does not have any vertex that has its degree changed. This is a
contradiction, because if a vertex has its K value increased, then
it must have either gained a new neighbor (increased degree) or at
least one of its existing neighbors must have its K value increased.
Applying this recursively, we must reach a vertex whose K value is
increased due to gaining a new neighbor. However, for S2, there is
no such vertex since only reachable vertices whose K values have
increased are in S2 and none of them have their degrees changed.

For the removal case, assume that the updated vertices do not
form a connected subgraph. Then, there are at least 2 non-
overlapping subgraphs of updated vertices, S1 and S2. Since there

is only one edge removal, only one of these subgraphs, say S1, can
have a vertex who loses a neighbor in G. Then S2 does not have any
vertex that has its degree changed. This is a contradiction, because
if a vertex has its K value decreased, then it must have either lost
a neighbor (decreased degree) or at least one of its existing neigh-
bors must have its K value decreased. Applying this recursively,
we must reach a vertex whose K value is decreased due to losing
an existing neighbor. However, for S2, there is no such vertex since
only vertices that can be reached and whose K value has decreased
are in S2 and none of them have their degrees changed.

THEOREM 4. Given a graph G = (V,E), if an edge (u, v) is
inserted (removed) and K(u) K(v), then only the vertices w 2
V , that have K(w) = K(u) and are reachable from u via a path
that consists of vertices with K values equal to K(u), may have
their K values incremented (decremented).

PROOF. Before looking at the insertion and removal, we note that
if the K value of any vertex in G increases (decreases) due to the
insertion (removal) of (u, v), then K(u) must have increased (de-
creased) as well. This follows from the recursive argument in The-
orem 3, as otherwise none of the vertices that have their K values
changed will have their degree changed.

For the insertion case, we first prove that for a vertex w 2 V such
that K(w) 6= K(u), K(w) = m cannot change. We consider two
cases: (i) where K(w) < K(u) and (ii) where K(w) > K(u).

For the K(w) > K(u) case, assume K(w) increases
(K+(w) = m + 1). We must have (u, v) 2 Hw

+ , as otherwise
Hw would not be a max m-core before insertion. However, this is
not possible since K+(w) > K+(u), i.e., a contradiction.

For the K(w) < K(u) case, assume K(w) increases
(K+(w) = m + 1). Then we have (u, v) 2 Hw

+ , as otherwise
Hw would not be a max m-core before insertion. We know that
m + 1 K(u) K(v), which implies K+(w) < K+(u)
K+(v). Removing (u, v) from Hw

+ decreases the degrees of u and
v by one, which can reduce their K value to at least m + 1. This
means Hw

+ \ (u, v) is a seed m+1-core before the insertion, which
is a contradiction.

We proved that only vertices with K(w) = K(u), say L ✓ V ,
can have their K values incremented. Furthermore, we know that
all those vertices form a connected subgraph (Theorem 3). Since
we have u 2 L as well, the insertion proof is complete.

We use similar arguments for the removal case. Again, we con-
sider two cases.

For the K(w) < K(u) case, assume K(w) decreases
(K�(w) = m � 1). Say that we insert (u, v) back into the
graph. The K value of w cannot increase in this case since
K�(w) < K�(u), and this is a contradiction, as shown in in-
sertion part above.

For the K(w) > K(u) case, assume K(w) decreases
(K�(w) = m�1). We know that (u, v) /2 Hw since u /2 Hw due
to K(u) < K(w). Thus, Hw is still an m-core after the removal,
creating a contradiction.

We proved that only the vertices that have K(w) = K(u), say
L ✓ V , may have their K values decremented. Furthermore, by
Theorem 3, we know that all those vertices form a connected sub-
graph. Since we have u 2 L, the removal proof is complete.

Summary. In this Section, we showed that if an edge (u, v) is
inserted into/removed from a graph, then the K value of u can
change only if K(u) K(v). Let us call u the root. In case
K(u) = K(v), then either u or v is taken as the root. In addition,
we showed that any vertex that may have its K value updated must

Algorithm 2: FINDSUBCORE(G(V,E),K(), u)
Data: G: the graph, K: max-k values, u: the vertex
H(V 0, E0) empty graph; Q empty queue
cd[v] = 0; visited[v] = false, 8v 2 V . Lazy init
k K(u) . Remember K value of the root
Q.push(u); visited[u] true
while not Q.empty() do

v Q.pop(); V 0.push(v)
for each (v, w) 2 E do

if K(w) � k then
cd[v] cd[v] + 1
if K(w) = k and not visited[w] then

Q.push(w); E0.push((v, w))
visited[w] true

return H and cd

have a K value that is equal to that of the root, and must be con-
nected to the root via a path that contains only the vertices that have
the same K value. We rely on these results in the next section.

4. INCREMENTAL ALGORITHMS
In this section, we introduce three algorithms to incrementally
maintain the K values of vertices when a single edge is inserted
or removed. The subcore (Section 4.1) and purecore (Section 4.2)
algorithms are basic applications of the theoretical results given in
the previous section, are easy to implement, and form a baseline for
evaluating the performance of the traversal algorithm (Section 4.3).
The traversal algorithm relies on additional ideas that aggressively
cut the search space, but is more involved than the earlier two.

4.1 The Subcore Algorithm
Our first algorithm for maintaining the K values of vertices when
a single edge is inserted or removed is based on Theorem 4. We
define a new subgraph as follows:

DEFINITION 3. Given a graph G = (V,E) and a vertex u 2 V ,
the subcore of u, also denoted as Su, is a set of vertices w 2 V
that have K(w) = K(u) and are reachable from u via a path that
consists of vertices with their K values equal to K(u).

Given a graph G = (V,E) and the K values of all w 2 V , if
an edge (u1, u2) is inserted to E, Algorithm 3 updates the K val-
ues. Similarly, if an edge (u1, u2) is removed from E, Algorithm 4
updates the K values. Both algorithms make use of Definition 3.

The basic idea is to locate the subcore of the root vertex and
apply a process very similar to Algorithm 1 on the subcore. Algo-
rithm 2 provides the pseudo code for finding the subcore. To find
the subcore, we perform a BFS traversal and collect all vertices
reachable from the root through vertices having the same K value
as the root. During this process, we also collect the core degree (cd)
values for each vertex in the subcore. The core degree of a vertex
is its degree in its max-core and determines if a vertex can change
its K value or not. As a result, the cd of a vertex simply counts the
number of its neighbors with a K value equal to or greater than the
K value of the root. Core degrees help us eliminate vertices that
cannot be part of a k+1 core, where k is the core value of the root.
In particular, if the core degree is not larger than k, we can elimi-
nate the vertex from consideration. Once it is eliminated, it results
in decrementing the core degree values of its neighbors in the sub-
core and the process can be repeated. Similar to Algorithm 1, this
has to be performed in increasing order of the core degree values.

Algorithm 3 shows how the subcore and the cd values are used to
update the K values on an edge insertion. We order the cd values
of the vertices in the subcore in increasing order. At each step,

Algorithm 3: SUBCORE: INSERTEDGE(G(V,E),K(), u1, u2)
Data: G: the graph, K: max-k values, (u1, u2): inserted edge
r u1 . Set the root
if K(u2) < K(u1) then r u2
G G [(u1, u2) . Add the edge into G
H, cd FINDSUBCORE(G,K, r) . Find subcore
. Now update the K values of the vertices in H
k K(r) . Remember K value of the root
Sort cd values in increasing order (using bucket sort)
for each v 2 H in order do

if cd[v] k then . Cannot be part of a k+1-core
for each (v, w) 2 H do

if cd[w] > cd[v] then
cd[w] cd[w]� 1
Reorder cd values accordingly

else . All remaining vertices become part of k+1-core
for each w 2 H do

K(w) k + 1
break

we pick the unprocessed vertex with the smallest cd value from the
subcore. If it has a cd value less than or equal to the root’s K value,
say k, then it cannot be part of a k + 1-core. Thus, for each of its
neighbors in the subcore that have a higher cd, we decrement the
neighbor’s cd by 1, since the vertex being processed cannot be part
of a higher core. We reorder the remaining vertices based on their
updated cd values. Otherwise, that is if the current vertex has a cd
value larger than k, all remaining vertices must also have their cd
values larger than k, which means we can form a seed k + 1 core
with them. We increment their K values, completing the insertion.

Algorithm 4 shows how the subcore and the cd values are used to
update the K values in the case of a removal. Unlike Algorithm 3,
here we need to perform two subcore searches when the K values
of the vertices incident upon the removed edge are the same, since
the removal separates them. Once we locate the subcore, the pro-
cess is very similar to that of the insertion. We pick the unprocessed
vertex with the smallest cd value from the subcore and if it has a
cd value less than the K value of the root, say k, then it cannot be
part of a k-core anymore. As a result, we decrement its K value
and for each of its neighbors in the subcore that have a higher cd,
we decrement the neighbor’s cd by one, since the vertex currently
being processed cannot be part of a higher core. After this, we re-
order the remaining vertices based on their cd values. Otherwise,
if the current vertex has a cd value larger than or equal to k, then
all remaining vertices must also have their cd values larger than or
equal to k, which means that we can still form a seed k core with
them. Thus, we stop processing and complete the removal.

4.2 The Purecore Algorithm
In Section 4.1, the subcore algorithm relied only on the K values of
the vertices to locate a small subgraph that contains all the vertices
that can have their K values changed. In this section, we look at the
purecore algorithm that takes advantage of additional information
about each vertex, so that a smaller set of candidate vertices can be
located, reducing the overall cost of the algorithm. For this purpose,
we define the maximum-core degree of a vertex.

DEFINITION 4. The maximum-core degree of a vertex u, denoted
as MCD(u), is defined as the number of u’s neighbors, w, such
that K(u) K(w).

The maximum-core degree of a vertex differs from the core de-
gree of a vertex by the fact that it is not defined in terms of the root
vertex of an insertion. If the MCD value of a vertex is not greater
than its K value, and no new adjacent edge is inserted, then there is

Algorithm 4: SUBCORE:REMOVEEDGE(G(V,E),K(), u1, u2)
Data: G: the graph, K: max-k values, (u1, u2): inserted edge
r u1 . Set the root
if K(u2) < K(u1) then r u2
G G \ (u1, u2) . Remove the edge from G
if K(u1) 6= K(u2) then

H, cd FINDSUBCORE(G,K, r) . Find subcore
else

H1, cd1 FINDSUBCORE(G,K, u1) . Find subcore of u1
H2, cd2 FINDSUBCORE(G,K, u2) . Find subcore of u2
H H1 [H2; cd cd1 [cd2

. Now update the K values of the vertices in H
k K(r) . Remember K value of the root
Sort cd values in increasing order (using bucket sort)
for each v 2 H in order do

if cd[v] < k then . Cannot be part of a k-core anymore
K(v) k � 1
for each (w, v) 2 H do

if cd[w] > cd[v] then
cd[w] cd[w]� 1
Reorder cd values accordingly

else break; . All remaining vertices still in a k-core

no way for this vertex to increment its K value, because the number
of neighbor vertices in a higher core will not be enough. Therefore,
it is used to test whether a vertex can increment its K value or not,
upon a new edge insertion.

OBSERVATION 5. For a given graph G = (V,E) and a vertex
u 2 V , MCD(u) � K(u).

The observation follows simply from the definition of k-core,
since MCD(u) < K(u) would mean u cannot participate in a
k-core with K(u) = k, leading to a contradiction. Note that
MCD(u) is simply an upper bound on K(u).

We reduce the subcore, described in Definition 3, to a purecore
by putting an extra condition regarding MCD values. The basic
idea is that, if a vertex in the subcore does not have a MCD value
greater than the K value of the root, it means that the vertex does
not have enough neighbors that can participate in a higher core.

DEFINITION 5. Given a graph G = (V,E) and a vertex u 2 V ,
the purecore of u, denoted as Pu, is the set of vertices w 2 V that
have K(w) = K(u) and MCD(w) > K(u), and are reachable
from u via a path that consists of vertices with K values equal to
K(u) and MCD values greater than K(u).

Algorithm 5 finds the purecore Pu of a vertex u.

THEOREM 5. Given a graph G = (V,E), if an edge (u, v) is
inserted and K(u) K(v), then only the vertices w 2 Pu may

have their K values incremented.

PROOF. When an edge (u, v) is inserted to the graph and K(u)
K(v), then the K value of a vertex w 2 Su, where w 6= u, cannot
increment if MCD(w) = K(w). Assume K(w) increments, then
MCD(w) has to increment as well, and for this to happen either w
should get a new neighbor, which is not possible since w 6= u, or
some of its neighbors should have their K values decreased, which
is not possible as no edges were removed.

With purecore, the algorithm to update the K values of vertices,
when edge (u, v) is inserted, is the same as Algorithm 3, except
that Algorithm 5 (FINDPURECORE) is used in place of Algorithm 2
(FINDSUBCORE).

When an edge (u, v) is removed from the graph and K(u)
K(v), then the K value of any vertex w 2 Su can potentially

Algorithm 5: FINDPURECORE(G(V,E),K(), u)
Data: G: the graph, K: max-k values, u: the vertex
H(V 0, E0) empty graph; Q empty queue
cd[v] = 0; visited[v] = false, 8v 2 V . Lazy init
k K(u) . Remember K value of the root
Q.push(u); visited[u] true
while not Q.empty() do

v Q.pop(); V 0.push(v)
for each (v, w) 2 E do

if K(w) > k or (K(w) = k and
MCDEGREE(G,K,w)> k) then

cd[v] cd[v] + 1
if K(w) = k and not visited[w] then

Q.push(w); E0.push((v, w));
visited[w] true

return H and cd

decrement. Note that MCD(w) can decrease if either w loses
a neighbor, which is the case for u, or K value of some neigh-
bor of w decrements, which is the case for neighbors of u when
K(u) decrements. As a result, for removal, we do not rely on the
purecore.

4.3 The Traversal Algorithm
We now present the traversal algorithm that visits an even smaller
subgraph to update the k-value decompostion. First, we introduce
an optimization to speedup the computation of the MCD values
and then an additional metric to further scope the search.

4.3.1 Residential Core Degrees
In Section 4.2, we find a smaller set of candidate vertices to be up-
dated by using more information about each vertex. Using more
information, such as the MCD values, requires more computation
in Algorithm 5. Thus, for a vertex u, when the size of Pu is large
and close to the size of Su, Algorithm 5 turns out to be more ex-
pensive than Algorithm 2. To alleviate this problem, we make two
types of core degree values to constantly reside in memory (i.e.,
residential). We maintain the MCD values, introduced in Defini-
tion 4, and the PCD values of vertices defined as follows.

DEFINITION 6. The purecore degree of a vertex u, denoted as
PCD(u), is the number of u’s neighbors, w, such that either

K(u) = K(w) and MCD(w) > K(u) or K(u) < K(w).

For a vertex v, its purecore degree PCD(v) is the number of
neighbors w it has that either has a higher K value than v or has
the same K value but in turn has enough neighbors to potentially
increase its K value (in case an insertion was made and the K
values are to be updated). The PCD value of a vertex represents its
potential number of neighbors in a next max-core. It is a stronger
indicator than its MCD value for showing eligibility to increase
the K value and also useful, because if PCD(v) k where k is
the K value of the root, then v cannot increment its K value.

Maintaining the MCD and PCD values of vertices after each
insertion and removal should be done efficiently so that unneces-
sary updates of those values are avoided. In general, the MCD
value of a vertex is based on the K values of its neighbors, as seen
from Definition 4, and the PCD value of a vertex is based on the
K and MCD values of its neighbors, as described in Definition 4.
Observation 6 gives a rule of thumb for MCD and PCD mainte-
nance.

OBSERVATION 6. For a graph G = (V,E), when the K value
of a vertex u 2 V changes, the MCD values of vertices u, v can
change, where (u, v) 2 E. When the MCD value of a vertex

Algorithm 6: TRAVERSAL:
INSERTEDGE(G(V,E),K(), u1, u2)

Data: G: the graph, K: max-k values, MCD: max-core degrees,
PCD: purecore degrees, (u1,u2): inserted edge

r u1 . Set the root
if K(u2) < K(u1) then r u2
G G [(u1, u2) . Add the edge into G
PREPARERCDS
. Perform a traversal over vertices that have root’s K value, while

evicting the ones that cannot be a part of a k+1-core
S empty stack . To perform DFS
visited[v] = false, 8v 2 V . To perform DFS (lazy init)
evicted[v] = false, 8v 2 V . To remember evicted vert. (lazy init)
cd[v] = 0, 8v 2 V . To find vertices to be evicted (lazy init)
k K(r) . Remember the K value of the root
cd[r] PCD(r) . Set cd of root
S.push(r); visited[r] true
while not S.empty() do . Do a DFS traversal

v S.pop()
1 if cd[v] > k then . Vertex is currently part of a k+1-core

for each (v, w) 2 E do
. Neighbouring vertex currently part of a k+1-core
if K(w) = k and MCD(w) > k and

not visited[w] then
S.push(w); visited[w] true
. Use + as cd[w] may be < 0 due to evictions
cd[w] cd[w] + PCD(w)

else . Vertex cannot be part of a k+1-core
if not evicted[v] then . Recursively perform eviction

PROPAGATEEVICTION(G,K, cd, evicted, k, v)
for each v s.t. visited[v] do . Find visited vertices

if not evicted[v] then . If not evicted as well
K(v) K(v) + 1 . The vertex is part of a k+1-core

RECOMPUTERCDS

u 2 V changes, the PCD values of vertices v can change, where
(u, v) 2 E. As a result, when the K value of a vertex u 2 V
changes, the PCD values of vertices u, v, w can change, where
(u, v), (v, w) 2 E.

In summary, the observation says that a K value update can re-
sult in changes in the MCD values within the 1-hop neighborhood
of the vertex, whereas changes in the PCD values can happen
within the 2-hop neighborhood.

Based on Observation 6, when an edge (u, v) is inserted into or
removed from a graph G = (V,E), we first recompute the MCD
value of the root vertex u and the PCD values of its neighbors.
Next, we apply the algorithm to update the K values of vertices.
Last, we do the following two operations to adjust the MCD and
PCD values:

• Recomputing the MCD values of vertices w, x 2 V for
which K(w) is updated and (w, x) 2 E.

• Recomputing the PCD values of vertices w, x, y 2 V for
which K(w) is updated and (w, x), (x, y) 2 E

Further shortcuts are possible, based on the K and MCD val-
ues of the updated vertices, to minimize the number of MCD and
PCD re-computations. We skip the details for brevity.

4.3.2 Root Awareness
So far, in all our incremental algorithms, we first find a subgraph
and its corresponding cd values by a BFS traversal (phase 1). In
a second phase, we process that subgraph by reordering the ver-
tices with respect to their cd values and remove the vertex with the
minimum cd at each step. Traversing the subgraph and comput-
ing the cd values should be done prior to the second phase, since

Algorithm 7: PROPAGATEEVICTION(G(V,E),K(), cd[],
evicted[], k, v)

Data: G: the graph, K: max-k values, cd: cd values, evicted:
evicted values, k: max-k of root, v: evicted vertex

evicted[v] true
for each (v, w) 2 E do

if K(w) = k then
1 cd[w] cd[w]� 1
2 if cd[w] = k and not evicted[w] then

PROPAGATEEVICTION(G,K, cd, evicted, k, v)

we need all the vertex degrees in the subgraph. However, Theo-
rem 4 says that if the K value of some vertex changes, then the
K value of at least one extremity of the inserted/removed edge,
named as the root vertex (say u), must change. For the insertion
algorithm, this fact suggests a root-aware approach, in which all
vertices know whether the root still has a chance to change its K
value. Additional operations are avoided once the algorithm de-
tects that PCD(u) K(u), i.e., u cannot increment its K value.
This condition implies that there is no chance for the root to in-
crease its K value. We achieve this root-aware approach by apply-
ing a Depth-First Search (DFS) with an eviction mechanism, where
the vertices v 2 V are evicted if PCD(v) K(v). By doing
that, we combine phases 1 and 2. For the removal algorithm, being
root-aware does not bring improvement, since a similar shortcut is
already applied in Algorithm 4.

This root-aware approach does not need the cd values of all the
vertices in the subgraph. As a result, we create the cd values for
each vertex on-the-fly during DFS, avoiding the first phase of our
previous algorithms completely. We leverage the residential core
degrees, introduced in Section 4.3.1, to speed up the creation of
cd values. On-the-fly creation of cd values makes the insertion
algorithm more efficient. The root-aware approach does not result
in any improvement to the removal algorithm. Still, creating cd
values on-the-fly avoids the need to execute phase 1.

Algorithm 6 updates the K values of vertices by utilizing Algo-
rithm 7, when edge (u, v) is inserted into the graph G = (V,E).

THEOREM 6. Algorithm 6 finds the vertices whose K values
needs to be updated.

PROOF. First, we prove that after an edge is inserted, if
PCD(u) K(u) for a vertex u 2 V , then it cannot increase its
K value as shown in lines labeled 1 and 2 in Algorithms 6 and 7,
respectively. Assume it does and say that k = K(u). Then, after
K(u) increases, u must have at least k + 1 neighbors with greater
or equal K value, by Observation 5. However, at most k neighbors
of u can have their K values greater than or equal to k after K(u)
increases, since PCD(u) K(u) before K(u) is increased, i.e.,
a contradiction.

Second, we prove that if PCD(u) K(u), where u is the
visited vertex, then PCD(w) must be decremented as shown in
line labeled 1 in Algorithm 7, where w is a neighbor of u having K
value of K(u). Assume that PCD(w) is not decremented. Then u
is supposed to be in the max-core of w, if w increases its K value.
However, u cannot be in the max-core of w, since it cannot increase
its K value as proved in the first paragraph of proof, contradiction.

We traverse the graph starting from the root and evict the ver-
tices as shown in above proofs. Non-evicted and traversed vertices
increment their K values at the end of the algorithm.

In Algorithm 6, we start with preparing residential core degrees
as explained in Section 4.3.1. Then we do a DFS starting from the
root, say r, and at each step we pop the vertex v from the top of

the stack and push some of its neighbors, say w, into the stack, if
v and w are candidates to be in a k + 1-core, where k = K(r). If
v cannot be in a k + 1-core, then we mark it as evicted and initiate
a recursive eviction from v. In a recursive eviction, the cd values
of vertices x are decremented, for (v, x) 2 E and K(x) = k. If
the cd value of x turns out to be equal to k and x is not already
marked as evicted, then we start another eviction from x. When
DFS finishes, we increment the K values of all vertices that were
visited but not evicted. Last, we adjust the residential core degrees
as discussed in Section 4.3.1.

The edge removal using the traversal algorithm employs a simi-
lar on-the-fly updating of the cd values. Again we start with prepar-
ing residential core degrees as explained in Section 4.3.1. If the cd
value of v turns out to be below its K value (i.e., K needs to be
decremented), we perform a recursive decrement operation start-
ing from v. In recursive decrement, we decrement K(v) and the
cd values of vertices w, where (v, w) 2 E and K(w) = k and
k is the K value of the root. If w gets a smaller cd value than k
and K(w) has not decremented yet, then we start another recursive
decrement from w. When the recursion completes, we adjust the
residential core degrees as discussed in Section 4.3.1.

3,3

3,3

3,3

3,3

2,3

2,3 2,3

2,2

2,2

2,3 2,3

2,4 2,2

2,3

2,3

2,4 3,3 3,3

3,3

3,3

inserted edge

subcore

purecore

traversal

root

K, MCD for each vertex

Figure 2: Illustration of the vertices visited by the subcore, purecore, and
the traversal algorithms.

4.4 Illustrative Example
Figure 2 illustrates the subcore, purecore, and traversal algorithms
using a sample graph. The edge drawn using a dashed bold line
is the one that is being inserted into the graph. The vertex shown
in black is the root vertex. The graph shows the K values and the
MCD values for each vertex before the insertion. The set of ver-
tices visited by each one of the subcore, purecore, and the traversal
algorithms, for the purpose of updating the K values, is shown in
the figure. The subcore algorithm visits the vertices with K value
of 2, which are reachable from the root. The purecore algorithm
visits the vertices with K value of 2 and MCD value of greater
than 2 that are reachable from the root.

The traversal algorithm starts by updating the MCD value of
the root to 5, due to the new edge. Then, DFS starts and pushes the
root to the stack. When the root is popped from the stack, its two
neighbors with (K, MCD) values of (2, 3) are pushed to the stack
(MCD values greater than K value of the root, indicating that they
can potentially be part of a larger core). Say that those vertices are
x at the top and y at the bottom in Figure 2. Based on Definition 6,
the cd values of x and y are updated to 2 since their PCD values
are 2. After that, we move to the next iteration, and pop vertex x

from the stack. The cd value of x is 2, which is not greater than
the K value of the root. This means that it cannot participate in a
higher core. As a result, no neighbors of x are visited and PROPA-
GATEEVICTION is initiated for x. In PROPAGATEEVICTION, x is
evicted and the cd values of all neighbors of x are decremented,
since all neighbors have a K value of 2 (same as root). Further-
more, PROPAGATEEVICTION is not initiated for any neighbor of x,
since the cd value of the root (one of x’s neighbors) becomes 4, and
the cd value of other two neighbors of x become �1, all of which
are different than the K value of the root.

In the next step, the DFS pops vertex y from the stack. Similar
to x, the cd value of y is 2, which is not greater than the K value
of the root. As a result, no neighbors of y are visited and PROPA-
GATEEVICTION is initiated for y. In PROPAGATEEVICTION, y is
evicted and the cd values of all neighbors of y are decremented,
since they have a K value of 2 (same as root). Furthermore, PROP-
AGATEEVICTION is not initiated for any neighbor of y, since the
cd value of y’s neighbors differ from the K value of the root. Af-
ter these operations, the stack is empty, and the only vertex that is
visited but not evicted is the root. As a result, the K value of the
root is incremented. As the last step, the MCD and PCD values
of vertices are updated as explained in Section 4.3.1.

We can easily see that the set of vertices visited by the subcore
algorithm is larger than that of the purecore algorithm, whereas the
traversal algorithm visits the smallest number of vertices compared
to the other two.

5. IMPLEMENTATION
In this section we provide details about efficient implementations of
the incremental algorithms presented. In particular, we discuss two
main issues: the lazy initialization of arrays used in the algorithms,
and the repeated sorting of the cd arrays.

5.1 Lazy arrays
The non-incremental algorithms for computing the k-core decom-
position perform work that is proportional to the size of the graph.
As a result, our incremental algorithms should avoid any operation
that requires work in the order of the size of the graph. However,
several of our algorithms include arrays like visited, evicted,
cd, etc., that are initialized to a default value and accessed using
vertex indices. For these, we use lazy arrays to avoid allocations
and initializations in the order of the graph size.

A lazy array employs a hash map based data structure to imple-
ment a sparse array. For a given vertex, if its value is not currently
being stored in the hash map, it is assumed to have the designated
default value. When a different value for the vertex needs to be
stored, the entry for it is created in the hash map.

Since hash maps provide constant lookup time, using lazy arrays
achieves significant speedup when the number of vertices visited
by the incremental algorithms is smaller than the graph size. On
the other hand, when the number of vertices visited gets large, rel-
ative to the graph size, lazy arrays start performing worse, since
the constant overhead of accessing a data item in a hash map is
significantly higher than that of regular arrays.

Given that our algorithms locate a small subset of vertices for up-
dating the k-core decomposition of a graph, the use of lazy arrays
is almost always beneficial. For graphs that have very large max-k
cores, relative to the graph size, (which we show to be an uncom-
mon occurrence in practice) an implementation of lazy arrays that
switches to a dense representation when the occupation percentage
of the array gets larger can be an effective solution, even though we
do not implement that variation in this study.

!"!#
!"$#
!"%#
!"&#
!"'#
!"(#
!")#
!"*#
!"+#
!",#
$"!#

$# $!# $!!#

!
"#
$"%

&'
(
)&
*"

+"%,-.&*"

-./%'#
.012/%'#
31/%'#

Figure 3: Cumulative K value distribution for syn-
thetic graphs.

Graph file Number Number Maximum Average Max kof vertices of edges degree degree
caidaRouterLevel 192,244 609,066 1,071 6.336 32
eu-2005 862,664 16,138,468 68,963 37.415 388
citationCiteseer 268,495 1,156,647 1,318 8.616 15
coAuthorsCiteseer 227,320 814,134 1,372 7.163 86
coAuthorsDBLP 299,067 977,676 336 6.538 114
coPapersCiteseer 434,102 16,036,720 1,188 73.885 844
cond-mat 16,726 47,594 107 5.691 17
power 4,941 6,594 19 2.669 5
protein-interaction-1 9,673 37,081 270 7.667 14

Table 1: Real-world graph datasets and their properties.

!"!#
!"$#
!"%#
!"&#
!"'#
!"(#
!")#
!"*#
!"+#
!",#
$"!#

$# $!!# $!-!!!# $-!!!-!!!#$!!-!!!-!!!#

!
"#
$"%

&'
(
)&
*"

+,'&)#'&"*-.&"

./0%'#
/1230%'#
420%'#

Figure 4: Cumulative purecore size distribu-
tion for synthetic graphs.

!"!#
!"$#
!"%#
!"&#
!"'#
!"(#
!")#
!"*#
!"+#
!",#
$"!#

$# $!# $!!# $-!!!#

!
"#
$"%

&'
(
)&
*"

+""%,-.&*"

./01/23456786968#
64:%!!(#
.05/;3<=056>667#
.3?45@37>=056>667#
.3?45@37>ABCD#
.3D/E67>=056>667#
.3<1:F/5#
E3G67#
E73560<:0<567/.;3<:$#

Figure 5: Cumulative K value distribution for
real-world graphs.

!"!#
!"$#
!"%#
!"&#
!"'#
!"(#
!")#
!"*#
!"+#
!",#
$"!#

$# $!# $!!# $-!!!# $!-!!!# $!!-!!!#

!
"#
$"%

&'
(
)&
*"

+,'&)#'&"*-.&"

./01/23456786968#
64:%!!(#
.05/;3<=056>667#
.3?45@37>=056>667#
.3?45@37>ABCD#
.3D/E67>=056>667#
.3<1:F/5#
E3G67#
E73560<:0<567/.;3<:$#

Figure 6: Cumulative purecore size distribu-
tion for real-world graphs.

5.2 Bucket sort
Several of our algorithms require reordering the set of unprocessed
vertices in a subgraph (such as a subcore or a purecore) based on
their cd values. In the worst case this subgraph could be as large
as the graph itself (again, this is uncommon in real-world graphs).
To perform this re-sorting efficiently, we use bucket sort. Note that
the cd values have a very small range, and thus bucket sort not only
provides O(N) sort time for the initial sort (where N is the subcore
or purecore size), but it also enables O(1) updates when a vertex
changes its cd value (in our case the values only decrease). We
use a bucket data structure that relies on linked lists for storing its
bucket contents and on a hash map to quickly locate the link list
entry of any given vertex.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate how the proposed algorithms behave
under different scenarios. The first set of experiments shows the
scalability of our best performing algorithm by studying its runtime
performance as the size of the synthetic datasets increases. The sec-
ond set of experiments compare the performance of our incremental
algorithms with respect to each other on real datasets. The third ex-
periment investigates the performance variation depending on the
K values of u and v, when an edge (u, v) is inserted/removed.

Our algorithms are implemented in C++ and compiled with gcc
4.4.4 at -O2 optimization level. All experiments are executed
sequentially on a Linux operating system running on a machine
with two Intel Xeon E5520 2.27GHz CPUs, with 48GB of RAM.

6.1 Datasets
Our dataset includes synthetic and real graphs. For synthetic
graphs, we use the SNAP library [27] to generate networks fol-
lowing three different models. The first is the Erdös-Renyi model,
which generates random graphs [13]. We used p = 0.1 to put
an edge among two specified vertices and we specify |E|/|V |

as 8. The second is the Barabasi-Albert preferential attachment
model [5], which follows a power law for the vertex degree distri-
butions. We configure it such that each new vertex added by the
generation algorithm creates 11 edges. The third model, generated
with SNAP’s R-MAT generator [8], follows a power law vertex
degree distribution and also exhibits small world properties. We
set the partition probabilities as [0.45, 0.25, 0.20, 0.10], to approx-
imate the k-core distribution of real citation graphs in our dataset.

Figures 3 and 4 show the cumulative distribution of K values
and purecore sizes (i.e., number of edges of the purecore subgraph
of each vertex in the graph) for the synthetic datasets with 224

vertices. For a graph G = (V,E), we calculate the purecore of
each vertex u 2 V by using Algorithm 5. These figures reveal
the structure of the generated graphs and how it impacts the in-
cremental k-core decomposition performance. The K value distri-
bution is an indication of the connectivity of the graph, while the
purecore size is an indication of the potential runtime of our incre-
mental algorithms when an edge incident upon a given vertex is
inserted/removed.

As shown in Figure 3, the graph based on the Barabasi-Albert
model (BA 24) has 100% of its vertices with K = 11. In addi-
tion, over 80% of its vertices result in a purecore size of over 100
million vertices. These properties of the BA graphs are due to the
graph generation algorithm of the BA model, where newly inserted
edges are likely to connect high degree vertices. As we will see
shortly, real-world graphs do not follow such properties and the
figure shows that the BA model is very poor in approximating real
world graphs in terms of the K value distribution. The RMAT gen-
erated graph (RMAT 24) has nearly 60% of its vertices with very
low K values. As the K value increases, the percentage of ver-
tices with that K value decreases. Furthermore, 98% of its vertices
have very small purecore sizes. The ER generated graph (ER 24)
has K values up to 6, and as the K value increases, the percentage
of vertices with that K value also increases. The latter behavior is
unlike the RMAT generated graph. As we will see shortly, most

1.E$02'

1.E$01'

1.E+00'

1.E+01'

1.E+02'

1.E+03'

1.E+04'

1.E+05'

1.E+06'

1.E+07'

32,678' 261,424' 2,091,392' 16,731,136'

sp
ee
du

p&

graph&size&(#&ver0ces)&

ER'inser7on'
ER'removal'
RMAT'inser7on'
RMAT'removal'
BA'inser7on'
BA'removal'

Figure 7: Speedup of incremental insertion and removal algorithms for
synthetic graphs when varying the graph size from 215 to 224. Removal
scales better than insertion, reaching around 106 speedup.

1.E$03'

1.E$02'

1.E$01'

1.E+00'

1.E+01'

1.E+02'

1.E+03'

1.E+04'

1.E+05'

32,678' 261,424' 2,091,392' 16,731,136'

up
da

te
'ra

te
'

graph'size'(#'ver1ces)'

ER'inser7on'
ER'removal'
RMAT'inser7on'
RMAT'removal'
BA'inser7on'
BA'removal'

Figure 8: Update rates of incremental insertion and removal algorithms for
synthetic graphs when varying the graph size from 215 to 224.

real-world graphs of interest behave more closely to the RMAT
generated graphs with respect to their K value distribution.

The real graphs we use are from the 10th DIMACS Graph Par-
titioning and Graph Clustering Implementation Challenge repos-
itory [10] and include internet router level and European do-
main computer network graphs (caidaRouterLevel and eu-2005),
co-author and citation network graphs (citationCiteseer, coAu-
thorsCiteseer, coAuthorsDBLP, coPapersCiteseer), condensed mat-
ter collaboration network graphs (cond-mat), power grid network
graphs (power), and protein interaction network graphs (protein-
interaction-1). Table 1 provides the details about each used graph,
including their vertex and edge set size, maximum and average de-
grees, and their maximum k value. All graphs are undirected.

Figure 5 shows the K value distribution for all graphs in Table 1.
The figure shows that the vertices of both coPapersCiteseer and eu-
2005 have highly variant K values. Figure 6 shows the purecore
size distribution for our real datasets. The data indicates that all of
the graphs have at least 80% of their vertices with corresponding
purecore sizes of less than 100. This is an indication that our incre-
mental algorithms are expected to perform well on these graphs.

As all our graphs are originally static, we emulate a streaming
algorithm by considering that the whole set of edges and vertices
constitute a sliding window snapshot. For evaluating algorithm ex-
ecution, we first evict a random edge from the current graph in
the window. This emulates the behavior of a full sliding window,
which must open space for inserting a new data item. We then in-
sert a new edge between two random vertices. We also evaluate
worst case execution times by inserting and removing edges from
vertices that have top purecore sizes. Such results are similar to the
random insertion case, and are omitted for brevity. Note that we
do not assume any specific data distribution with respect to which
edges get inserted or deleted. In addition, we make no assumptions
regarding edge arrival rates. Instead, we evaluate the performance
of our algorithms’ processing updates as fast as possible.

6.2 Scalability
In this experiment, we evaluate the performance of the traversal al-
gorithm (Section 4.3) as the size of the synthetic graphs increase.
We first report speedup numbers, which are obtained by compar-
ing the traversal runtimes with our baseline — the non-incremental
version of k-core decomposition (Algorithm 1), then present the
update rates, which show the number of edge removals/insertions
processed per second. Testing the algorithm under different graph

sizes emulates the scenario where a streaming algorithm uses dif-
ferent sliding window sizes.

Figure 7 shows the speedup of our incremental insertion and
removal algorithms when the number of vertices from the graph
range from 215 to 224. For the insertion algorithm, the RMAT
graph shows the best scalability, with speedups ranging from 717⇥
to 920, 000⇥ (almost 6 order of magnitude). This drastic speedup
is because the K values of the vertices in the graph have high
variability and majority of the vertices have very small purecore
sizes, as shown in Figures 3 and 4 for the RMAT graph with size
224. Such factors result in very fast insertions. The insertion of
edges into the graph following the Erdös-Renyi model (ER) show
speedup ranging from 4.43⇥ to 11, 500⇥. Although it also scales
well with the size of the graph, the speedups are not as high as the
ones observed for the RMAT graph. This behavior can be explained
by the fact that the ER graph has a more uniform K value distri-
bution when compared to the RMAT graph. Furthermore, when
the graph has size of 224, over 40% of its insertions may result in
touching purecores of over 1 million edges. When inserting edges
into graph based on the Barabasi-Albert model (BA), our incre-
mental algorithm is worse than the non-incremental one. As we
discussed earlier, in these graphs all vertices have the same K value
initially, resulting in subcore sizes that are almost equal to the graph
size. In this case, the incremental algorithm does not provide any
benefit on top of the base one, yet brings additional computation
overheads (such as due to lazy arrays). As we will show shortly,
this nature of the BA graphs are not found in real world graphs.

The removal algorithm scales for all three synthetic graphs,
where the speedup ranges from 315⇥ to 885, 000⇥. For the ER
and BA graphs, the removal algorithm scales better than the inser-
tion one because it has much lower cost (see Section 4.3). At large
scales, we notice that the use of incremental algorithms becomes
even more critical, since the cost of the baseline is linear in the size
of the graph.

The scalability experiments indicate how good our incremental
algorithm can perform for different graph sizes when there are k-
core decomposition queries (read queries) interspersed with edge
insertion and removal (write queries). Taking the RMAT graph
with size of 224 vertices as an example, we can see that if the
write/read ratio is less than 900, 000 (the average speedup of one
removal and one insertion), it is better to use the incremental algo-
rithm than to compute the k-core decomposition from scratch after
inserting new edges and removing the oldest ones from the graph

1"

10"

100"

1,000"

10,000"

100,000"
sp
ee
du

p&

Figure 9: Subcore algorithm speedups for real datasets when compared to
the baseline. Our incremental algorithm runs up to 14, 000⇥ faster than
the non-incremental algorithm.

0.0#

0.5#

1.0#

1.5#

2.0#

2.5#

3.0#

no
rm

al
iz
ed

+u
pd

at
e+
/m

e+ Subcore#
Purecore#
Traversal#
*bo6om#is#removal#
#

Figure 10: Average update time comparison of incremental algorithms
when processing real datasets. Times are normalized by the average up-
date time of the subcore algorithm. Traversal algorithm shows the best
performance for all datasets.

(sliding window scenario).
Figure 8 shows the update rates, i.e., number of edges pro-

cessed per second, for our incremental insertion and removal al-
gorithms when the number of vertices in the graph ranges from 215

to 224. For RMAT graphs, both insertion and removal rates reach
up to 80,000 updates/sec and, more importantly, update rates do
not change when the graph size increases. ER graphs have lower
update rates for both insertion and removal. Removal rates for ER
graphs stay stable as the graph size increases and insertion rates
only decrease by a factor of 6 (from 761 to 127) when the graph
size increases from 215 to 224. For BA graphs, update rates for re-
moval decreases from 18,500 to 310 when the graph size increases.
Insertion rate has a similar decreasing behaviour with the graph
size. However, the rates are much lower — starting from 28 and
decreasing to 0.005 when the graph size gets bigger. The decreas-
ing trend for the BA graphs is due to the large subcore sizes that are
proportional to the graph size. Again, we will show that real world
graphs do not exhibit this behavior.

6.3 Performance comparison
In this experiment, we analyze how our three incremental algo-
rithms perform when processing one edge removal and one edge
insertion (i.e., one sliding window operation) on the real datasets
described in Table 1. This helps us to see whether the algorithm
that is expected to give the best results, Traversal, shows the best
performance for all the real datasets we have.

Figure 9 shows the performance of the subcore algorithm (Sec-
tion 4.1) considering the average time taken by one graph update.
The performance is shown in terms of the speedup provided by the
incremental algorithm compared to the non-incremental one. The
speedups vary from 6.2⇥ to 14, 000⇥. The datasets in which the
incremental algorithm performs the best are the eu-2005 and coPa-
persCiteseer. Similar to the results obtained in the synthetic graphs,
the performance of the subcore algorithm benefits from the high
variability in the K value distribution of the graph. The dataset in
which the subcore algorithm performs the worst is power. This is
because 63.19% of the vertices in the power graph have the same
K value, yielding large subcore sizes.

Figure 10 shows the average update time of each algorithm nor-
malized by the update time of the subcore algorithm. Each group of
3 columns shows the results for a given dataset. For each group, the

results are displayed in the following order: subcore (Section 4.1),
purecore (Section 4.2), and traversal (with residential core degrees)
(Section 4.3). The stacked columns represent the update time at-
tributed to the removal (bottom) and insertion operations (top).

The results show that the purecore algorithm can perform worse
than the subcore one for some datasets (caidaRouterlevel and eu-
2005) even though the purecore of a vertex is always smaller than or
equal to the subcore of a vertex. This is due to the additional work
performed to locate a smaller subgraph. This additional work is not
always worth it if the purecore is not sufficiently small compared
to the subcore. The figure also displays that the traversal algo-
rithm shows the best performance for all datasets, being up to 20⇥
better than the subcore algorithm. The traversal algorithm shows
dramatic improvement compared to subcore when processing ci-
tationCiteseer and power graphs. Our results also show that the
traversal algorithm has the most efficient removal for all datasets.

Graph scale with RCD (ratio) without RCD
16 0.032 (%48) 0.067
18 0.175 (%52) 0.335
20 1.041 (%50) 2.047
22 4.218 (%49) 8.600
24 6.098 (%67) 8.991

Table 2: Average runtimes (secs) for one edge removal plus one edge in-
sertion with traversal algorithm on Erdös-Renyi graphs. Ratio shows with
RCD runtimes relative to without.

We also investigate the impact of Residential Core Degrees on
synthetic graphs generated using the Erdös-Renyi model. Table 2
shows the average time in seconds spent for one edge removal plus
one edge insertion with the traversal algorithm. For each graph, we
ran the traversal algorithm with and without the Residential Core
Degrees. The results show that using Residential Core Degrees pro-
vides up to %48 less runtime. The results for RMAT, not included
here for brevity, show less improvement.

6.4 Performance variation
In this section, we evaluate the performance of the traversal algo-
rithm when inserting and removing random edges into vertices with
varying K values. The objective is to understand how the execution
time varies as edge insertions and removals are performed on dif-
ferent parts of the graph with different connectivity characteristics.

For instance, performance implications of adding an edge between
a vertex that has a high K value and one with a low K value versus
between two vertices having close K values.

!"
#"
$"
%"
&"
'"
("
)"
*"
+"

#!"
##"
#$"
#%"
#&"
#'"

!" #" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'"

!"
#
$%
&#

'#
(

!"#&)&#'#(

,-./012"
345-,6/4"

highKvalues$

sameKvalues$

Figure 11: Edge insertion and removal execution times of the traversal al-
gorithm for different K values. Runtime shows low variability when chang-
ing parts of the graph with different connectivity characteristics.

Figure 11 shows the performance results for the citationCiteseer
graph, which serves as a good representative for our real dataset.
This graph has vertices with K values varying from 1 to 15. A
bubble in the graph indicates the time taken to insert or remove an
edge between two random vertices u and v. If K(u) K(v),
K(u) is displayed on the x-axis, while K(v) is displayed on the
y-axis. The size of the bubble indicates the average execution time
for the insertion (pink) and removal (green) of an edge. The larger
the bubble is, the greater the execution time is.

The graph shows that the runtime of the traversal algorithm has
low variability. This is a good property, as it means that the al-
gorithm is able to locate a small subgraph to traverse irrespective
of the properties of the neighborhoods of the two vertices u and
v. Our algorithm shows low runtime variability, as we consistently
traverse subgraphs using the vertex with the lowest K value as root.

Execution times vary more when the K values of the different
vertices are the same (diagonal). The reason is that the traversal al-
gorithm visits the subgraphs associated with both vertices affected
by the new edge, resulting in longer execution times. We also see
that insertions between vertices with large K values have large ex-
ecution times. In general, the execution times we see are propor-
tional to the sizes of the subcores and not to the max-cores. In
other words, what affects the execution time are the sizes of the
subgraphs with the same K value. For small K values, such sub-
graphs are small, because they are bounded by higher K valued
vertices, which in turn belong to their max-core. For large K val-
ues, subcores are bigger, because large K valued vertices tend to be
close to each other due to the definition of k-core. Although their
max-core sizes are small relative to that of small K valued vertices,
their subcore sizes turn out to be larger.

7. RELATED WORK
The definition of k-core is first introduced by Seidman [26] to char-
acterize the cohesive regions of graphs. Batagelj et al. [6] devel-
oped an efficient algorithm to find the k-core decomposition of a
graph. In our work, we build upon these works to develop k-core
decomposition algorithms that are incremental in nature, making it
possible to apply these algorithms in streaming settings where edge

insertions and removals happen frequently, such as maintaining a
recent history of a dynamic graph.

There are many application areas of k-core decomposition in-
cluding but not limited to social networks [17, 29], visualization of
large networks [1, 31, 15], and protein interaction networks anal-
ysis [3, 30]. In social network analysis, k-cores has been used for
community detection [17], clustering [29], and criminal network
detection [23].

Thanks to its well-defined structure, k-cores has been used ex-
tensively to analyze the structure of certain types of networks [11,
21] and to generate graphs with specific properties [7]. Many graph
problems like maximal clique finding [4], dense subgraph discov-
ery [2], and betweenness approximation [18] use k-core decompo-
sition as a subroutine.

In terms of algorithms specific to finding k-core decompositions,
an external-memory algorithm for k-core decomposition is intro-
duced in [9]. There are also studies about k-core decomposition
on directed [16] and weighted [17] networks. To the best of our
knowledge, there is no study on incremental algorithms for k-core
decomposition, which makes our work unique in that respect.

Concurrently with our work, Li et al. [20] published a report
on incremental algorithms for core decomposition. Our algorithms
differ from theirs in two important aspects: (1) They propose
quadratic complexity incremental algorithms, whereas our algo-
rithms have linear complexity. (2) The speedup results achieved by
our algorithm outperform theirs. For instance, their best algorithm
has 6.3⇥ speedup on the cond-mat graph, while our best algorithm
(Traversal) achieves a speedup of 776.4⇥.

8. FUTURE WORK
We plan to extend our work along several directions. First, we plan
to improve the Traversal algorithm by storing more information at
each vertex so that the set of traversed vertices is reduced. Cur-
rently, we make use of 2-hop neighborhood information (PCD val-
ues) in the Traversal algorithm. Using more than 2-hop neighbor-
hood information, i.e., 3-hop, 4-hop, might result in better running
times. Studying the trade-off between further limiting the search
space versus reducing the maintenance cost of neighborhood in-
formation is an interesting direction for future work. Second, we
plan to work on batch update algorithms where multiple edges are
inserted to or removed from the graph. Our current incremental al-
gorithms can be used to handle batch updates such that each edge
in batch is updated separately. However, we aim to process multi-
ple edges at once so that the traversals of overlapping subgraphs of
different edges are shared and the total execution time is reduced.
Our initial findings show that many of the theorems and algorithms
we designed for single edge insertion and removal cases need fun-
damental modifications in order to handle batch edge updates. An-
other interesting direction of future work is the asymptotic bounds
of the k-core decomposition on certain kinds of graphs. All of
the algorithms we presented provide heuristics for fast updates, but
there is no fast update guarantee for a given type of graph. We be-
lieve that introducing theoretical bounds for the complexity of the
problem will be useful for certain domain of graphs, like Erdös-
Renyi graphs and different types of real-world graphs (friendship,
protein-interaction, etc.).

9. CONCLUSION
In this paper we have introduced streaming algorithms for k-core
decomposition of graphs. The key feature of these algorithms is
their incremental nature — the ability to update the k-core decom-
position quickly when a new edge is inserted or removed, without

having to traverse the entire graph. Our experimental evaluation
shows that these incremental algorithms can perform significantly
better than their batch alternatives, where the speedup in execution
time increases with the increasing graph size. Given the importance
of k-core decomposition in detection of dense regions and com-
munities, max. clique finding, and graph visualization, we believe
these incremental algorithms will serve as a fundamental building
block for future incremental solutions for other graph problems.

Acknowledgment
We would like to thank the anonymous referees for their valuable
comments. This work is partially sponsored by the U.S. Defense
Advanced Research Projects Agency (DARPA) under the Social
Media in Strategic Communication (SMISC) program (Agreement
Number: W911NF-12-C-0028). The views and conclusions con-
tained in this document are those of the author(s) and should not be
interpreted as representing the official policies, either expressed or
implied, of DARPA or the U.S. Government.

10. REFERENCES
[1] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and

A. Vespignani. k-core decomposition: A tool for the
visualization of large scale networks. The Computing
Research Repository (CoRR), abs/cs/0504107, 2005.

[2] R. Andersen and K. Chellapilla. Finding dense subgraphs
with size bounds. In Workshop on Algorithms and Models for
the Web Graph (WAW), pages 25–37, 2009.

[3] G. D. Bader and C. W. V. Hogue. An automated method for
finding molecular complexes in large protein interaction
networks. BMC Bioinformatics, 4, 2003.

[4] B. Balasundaram, S. Butenko, and I. Hicks. Clique
relaxations in social network analysis: The maximum k-plex
problem. Operations Research, 59:133–142, 2011.

[5] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[6] V. Batagelj and M. Zaversnik. An O(m) algorithm for cores
decomposition of networks. The Computing Research
Repository (CoRR), cs.DS/0310049, 2003.

[7] M. Baur, M. Gaertler, R. Görke, M. Krug, and D. Wagner.
Augmenting k-core generation with preferential attachment.
Networks and Heterogeneous Media, 3(2):277–294, 2008.

[8] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A
recursive model for graph mining. In SIAM International
Conference on Data Mining (SDM), 2004.

[9] J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. Efficient core
decomposition in massive networks. In IEEE International
Conference on Data Engineering (ICDE), pages 51–62,
2011.

[10] DIMACS. 10th DIMACS implementation challenge.
http://www.cc.gatech.edu/dimacs10.

[11] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. k-core
organization of complex networks. Physical Review Letters,
96, 2006.

[12] Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and
classification of dense communities in the web. In World
Wide Web Conference (WWW), pages 461–470, 2007.

[13] P. Erdös and A. Rényi. On the evolution of random graphs.
In Institute of Mathematics, Hungarian Academy of
Sciences, pages 17–61, 1960.

[14] S. Fortunato. Community detection in graphs. Physics
Reports, 483(3-5):75–174, 2009.

[15] M. Gaertler. Dynamic analysis of the autonomous system
graph. In International Workshop on Inter-domain
Performance and Simulation (IPS), pages 13–24, 2004.

[16] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. D-cores:
Measuring collaboration of directed graphs based on
degeneracy. In IEEE International Conference on Data
Mining (ICDM), pages 201–210, 2011.

[17] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. Evaluating
cooperation in communities with the k-core structure. In
International Conference on Advances in Social Network
Analysis and Mining (ASONAM), pages 87–93, 2011.

[18] J. Healy, J. Janssen, E. Milios, and W. Aiello.
Characterization of graphs using degree cores. In Workshop
on Algorithms and Models for the Web Graph (WAW), pages
137–148, 2006.

[19] G. Kortsarz and D. Peleg. Generating sparse 2-spanners.
Journal of Algorithms, 17(2):222–236, 1994.

[20] R.-H. Li and J. X. Yu. Efficient core maintenance in large
dynamic graphs. CoRR, abs/1207.4567, 2012.

[21] T. Luczak. Size and connectivity of the k-core of a random
graph. Discrete Math, 91(1):61–68, 1991.

[22] A. A. Nanavati, G. Siva, G. Das, D. Chakraborty,
K. Dasgupta, S. Mukherjea, and A. Joshi. On the structural
properties of massive telecom call graphs: findings and
implications. In ACM International Conference on
Information and Knowledge Management (CIKM), pages
435–444, 2006.

[23] F. Ozgul, Z. Erdem, C. Bowerman, and C. Atzenbeck.
Comparison of feature-based criminal network detection
models with k-core and n-clique. In International
Conference on Advances in Social Network Analysis and
Mining (ASONAM), pages 400–401, 2010.

[24] H. Saito, M. Toyoda, M. Kitsuregawa, and K. Aihara. A
large-scale study of link spam detection by graph algorithms.
In International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb), pages 45–48, 2007.

[25] R. Samudrala and J. Moult. A graph-theoretic algorithm for
comparative modeling of protein structure. Journal of
Molecular Biology, 279(1):287–302, 1998.

[26] S. B. Seidman. Network structure and minimum degree.
Social Networks, 5(3):269–287, 1983.

[27] SNAP. Stanford network analysis package.
http://snap.stanford.edu/snap.

[28] D. Turaga, H. Andrade, B. Gedik, C. Venkatramani,
O. Verscheure, J. D. Harris, J. Cox, W. Szewczyk, and
P. Jones. Design principles for developing stream processing
applications. Software: Practice & Experience,
40(12):1073–1104, 2010.

[29] A. Verma and S. Butenko. Network clustering via clique
relaxations: A community based approach. 10th DIMACS
Implementation Challenge, 2011.

[30] S. Wuchty and E. Almaas. Peeling the yeast protein network.
PROTEOMICS, 5(2):444–449, 2005.

[31] Y. Zhang and S. Parthasarathy. Extracting analyzing and
visualizing triangle k-core motifs within networks. In IEEE
International Conference on Data Engineering (ICDE),
pages 1049–1060, 2012.

	Introduction
	Background
	Theoretical Findings
	Incremental Algorithms
	The Subcore Algorithm
	The Purecore Algorithm
	The Traversal Algorithm
	Residential Core Degrees
	Root Awareness

	Illustrative Example

	Implementation
	Lazy arrays
	Bucket sort

	Experimental Evaluation
	Datasets
	Scalability
	Performance comparison
	Performance variation

	Related Work
	Future Work
	Conclusion
	References

