
Signature and Speci�cation MatchingAmy Moormann ZaremskiJanuary 1996CS-CMU-96-103School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213Submitted to Carnegie Mellon University in partial ful�llment of therequirements for the degree of Doctor of Philosophy in Computer Science.Thesis Committee:Jeannette M. Wing, ChairDavid GarlanPeter LeeSteven J. Garland, Massachusetts Institute of TechnologyCopyright c
 1996 Amy Moormann ZaremskiThis research is sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force MaterielCommand, USAF, and the Advanced Research Projects Agency (ARPA) under grant number F33615-93-1-1330.Views and conclusions contained in this document are those of the authors and should not be interpreted asnecessarily representing the o�cial policies or endorsements, either expressed or implied, of Wright Laboratoryor the U. S. Government.

Keywords: software reuse, software libraries, component retrieval, library indexing, sub-typing, signature matching, speci�cation matching

AbstractLarge libraries of software components hold great potential as a resource for software engineers,but to utilize them fully, we need to be able: (1) to locate components in the library; (2) toorganize the library in a way that facilitates browsing and improves e�ciency of retrieval; and(3) to compare the description of a library component to the description of what we want.A key requirement in all of these problems is to be able to compare two software componentsto see whether they match. In this dissertation, we consider two di�erent kinds of semanticdescriptions of components to determine whether components match: signatures (type informa-tion) and speci�cations (behavioral information). Semantic descriptions o�er advantages overeither textual descriptions, such as variable names, or structural descriptions, such as control
ow graphs. Using semantic information focuses on what the components do rather than howthey do it. Signatures and speci�cations are natural ways of describing software componentsand have well-understood properties, such as type equivalence and logical relations betweenformal speci�cations, that enable us both to de�ne matches precisely and to automate thematch.This dissertation makes the following contributions:� Foundational. Within a general, highly modular, and extensible framework, we de�nematching for two kinds of semantic information (signatures and speci�cations) and twogranularities of components (functions and modules). Each kind of matching has a genericform, within which all of the matches are related and may, in some cases, be composed.The orthogonality of the matches allows us to de�ne match on modules independently ofthe particular match used on functions in the modules.� Applications. We show how the de�nitions of matching can be applied to the problemsof retrieval from libraries, indexing libraries, and reuse of components. We demonstratethe various signature and speci�cation matches with examples of typical uses in eachapplication.� Engineering. We describe our implementations of function and module signature match,function speci�cation match, function signature-based indexing, and function signature-based retrieval. These implementations demonstrate the feasibility of our approach andallow us to illustrate the applications with results from a moderately-sized componentlibrary.

4

AcknowledgementsI owe a deep debt of gratitude to my advisor, Jeannette Wing, for both her technical and moralsupport. Jeannette is an endless source of information and insights on technical issues and hasa way of asking the questions that open up new angles on a topic. She is also able to sensesomehow whether I need support and encouragement or a stern \nudge" in the right direction.I would never have made it without her.I would like to thank the other members of my thesis committee, David Garlan, Peter Lee, andSteve Garland, all of whom have given me invaluable assistance, both with insights on the \bigpicture," with technical details, and with excellent comments on an earlier draft of the thesis.A number of people at Carnegie Mellon helped me over the years. I am thankful to all themembers of the Mir�o, Venari, and Coda projects, as well as members of the Composable Systemsgroup. I particularly want to thank Gene Rollins, for his help in modifying the SML compilerto provide the necessary hooks for the signature matcher, and Chris Okasaki, for his helpfulsuggestions both on an early draft of the thesis and in a number of discussions, particularlyabout the implementation to build indexed libraries. Both Gene and Chris also tested Beagleand suggested improvements. I also want to thank Maria Ebling, not only for helping me keepCoda running on my machines so that I could write at home, but for being such a good friend.I also owe thanks to all the great people at Carnegie Mellon who keep things running smoothlyand who cheerfully make all the administrative hassles go away, especially Sharon Burks,Catherine Copetas, Cary Lund, and everyone on the facilities sta�.I would also like to thank all those who have helped keep me sane throughout this process, inparticular Maria, Chris, Francesmary Modugno, Mark Maimone, the members of CTQC, andall my other friends. A special \woof" of thanks to my basset hounds, Raleigh1 and Augie2,who have been quite happy to assist me in the quest for acronym appendages to names.I extend my heartfelt thanks to my husband, Mark Zaremski, for his love, support, patience,and faith in me. I especially thank him for understanding and tolerating the irrationality of\thesis mode". He and I are two halves of a whole { without him I would be far less than I am.Finally, I would like to thank my parents for the uncountable ways they have helped me, and inparticular for always believing that I could do anything. My father, Ralph Moormann, taughtme to question and to be curious, and my mother, Frances Moormann, showed me the meaningof determination. Those two elements have combined to give me the interest and capability todo research in science.1Blu-line Raleigh, CGC, TDI2Salvador D'Augie, CGC, ILP pending i

ii

Contents1 Introduction 11.1 Problem Description : 21.2 A Solution (Thesis Scope) : 31.2.1 Component Signatures and Speci�cations : : : : : : : : : : : : : : : : : : 61.2.2 De�ning Match : 81.2.3 Applications : 101.3 Thesis Contributions : 121.4 Roadmap and Terminology : 122 Function Signature Matching 152.1 Signatures : 152.2 Match De�nitions : 162.2.1 Exact Match : 172.2.2 Transformation Relaxations : 172.2.3 Partial Relaxations : 202.3 Combining Relaxations : 222.4 Properties of the Matches : 252.4.1 Equivalence and Partial Order : 252.4.2 Match Composition : 262.4.3 Relating the Matches : 312.4.4 Generic Match Forms : 322.5 Implementation : 322.5.1 Beagle: Signature-based Retrieval : 342.5.2 Index Builder : 342.5.3 Why use ML? : 352.6 Discussion : 363 Function Speci�cation Matching 393.1 Larch/ML Speci�cations : 393.2 Match De�nitions : 41iii

3.2.1 Pre/Post Matches : 433.2.2 Predicate Matches : 473.3 Properties of the Matches : 503.3.1 Equivalence and Partial Order : 503.3.2 Relating the Matches : 513.4 Implementation : 533.5 Discussion : 583.5.1 Speci�cation Matching : 583.5.2 Match De�nitions : 583.5.3 Choice of Language and Theorem Prover : : : : : : : : : : : : : : : : : : 594 Module Matching 614.1 Match De�nitions : 624.1.1 Exact Match : 624.1.2 Partial Matches : 634.2 Properties of the Matches : 664.2.1 Distinctions Between the Matches : 664.2.2 Equivalence and Partial Order Matches : : : : : : : : : : : : : : : : : : : 664.3 Implementation : 664.4 Discussion : 675 Applications 695.1 Retrieval : 695.1.1 Reuse : 715.1.2 Statistical Analysis : 745.1.3 Retrieval-based Browsing : 765.1.4 Compound Retrieval : 795.1.5 Discussion : 835.2 Indexing : 875.2.1 Indexed Library De�nition : 885.2.2 Indexes on the Community Library : 915.2.3 Discussion : 945.3 Substitution : 955.3.1 Substitution Guarantees : 965.3.2 Subtyping : 975.3.3 Discussion : 1036 Related Work 1056.1 Signature-Based Retrieval : 1066.1.1 Category Theoretic Approaches : 106iv

6.1.2 In Conjunction with Speci�cation Match : : : : : : : : : : : : : : : : : : : 1076.1.3 Others : 1086.2 Speci�cation-Based Retrieval : 1086.2.1 Pre/Post Style Speci�cations : 1096.2.2 Other Systems : 1116.3 Other Approaches : 1127 Conclusions and Future Work 1157.1 Conclusions : 1157.2 Future Work : 1177.2.1 Function Signature Matching : 1177.2.2 Function Speci�cation Matching : 1197.2.3 Signatures and Speci�cations : 1207.2.4 Larger Components : 1217.3 Epilogue : 122A The Container Trait 123B Subtype Speci�cation 125Bibliography 129

v

vi

List of Figures1.1 Design space of component match : 41.2 The Toy Signature Library (ML signature modules) : : : : : : : : : : : : : : : : 61.3 A Larch/ML module speci�cation : 71.4 Which chapters de�ne what : 92.1 Output bu�er of Beagle : 353.1 The Toy Speci�cation Library (Larch/ML modules) : : : : : : : : : : : : : : : : 403.2 Idea behind plug-in match : 443.3 Proof sketch of matchweak-post(pop; Q4) : 473.4 Properties of plug-in match. : 513.5 Lattice of function speci�cation matches : 523.6 LP input for Stack and Q2 : 543.7 LP input for plug-in match of Stack.push with Q2 : : : : : : : : : : : : : : : : : 553.8 LP output for generalized match of Stack.pop with Q6 : : : : : : : : : : : : : : : 563.9 LP output for weak post match of Queue.rest with Q4 : : : : : : : : : : : : : : : 575.1 The retrieval problem : 705.2 The idea behind pipelining : 805.3 Indexed library for the Toy Signature Library with added \special" nodes. In-dex pair = (matchtycon � matchreorder � matchuncurry ;matchtycon � matchreorder �matchuncurry �matchgen). : 905.4 Graphs of indexes for the three sub-libraries using the EQ index pair. : : : : : : 915.5 Graphs of indexes for the Community Library. : : : : : : : : : : : : : : : : : : : 925.6 Details of some nodes in Community Library (EQ index pair). : : : : : : : : : : 945.7 Larch/ML speci�cations of bag and stack object types : : : : : : : : : : : : : : : 985.8 LP subtype proof script : 102B.1 Container2 trait : 126B.2 Bag speci�cation translated to LP input : 127B.3 Stack speci�cation translated to LP input : 128vii

viii

List of Tables1.1 Summary of libraries used in the thesis : 122.1 Function signature matches, their symbols and classi�cations : : : : : : : : : : : 262.2 Instantiations of generic function match : 323.1 Instantiations of generic pre/post match ((Qpre R1 Spre) R2 (Spost R3 Qpost)) : : 423.2 Instantiations of generic predicate match (Spred R Qpred) : : : : : : : : : : : : : 423.3 Summary of predicate symbol, match form, and kind of match for each functionspeci�cation match. : 503.4 Which functions match which queries (Q = Queue module and S = Stack module) 523.5 Level of user assistance required for LP proofs of queries : : : : : : : : : : : : : : 554.1 Which modules match which queries : 654.2 Relation between �QF and �LF for the module matches. : : : : : : : : : : : : : : 665.1 Results of module library query M3 : 745.2 Usage of various base types (bt stands for the base type used in each column) : : 755.3 Number of functions with input tuples of various sizes : : : : : : : : : : : : : : : 765.4 Statistics on indexes for the Community Library and sub-libraries. : : : : : : : : 93
ix

x

Chapter 1IntroductionDemand for software continues to increase, and software systems continue to grow in size andcomplexity. The challenge for software engineering is to meet these demands as cheaply andas quickly as possible. Software libraries hold great potential as a resource for the softwareengineer, both to enable him or her to reuse existing software components to build largersystems and as a source of examples to become more familiar with a language or with a style ofprogramming usage. There is a growing collection of software libraries, especially on the WorldWide Web.Reusing existing components can decrease the time spent building a large system (and thusdecrease costs), since it can signi�cantly reduce the amount of new code that must be written.Furthermore, reusing components from a well-tested library can reduce time spent debuggingand improve reliability. Components in software libraries are also more likely to have beenveri�ed formally. Time and expense spent on veri�cation is more easily justi�ed for librarycomponents than for code used only once, since such costs can be amortized over multiple uses.The �rst challenge in reuse is to be able to locate a component in the library. It should befaster and easier to �nd a component than to write it from scratch. We can �nd a componenteither by describing it with a query, and retrieving components that match the query, or bybrowsing through the library (preferably indexed somehow) until we �nd a component we want.Once we have found a component, we must be able to compare it to the task at hand. We maybe able to use the component directly, or may have to modify it slightly.The activities of retrieving, browsing, and comparing have other uses as well. For example,software libraries are a source of examples of the use of a programming language. A softwareengineer can learn how to use particular language constructs and learn about the style of pro-gramming for the language, either by browsing the library, or retrieving particular components.Retrieving components from a library can also provide statistics about the contents of the li-brary, such as what percentage of the functions in a library have more than one input. Thesame index structure used to enable browsing on the library can be used to improve e�ciency ofretrieval. And comparing two components answers the general question of how they are related,1

2 CHAPTER 1. INTRODUCTIONeven outside the context of reuse. For example, we can determine whether one component is asubtype of another.In this thesis, we present a way to retrieve components from a library, index a library, andcompare two components, to help realize more of the potential of software libraries. We usesemantic information about software components to do this. In particular, we assume thateach component in a library has associated with it a signature (type information) and possiblya speci�cation (behavioral information). In the remainder of this chapter, we describe in detailthe problems we want to handle (Section 1.1), the approach we use in the thesis to solve theproblems (Section 1.2), the main contributions of the thesis (Section 1.3), and a roadmap tothe rest of the thesis (Section 1.4).The general approach of using semantic descriptions of components applies to many otherdomains in addition to software. For example, consider the information available through theWorld Wide Web. Having an e�ective way to describe the kinds of information we are interestedin could simplify the increasingly daunting task of locating the information we want. Otherexamples of domains where semantic information could aid in retrieval include the nationwideLibrary of Congress, law briefs, police records, and geological maps.1.1 Problem DescriptionConsider the following list of seemingly diverse questions:1. Retrieval. How can I retrieve a component from a software library based on its semantics,rather than its syntactic structure?2. Indexing. How can I index the components in a software library?3. Navigation. Given a hierarchical index of a library, let me see all the nodes one level upfrom the current component.4. Substitution. When can I replace one software component with another without a�ectingthe observable behavior of the entire system?5. Subtyping. When is one type a subtype of another?6. Modi�cation. How might I adapt a component from a software library to �t the needs ofa given subsystem?Each of these questions is interesting on its own. Most work on software reuse cites thecrucial problem of retrieving a component from a library (question 1) [AM87, BP89, Kru92,MMM95, IEE84]. We cannot reuse a component if we cannot �nd it. Adding an index to alibrary (question 2) enables us to navigate through the library (question 3) and increases thee�ciency with which we can store and retrieve components. The advantages of hierarchical

1.2. A SOLUTION (THESIS SCOPE) 3indexes are well-understood in the object-oriented domain, where users can navigate the classinheritance structure with a browser (e.g., Smalltalk [Tes81] and C++ [Bis92]). However, therehas been no previous work to extend the use of indexes beyond object-oriented languages.Currently many libraries use the �le system for their only organization (directories and �les)and �le system and editor commands for navigation and retrieval. For example, the local MLlibrary is organized with categories of components as directories (e.g., local/lib/Container/,local/lib/Threads/); users locate desired components with Unix tools such as ls and grep.Aside from some of the information that could be gleaned from how the library is organized,the task of �nding something in these libraries relies on the names of components. Sharingcomponents with others requires mutual agreement on a naming scheme and a directory struc-ture.Once we have retrieved a component from a library, there is the additional issue of how to useit. Can we substitute it directly where we need a component, or do we have to modify it in someway before we can use it? If we substitute directly, we would like to know that the componentbehaves in a way we expect (question 4). That is, if we have speci�ed the behavior we expect,we would like to know that the component behaves in a way consistent with that speci�cation.A special kind of substitution is the notion of subtyping in object-oriented languages (question5). De�ning when one component is a subtype of another, particularly behaviorally, is a currentresearch topic of interest [Ame91, Car89, DL92, Lea89, LW90, LW94, Mey88]. If we cannotsubstitute a component directly, we need to know how to adapt it for reuse in the currentcontext (question 6). Knowing how a retrieved component di�ers from what we want (i.e.,identifying a mismatch) can often help determine how to modify the component.The questions listed above also share some commonalities. In retrieval, we search for alllibrary components that satisfy a given query. In building a hierarchical index on a library,we relate each pair of components. In navigation, we go from one component to anotherthat is higher (or lower) in the hierarchy. In substitution, we expect the behavior of onecomponent to be observably equivalent to the other's; a special case is substituting a subtypeobject for a supertype object. In modi�cation, we adapt a component to �t its environmentalconstraints, based on how well the component meets our requirements. Common to answeringthese questions is deciding when one component matches another, where \matches" genericallystands for \satis�es," \relates," \is higher," \is equivalent to," or \meets."1.2 A Solution (Thesis Scope)In this thesis, we de�ne various kinds of component matching. Most generally, a componentmatch function, M , takes two components (or abstract descriptions of the components) andreturns a boolean indicating whether a particular relation holds between the two components.

4 CHAPTER 1. INTRODUCTIONDeclaration 1.2.11 (Component Match)M : Component � Component ! BoolWe vary three parameters in our concept of match: the kind of information used to describethe components, the granularity of the components, and the degree of relaxation of the match.Figure 1.1 illustrates the design space created by these three parameters.
Fu

nc
tio

ns
M

od
ul

es

(Kind of component abstract)

(
L

ev
el

 o
f g

ra
nu

la
ri

ty
 o

f c
om

po
ne

nt
s

)

(D
eg

re
e o

f m
at

ch
 re

la
xa

tio
n)Exa

ct

Rela
xe

d

Signatures SpecificationsText Control- or Data-
 Flow GraphsFigure 1.1: Design space of component matchThe x-axis indicates the kind of abstraction used by the match. Components themselvesmay be either textual pieces of code or executable binaries. In either case, it is unlikely thatcomponents themselves will be the same, or even similar enough to relate. Therefore, we mustcompare abstracts of components. An abstract of a component is a description of the componentthat eliminates some of the details or that characterizes the component at a more abstractlevel. Examples of component abstracts include textual descriptions, structural information,signatures, and speci�cations. The semantic richness of abstracts increases as we move to theright on the x-axis.With textual descriptions, matching is based on text strings, and perhaps some knowledgeabout synonyms. There is usually at least some textual information available about any com-1Declarations declare a function and its type; De�nitions include a de�nition of the function as well.

1.2. A SOLUTION (THESIS SCOPE) 5ponent (e.g., variable names, documentation). A drawback of textual descriptions, however, isthe lack of precision. For example, what does \delete" mean? What format does the returnedvalue have? And how can we de�ne matching when people use very di�erent words to describesimilar concepts, or perhaps even a di�erent language?Examples of structural abstracts include control
ow or data
ow graphs. Although suchgraphs are precise, the abstracts they provide focus on how the component works, rather thanwhat the component does. The questions we want to answer are more interested in the what,not the how.Semantic abstracts enable us both to describe the behavior of components precisely andto focus on the what. Two examples of semantic abstracts are signatures, which describe thetype information of a component, and speci�cations, which describe the dynamic behavior ofa component. Signatures are really just a weak form of speci�cation. Both are natural waysof describing components and have well-understood relations between instances of the abstract(e.g., type equivalence, logical relations between formal speci�cations), which we exploit heavilyin de�ning matches.We are interested in both signatures and speci�cations because they provide a range ofexpressiveness and \cost". On the one hand, signatures are \cheap" { for an existing component,the type is either required by or inferred by the compiler, and queries are easy for a programmerto write, since he or she is already familiar with the language's type system. On the other hand,although speci�cations require additional work, their expressive power is much greater.The second factor in component matching is the granularity of the components, as illus-trated by the y-axis of Figure 1.1. Components vary in size from individual language constructsto moderately-sized blocks of code to large software systems. In order to describe and reusecomponents, though, the components must be encapsulated in some way (e.g., function de�ni-tions, modular collections of functions, or stand-alone software systems). The granularities ofsoftware components in which we are interested are functions (e.g., C routines, Ada procedures,ML functions) and modules (e.g., C++ classes, Ada packages, ML modules). We are interestedin both levels of match because in practice we expect users to want to reuse components atboth levels of granularity.The z-axis of Figure 1.1 represents the degree of relaxation of a match. It is rarely the casethat we would require one component to match the other \exactly." In retrieval, we want aclose match; as in any information retrieval context [Cor95, ML94, SM83], we might be willingto sacri�ce precision for recall. That is, we would be willing to get some false positives as longas we do not miss any (or too many) true positives. In indexing, we use a partial orderingover a set of components, rather than equivalence between components. And in determiningsubstitutability, we do not need the substituting component to have the exact same behavior asthe substituted, only the same behavior relative to the environment that contains it. Thereforefor each kind of match, we de�ne both an exact match and various notions of relaxed match.

6 CHAPTER 1. INTRODUCTIONFor example, relaxed signature matching on functions might allow reordering of a function'sinput parameters.1.2.1 Component Signatures and Speci�cationsTo be concrete in our examples and implementation, we have chosen particular languages forour signatures and speci�cations. We use ML [MTH90] as our component language, and hencerely on the ML type and module systems. Figure 1.2 shows three ML signature modules,List, Queue, and Set. (ML signature modules are akin to Ada de�nition modules and Modula-3interface modules; ML implementations are written in modules called structures.) Each modulesignature contains a set of function signatures. For example, the Queue module contains fourfunction signatures, including the function deq with signature � T ! �. Functions in a moduleare sometimes named with the module name as a pre�x (e.g., Queue.deq). We explain thefunction signature notation in detail in Chapter 2; deq's signature indicates that deq takes aqueue of objects of some type and returns an object of that type.signature List =sig val empty : unit ! � listval cons : � � � list ! � listval hd : � list ! �val tl : � list ! � listval map : (� ! �) ! � list ! � listval intsort : (int � int ! bool) ! int list ! int listendsignature Queue =sig type � Tval create : unit ! � Tval enq : � T � �! � Tval rest : � T ! � Tval deq : � T ! �end signature Set =sig type � Tval create : unit ! � Tval insert : �! � T ! � Tval delete : �! � T ! � Tval member : �! � T ! boolval union : � T ! � T ! � Tval intersection : � T ! � T ! � Tval di�erence : � T ! � T ! � TendFigure 1.2: The Toy Signature Library (ML signature modules)

1.2. A SOLUTION (THESIS SCOPE) 7signature Queue = sig(�+ using Container +�)type � T (�+ based onContainer.E Container.C +�)val create : unit ! � T(�+ create () = qensures q = empty +�)val enq : � T � �! � T(�+ enq (q; e) = q2ensures q2 = insert (e; q) +�)val rest : � T ! � T(�+ rest q = q2requires not (isEmpty (q))ensures q2 = butFirst (q) +�)val deq : � T ! �(�+ deq q = erequires not (isEmpty (q))ensures e = �rst (q) +�)endFigure 1.3: A Larch/ML module speci�cationThe expressiveness of a type system (and thus the e�ectiveness of signature matching) variesgreatly across di�erent programming languages. In a language such as C [KR78], functionsoperate on a few built-in base types (e.g., int or double) or pointers to them (e.g., char �) andthus, types are of limited expressiveness. In contrast, more advanced programming languageshave rich type systems with user-de�ned abstract types, functional types, and polymorphictypes, and thus types can convey more information about a component's behavior [Wad89].For example, an ML function with signature � list ! � takes as input a list of objects of sometype � and returns an object of that type. Call the input list l and the returned object x.Because there is no way to generate objects of type � any other way, x must be an elementof l (e.g., the �rst element, or a randomly-selected element). Thus, particularly for rich typesystems, signatures provide a great deal of expressiveness.Most type systems go only so far, however, in characterizing a component's behavior. Forexample, exactly which element of the list does the function in the example return? Speci-

8 CHAPTER 1. INTRODUCTION�cations allow us to go further. We use Larch/ML [WRZ93] as our speci�cation language.Larch/ML is a Larch interface language for ML, which we describe in more detail in Sec-tion 3.1. Figure 1.3 shows the Larch/ML module speci�cation for Queue, which contains fourfunction speci�cations. A function speci�cation consists of a pre-condition clause (requires)and a post-condition clause (ensures), where each clause is an assertion in predicate logic. Theinterpretation of a function's speci�cation is that the pre-condition implies the post-condition.For example, the function speci�cation for deq speci�es that if the input queue q is not empty,then the result returned by the function, e, is the �rst element of q. The operator �rst is de�nedin the Container trait (referenced in the using clause).Speci�cations enable us to express very precise and detailed relationships between the be-haviors of two components. For example, the C library routines strcpy and strcat have the samesignature but we would be unhappy if one were substituted for the other. If we had speci�edthe behavior we desired from a string function, we could compare that speci�cation with thespeci�cations of strcpy and strcat to see if either of those functions behaves as we desire.Formal speci�cations may or may not be available for each component. Our hope is also thatas more applications such as ours come to expect speci�cations, there will be more incentivefor programmers to provide them.1.2.2 De�ning MatchNow we can instantiate component match (M in Declaration 1.2.1) for the four cases wherecomponents are either functions or modules and components are described by abstracts thatare either signatures or speci�cations. Figure 1.4 shows how we partition the matches and inwhich chapter we de�ne a particular class of matching. For functions, we consider signatureand speci�cation matches individually (Chapters 2 and 3, respectively). For modules, we de�nethe matches independently of whether the abstracts are signatures or speci�cations (Chapter4). The �rst class of matching we consider is function signature matching. The various relaxedmatches allow reordering of elements in a tuple, uncurrying of arguments to a function, renamingof type constructors, and instantiation of type variables. Allowing instantiation of type variablesintroduces both complexity and a great deal of expressiveness to the matches. We express eachof the function signature match de�nitions in terms of whether we can �nd transformationsto apply to the two function signatures such that the results are equal. Using transformationsallows us to de�ne match composition easily and cleanly. Chapter 2 describes function signaturematching in detail.The second class of matching is function speci�cation matching. We de�ne each of thematches in terms of a logical relationship, e.g., implication, between two speci�cations or be-tween parts of the speci�cations. We relate all of the matches in a lattice. Chapter 3 describesfunction speci�cation matching in detail.

1.2. A SOLUTION (THESIS SCOPE) 9
Signatures Specifications

Fu
nc

tio
ns

M
od

ul
es

(Kind of component abstract)

(
L

ev
el

 o
f g

ra
nu

la
ri

ty
 o

f c
om

po
ne

nt
s

)

Chapter 3Chapter 2

Chapter 4

(
Deg

re
e o

f m
atc

h r
ela

xa
tio

n)Exa
ct

Rela
xe

d Figure 1.4: Which chapters de�ne whatThe third class of matching is module matching (both signature and speci�cation). A mod-ule consists of some global information (e.g., type declarations) and a set of functions. Eachmodule match requires some kind of correspondence between functions. The module match def-initions are parameterized over what function match is used to determine this correspondence,which can be instantiated with any of the function matches in Chapters 2 or 3 (i.e., with eitherfunction signature or function speci�cation match). Chapter 4 describes module matching indetail.Our match de�nitions are orthogonal in several ways. Module match is parameterized by afunction match that can be instantiated by any function match (either signature or speci�ca-tion). Function signature matches themselves are de�ned in such a way that the relaxed matchesare composable. We could even consider signature match as a parameter to speci�cation match.Additionally, our general approach is
exible and extensible. The basic function signaturematch de�nitions apply to any statically-typed programming language (although some relaxedmatches only apply if the language has particular features). Function speci�cation matchingis not even tied to formal speci�cations; the match de�nitions still apply for informal speci�-cations, although proving a match must then be done informally. Moreover, we could use thesame basic approach (identify the form of the abstract and de�ne exact and various relaxed

10 CHAPTER 1. INTRODUCTIONmatches) to de�ne matching for other kinds of abstracts, and then use those matches in thesame way we use our signature and speci�cation matches. An example of a di�erent abstractis one that takes a keyword-based approach to speci�cations, so that a speci�cation is a setof attribute-value pairs [PD89]. Another example is a speci�cation abstract that also includesa protocol [AG94], which is a description of how the component expects to communicate withother components (e.g., remote procedure call in a client-server system architecture). Havingprotocols in addition to our existing speci�cations would allow us to detect mismatches in theway that two components communicate.1.2.3 ApplicationsRecall the list of questions at the beginning of Section 1.1. Now we can ask the same questionsusing the concepts of function, module, signature, and speci�cation:10. Retrieval. I need a function that returns an element from a given list of elements (i.e., afunction with the type � list ! �).20. Indexing. What is the object class hierarchy that results from indexing the library?30. Navigation. Let me see all the nodes that are more general than int � int ! bool .40. Substitution. Is Queue.deq behaviorally equivalent to Stack.pop?50. Subtyping. Is Stack a subtype of Bag?60. Modi�cation. Is there a reordering of arguments and an instantiation of variables suchthat the create function in the library (with type int � � ! � list) can be called insteadof a function with type bool � int ! bool list?We use the match predicates in three ways to answer these questions: (1) to compare a givencomponent against all components in a set, (2) to compare components in a set pairwise, and (3)to compare two components directly. Formal descriptions of each of these classes of applicationsappear in Sections 5.1, 5.2, and 5.3, respectively. Each class of applications is de�ned in termsof the general component match M (Declaration 1.2.1), which can be instantiated by any ofour match de�nitions.The �rst class of applications uses match predicates to retrieve a subset of components ina library. Suppose we want to �nd all the components in a library, L, that are like a querycomponent, Q. We can select an appropriate signature or speci�cation match, M , and checkM(S;Q) for each S 2 L. Retrieval itself has several kinds of applications. We can use retrievalto locate components for reuse (e.g., question 10) and to analyze or to browse the library.The second class of applications uses match predicates to build a hierarchical index ona library of components. An indexed library is useful for e�cient storage and retrieval of

1.2. A SOLUTION (THESIS SCOPE) 11components and for browsing. Using a subtype speci�cation match, we could build an index foran object library to represent the subtype hierarchy (question 20). And while question 30 mightat �rst glance look like a retrieval problem, if we are starting from the type of a component inthe library, we can use the index of the library to answer the question.The third class of applications simply compares two components using one of the matches.Questions 40, 50, and 60 are examples of applications in this class. Depending on the match,we get guarantees about whether various properties will hold if we substitute one componentfor the other. For example, if two function components have the same signature, then we canreplace one with another and still be assured that our code will type check. In cases where amatch is not exact, we may be able to use the information about how they are di�erent to knowwhat we need to change in order to reuse a component. For example, question 60 is answeredby a function signature match that includes relaxations to allow reordering of arguments andinstantiation of variables.Speci�cation matches de�ne even stronger relationships between components. We mayconsider two components to be behaviorally equivalent if their pre-conditions are equivalent andtheir post-conditions are equivalent. We de�ne this \exact pre/post match" in Section 3.2.1 anduse this match to answer questions like 40. In Section 5.3.2, we use module match to de�ne threedi�erent versions of subtyping, any of which we can use to answer questions like 50. Heuristicand text-based approaches to matching cannot answer questions like 40, 50, and 60 de�nitively,since the matches are not based on a formal and complete relationship between components.LibrariesSince the second and third classes of applications assume a library of components, we brie
ydiscuss libraries here, and explain the particular libraries we use in the thesis.A component library is a set of components, either all functions or all modules. Given alibrary of modules, we form a library of functions by taking the union of the functions in eachmodule. Another source of a function library is the set of built-in functions for a language.In this thesis, we use three example libraries, summarized in Table 1.1. There are two smalllibraries, the Toy Signature Library and the Toy Speci�cation Library. We use these to giveexamples of the various match de�nitions; they are very small so that we can easily see exactlywhich functions or modules are and are not matched by a query component. We use the Com-munity Library to illustrate the results of our implementation of function signature matchingon a moderate-sized library; all the examples in Section 5.1 and Section 5.2 use this library.The Community Library is built from three sub-libraries: the Edinburgh Library [Ber91], theSML/NJ Library [ATT93], and a CMU Library of local contributions [TR93].

12 CHAPTER 1. INTRODUCTIONName Figure Sig or Spec # of Modules # of FunctionsToy Signature Figure 1.2 Signature 3 17Toy Speci�cation Figure 3.1 Speci�cation 2 8Community { Signature 129 1451Edinburgh 45 401SML/NJ 31 688CMU 53 362Table 1.1: Summary of libraries used in the thesis1.3 Thesis ContributionsThis dissertation makes the following contributions:� Foundational. Within a general, highly modular, and extensible framework, we de�nematching for two kinds of semantic information (signatures and speci�cations) and twogranularities of components (functions and modules). Each kind of matching has a genericform, within which all of the matches are related and may, in some cases, be composed.The orthogonality of the matches allows us to de�ne match on modules independently ofthe particular match used on functions in the modules.� Applications. We show how the de�nitions of matching can be applied to the problemsof retrieval from libraries, indexing libraries, and reuse of components. We demonstratethe various signature and speci�cation matches with examples of typical uses in eachapplication.� Engineering. We describe our implementations of function and module signature match,function speci�cation match, function signature-based indexing, and function signature-based retrieval. These implementations demonstrate the feasibility of our approach andallow us to illustrate the applications with results from a moderately-sized componentlibrary.1.4 Roadmap and TerminologyThe remainder of the thesis is structured as follows. Chapters 2, 3, and 4 de�ne signatureand speci�cation matching, as shown in Figure 1.4. In each chapter, we present notions ofboth exact and relaxed match, show how the de�nitions are related to each other, discuss ourimplementation of the matches, and evaluate the approach. Chapter 5 describes applicationsof the match de�nitions in the areas of retrieval (5.1), indexing (5.2), and substitution (5.3).We discuss related work in Chapter 6 and discuss conclusions and directions for future work inChapter 7.

1.4. ROADMAP AND TERMINOLOGY 13Throughout the de�nition chapters (Chapters 2 { 4), we give examples of matches for eachde�nition. We give additional examples of the applications of signature and speci�cation match-ing in Chapter 5. For each match, there is both a match name and a match predicate symbol.For example, the match predicate for function signature equivalence is named exact match (orexact function signature match when we are not clearly talking about function signatures) andhas the predicate symbol matchE . For each match namedM with the predicate symbol matchMand components S and Q, if matchM (S;Q), we say equivalently:� S matches with Q (under M)� M match of S with Q� Q is matched by S (under M)� Q retrieves S (under M)It is important to distinguish between \matches with" and \is matched by", because notall matches are symmetric: matchM (S;Q) does not necessarily imply that matchM (Q; S). Forthe matches that are symmetric, we also say that \S and Q satisfy the match."

14 CHAPTER 1. INTRODUCTION

Chapter 2Function Signature MatchingIn this chapter, we examine various de�nitions of function signature matching. We beginin Section 2.1 with a description of what we mean by function signatures, present our de�nitionsof the various matches in Section 2.2, and show how to compose de�nitions in Section 2.3.In Section 2.4, we de�ne various properties of the matches, and show how each of the exact andrelaxed matches are instances of a generic function signature match de�nition. We describe animplementation of the matches in Section 2.5.2.1 SignaturesFunction matching based on just signature information boils down to type matching, in partic-ular matching function types. The following de�nition of types is based on Field and Harrison[FH88]. A type is either a type variable 2 TypeVar (denoted by Greek letters) or a type con-structor 2 TyCon applied to other types. Polymorphic types contain at least one type variable;types that do not contain any type variables are monomorphic.Each type constructor has an arity indicating the number of type arguments. Base types areconstructors of 0-arity, e.g., int, bool; the \arrow" constructor for function types is binary, e.g.,int ! bool. We use in�x notation for tuple construction (�) and functions (!), and otherwiseuse post�x notation for type constructors (e.g., int list stands for the \list of integers" type).The user-de�ned type, � T , represents a type constructor T with arity 1, where the type of theargument to T is the type variable �.1We assume that the type system includes tuples, polymorphism, higher-order functions,and user-de�ned types. These features are not necessary to do signature matching, but withoutthem, some of the relaxed matches will not apply. We discuss this in more detail in Section 2.6.1In ML, a common programming practice is to use T for the constructor name of the user-de�ned type ofinterest. 15

16 CHAPTER 2. FUNCTION SIGNATURE MATCHINGDe�nition 2.1.1 (Type Equality (=T))� =T � 0 i�(1) they are lexically identical type variables or(2) � = tyCon(�1; :::; �n), � 0 = tyCon 0(� 01; :::; � 0n),tyCon = tyCon 0, and 8 1 � i � n; �i =T � 0i .Variable SubstitutionTo allow substitution of other types for type variables, we introduce notation for variablesubstitution: [� 0=�]� represents the type that results from replacing all occurrences of the typevariable � in � with � 0, provided no variables in � 0 occur in � (read as \� 0 replaces � in �").For example, [(int ! int)/�](� ! �) = � ! (int ! int). A sequence of substitutions isright associative. For example, [�=
][�=�](� !
) = [�=
](�!
) = (� ! �): In a case likethe previous example, where � 0 is just a variable, [� 0=�]� is simply variable renaming. Theconcatenation of two sequences is denoted with a \^"; U1^U2� = U1(U2�).We use the same notation for renaming of type constructors. In this case, [c0=c]� (wherec; c0 2 TyCon) represents the type that results from replacing all occurrences of the typeconstructor c in � with c0, provided c0 does not occur in � . For example, [Set=T](� T ! �) =� Set ! �. The ! and � type constructors cannot be renamed.We will use V for a sequence of variable renamings, VTC for a sequence of type constructorrenamings, and U for a sequence of variable substitutions.2.2 Match De�nitionsGiven the type of a function from a component library, �l, and the type of a query, �q, we de�nea generic form of function signature match, M(�l; �q), as follows:De�nition 2.2.1 (Generic Function Signature Match)M(�l; �q) = 9 a transformation pair, T = (Tl; Tq); such that Tl(�l) R Tq(�q)where the implicit parameter R is some relationship between types (e.g., equality) and Tland Tq are transformations that are applied to the library and query types, respectively. Atransformation is a function from types to types (e.g., a function that reorders elements in atuple). Most of the matches we de�ne apply transformations to only one of the types. Wherepossible, we apply the transformation to the library type, �l, in which case Tq is simply theidentity function. For example, in exact match, two types match if they are equal modulovariable renaming. In this case, Tl is a sequence of variable renamings, Tq is the identityfunction, and R is the type equality (=T) relation.

2.2. MATCH DEFINITIONS 17We classify relaxed signature matches as either partial matches, which vary R, the rela-tionship between �l and �q (e.g., de�ne R to be a partial order), or transformation matches,which vary Tl or Tq, the transformations on types. In the following sections, we �rst de�neexact match, followed by transformation matches, partial matches, and combined matches. Weillustrate each de�nition with examples that use the de�nition to retrieve functions from theToy Signature Library in Figure 1.2 (page 1.2).2.2.1 Exact MatchDe�nition 2.2.2 (Exact Match)matchE (�l; �q) = 9 a sequence of variable renamings, V; such thatV �l =T �qTwo function types match exactly if they match modulo variable renaming. For monomorphictypes, there are no variables, so matchE (�l; �q) = (�l =T �q) where �l and �q are monomorphic.We only need a sequence of renamings for one of the type expressions, since for any tworenamings, V1 and V2 such that V1�1 =T V2�2, we could construct a V 0 such that V 0�1 =T �2.(Note we could consider matchE as a form of transformation match since it allows variablerenaming.)For polymorphic types, actual variable names do not matter, provided there is a way torename variables so that the two types are identical. For example, �l = (� ��)! bool matcheswith �q = (� � �) ! bool with the substitution V = [�=�]. But �l = � ! � does not matchwith �q =
 !
 because once we substitute
 for � to get
 ! �, we cannot substitute
 for�, since
 already occurs in the type. This is the \right thing" because the di�erence between�l and �q is more than just variable names; �q takes a value of some type
 and returns a valueof the same type, whereas �l takes a value of some type and returns a value of a potentiallydi�erent type.To see how exact match might be used in practice, suppose a user wants to locate a functionin the Toy Signature Library that applies an input function to each element of a list, forminga new list. The query �q = (� !
) ! � list !
 list is matched by the map function (withthe renaming [
=�]), exactly what the user wants.2.2.2 Transformation RelaxationsExact match is a useful starting point, but it may miss useful functions whose types are closebut do not exactly match the query. Exact match requires a user to be either familiar with alibrary or lucky in choosing the exact syntactic format of a type.One class of relaxed match transforms a type expression to achieve a match. Examples in-clude renaming type constructors, changing whether a function is curried or uncurried, changing

18 CHAPTER 2. FUNCTION SIGNATURE MATCHINGthe order of types in a tuple, and changing the order of arguments to a function (for functionsthat take more than one argument). These last two are similar since we can view multiple argu-ments to a function as a tuple. The following two queries illustrate the need for transformationrelaxations. The query �q = � ! � list ! � list would miss the cons function because �q iscurried while cons is not. The query �q = (� list � �) ! � list would miss cons because thetypes in the tuple are in a di�erent order.Type Constructor RenamingMost type systems have a small set of built-in type constructors (e.g., list) but allow users toadd new types using user-de�ned type constructors (e.g., the Queue and Set modules in theToy Signature Library both have the user-de�ned type constructor T). In the same way thatqueriers should not have to guess a type variable name, neither should they have to guess atype constructor name de�ned by someone else, since di�erent users may use a di�erent namefor the same type constructor. Type constructor match allows renaming of type constructorsfor these cases. We do not include this renaming in the exact match, since there may also becases where a querier does want to restrict the matches to those with exactly the same typeconstructors. We could choose to restrict renaming to user-de�ned types, but that would makean unnecessary distinction between a built-in type like list and a user-de�ned type, since for aquery like � T ! �, we would want T to match not just user-de�ned type constructors, butalso list. We exclude the type constructors ! and � from renaming, since they have specialmeanings in the type system and we expect users to be familiar with them (and hence not toneed to rename them).De�nition 2.2.3 (Type Constructor Match)matchtycon (�l; �q) = 9 a sequence of type constructor renamings, VTC; such thatmatchE (VTC �l; �q)As an example, suppose a user wants a function to return the �rst element of a list withthe query � C ! �. Under exact match, this query is not matched by any functions in the ToySignature Library, but under type constructor match, the query retrieves the functions hd onlists (with renaming [C=list]) and deq on queues (with renaming [C=T]).As another example, suppose a user wants to locate a function to add an element to acollection with the query �q = (� C � �) ! � C. Under type constructor match, this queryretrieves the enq function on queues (with the renaming [C=T]), which may be what the userwants. However, the query is not matched by the cons function on lists or the insert and deletefunctions on sets, other likely candidates.

2.2. MATCH DEFINITIONS 19Uncurrying FunctionsA function that takes multiple arguments may be either curried or uncurried. The uncurriedversion of a function has a type (�1 � : : : � �n�1)! �n, while the corresponding curried versionhas a type �1 ! : : :! �n�1 ! �n. In many cases, it will not matter to the querier whether ornot a function is curried. We de�ne uncurry match by applying the uncurry transformation toboth query and library types. We choose to uncurry rather than curry each type so that wecan later compose this relaxed match with one that reorders the types in a tuple.The uncurry transformation, UC, produces an uncurried version of a given type:UC(�) = ((�1 � : : : � �n�1)! �n if � = �1 ! : : :! �n�1 ! �n; n > 2� otherwiseThe uncurry transformation is non-recursive; any nested functions will not be uncurried. Wealso de�ne a recursive version, UC+:UC+(�) = 8><>: (UC+(�1) � : : : � UC+(�n�1))! UC+(�n) if � = �1 ! : : :! �n�1 ! �n; n > 2tyCon(UC+(�1); : : : ; UC+(�n)) if � = tyCon(�1; : : : ; �n)� where � is a variable or a base typeFor example, if � = int ! int ! (int ! int ! bool)! bool then UC(�) = (int � int � (int !int! bool))! bool and UC+(�) = (int � int � ((int � int)! bool))! bool.De�nition 2.2.4 (Uncurry Match and Recursive Uncurry Match)matchuncurry (�l; �q) = matchE (UC(�l); UC(�q))matchuncurry+ (�l; �q) = matchE (UC+(�l); UC+(�q))Uncurry match takes two uncurried function types and determines whether their correspondingargument types match. Recursive uncurry match is similar but allows recursive uncurrying of�l's and �q's functional arguments. By applying the UC (or UC+) transformation to both �l and�q, we are transforming the types into a canonical form, and then checking that the resultingtypes are equal (modulo variable renaming).Suppose we again are looking for a function that adds an element to a collection. But thistime suppose we use the query �q = � T ! �! � T . Exact match yields nothing, but uncurrymatch would return the function enq on queues. Note that again this query does not retrievecons, insert, or delete.Since the uncurry transformation is applied to both the query and library types, it isnot necessary to de�ne an additional curry match. Such a match would be similar in struc-ture, relying on a curry transformation to produce a curried version of a given type; that is,

20 CHAPTER 2. FUNCTION SIGNATURE MATCHINGmatchcurry (�l; �q) = matchE (curry(�l); curry(�q)). The curry and uncurry transformations arenot exactly inverses, since it is not always true that curry(UC(�)) = � or that UC(curry(�)) =� . However, the two matches de�ne the same equivalence: matchcurry (�l; �q) if and only ifmatchuncurry (�l; �q).Reordering TuplesTuples group multiple arguments to a function, but sometimes the order of the arguments doesnot matter. For example, a function to test membership in a list could have type (� �� list)!bool or type (� list � �) ! bool . Reorder match allows matching on types that di�er only intheir order of arguments.We de�ne reorder match in terms of permutations. Given a function type whose �rstargument is a tuple (e.g., � = (�1 � : : : � �n�1) ! �n), a reorder transformation, T�, de�nes apermutation �, which is applied to the tuple. � is a bijection with domain and range 1 : : :n� 1such that T�(�) = (��(1) � : : : � ��(n�1))! �n.De�nition 2.2.5 (Reorder Match)matchreorder (�l; �q) = 9 a reorder transformation T� such thatmatchE (T�(�l); �q)Under this relaxation, a library type, �l, matches with a query type, �q, if the argument types of�l can be reordered so that the types match exactly. Although we choose to apply the reordertransformation, T�, to the library type �l, we could equivalently apply the inverse, T��1 , tothe query type �q: matchE (T�(�l); �q) = matchE (�l; T��1(�q)). With reorder match, the query�q = (� list ��)! � list we discussed at the beginning of Section 2.2.2 is now matched by thedesired list function, cons.There are two variations on reorder match: we can allow (1) recursive permutations so thata tuple's component types may be reordered (matchreorder+); and (2) reordering of argumentsto user-de�ned type constructors, e.g., so that (int ; �) T ! int and (�; int) T ! int wouldmatch.2.2.3 Partial RelaxationsOften a user with a speci�c query type, e.g., int list ! int list, could just as easily use aninstantiation of a more general function, e.g., � list! � list. Or, the user may have di�cultydetermining the most general type of the desired function but can give an example of whatis desired. Allowing more general types to match a query type accommodates these kinds ofsituations. Conversely, we can also imagine cases where a user asks for a general type that doesnot match anything in the library exactly. There may be a useful function in the library whose

2.2. MATCH DEFINITIONS 21type is more speci�c, but the code could be easily generalized to be useful to the user. Wede�ne generalized and specialized match to address both of these cases.Referring back to our de�nition of generic function signature match (De�nition 2.2.1), forexact match, the relation,R, between types is equality. For partialmatches we relax this relationto be a partial order on types. We use variable substitution to de�ne the partial ordering, basedon the \generality" of the types. For example, � ! � is a generalization of in�nitely manytypes, including int ! int and (int � �) ! (int � �), using the variable substitutions [int=�]and [(int � �)=�], respectively.� is more general than � 0 (� � � 0) if the type � 0 is the result of a (possibly empty) sequenceof variable substitutions applied to type � . Equivalently, we say � 0 is an instance of � (� 0 � �).We would typically expect functions in a library to have as general a type as possible.Generalized MatchDe�nition 2.2.6 (Generalized Match)matchgen (�l; �q) = �l � �qA library type matches with a query type if the library type is more general than the query type.Exact match, with variable renaming, is really just a special case of generalized match whereall the variable substitutions are variable renamings, so matchE (�l; �q)) matchgen (�l; �q).For example, suppose a user needs a function to convert a list of integers to a list of booleanvalues, where each boolean corresponds to whether or not the corresponding integer is positive.The user might write a query like �q = (int ! bool)! int list ! bool list . Under exact match,this query is not matched by any function in our library. But under generalized match, �qwould retrieve map, since map's type is more general than the query type. This kind of matchis especially desirable, since the user does not need to make any changes to use the more generalfunction.Specialized MatchDe�nition 2.2.7 (Specialized Match)matchspcl (�l; �q) = �l � �qSpecialized match is the inverse of generalized match; we could alternatively de�ne matchspcl interms ofmatchgen by swapping the order of the types: matchspcl (�l; �q) = matchgen (�q; �l). It alsofollows that exact match is a special case of specialized match: matchE (�l; �q)) matchspcl (�l; �q)As an example of how specialized match is useful, suppose the querier needs a generalfunction to sort lists and uses the query �q = ((� � �) ! bool)! � list ! � list . Our library

22 CHAPTER 2. FUNCTION SIGNATURE MATCHINGdoes not contain such a function, but under specialized match, �q would retrieve intsort, aninteger sorting function with the type �l = ((int � int)! bool)! int list ! int list . Assumingintsort is written reasonably well, it should be easy for the querier to modify it to sort arbitraryobjects since the comparison function is passed as a parameter.Specialized match is also useful in cases where we do not know an actual type for part of thequery. For example, if we wanted a function to compare strings, the return value might be aboolean, or an integer (e.g., measuring edit distance), or an enumerated type. The query string�string ! � with specialized match would retrieve all such functions. Sections 5.1.2 and 5.1.3contain many examples using specialized match for statistical analysis and for browsing onlibraries.Although we present generalized and specialized match in terms of changing the relation(R) between �l and �q, we could also de�ne them as transformation matches, since the de�nitionof the � relation on types is in terms of variable substitution.De�nition 2.2.8 ((alternative) Generalized and Specialized Match)matchgen (�l; �q) = 9 a sequence of variable substitutions, U; such thatmatchE (U �l; �q)matchspcl (�l; �q) = 9 a sequence of variable substitutions, U; such thatmatchE (�l; U �q)We can even de�ne matchgen (�l; �q) as U�l =T �q; the use of matchE is redundant since general-ized match requires a sequence of substitutions that includes any necessary variable renaming.We will appeal to the above alternative de�nitions of generalized and specialized match whenwe de�ne the composition of di�erent relaxed matches (Section 2.3).2.3 Combining RelaxationsEach relaxed match is individually a useful match to apply when searching for a function of agiven type. Combinations of these separately de�ned relaxed matches widen the set of librarytypes retrieved. Suppose again that a user wants a function to add an element to a collection.This function might have one of four possible types:1. � � � T ! � T2. � T � �! � T3. �! � T ! � T4. � T ! �! � T

2.3. COMBINING RELAXATIONS 23Under reorder match, a query of type 1 or 2 retrieves library functions of types 1 or 2, but nottypes 3 or 4. Under uncurry match, a query of type 1 or 3 retrieves library functions of thosetypes (and likewise for types 2 and 4). But no individual relaxed match allows a single queryto retrieve all four types. By composing reorder and uncurry match, a query of any of the fourtypes will retrieve library functions of all four types, which is what we would like.We deliberately gave our de�nitions in a form so that we can easily compose them. If weuse the alternative de�nitions of matchgen and matchspcl , each of the relaxed match de�nitionspresented in Sections 2.2.2 and 2.2.3 can be cast in a composable form by instantiating R tomatchE in the generic function match (De�nition 2.2.1):9 a transformation pair, T = (Tl; Tq); such that matchE (Tl(�l); Tq(�q)).The match composition of two relaxed matches, denoted as (matchR1 � matchR2), is de�nedby composing the transformations on each type, applying the inner (R2) relaxation �rst.De�nition 2.3.1 (Match Composition)(matchR1 � matchR2)(�l; �q) = 9 transformation pairs T1 = (T1l; T1q) and T2 = (T2l; T2q)such that matchE (T1l � T2l(�l); T1q � T2q(�q))The choice of R1 determines the kinds of transformations in T1 (and likewise for R2 and T2).For matchtycon , Tl is a sequence of type constructor renamings and Tq is the identity function.For matchuncurry , Tl and Tq are UC; the \9" is not necessary, since there is only one possibleuncurry transformation. For matchreorder , Tl is a reorder transformation and Tq is the identityfunction. Formatchgen , Tl is a sequence of variable substitutions and Tq is the identity function.For matchspcl , Tl is the identity function and Tq is a sequence of variable substitutions.We can compose any number of relaxed matches in any order. The order in which theyare composed does make a di�erence; match composition is not commutative, as we show indetail in Section 2.4.2. For simplicity, we omit the recursive versions of matchuncurry+ andmatchreorder+ , although the analysis below could be easily extended to include them. Thus,there are �ve \basic" relaxed matches: matchtycon , matchuncurry , matchreorder , matchgen , andmatchspcl . That is, R1; R2 2 ftycon, uncurry, reorder, gen, spclg.We now consider some of the interesting combinations of these relaxed matches. In caseswhere a pair of relaxations is not commutative, we order the relaxations in the way that allowsthe most matches. So, for example, uncurry and reorder match are not commutative, butmatchuncurry � matchreorder (�l; �q)) matchreorder � matchuncurry (�l; �q), so we use matchreorder �matchuncurry (�l; �q).

24 CHAPTER 2. FUNCTION SIGNATURE MATCHING� (matchreorder � matchuncurry)(�l; �q)With this composition, two types match if they are equivalent modulo whether or notthey are curried or whether or not the arguments are in the same order. We uncurrythe types �rst, thereby allowing a reordering on any tuples formed by uncurrying. Usingthis composition, the query type �q = � T ! � ! � T would be matched by enq(�l = � T � �! � T) on queues and insert and delete (�l = �! � T ! � T) on sets.� (matchtycon � matchreorder � matchuncurry)(�l; �q)�l and �q match if they are equivalent modulo whether or not they are curried, whetheror not the arguments are in the same order, and with renaming of type constructors. Forexample, the query �q = � T ! � ! � T would be matched by cons (�l = � � � list !� list) as well as enq, insert, and delete.� (matchuncurry � matchgen)(�l; �q)�l and �q match if the uncurried form of the result of applying a sequence of variablesubstitutions to �l is equivalent to the uncurried form of �q. With this composition, thequery �q = ((int ! bool) � int list)! bool list would be matched by the map function (�l= (� ! �) ! � list ! � list).� (matchreorder � matchuncurry � matchgen)(�l; �q)�l and �q match if some permutation of the uncurried form of � 0l is equivalent to theuncurried form of �q, where � 0l is the result of applying a sequence of variable substitutionsto �l. Using this combined match, the query �q = (int list ; (int ! bool)) ! bool list ismatched by the map function in our library (�l = (� ! �) ! � list ! � list).� (matchtycon � matchreorder � matchuncurry � matchgen)(�l; �q)This is the same as the previous composition except it also allows renaming of typeconstructors. Under this match, �q = int C ! int ! int C retrieves cons, enq, insert,and delete.� (matchgen � matchspcl)(�l; �q)�l and �q match if the result of applying a sequence of variable substitutions, U1, to �l isequivalent to the result of applying a sequence of variable substitutions, U2, to �q. Notethat there is no constrain on any relationship between U1 and U2. Thus, this composedmatch is not equivalent to type uni�cation. For example, under this composed match, thetype �l = bool ! � matches with the query �q = �! int with substitutions U1 = [int=�]and U2 = [bool=�]. But �l and �q are not uni�able, since uni�cation applies the samerenaming to both types and so � would have to be renamed consistently.

2.4. PROPERTIES OF THE MATCHES 252.4 Properties of the Matches2.4.1 Equivalence and Partial OrderThe function signature match de�nitions are relations on types. Thus, we can classify thematches according to whether they are equivalences, partial orders, or neither. We use thisclassi�cation to build indexed libraries (Section 5.2).De�nition 2.4.1 (Equivalence Match)A match relation M= is an equivalence match if:1. M=(�; �) for all types � [Re
exive]2. If M=(�1; �2) then M=(�2; �1) [Symmetric]3. If M=(�1; �2) and M=(�2; �3) then M=(�1; �3) [Transitive]De�nition 2.4.2 (Partial Order Match)A match relation M� is a partial order match if:1. M�(�; �) for all types � [Re
exive]2. If M�(�1; �2) and M�(�2; �1) then M=(�1; �2) [Antisymmetric]3. If M�(�1; �2) and M�(�2; �3) then M�(�1; �3) [Transitive]Equivalence matches partition types into sets of types that are equivalent modulo sometransformations. Type equivalence (=T) and most of the match de�nitions in this chapter(exact, type constructor, uncurry, and reorder matches) are equivalence matches. Partial ordermatches impose an ordering on the types. To show the antisymmetric property of a partialorder match, we need a corresponding equivalence match, M=. Generalized and specializedmatch are partial order matches with M= = matchE . Table 2.1 summarizes this classi�cation,as well as showing the predicate symbols for each match.Proving the properties of each of the match de�nitions is fairly straightforward. Most ofthe proofs about these matches and their compositions rely on properties of the underlyingtransformations on types. Consider the case for showing that exact match is an equivalencematch.1. Exact match is re
exive (matchE (�; �)), since for any type � , � =T � with no variablerenaming.2. Exact match is symmetric. Suppose matchE (�1; �2). Then (by de�nition of exact match)there is a sequence of variable renamings V such that V �1 =T �2. For a sequence ofvariable renamings V = [u1=v1] : : : [un=vn], de�ne the inverse, V �1 = [vn=un] : : : [v1=u1].We can prove by induction on the length of V that if V �1 is \valid" (i.e., the occursrequirement is satis�ed for each renaming), and V �1 =T �2, then (1) V �1�2 is valid, and(2) V �1�2 =T �1. Thus, matchE (�2; �1) using variable renaming V �1.

26 CHAPTER 2. FUNCTION SIGNATURE MATCHINGName of Match Predicate Symbol Kind of MatchExact matchE EquivalenceType Constructor matchtycon EquivalenceUncurry matchuncurry EquivalenceReorder matchreorder EquivalenceGeneralized matchgen Partial OrderSpecialized matchspcl Partial OrderTable 2.1: Function signature matches, their symbols and classi�cations3. Exact match is transitive. Suppose matchE (�1; �2) and matchE (�2; �3). Then there existvariable renaming sequences V 1 and V 2 such that V 1 �1 =T �2 and V 2 �2 =T �3. LetV 3 = V 2^V 1. Then V 3 �1 = V 2(V 1 �1) =T V 2 �2 =T �3, so matchE (�1; �3).For generalized match, the proofs for re
exivity and transitivity are the same as for exactmatch. However, because the transformations are variable substitutions rather than variable re-namings, we cannot guarantee the existence of an inverse substitution sequence, and hence gen-eralized match is not symmetric. Further, suppose matchgen (�1; �2) and matchgen (�2; �1). Thenthere exist variable substitution sequences U1 and U2 such that U1 �1 =T �2 and U2 �2 =T �1.We can prove from this that U1 and U2 must be variable renamings, and hence matchE (�1; �2),and generalized match is antisymmetric. Using the antisymmetry property of generalized match,and the de�nition of specialized match as the inverse of generalized match, we can prove thattwo types match under both generalized and specialized match if and only if the two types areequivalent.Lemma 2.4.1 matchgen (�l; �q) ^matchspcl (�l; �q), matchE (�l; �q)Proof): Assume matchgen (�l; �q) ^matchspcl (�l; �q). Since matchgen and matchspcl are inverses,matchspcl (�l; �q) = matchgen (�q; �l). It follows from antisymmetry ofmatchgen thatmatchE (�l; �q).(: Assume matchE (�l; �q). Let U1 = U2 = Id (i.e., the identity function). ThenmatchE (U1�l; �q) and matchE (�l; U2�q), so matchgen (�l; �q) and matchspcl (�l; �q) 22.4.2 Match CompositionCommutativityNot all match compositions are commutative. In particular, uncurry match does not commutewith either reorder, generalized, or specialized match; additionally, reorder and generalized

2.4. PROPERTIES OF THE MATCHES 27match do not commute. We list pairs of relaxations whose composition is commutative in The-orem 2.4.2. For pairs that are not commutative, we show which order of composition is strongerin Theorem 2.4.3.Theorem 2.4.2 The following match compositions are commutative:1. matchreorder �matchspcl (�l; �q) = matchspcl �matchreorder (�l; �q)2. matchgen �matchspcl (�l; �q) = matchspcl �matchgen (�l; �q)3. matchtycon �matchspcl (�l; �q) = matchspcl �matchtycon (�l; �q)4. matchtycon �matchreorder (�l; �q) = matchreorder �matchtycon (�l; �q)5. matchtycon �matchuncurry (�l; �q) = matchuncurry �matchtycon (�l; �q)6. matchtycon �matchgen (�l; �q) = matchgen �matchtycon (�l; �q)Proof Sketch(1, 2, and 3): For specialized match, the transformation is applied to the second type, whilefor reorder, generalized, or type constructor match, the transformation is applied to the �rsttype. The two transformations are independent, so the order in which the two transformationsis applied does not matter:matchreorder �matchspcl (�l; �q) = 9 T�; U : matchE (T�(�l); U�q) = matchspcl �matchreorder (�l; �q)matchgen �matchspcl (�l; �q) = 9 U1; U2 : matchE (U1�l; U2�q) = matchspcl �matchgen (�l; �q)matchtycon�matchspcl (�l; �q) = 9 VTC ; U : matchE (VTC �l; U�q) = matchspcl �matchtycon (�l; �q)(4) matchtycon �matchreorder (�l; �q) = matchreorder �matchtycon (�l; �q):(a) matchtycon �matchreorder (�l; �q)) matchreorder �matchtycon (�l; �q)Assume matchtycon � matchreorder (�l; �q). Then 9 VTC ; T� : matchE (VTC � T�(�l); �q). T� �VTC(�) = VTC�T�(�) (by applying the de�nitions of VTC and T�). SomatchE (T��VTC(�l); VTC�T�(�l)). Therefore, sincematchE is an equivalence match,matchE (T��VTC(�l); �q), somatchreorder �matchtycon (�l; �q).(b) matchreorder �matchtycon (�l; �q)) matchtycon �matchreorder (�l; �q)The proof is similar to (a).(5) matchtycon �matchuncurry (�l; �q) = matchuncurry �matchtycon (�l; �q):The proof is similar to that for (4), using the fact that VTC �UC(�) = UC �VTC(�), whichfollows from the de�nitions of VTC and UC.

28 CHAPTER 2. FUNCTION SIGNATURE MATCHING(6) matchtycon �matchgen (�l; �q) = matchgen �matchtycon (�l; �q):(a) matchtycon �matchgen (�l; �q)) matchgen �matchtycon (�l; �q)Assume matchtycon �matchgen (�l; �q).Then 9 VTC; U : matchE (VTC � U(�l); �q), where U = [�1=v1] : : : [�n=vn].Let V 0TC = VTC , U 0 = [VTC �1=v1] : : : [VTC �n=vn].We can prove VTC � U(�l) = U 0 � V 0TC(�l) by induction on the lengths of U and VTC .So 9 U 0; V 0TC such that matchE (U 0 � V 0TC(�l); �q).Thus, matchgen �matchtycon (�l; �q).(b) matchgen �matchtycon (�l; �q)) matchtycon �matchgen (�l; �q)Assume matchgen �matchtycon (�l; �q).Then 9 U; VTC such that matchE (U � VTC(�l); �q),where VTC = [X1=Y1] : : : [Xn=Yn] and U = [�1=v1] : : : [�n=vn].Let VY = a sequence of type constructor renamings. For each [Xi=Yi] 2 VTC , if Yi 2 U then[Zi=Yi] 2 VY , where Zi is a new type constructor.V �1Y = the inverse of VYV �1X = a sequence of type constructor renamings. For each [Xi=Yi] 2 VTC, if Xi 2 U then[Yi=Xi] 2 V �1XU 0 = (V �1X � VY)(U) (i.e., U 0 = [V �1X � VY �1=v1] : : : [V �1X � VY �n=vn])V 0TC = V �1Y � VTCWith some careful symbol manipulation, we can prove that U � VTC(�l) = U 0 � V 0TC(�l).So 9 U 0; V 0TC such that matchE (V 0TC �U 0(�l); �q).Thus, matchtycon �matchgen (�l; �q). 2Informally, (1), (2), and (3) are commutative because the transformations are applied todi�erent types and do not interact. (4) and (5) are commutative because the names of typeconstructors are independent of the ordering of elements of a tuple or the \curried-ness" of afunction. Renaming a type constructor cannot introduce new elements into a tuple and viceversa (and similarly for curried-ness).Proving commutativity of type constructor renaming and generalized match (6) is moredi�cult, because the type constructor renamings and the variable substitutions interact, so itis not true that for an arbitrary type constructor renaming, VTC , and variable substitution,U , VTC � U(�) = U � VTC(�). For example, if VTC = [C=T]; U = [� T=�], and � = �, thenVTC �U(�) = � C, while U � VTC(�) = � T .However, given a type constructor renaming, VTC, and a variable substitution, U , we canconstruct a new type constructor renaming, V 0TC , and a new substitution, U 0, that are appliedin the opposite order to give the same result (i.e., for (a), VTC �U(�) = U 0 �V 0TC(�) and for (b),U �VTC(�) = V 0TC �U 0(�)). The construction of V 0TC and U 0 varies in the two cases. In (a), thetype constructor renaming stays the same and U 0 is the same as U except that VTC is appliedto each �i. In (b), U 0 is like U except that it \protects" type constructors that should not be

2.4. PROPERTIES OF THE MATCHES 29renamed by VTC and \unrenames" type constructors that VTC will rename. V 0TC applies VTCand then \unprotects" the type constructors protected by U 0. For example, let �l = � !
 C,�q = � T � � C !
 T . Then matchgen � matchtycon (�l; �q) with U = [� T � � C=�] andVTC = [T=C]. U 0 = [� C � � Z=�] (C is renamed to Z to \protect" it from being renamed; Tis \unrenamed" to C, since otherwise VTC could not be applied after U). V 0TC = [C=Z][T=C](C is \unprotected" after the renamings from VTC).The remaining four pairs of matches are not commutative. For each pair, there is oneordering that admits more matches than the other. The following theorem enumerates theserelationships.Theorem 2.4.3 The following match compositions are not commutative, but the implicationshold:1. matchgen �matchreorder (�l; �q)) matchreorder �matchgen (�l; �q)2. matchgen �matchuncurry (�l; �q)) matchuncurry �matchgen (�l; �q)3. matchspcl �matchuncurry (�l; �q)) matchuncurry �matchspcl (�l; �q)4. matchuncurry �matchreorder (�l; �q)) matchreorder �matchuncurry (�l; �q)We demonstrate non-commutativity by identifying a �l and �q such that one match holdsbut the other does not.(1) Let �q = (bool �int)! (int �bool) and �l = �! �. Then (matchgen � matchreorder)(�l; �q)is false, but (matchreorder � matchgen)(�l; �q) is true with the substitution [(int � bool)=�] and apermutation that swaps the order of a 2-element tuple. In the second case, we can apply thereordering after we have substituted in type expressions that contain a tuple. However, in the�rst case, variable substitution comes last, so there is no way to reorder any tuples introducedby the substitution.(2 and 3) Let �l = int ! � and �q = (int � int)! int. Then matchuncurry �matchgen (�l; �q)is true (as is matchuncurry � matchspcl (�q; �l)). But matchgen � matchuncurry (�l; �q) is false (asis matchspcl � matchuncurry (�q; �l)). In the true case, variable substitution may introduce afunctional return value that is then uncurried, while in the false case, it is not possible toinstantiate the variable to the same form.(4) Let �l = int ! bool ! int and �q = bool � int ! int . matchreorder � matchuncurry (�l; �q)is true, but matchuncurry � matchreorder (�l; �q) is false. Uncurrying may introduce tuples thatare then reordered in the �rst case but cannot be reordered in the second case.Proofs of the implications show that the same or slightly modi�ed transformations from thestronger match can be used to show the weaker match as well. For example, consider (1). Forany �l and �q such that (matchgen � matchreorder)(�l; �q), we can use the same substitution andtuple transformation to get (matchreorder � matchgen)(�l; �q), since variable substitution cannotchange the number of elements in a tuple.

30 CHAPTER 2. FUNCTION SIGNATURE MATCHINGComposing a match with itselfApplying the same match twice does not make a di�erence. This is similar to the notion ofidempotence for an operation, but is for relations, and there is the possibility that in the casewhere we compose the match with itself there are two di�erent transformations.Theorem 2.4.4 For R 2 ftycon; reorder; uncurry; gen; spclg,matchR �matchR(�l; �q), matchR(�l; �q).Proof Sketch(: AssumematchR(�l; �q). Then 9 T : matchE (Tl(�l); Tq(�q)). To showmatchR�matchR(�l; �q),we need a transformation pair T 0 such that matchE (T 0l � Tl(�l); T 0q � Tq(�q)). For R 6= uncurry,let T 0l = T 0q = Id (the identity function). For R = uncurry, T 0l = T 0q = UC, so we need to showthat UC(UC(�)) = UC(�), which follows by cases from the de�nition of UC.): Assume matchR �matchR(�l; �q). Then 9 T1; T2 : matchE (T1l �T2l(�l); T1q �T2q(�q)).To show matchR(�l; �q), we need a transformation pair T 0 such that matchE (T 0l (�l); T 0q(�q)). ForR = uncurry, we again need the fact that UC(UC(�)) = UC(�) (as shown above). For R =reorder, we use function composition to construct a new permutation �0 = �1 � �2. For R 2fgen, spcl, tycong, we concatenate renamings (e.g., U 0 = U1^U2). 2Composed Equivalence and Partial OrdersComposing an equivalence match with another equivalence match yields an equivalence match.We have proved the following composed equivalence matches. Proofs are straightforward ma-nipulations of transformations.Theorem 2.4.5 The following are equivalence matches:1. matchtycon �matchreorder2. matchtycon �matchuncurry3. matchreorder �matchuncurry4. matchtycon �matchreorder �matchuncurryComposing an equivalence match with a partial order match yields a partial order match.Again, proofs are by manipulation of transformations.Theorem 2.4.6 Let matchR = any subsequence of the sequence matchtycon � matchreorder �matchuncurry . Then matchR � matchgen is a partial order match and matchR � matchspcl �matchuncurry+ is a partial order match.

2.4. PROPERTIES OF THE MATCHES 31Composing generalized and specialized match yields a match that is neither an equivalencematch nor a partial order match, because the composed match is not transitive. Consider thefollowing counterexample. Let �1 = int ! int , �2 = � ! �, and �3 = bool ! bool . Thenmatchgen �matchspcl (�1; �2) and matchgen �matchspcl (�2; �3), but not matchgen �matchspcl (�1; �3).2.4.3 Relating the MatchesAn important property of the relaxed matches and their compositions is monotonicity: addinga new relaxation to a match produces a superset of the existing matches. This property isimportant for both retrieval and indexing applications. For retrieval, if we make a query witha set of relaxations, we know that (1) we will not lose any matches if we add a relaxation, and(2) we will not add any matches if we remove a relaxation. For indexed libraries, this propertymeans that if an index uses the most relaxed match, we are assured that even using fewerrelaxations, the components matching a query must all be in the same node of the index.We prove this property by considering two cases: �rst, the relationship between exactmatch and any of the relaxed matches (Theorem 2.4.7), and second, the relationship between acomposed match and the result of adding one more relaxation to that match (Theorem 2.4.8).Theorem 2.4.7 For R 2 ftycon; reorder; uncurry; gen; spclg,matchE (�l; �q)) matchR(�l; �q)Proof For R 6= uncurry, let Tl = Tq = Id (the identity function). matchE (�l; �q))matchE (Tl�l; Tq�q), so matchR(�l; �q).For R = uncurry, we can show that �l =T �q) UC(�l) =T UC(�q) from the de�nition ofUC. 2Theorem 2.4.8 LetM be a subsequence of (matchtycon�matchreorder+ �matchuncurry+�matchgen�matchspcl), where R is the set of relaxations used inM . Let M1 be the result of adding one morerelaxation (in this order) to M , where R1 is the set of relaxations used inM1 (so jR1j = jRj+1).Then M(�l; �q))M1(�l; �q)Proof Sketch Let X = R1� R (i.e., X is the added relaxation). Assume M(�l; �q).Case 1: X 6= uncurry, let Tl = Tq = Id (the identity function). Then Tl�l = �l and Tq�q = �q,so M(�l; �q))M1(Tl�l; Tq�q), and (using the same transformations) M1(�l; �q).Case 2: X = uncurry.Case 2a: tycon, reorder 62 R. Then uncurry is applied after any other transformations.M(�l; �q)) 9 Tl; Tq : matchE (Tl�l; Tq�q)) matchE (UC(Tl�l); UC(Tq�q))) matchuncurry �M(�l; �q))M1(�l; �q).Case 2b: tycon 2 R, reorder 62 R. Uncurrying does not change type constructors, so wecan uncurry before renaming type constructors and still match. (Full proof by cases usingde�nitions of UC and type constructor renaming.)

32 CHAPTER 2. FUNCTION SIGNATURE MATCHINGCase 2c: reorder 2 R, tycon 62 R. M(�l; �q)) 9 T�; Tl; Tq : matchE (T� � Tl�l; Tq�q).Make T�0 an extension of T� to account for uncurrying, so thatmatchE (T�0(UC(Tl�l)); UC(Tq�q)).Case 2d: reorder, tycon 2 R. The analysis is similar to that for cases 2b and 2c. 22.4.4 Generic Match FormsRecall the generic match de�nition (De�nition 2.2.1):M(�l; �q) = 9 a transformation pair, T = (Tl; Tq); such that Tl(�l) R Tq(�q)Table 2.2 shows how R is instantiated and the kinds of transformations in Tl and Tq for eachof the basic function match de�nitions presented in this section as well as uni�cation, and twoof the combined matches to show how the matches can be combined. The relation R is either=T ; �; �, or exact function match (matchE). The transformations Tl and Tq are one of Id (theidentity function), V (variable renaming), U (substitution), VTC (type constructor renaming),T� (permute tuple) or UC (uncurry).Match R Tl TqExact =T V IdType Constructor matchE VTC IdUncurry matchE UC UCReorder matchE T� IdGeneralized � Id IdGeneralized (alternative) =T U IdSpecialized � Id IdSpecialized (alternative) =T Id UUni�cation =T U UReorder � Uncurry matchE T� � UC UCUncurry � Generalized matchE UC � U UCTable 2.2: Instantiations of generic function match2.5 ImplementationWe have implemented a function signature matcher for Standard ML (SML) functions andincorporated it into both a signature-based retrieval tool and an index builder. Everything

2.5. IMPLEMENTATION 33is implemented in SML as well. The SML type system has some features that we did notdiscuss in the de�nitions because they are slightly unusual and not central to the notion of typematching. In the implementation, we handle these features in as simple a way as possible: tworecord types match if the �eld names are the same and the types of each �eld match; we donot distinguish between eq types and non-eq types (eq types are polymorphic types that canbe compared for equality); and ref is treated as a regular type constructor (a value with type� ref is a storage location for a value of type � ; the stored value can be modi�ed).We designed the signature matcher to allow us to experiment easily with di�erent relaxedmatches and combinations of relaxed matches. The matcher has a parameter that speci�eswhich relaxations to use and thus the user can \pick and choose" from among �ve relaxations(generalized, specialized, reorder, uncurry, and type constructor). The order in which relax-ations are composed in the implementation is the same as that discussed in the examplesof Section 2.3. When all relaxations are selected, the match is:(matchtycon � matchreorder+ � matchuncurry+ � matchgen � matchspcl)(�l; �q)For any subset of relaxations selected, the relative ordering remains the same. For exam-ple, if only the reorder and generalized relaxations are selected, the match is (matchreorder+ �matchgen)(�l; �q). We say equivalently that this is \match with relaxations reorder and gen-eralized". Thus, the matcher implements exact match, each of the relaxed matches, and thecomposed matches.The implementation uses the recursive versions of reorder and uncurry (matchreorder+ andmatchuncurry+). The algorithms for the generalized, specialized, and type constructor relax-ations are modi�cations of Robinson's uni�cation algorithm, as presented by Milner [Mil78].The algorithms for the other relaxations are straightforward; we use a simple transformation ofthe type for the uncurry relaxations, and a backtracking algorithm for the reorder relaxation.We can use a single match implementation and pick and choose relaxations because each re-laxation a�ects di�erent aspects of the type. Tuple reordering a�ects only tuples, uncurryinga�ects only higher-order function application, and type constructor renaming a�ects only typeconstructors. Both generalized and specialized match a�ect type variables, but their interactionis limited, since generalized match instantiates variables in �l and specialized match instantiatesvariables in �q.Without any relaxations, the signature matching algorithm is linear in the size of the type.Allowing both variable instantiation and tuple reordering means that we must allow backtrack-ing in the algorithm. For example, (int � bool) matches with (� � int) under the relaxationsgeneralized and reorder by instantiating � to bool. But the �rst attempt to match the typeswould instantiate � to int and then fail, so we must be able to backtrack. With reorderingand generalized or specialized relaxations, matching thus becomes exponential in the size of thetuples in the types. In practice, most tuples have only two or three elements, so the match isstill e�cient. We do not expect the generalized and specialized relaxations to be used together,

34 CHAPTER 2. FUNCTION SIGNATURE MATCHINGso we have not analyzed the complexity of a match with both these relaxations.2.5.1 Beagle: Signature-based RetrievalWe used the function signature matcher to implement a signature-based retrieval tool calledBeagle.2 Given a query and a set of relaxations, Beagle uses the appropriate match to compareeach function in the library with the query and returns the set of functions from the library thatmatch with the query. Beagle can use any library of SML functions, but in our examples, weuse the test library described in Section 1.2.3, which contains 1451 SML functions. Chapter 5(in particular, Section 5.1) gives many example uses of Beagle. On a test suite of 10 querieson each of the 16 combinations of the generalized, specialized, reorder, and uncurry relaxationsusing our library, the average time to complete a query was .13 seconds, ranging from averagesof .08 seconds for exact match to .19 seconds for the match using all 4 relaxations.Beagle's user interface is intentionally simplistic { it is just gnu-emacs [Sta86] and a mouse.The user de�nes the query and selects the desired relaxations before performing a search. Theoutput is a list of functions whose types match the query, along with the pathname for the�le that contains the function. Figure 2.1 shows the results of a query as they appear in theemacs bu�er ('a and 'b denote type variables). Clicking the mouse on a function in the listcauses the �le in which the function is de�ned to appear in another bu�er, with the cursorlocated at the beginning of the function de�nition. We chose to use emacs for our interfacerather than a
ashier graphical user interface in order to give programmers easy access tosignature-based retrieval from their normal software development environment. We wanted tomake signature-based retrieval as easily available for use as string searching.2.5.2 Index BuilderWe also used the function signature matching package to implement an index builder, a tool tobuild an indexed library from a library of components. Section 5.2 describes indexed librariesin detail. The index builder takes as input a component library and a pair of matches, wherethe matches de�ne equivalence and partial ordering on components. The output of the indexbuilder is a directed acyclic graph in which each node contains an equivalence class of functions,and edges are directed by the partial ordering relation. The implementation is completelyparameterized by the kind of elements in the library and the pair of matches, but examplesin Section 5.2 are the result of instantiating the library and match pair by a function signaturelibrary and function signature matches.2Beagles are hunting dogs that are well-known for their ability to �nd animals by following a scent.

2.5. IMPLEMENTATION 35Query = (('a list * 'b list) -> ('a * 'b) list)Matcher = CurryTotal number of objects found: 3---zip :(('a list * 'b list) -> ('a * 'b) list)^ 37 /usr/misc/.sml/lib/edinburgh/portable/ListPair.smlzip :(('a list * 'b list) -> ('a * 'b) list)^ 54 /usr/misc/.sml/lib/smlnj-lib/list-util.smlzip :('a list -> ('b list -> ('a * 'b) list))^ 10 /usr/misc/.sml/local/lib/Container/listFns.sml---Figure 2.1: Output bu�er of Beagle2.5.3 Why use ML?Implementing signature matching and Beagle for ML gave us the opportunity to explore inter-esting relaxed matches and also the composition of relaxed matches. A pleasant by-product ofthe decision to use ML is that it led naturally to using ML to implement signature matching,the retrieval tool (Beagle), and the index builder. We believe that using ML led to an easier andcleaner implementation. For example, it took only a few days to implement the index builder,which consists of two modules (one for the node type and operations, and the other to build adirected acyclic graph of nodes).There were two drawbacks to our choice of ML. First, the type system is, in a sense, toorich. It includes features like equality types and weak type variables, which are not commonfeatures in type systems. We chose to exclude these features in order to have more generalfunction match de�nitions. A second drawback was the relatively small user community. Whilethe use of ML is growing, it is not yet a rival to C or C++ in number of users. This arose as aproblem when we were generating a component library and trying to evaluate the usefulness ofsignature-based retrieval. A small user community means having fewer sources of componentsthat could be used as a library. The Community Library is large enough to preclude easyretrieval of components by inspection, but since it is composed of three smaller, somewhatoverlapping libraries that are fairly well-known to local ML users, there was little incentivefor them to use Beagle. A larger more diverse library would have made Beagle a more usefulresource.

36 CHAPTER 2. FUNCTION SIGNATURE MATCHING2.6 DiscussionIn this section, we discuss what the advantages of signature matching are, how the approachapplies to less-expressive type systems, why we chose to de�ne the matches in terms of transfor-mations and to separate out each relaxation, and what some alternative matches and approachesare. Much of our evidence of the usefulness of function signature matching and of which combi-nations of relaxations are most likely to be used in practice is based on our experience in usingsignature matching for retrieval and indexing. Thus, we refer the reader to our discussion of ap-plications in Chapter 5 for examples of the use of signature matching and for recommendationsabout which relaxations to use for each application.Regardless of the application, signatures have a number of features that make them a goodchoice as a method of comparing software components. First, signatures already exist for librarycomponents, since they are either generated automatically by type inference systems, or theyare provided programmers for the compiler anyway. Second, using signatures for retrieval meansthat users write queries in a language they already understand. Third, implementing signaturematching requires nothing more sophisticated than uni�cation, a standard algorithm alreadyused in some compilers to do type inference. Thus, signatures o�er useful semantic informationand are relatively \cheap" in terms of overhead.The richness of a language's type system a�ects how well signature matching works. How-ever, even for languages with a fairly basic type system a function's type carries a lot ofinformation about the function, so the approach still applies, as do the main match de�nitions.Obviously, if a language does not allow higher-order functions, then the uncurry relaxationdoes not make sense. Similarly, for a language without user-de�ned types the type constructorrelaxation does not make sense. However, even for a language with a non-polymorphic typesystem, we can still use specialized match by extending the query language to include typevariables.Our approach to signature matching is to de�ne each match in terms of a transformation.Each of our match transformations produces a \wrapper" that transforms the type in someway. For reorder and uncurry match, wrappers rearrange the form of a type (reordering tupleelements or (un)currying). For the other matches, wrappers rename or instantiate type variablesor type constructors. When we use signature matching to retrieve a library function or tocompare functions in order to substitute one for the other, a function is more useful if theoverhead of using it is relatively low, i.e., if the component can be used directly, perhaps evenautomatically. Having wrappers makes this possible.Using transformations lets us de�ne the composition of matches in terms of composition ofthe transformation functions, and to prove the various theorems about properties of composedmatches. The di�erent kinds of transformations (e.g., variable substitutions, permutations) andthe possibility of interaction between transformations makes it necessary to be very careful indoing the proofs.

2.6. DISCUSSION 37Using transformations also lets us de�ne each relaxation separately in terms of a transfor-mation. We �nd separating the relaxations to be a very important factor in our approach.Which match de�nition is appropriate varies depending on the application. For example, thematch needed to retrieve a function in the library to concatenate strings is not the same asthe match needed to �nd out how many functions in the library have a two-element tuple astheir input. In the �rst case, we do not care about curriedness, but we know we cannot use amore general function, so we use uncurry match with the query string � string ! string; in thesecond case, we do not care about the actual types, only the form, so we use specialized matchwith the query � � � !
.Using transformations and de�ning each relaxation separately within a generic form alsoallows us to consider new relaxations easily. There were some other relaxed matches that weconsidered but do not include because they did not generate wrappers that would allow onefunction to be used directly in place of the matching function. One such relaxation is to allowmatches where two tuples have a di�erent number of arguments. For example, a function get-nthat returns n elements of a list starting with the mth element, of type int � int � � list !� list, would match with a function �rst-n that returns the �rst n elements of a list, of typeint � � list ! � list . We can easily de�ne this in a manner similar to reorder match, where thepermutation is not required to be a bijection. However, a wrapper that removes an elementfrom a tuple or adds an element to a tuple would also need to know something more aboutthe relationship between the two types in order to work properly (e.g., to implement �rst-nusing get-n, the wrapper would need to instantiate the �rst argument to get-n with 0). Thisknowledge cannot be determined from just the signatures. Note that a user of a retrievalsystem could still �nd matches like this with a small sequence of queries, which allows the userfar greater control in determining which arguments are essential and which can be dropped.Another relaxed match we did not include was one that \
attens" nested tuples. With thismatch, the type ((int � bool) � int) would match (int � bool � int). We do not include this matchbecause in actual code, tuples are usually nested for a reason, and thus, it would be unusual towant to treat them as being the same.The examples of relaxed matches we did not include illustrates a disadvantage to our ap-proach: there will always be more relaxations that we could consider. An alternative ap-proach to de�ning function signature match uses category theory to de�ne isomorphisms oftypes [Rit90, DC92]. The advantage to this approach is that the theory is complete. However,the approach is not as
exible as using transformations, since it does not allow each relaxationto be selected separately { there is a single match de�nition. Additionally, some of the axiomsrequired for completeness give rise to unintuitive isomorphisms (e.g., unit � � is isomorphic to�).

38 CHAPTER 2. FUNCTION SIGNATURE MATCHING

Chapter 3Function Speci�cation MatchingIn this chapter, we de�ne function speci�cation matching. We begin by brie
y describingLarch/ML, the speci�cation language we use, in Section 3.1. Section 3.2 presents the variousexact and relaxed speci�cation match de�nitions. We summarize properties of the matches andhow they relate to each other in Section 3.3, and describe our implementation of a functionspeci�cation matcher in Section 3.4.3.1 Larch/ML Speci�cationsWe use Larch/ML [WRZ93], a Larch interface language for the ML programming language, tospecify ML functions and ML modules. Larch provides a \two-tiered" approach to speci�cation[GH93]. In one tier, the speci�er writes traits in the Larch Shared Language (LSL) to assertstate-independent properties. Each trait introduces sorts and operators and de�nes equalitybetween terms composed of the operators (and variables of the appropriate sorts). Appendix Ashows the Container trait, which de�nes operators to generate containers (empty and insert),to return the element or container resulting from deleting an element from the beginning or end(�rst, last, butFirst, and butLast), to return the length of a container (length), and to determinewhether a container is empty (isEmpty).In the second tier, the speci�er writes interfaces in a Larch interface language to describestate-dependent e�ects of a program (see Figure 3.1). The Larch/ML interface language extendsML by adding speci�cation information in special comments delimited by (�+: : :+�). The usingand based on clauses link interfaces to LSL traits by specifying a correspondence between(programming-language speci�c) types and LSL sorts. For polymorphic sorts, there must bean associated sort for both the polymorphic variable (e.g., �) and the type constructor (e.g.,T) in the based on clause. The speci�cation for each function begins with a call patternconsisting of the function name followed by a pattern for each parameter, optionally followedby an equal sign (=) and a pattern for the result. In ML, patterns are used in binding constructsto associate names to parts of values. For example, (x, y) names x as the �rst of a pair and39

40 CHAPTER 3. FUNCTION SPECIFICATION MATCHINGsignature Stack = sig(�+ using Container +�)type � T (�+ based onContainer.E Container.C +�)val create : unit ! � T(�+ create () = sensures s = empty +�)val push : � T � �! � T(�+ push (s; e) = s2ensures s2 = insert (e; s) +�)val pop : � T ! � T(�+ pop s = s2requires not (isEmpty (s))ensures s2 = butLast (s) +�)val top : � T ! �(�+ top s = erequires not (isEmpty (s))ensures e = last (s) +�)end
signature Queue = sig(�+ using Container +�)type � T (�+ based onContainer.E Container.C +�)val create : unit ! � T(�+ create () = qensures q = empty +�)val enq : � T � �! � T(�+ enq (q; e) = q2ensures q2 = insert (e; q) +�)val rest : � T ! � T(�+ rest q = q2requires not (isEmpty (q))ensures q2 = butFirst (q) +�)val deq : � T ! �(�+ deq q = erequires not (isEmpty (q))ensures e = �rst (q) +�)endFigure 3.1: The Toy Speci�cation Library (Larch/ML modules)y as the second. The requires clause speci�es the function's pre-condition as a predicate interms of trait operators and names introduced by the call pattern. Similarly, the ensuresclause speci�es the function's post-condition. If a function does not have an explicit requiresclause, the default pre-condition is true. A function speci�cation may also include a modi�esclause, which lists those objects whose values may change as a result of executing the function.Larch/ML also includes rudimentary support for specifying higher-order functions.The Larch/ML interface speci�cations in Figure 3.1 are the Toy Speci�cation Library, whichwe use in our examples of speci�cation matching. The library contains two module speci�ca-tions: one for Stack with the functions create, push, pop, and top, and one for Queue, withthe functions create, enq, rest, and deq. We specify each function's pre- and post-conditions interms of operators from the Container trait.

3.2. MATCH DEFINITIONS 413.2 Match De�nitionsFor a function speci�cation, S, we denote the pre- and post-conditions as Spre and Spost ,respectively. Spred de�nes the interpretation of the function's speci�cation as an implicationbetween the two: Spred = Spre) Spost . Intuitively, this interpretation means that if Spreholds when the function speci�ed by S is called, Spost will hold after the function has executed(assuming the function terminates). If Spre does not hold, there are no guarantees about thebehavior of the function. This interpretation of a pre- and post-condition speci�cation is themost common and natural for functions in the standard programming model. For example, forthe Stack top function in Figure 3.1� The pre-condition, toppre, is not (isEmpty (s)).� The post-condition, toppost, is e = last (s).� The speci�cation predicate, toppred, is (not (isEmpty (s)))) (e = last (s)).To be consistent in terminology with Chapter 2, we present function speci�cation matchingin the context of a retrieval application. Example matches are between a speci�cation S fromthe Toy Speci�cation Library in Figure 3.1 and a query speci�cation Q. We assume thatvariables in S and Q have been renamed consistently. This renaming is easily provided by thesignature matcher, and we are assuming that the signatures of S and Q match. For example,if we compare the Stack pop function with the Queue rest function, we must rename q to s andq2 to s2. In this section we examine several de�nitions of the speci�cation match predicate.We characterize de�nitions as either grouping pre-conditions Spre and Qpre together and post-conditions Spost and Qpost together, or relating predicates Spred and Qpred . Both of these kindsof matches have a general form.De�nition 3.2.1 (Generic Pre/Post Match)matchpre=post (S;Q) = (Qpre R1 Spre) R2 (Spost R3 Qpost)Pre/post matches relate the pre-conditions of each component and the post-conditions of eachcomponent. Post-conditions of related functions are often similar. For example, they mayspecify related properties of the return values. Similarly, pre-conditions of related functionsmay specify related bounds conditions of input values. The relations R1 and R3 relate pre-conditions and post-conditions respectively, and hence are either equivalence (,) or implication()), but need not be the same. In most cases we require that both relations (R1 and R3) hold,and so R2 is usually conjunction (^) but may also be implication ()). The matches may varyfrom this form by dropping some of the terms. Table 3.1 summarizes how R1, R2, and R3 areinstantiated for each of the matches in Section 3.2.1. For example, matchplug-in = (Qpre)Spre) ^ (Spost) Qpost). For matchplug-in-post and matchweak-post , R1 is not instantiated

42 CHAPTER 3. FUNCTION SPECIFICATION MATCHINGMatch R1 R2 R3Exact Pre/Post , ^ ,Plug-in) ^)Plug-in Post drop Spre |)and QpreWeak Post drop Qpre))Table 3.1: Instantiations of generic pre/post match ((Qpre R1 Spre) R2 (Spost R3 Qpost))because one or both of its arguments are dropped. Similarly, for matchplug-in-post , R2 is notinstantiated because both Qpre and Spre are dropped.De�nition 3.2.2 (Generic Predicate Match)matchpred (S;Q) = Spred R QpredPredicate matches relate the entire speci�cation predicates, Spred and Qpred , of the two compo-nents. The relation R is either equivalence (,), implication ()), or reverse implication (().Table 3.2 summarizes how R is instantiated for each of the matches in Section 3.2.2. Predicatematches are useful in cases where we need to consider the relationship of the speci�cations as awhole rather than relationships of the parts, for example, when we need to assume somethingfrom the pre-condition in order to reason about post-conditions.Match RExact Predicate ,Generalized)Specialized (Table 3.2: Instantiations of generic predicate match (Spred R Qpred)It is important to look at both kinds of match. Which kind of match is appropriate maydepend on the context in which the match is being used or on the speci�cations being compared.We present the pre/post matches in Section 3.2.1 and the predicate matches in Section 3.2.2.For each, we present a notion of exact match as well as relaxed matches.

3.2. MATCH DEFINITIONS 433.2.1 Pre/Post MatchesPre/post matches on speci�cations S and Q relate Spre to Qpre and Spost to Qpost . We considerfour kinds of pre/post matches, beginning with the strongest match and progressively weakeningthe match by relaxing the relations R1 and R3 from , to), by relaxing R2 from ^ to), orby dropping one or more terms.Exact Pre/Post MatchWe begin by instantiating both R1 and R3 to , and R2 to ^ in the generic pre/post matchof De�nition 3.2.1. Two function speci�cations satisfy the exact pre/post match if their pre-conditions are equivalent and their post-conditions are equivalent. If exact pre/post matchholds for two speci�cations, they are essentially equivalent and thus completely interchangeable.Anywhere that one is used, it could be replaced by the other with no change in observablebehavior.De�nition 3.2.3 (Exact Pre/Post Match)matchE-pre=post (S;Q) = (Qpre , Spre) ^ (Spost , Qpost)Exact pre/post match is a strict relation, yet two di�erent-looking speci�cations can still satisfythe match. Consider for example the following query Q1, based on the Container trait. Q1speci�es a function that returns a container whose size is zero, one way of specifying a functionto create a new container.signature Q1 = sig Q1(�+ using Container +�)type � T (�+ based on Container.E Container.C +�)val qCreate : unit ! � T(�+ qCreate () = censures length (c) = 0 +�)endUnder exact pre/post match, Q1 is matched by both the Stack and Queue create functionsin the Toy Speci�cation Library. (The speci�cations of Stack and Queue create are identicalexcept for the name of the return value.)Let us look in more detail at how the Stack create speci�cation matches with Q1. LetS be the speci�cation for Stack create and Q1 be the query speci�cation with c renamed tos. Spre = true, Spost = (s = empty). Q1pre = true, Q1post = (length(s) = 0). Since bothSpre and Q1pre are true, showing matchE�pre=post (S;Q1) reduces to proving Spost , Q1post ,or (s = empty) , (length(s) = 0). The \if" case ((s = empty)) (length(s) = 0)) followsimmediately from the axioms in the Container trait about length. Proving the \only-if" case

44 CHAPTER 3. FUNCTION SPECIFICATION MATCHING
S

<Spre>

<Spost>

...

<Qpre>

code
...

...
code

<Qpost>

...Figure 3.2: Idea behind plug-in match((length(s) = 0)) (s = empty)) requires only basic knowledge about integers and the fact thatfor any container, s, length(s) � 0, which is provable from the Container trait.Plug-in MatchEquivalence is a strong requirement. For plug-in match, we relax bothR1 andR3 to) and keepR2 as ^ in the generic pre/post match of De�nition 3.2.1. Under plug-in match, Q is matchedby any speci�cation S whose pre-condition is weaker (to allow at least all the conditions thatQ allows) and whose post-condition is stronger (to provide a guarantee at least as strong as Qprovides).De�nition 3.2.4 (Plug-in Match)matchplug-in(S;Q) = (Qpre) Spre)^ (Spost) Qpost)Plug-in match captures the notion of being able to \plug-in" S forQ, as illustrated in Figure 3.2.A speci�er writes a query Q saying essentially:I need a function such that if Qpre holds before the function executes, then Qpostholds after it executes (assuming the function terminates).With plug-in match, if Qpre holds (the assumption made by the speci�er) then Spre holds(because of the �rst conjunct of plug-in match). Since we interpret S to guarantee that Spre)Spost , we can assume that Spost will hold after executing the plugged-in S. Finally, sinceSpost) Qpost from the second conjunct of plug-in match, Qpost must hold, as the speci�er

3.2. MATCH DEFINITIONS 45desired. We say that S is behaviorally equivalent to Q, since we can plug-in S for Q and havethe same observable behavior, but this is not a true equivalence because it is not symmetric:we cannot necessarily plug-in Q for S and get the same guarantees.Consider the following query. Q2 is fairly weak speci�cation of an add function. It requiresthat an input container has less than 50 elements, and guarantees that the resulting containeris one element longer than the input container.signature Q2 = sig Q2(�+ using Container +�)type � T (�+ based on Container.E Container.C +�)val add : � T � �! � T(�+ add (q1; e) = q2requires length (q1) < 50ensures length (q2) = (length (q1) +1) +�)endUnder exact pre/post match, Q2 is not matched by any function in the Toy Speci�cationLibrary, but under plug-in match, Q2 is matched by both the Stack push and the Queue enqfunctions. Since push and enq are identical except for their names and the names of the variables,the proof of the match is the same for both.The pre-condition requirement, Qpre) Spre , holds, since Spre = true . To show thatSpost) Qpost , we assume Spost (q2 = insert(e; q)), and try to show Qpost (length(q2) =length(q)+1). Substituting for q2 in Qpost , we have length(insert(e; q)) = length(q)+1, whichfollows immediately from the equations for length.Plug-in Post MatchOften we are concerned with only the e�ects of functions, thus a useful relaxation of the plug-inmatch is to consider only the post-condition part of the conjunction. Most pre-conditions couldbe satis�ed by adding an additional check before calling the function. Plug-in post match isalso an instance of the generic pre/post match of De�nition 3.2.1, with R3 instantiated to)but dropping Qpre and Spre .De�nition 3.2.5 (Plug-in Post Match)matchplug-in-post (S;Q) = (Spost) Qpost)Consider the following query. Q3 is identical to Stack top except that Q3 has no requiresclause.

46 CHAPTER 3. FUNCTION SPECIFICATION MATCHINGsignature Q3 = sig Q3(�+ using Container +�)type � T (�+ based on Container.E Container.C +�)val delete : � T ! �(�+ delete s = eensures e = last (s) +�)endStack top does not match with Q3 under either exact pre/post or plug-in match, since Q3'spre-condition is weaker than Stack top's. Since the post-conditions are equivalent, Stack topdoes match with Q3 under plug-in post match.Weak Post MatchFinally, consider this even weaker match, weak post match. We instantiate R3 to), as withthe plug-in matches, but relax R2 to) and drop Qpre .De�nition 3.2.6 (Weak Post Match)matchweak-post(S;Q) = Spre) (Spost) Qpost)A more intuitive, equivalent, predicate is (Spre ^ Spost)) Qpost . Sometimes assuming the pre-condition of S helps in proving the relationship between Spost and Qpost . We use Spre and notQpre since Spre is likely to be necessary to limit the conditions under which we try to proveSpost) Qpost . The additional assumption also means that we will have to provide an additional\wrapper" in our code to guarantee Spre before we call the function speci�ed by S.For example, suppose we wish to �nd a function to delete from a container using the followingquery Q4: signature Q4 = sig Q4(�+ using Container +�)type � T (�+ based on Container.E Container.C +�)val remainder : � T ! � T(�+ remainder s = s2ensures length (s2) = (length (s) �1) +�)endQ4 describes a function that returns a container whose size is one less than the size of theinput container. This is a fairly weak way of describing deletion, since it does not specify whichelement is removed. But it still gives us a big gain in precision over signature matching. Q4

3.2. MATCH DEFINITIONS 47Assume not(isEmpty(s)) Assume Spre (1)Assume s2 = butLast(s) Assume Spost (2)length(s2) = length(s)� 1 Attempt to prove Qpost (3)length(butLast(s)) = length(s)� 1 Apply (2) to (3) (4)Let s = insert(ec; sc) Since s is not empty (1), ands generated by empty and insert (5)length(butLast(insert(ec; sc))) = Substitute (5) for s in (4) (6)length(insert(ec; sc))� 1length(sc) = length(insert(ec; sc))� 1 Axioms for butLast (7)length(sc) = (length(sc) + 1)� 1 Axioms for length (8)length(sc) = length(sc) Axioms for +, � (9)Figure 3.3: Proof sketch of matchweak-post(pop; Q4)would not retrieve other functions with the signature � t ! � t, for example, a function thatreverses or sorts the elements in the container, or removes duplicates.1While intuitively Q4 would seem related to Stack pop and Queue rest, neither pop nor restmatch with Q4 under either plug-in or plug-in post match. Consider Stack pop (the reasoningis similar for Queue rest). We cannot prove Spost) Qpost (i.e., (s2 = butLast(s))) (length(s2)= length(s) �1)) for the case where s = empty . However, by adding the assumption Spre(not(isEmpty(s))), we are able to show that Stack pop matches with Q4 under weak postmatch, as we see in the proof sketch in Figure 3.3.3.2.2 Predicate MatchesRecall the generic predicate match (De�nition 3.2.2):matchpred (S;Q) = Spred R Qpredwhere the relation R is equivalence (,), implication ()), or reverse implication (().Note that this general form allows alternative de�nitions of the speci�cation predicates.One alternative is Spred = Spre ^ Spost , which is stronger than Spred = Spre) Spost . Thisinterpretation is reasonable in the context of state machines, where the pre-condition serves asa guard so that a state transition occurs only if the pre-condition holds.As we did with the generic pre/post match, we consider instantiations of the generic predi-cate match including an exact match and various relaxations.Exact Predicate MatchWe begin with exact predicate match. Two function speci�cations match exactly if their pred-icates are logically equivalent (i.e., R is instantiated to ,). This is less strict than exact1We used Beagle, the signature-based retrieval tool, to �nd these examples. See Browsing 4 in Section 5.1.3for details.

48 CHAPTER 3. FUNCTION SPECIFICATION MATCHINGpre/post match (De�nition 3.2.3), since there can be some interaction between the pre- andpost-conditions (i.e., matchE-pre=post) matchE-pred). In fact, in cases where Spre = Qpre =true, exact pre/post and exact predicate matches are equivalent.De�nition 3.2.7 (Exact Predicate Match)matchE-pred (S;Q) = Spred , QpredOur example Q1 is still matched by Stack and Queue create under exact predicate match, sinceSpred , Qpred = (true) (s = empty)), (true) (length(s) = 0))= (s = empty), (length(s) = 0)which is exactly what we proved to show that Q1 is matched by Stack and Queue create underexact pre/post match.Generalized MatchFor generalized match, we relax R in the generic predicate match to). Generalized matchworks well in the context of queries and libraries: speci�cations of library functions will bedetailed, describing the behavior of the functions completely, but we would like to be able towrite simple queries that focus only on the aspect of the behavior that we are most interestedin or that we think is most likely to di�erentiate among functions in the library. Generalizedmatch allows the library speci�cation to be stronger (more general) than the query. Note thatgeneralized match is a weaker match than plug-in match. Also, if we drop the pre-conditionsin generalized match, we get plug-in post match.De�nition 3.2.8 (Generalized Match)matchgen-pred (S;Q) = Spred) QpredFor example, consider the following query, which is the same as Q4 but with a requires clause.signature Q5 = sig Q5(�+ using Container +�)type � T (�+ based on Container.E Container.C +�)val remainder : � T ! � T(�+ remainder s = s2requires not (isEmpty (s))ensures length (s2) = (length (s) �1) +�)end

3.2. MATCH DEFINITIONS 49Under exact predicate match, neither the Stack pop nor the Queue rest speci�cationsmatch with this query. Plug-in match does not work either because we need to assume Qpre(not(isEmpty(s))) to show Spost) Qpost . However, under generalized match, Q5 is matched byboth of these. The proofs are very similar to that for Q4 in the weak post match (Figure 3.3).Consider another example specifying a function that removes the most recently insertedelement of a container. This query does not require that the speci�er knows the axiomatizationof containers, since the query uses only the container constructor, insert. The post-conditionspeci�es that the input container, s, is the result of inserting the returned element, e, intoanother container ss. The existential quanti�er (there exists) is a way of being able to namess. signature Q6 = sig Q6(�+ using Container +�)type � T (�+ based on Container.E Container.C +�)val delete : � T ! �(�+ delete s = erequires not (isEmpty (s))ensures there exists ss:Container.Cs = insert (e; ss) +�)endAgain, under exact or plug-in matches, Q6 does not retrieve any functions. Under gener-alized match, the query retrieves the Stack top function, but not Queue deq, since the queryspeci�es that the most recently inserted element is returned. To show matchgen (Stack :top; Q6),we consider two cases: s =empty and s =insert(ec,sc). In the �rst case, the pre-condition forboth top and qTop are false, and thus the match predicate is vacuously true. In the secondcase, the pre-conditions are both true, so we need to prove that Spost) Qpost . If we instantiatess to sc, the proof goes through.Specialized MatchFor specialized match, we instantiate R in the generic predicate match to(. Specialized matchis the converse of generalized match: matchspcl-pred (S;Q) = matchgen-pred (Q; S). A functionwhose speci�cation is weaker than the query might still be of interest as a base from which toimplement the desired function. Specialized match allows the library speci�cation to be weakerthan the query.De�nition 3.2.9 (Specialized Match)matchspcl-pred (S;Q) = Qpred) Spred

50 CHAPTER 3. FUNCTION SPECIFICATION MATCHINGConsider again the query Q3, which is the same as Stack top but without the pre-condition.Stack top is thus weaker than Q3, but we can show that Q3 implies Stack top and hence thatQ3 is matched by Stack top under specialized match.3.3 Properties of the Matches3.3.1 Equivalence and Partial OrderName of Match Predicate Symbol Match Form Kind of Match M=(if Partial Order)Exact Pre/Post matchE-pre=post Pre/Post EquivalencePlug-in matchplug-in Pre/Post Partial Order Exact Pre/PostPlug-in Post matchplug-in-post Pre/Post Partial Order Spost , QpostWeak Post matchweak-post Pre/Post NeitherExact Predicate matchE-pred Predicate EquivalenceGeneralized matchgen-pred Predicate Partial Order Exact PredicateSpecialized matchspcl-pred Predicate Partial Order Exact PredicateTable 3.3: Summary of predicate symbol, match form, and kind of match for each functionspeci�cation match.In addition to distinguishing between instances of the generic pre/post matches and in-stances of the generic predicate matches, we classify the function speci�cation matches bywhether they are equivalence matches, partial order matches, or neither. Recall from Chap-ter 2 that both equivalence and partial order matches must be re
exive and transitive. Inaddition, equivalence matches are symmetric and partial order matches are antisymmetric. Ofthe seven matches de�ned in this chapter, only exact pre/post (De�nition 3.2.3) and exact pred-icate (De�nition 3.2.7) are equivalence matches. The other matches are all partial order matchesexcept weak post match, which cannot be classi�ed as either because it is not transitive. Partialorder matches require an equivalence match (M=) to prove they are antisymmetric. For gener-alized and specialized match, M= = matchE-pred ; for plug-in match M= = matchE-pre=post ; andplug-in post match uses the matchM= = Spost , Qpost (essentially, dropping the pre-conditionmatch in exact pre/post). Table 3.3 summarizes both classi�cations (Pre/Post or Predicate;Equivalence or Partial Order) and the equivalence match (M=) used by each partial ordermatch, as well as summarizing the names and predicate symbols for all the matches de�ned inthis chapter.Proving that the matches are equivalences or partial orders is straightforward and based on

3.3. PROPERTIES OF THE MATCHES 511. Re
exive:matchplug-in(S; S) = (Spre) Spre) ^ (Spost) Spost)= true ^ true= true 22. Transitive:Given (1) matchplug-in(S;Q) = (Qpre) Spre)^ (Spost) Qpost)(2) matchplug-in(Q; T) = (Tpre) Qpre) ^ (Qpost) Tpost)Show matchplug-in(S; T) = (Tpre) Spre) ^ (Spost) Tpost)(a) Show Tpre) Spre :Tpre (2)) Qpre (1)) Spre(b) Show Spost) Tpost :Spost (1)) Qpost (2)) Tpost 23. Antisymmetric:Given (1) matchplug-in(S;Q) = (Qpre) Spre) ^ (Spost) Qpost)(2) matchplug-in(Q; S) = (Spre) Qpre)^ (Qpost) Spost)Then (Qpre , Spre) and (Spost , Qpost)So matchE-pre=post (S;Q) 2Figure 3.4: Properties of plug-in match.the properties of, and). Consider, for example, plug-in match (De�nition 3.2.4). Figure 3.4shows the proof sketches of the re
exivity, transitivity, and antisymmetry of plug-in match.3.3.2 Relating the MatchesWe relate all the function speci�cation match de�nitions in a lattice (Figure 3.5). An arrowfrom a match M1 to another match M2 indicates that M1 is stronger than M2 (M1(S;Q))M2(S;Q) for all S;Q). We also say that M2 is more relaxed than M1. The rightmost path inthe lattice shows the pre/post matches; the remainder of the matches are predicate matches.Table 3.4 summarizes which of the functions in the Toy Speci�cation Library matches witheach of the six example queries under each of the seven function speci�cation matches wehave de�ned. For example, under generalized match, Q5 is matched by both Queue.rest andStack.pop, but under plug-in post match, Q5 is not matched by any functions in the library.Parentheses around a function indicates that the match is implied by a stronger match (e.g.,matchplug-in(Q2;Queue:enq)) matchgen (Q2;Queue:enq)).

52 CHAPTER 3. FUNCTION SPECIFICATION MATCHING
Weak Post

Generalized

Exact Predicate

Exact Pre/Post

Plug-in

Specialized Plug-in Post

TrueFigure 3.5: Lattice of function speci�cation matchesExact Exact Plug-in Specialized Generalized Plug-in Post Weak PostPre/Post PredicateQ1 Q.create (Q.create) (Q.create) (Q.create) (Q.create) (Q.create) (Q.create)S.create (S.create) (S.create) (S.create) (S.create) (S.create) (S.create)Q2 | | Q.enq | (Q.enq) (Q.enq) (Q.enq)| | S.push | (S.push) (S.push) (S.push)Q3 | | | S.top | S.top (S.top)Q4 | | | | | | Q.rest| | | | | | S.popQ5 | | | | Q.rest | Q.rest| | | | S.pop | S.popQ6 | | | | S.top | S.topTable 3.4: Which functions match which queries (Q = Queue module and S = Stack module)

3.4. IMPLEMENTATION 533.4 ImplementationWe use LP, the Larch Prover [GG91], to attempt to prove that a match holds between twospeci�cations. LP is a theorem prover for a subset of multisorted �rst-order logic. We haveimplemented tools to translate Larch/ML speci�cations and match predicates into LP input.Each of the speci�cation match examples given in this chapter (i.e., all entries in Table 3.4)and in Section 5.3 have been speci�ed in Larch/ML, translated automatically to LP input, andproven using LP.For each speci�cation �le (e.g., Stack.sig), we check the syntax of the speci�cation andthen translate it into a form acceptable to LP. Namely, we generate a corresponding .lp �le(e.g., Stack.lp), which includes the axioms from the appropriate LSL trait and contains theappropriate declarations of variables, operators, and assertions (axioms) for the pre- and post-conditions of each function speci�ed. Each function foo generates two operators, fooPre andfooPost; the axioms for fooPre and fooPost are the bodies of the requires and ensures clauses offoo. Figure 3.6 shows Stack.lp and Q2.lp, the result of translating the Stack speci�cation fromthe Toy Speci�cation Library and the query Q2 into LP format. The thaw Container Axiomscommand loads the state resulting from executing the commands in Container Axioms.lp. Weuse the lsl tool to generate the �le Container Axioms.lp from the LSL trait Container.lsl.We comment out the thaw command in Q2.lp, since we assume that the query (Q2) uses thesame trait as the library speci�cation (Stack). The command set name Q2 tells LP to useQ2 as the pre�x for names of facts and conjectures. Commands declare var and declare opdeclare variables and operators that will be used in the axioms. In particular, Q2.lp declaresthe element variable e, container variables q1 and q2, and operators addPre and addPost. Theassert clause adds axioms to the logical system for addPre and addPost, corresponding to therequires and ensures clauses of add, respectively.Given the names of two function speci�cations, their corresponding speci�cation �les, andwhich match de�nition to use, we also generate the appropriate LP input to initiate an attemptto show the match between those two functions. For example, Figure 3.7 shows the LP input toprove the plug-in match of Stack push with Q2. The input to LP for the proof consists simplyof commands to load the theories for the library and query (execute Stack and execute Q2),and the proof statement (prove : : :).We could alternatively have chosen to generate the LP axioms on a per-query basis ratherthan generating axioms for each .sig �le (i.e., given a particular pair of functions, generateonly the necessary axioms for that particular pair). However, we assume that generating an .lp�le from a .sig �le will happen only once and that there may be several queries on a libraryspeci�cation or several match de�nitions for a particular query. This approach enables us toconsider module-level matches as well.Since LP is designed as a proof assistant, rather than an automatic theorem prover, some ofthe proofs require user assistance. Each of the 33 entries in Table 3.4 corresponds to a match

54 CHAPTER 3. FUNCTION SPECIFICATION MATCHING% Stack.lp%% Using Containerthaw Container Axioms%% signature Stackset name Stackdeclare vare: Es: Cs2: C..declare opcreatePre: �>BoolcreatePost: C �>BoolpushPre: �>BoolpushPost: C, E, C �>BoolpopPre: C, C �>BoolpopPost: C, C �>BooltopPre: C, E �>BooltopPost: C, E �>Bool..assertcreatePre = true;createPost(s) = (s = empty);pushPre = true;pushPost(s, e, s2) = (s2 = insert(e,s));popPre(s, s2) = (�(isEmpty(s)));popPost(s, s2) = (s2 = butLast(s));topPre(s, e) = (�(isEmpty(s)));topPost(s, e) = (e = last(s))..

% Q2.lp%% Using Container%%% thaw Container Axioms%% signature Q2set name Q2declare vare: Eq1: Cq2: C..declare opaddPre: C, E, C �>BooladdPost: C, E, C �>Bool..assertaddPre(q1, e, q2) = (length(q1) < 50);addPost(q1, e, q2) =(length(q2) = length(q1) + 1)..
Figure 3.6: LP input for Stack and Q2that we have used LP to prove. In characterizing how much assistance the proofs require, weconsider only the 14 entries in the table that are not in parentheses (call these the primarymatches), since the proofs for entries in parentheses follow automatically from an entry to theleft in the same row. Table 3.5 summarizes the level of user assistance required for the primarymatches. None means the proof went through with no user assistance, guidance means that theproof required user input to apply the appropriate proof strategies, and lemma means that theuser had to prove additional lemmas to complete the proof.

3.4. IMPLEMENTATION 55% PlugIn-Q2-Stack.lp%% Load library and query specsexecute Stackexecute Q2%% Plug-in Match: (Qpre => Spre) /n (Spost => Qpost)prove (addPre(s, e, s2) => pushPre) /n (pushPost(s, e, s2) => addPost(s, e, s2))Figure 3.7: LP input for plug-in match of Stack.push with Q2Query Library Match User AssistanceQ1 Queue.create Exact Pre/Post lemmaQ1 Stack.create Exact Pre/Post lemmaQ2 Queue.enq Plug-in noneQ2 Stack.push Plug-in noneQ3 Stack.top Specialized noneQ3 Stack.top Plug-in Post noneQ4 Queue.rest Weak Post lemmaQ4 Stack.pop Weak Post guidanceQ5 Queue.rest Generalized lemmaQ5 Stack.pop Generalized guidanceQ5 Queue.rest Weak Post lemmaQ5 Stack.pop Weak Post guidanceQ6 Stack.top Generalized guidanceQ6 Stack.top Weak Post guidanceTable 3.5: Level of user assistance required for LP proofs of queriesFour of the proofs needed no assistance from the user: plug-in match of Stack.push andQueue.enq with Q2, and plug-in post and specialized matches of Stack.top with Q3. Plug-inmatch of Stack.push with Q2 is the example shown in Figure 3.7; executing the statements inFigure 3.7 results in the response from LP that the match conjecture was proved by normal-ization; no user assistance was required.Generalized match of Stack.pop with Q6 is an example of a match that requires some userassistance to LP. The user must tell the prover to use induction in the proof, and then how toinstantiate the existential variables. Figure 3.8 shows an LP-annotated script for this proof.The lines with boldface are user input; <> and [] are proof notes from LP; and % is thecomment character. The line [] conjecture indicates that LP completed the proof. Weclassify the user assistance for this proof as simply guidance { telling LP what proof strategy

56 CHAPTER 3. FUNCTION SPECIFICATION MATCHING% exec M-Gen-Q6-Stack%% Load library and query specsexecute Stackexecute Q6%% Generalized Match: (Spre => Spost) => (Qpre => Qpost)prove (topPre(c, e) => topPost(c, e)) => (deletePre(c, e) => deletePost(c, e))% Additional user inputresume by induction<> basis subgoal[] basis subgoal<> induction subgoalresume by specializing cc to cc1<> specialization subgoal[] specialization subgoal[] induction subgoal[] conjecture%% End of input from �le `Gen-Q6-Stack.lp'.Figure 3.8: LP output for generalized match of Stack.pop with Q6to use next in cases where the default strategies do not complete the proof. A total of �veproofs require guidance: generalized and weak post matches of Stack.top with Q6, generalizedand weak post matches of Stack.pop with Q5, and weak post match of Stack.pop with Q4.The remainder of the proofs (exact pre/post match of Queue.create and Stack.create withQ1, weak post match of Queue.rest with Q4, and generalized and weak post matches ofQueue.rest with Q5) required not only guidance but also additional lemmas in order to provethe match. In all �ve cases, one of the additional lemmas is �(insert(e,q) = empty) (some-thing that might reasonably be included in a more complete theory of containers). The proofsfor Queue.rest with Q4 and Q5 additionally need the lemma length(butFirst(insert(e,q))) =length(q), which falls out directly from the axioms for Stack but not Queue. The proofs forQ1 need additional lemmas about the lengths of containers. Figure 3.9 shows an LP-annotatedscript for the proof of weak post match of Queue.rest with Q4.

3.4. IMPLEMENTATION 57
% exec M-Weak-Q4-Queue%% Load library and query specsexecute Queueexecute Q4set name Lemmaprove �(insert(e,q) = empty) by contradiction<> contradiction subgoalcritical-pair *Hyp with Container[] contradiction subgoal[] conjectureprove length(butFirst(insert(e,q))) = length(q) by induction on q<> basis subgoal[] basis subgoal<> induction subgoal[] induction subgoal[] conjectureset name Queryprove restPre(q, q2) /n restPost(q, q2) => remainderPost(q, q2)resume by induction on q<> basis subgoal[] basis subgoal<> induction subgoal[] induction subgoal[] conjecture%% End of input from �le `Weak-Q4-Queue.lp'.Figure 3.9: LP output for weak post match of Queue.rest with Q4

58 CHAPTER 3. FUNCTION SPECIFICATION MATCHING3.5 DiscussionIn this section, we discuss the advantages and disadvantages of speci�cation matching, why wechose to de�ne the particular matches we did, and our implementation choices.3.5.1 Speci�cation MatchingSpeci�cations provide a much richer description of a component, and thus speci�cation matchingis more discriminating than signature matching. For example, speci�cation matching allows usto distinguish between functions for set union and set intersection, or between stacks andbags, which we cannot do with signature matching. If two component speci�cations match, weknow that certain guarantees about the behavior of the system will hold if we substitute onecomponent for the other. The particular guarantees depend on which match we use. Section 5.3describes how to use speci�cation matching to show substitution and subtyping relationships.Speci�cation matching is far more \expensive" in two respects: (1) the non-trivial overheadof writing the speci�cations and (2) the necessity of using theorem proving to show a match.Fortunately, we can use theorem proving technology to automate the match process rather thanproving the match by hand. The additional overhead of speci�cation matching is acceptablefor applications where signatures are not descriptive enough and we are willing to expend alittle extra e�ort to specify and prove that a match holds. For example, if we want to replacea component in a safety-critical system with an updated, veri�ed library component, we wouldwant to prove we could substitute the library component for the existing component.3.5.2 Match De�nitionsWe de�ne a variety of matches. As with signature matching, which match is most appropriateto use will depend on the particular situation. First, the choice of match depends on the contextin which the match is used { how strong of a guarantee is needed about the relation between thetwo speci�cations? If we want to know that we can substitute one function for the other andstill have the same behavior, we would use plug-in match or an exact match. In contrast, if weare only interested in whether the functions have the same e�ects and we are willing to checkpre-conditions separately, we can use weak post match. Which match is most appropriate alsodepends on the actual form of the predicates. In some cases, pre/post matches will be easier toprove with a theorem prover since the pre/post matches relate pre-conditions to pre-conditionsand post-conditions to post-conditions, and for two speci�cations, S and Q, it is likely thatSpre and Qpre are related and hence we can reason about that relation (and similarly for Spostand Qpost). In other cases, however, it is necessary to make some assumptions about the pre-condition in order to prove a relation between the post-conditions. In these cases, the predicatematches are easier to prove.There are, of course, many other variations of logical operators connecting Spre ; Spost ; Qpre ;

3.5. DISCUSSION 59and Qpost , but they do not have the same correspondence to an intuitive relation betweenS and Q that the de�nitions presented here do. We should also note that not all of theseother variations would �t into the two generic de�nitions we present in Section 3.2 since thegeneric de�nitions restrict the way terms are combined and which logical operators can be used.However, all would �t in the lattice of Figure 3.5 since the lattice has no such restrictions.Another class of relaxed speci�cation match de�nitions takes advantage of the structure of aparticular predicate and relaxes the match in some way based on that structure. For example,if post-conditions were always in conjunctive normal form, we could de�ne a relaxed match thatallowed some of the conjuncts of either the library or the query to be dropped.3.5.3 Choice of Language and Theorem ProverThere are two features of Larch/ML that a�ect the ease with which we can prove a speci�cationmatch. The �rst feature is separate pre- and post-condition clauses. The matches in whichwe are interested are easy to express using this kind of speci�cation, particularly the pre/postmatches (Section 3.2.1). The pre/post matches best describe substitutability. We can substituteS for Q if S's pre-condition is weaker that Q's and S's post-condition is stronger than Q's(i.e., S works under at least as many conditions as Q and guarantees at least as much). Wecannot express this notion without separating the pre- and post-conditions in the de�nition.Using a speci�cation language with explicit pre- and post-conditions makes it easy to usepre/post matches. That does not preclude the use of speci�cation matching on speci�cationlanguages that do not explicitly separate the pre-condition, however. The predicate matches(Section 3.2.2) are still easy to use with such languages, and, with some additional work, wecould also derive the pre- and post-conditions of the speci�cations to use the pre/post matches.A second feature of Larch/ML is its use of the Larch two-tiered approach. We use theLSL tier to address the problem of needing a theory of common base terms when matchingtwo speci�cations. In most speci�cation languages (e.g., Z [Spi88], VDM [Jon86]), we wouldrely on the built-in expression language as the base theory. LSL makes it possible to de�nean extensible collection of general traits (e.g., Container), upon which Larch/ML speci�cationsare built. The traits provide a common vocabulary for operators in two speci�cations that wewant to match, each of which may be speci�ed by di�erent people. We assume that the numberof such general traits would be relatively small, and thus speci�ers could easily become familiarwith them. We discuss how to prove a match between two speci�cations based on di�erenttraits in Section 7.2.2.The disadvantage of the two-tiered approach is that it is, in some ways, twice the work. Auser must learn not just one but two speci�cation languages,2 which adds to the already bige�ort required to use formal speci�cations at all.2Even assuming that a set of general traits already exists, the user must learn enough about LSL to be ableto use the traits.

60 CHAPTER 3. FUNCTION SPECIFICATION MATCHINGChoosing Larch led naturally to using LP to prove speci�cation matches. There is al-ready a tool to translate LSL speci�cations to LP input, and implementing a translator forLarch/ML speci�cations was straightforward. LP is designed to be a proof assistant ratherthan a completely automatic theorem prover. Thus, it is not surprising that a number of ourproofs required user guidance. Since our main concerns with the implementation of functionspeci�cation match were to do some examples to demonstrate the validity of the approach andto compare the various match de�nitions, the need for user assistance was not a particularproblem. However, it does raise questions about how hard it would be to prove match betweensigni�cantly larger or more complex speci�cations.Additionally, although our �nal proofs were not ultimately long or complex, we did spendquite a while to arrive at some of those proofs; theorem proving is like programming in that thereis some \art" involved after all the theory and syntax are learned. An example of somethingthat requires an artful touch in LP is the use of the critical-pairs command. Deciding when toapply the technique and to which pairs requires some experience. While this problem is notunique to speci�cation matching, it is still worth noting that some of the same problems arisewith speci�cation matching as are found in other applications that use theorem provers.

Chapter 4Module MatchingThe previous two chapters address the problem of matching functions using signature andspeci�cation matching. However, a programmer may need to compare collections of functions,e.g., sets of operations on abstract data types. This chapter moves up a level in granularity todescribe matching of modules.Most modern programming languages explicitly support the de�nition of abstract data typesthrough a separate modules facility, e.g., ML modules, CLU clusters, Ada packages, or C++classes. Modules are also often used to group sets of related functions, like I/O routines. As withfunctions, providing the signature for a module is no additional work for the programmer, sinceeither the programmer must provide the signature anyway for type checking, or the signatureis generated automatically by type inference. Although speci�cations do require additionalwork, we hope that this thesis provides additional motivation for programmers to use formalspeci�cations.In this chapter, we de�ne module interfaces (signatures and speci�cations at the modulelevel) and module matching. At its core, a match between two modules requires a matchbetween pairs of functions in the modules. The interesting thing about our module matchde�nitions is that they have the function match as an explicit parameter. Thus, whether amodule match is a signature match or a speci�cation match depends only on whether thefunction match parameter is a function signature match (i.e., any match from Chapter 2) or afunction speci�cation match (i.e., any match from Chapter 3)We begin the chapter with our de�nitions of module match (Section 4.1). As with thefunction match predicates, we de�ne an exact match and various relaxations. Section 4.2discusses the various properties of the matches { how they relate, which matches are equivalenceor partial order matches, and various potential extensions to the match. Section 4.3 describesthe implementation of module-signature-match-based retrieval, using the function signaturematch implementation from Section 2.5 and some shell scripts.61

62 CHAPTER 4. MODULE MATCHING4.1 Match De�nitionsA module interface is a pair, � = h�T ;�F i, where� �T is a set of user-de�ned types, and� �F is a set of function abstracts.�T introduces the names of user-de�ned type constructors that may appear in �F . Afunction abstract is the function name together with either a function signature or a functionspeci�cation. We include the function name both as useful feedback to the user and to dis-tinguish between abstracts that would otherwise be the same (thus �F is a set rather than amultiset). Within a given interface, all abstracts must be the same kind. If the abstracts aresignatures, the interface is a signature interface; if the abstracts are speci�cations, the interfaceis a speci�cation interface. We use � to denote function abstracts. Since we can think of asignature as a very rudimentary speci�cation, it is reasonable to use the same notation forboth.For the examples in this chapter, we use the Toy Signature Library in Chapter 1 as thelibrary. This library contains three module signature interfaces: List, Set, and Queue. The Setinterface has one user-de�ned type (�T = f� Tg) and seven signatures in �F . For consistency,we assume that the List interface has a type declaration for � list, even though list is a built-intype. Since our library for the examples consists of signature interfaces, we give examples ofmodule signature matching. However, the de�nitions of module match apply for both signatureand speci�cation interfaces. Section 5.3.2 provides an example of module speci�cation matching.For a library interface, �L = h�LT ;�LF i, to match a query interface, �Q = h�QT ;�QF i,there must be correspondences both between �LT and �QT and between �LF and �QF . Thesecorrespondences vary for the exact and relaxed module matches.4.1.1 Exact MatchDe�nition 4.1.1 (Exact Module Match)M-matchE(�L;�Q;matchfn) =9 total functionsUF : �QF ! �LF andUTC : UserOp(�QT)! UserOp(�LT) (with corresponding renaming TC)such that (1) UTC and UF are one-to-one and onto(2) 8 � 2 �QT ;matchE (�; TC �)(3) 8 �q 2 �QF ;matchfn(UF (�q); TC �q)UTC and TC ensure that user-de�ned types are named consistently in the two interfaces.For a set of user-de�ned types �T , UserOp(�T) extracts the set of type constructor variables in

4.1. MATCH DEFINITIONS 63�T (e.g., for �T = f� T; int Xg, UserOp(�T) = fT;Xg). The domain of function UTC is a setof type constructor variables; from it we construct the type constructor renaming sequence TC,which is applied to function signatures or to the signature part of function speci�cations. Foreach uq 2 UserOp(�T), the renaming [UTC(uq)=uq] appears in TC. To avoid potential namingcon
icts, we assume that UserOp(�QT) and UserOp(�LT) are disjoint (if they are not, we caneasily make them so).UF maps each query function abstract �q to a corresponding library function abstract,UF (�q). Since any user-de�ned types in UF (�q) come from �LT , we apply TC to �q to ensureconsistent naming of type constructors. The correspondence between each TC �q and UF (�q)is that they satisfy the function match, matchfn . Since UF is total, one-to-one, and onto, thenumber of functions in the two interfaces must be the same (i.e., j�LF j = j�QF j), and likewisefor UTC , �LT , and �QT .The function match parameter (matchfn) gives us a great deal of
exibility, allowing any ofthe function matches de�ned in Chapters 2 or 3 to be used in matching the individual functionabstracts in a module interface. For the matches to work, of course, the two interfaces and thefunction match must all be signatures (module signature match) or must all be speci�cations(module speci�cation match).Let us consider an example. Suppose we want a module that implements a functionalabstract container. We describe it with the signature interface M1, shown below:M1: �QT = f � C g�QF = f create: unit ! � C,add: � C � �! � C,delete: � C ! �,remainder: � C ! � C gIf we use exact module match with exact function match, M1 is matched by the Queueinterface in the Toy Signature Library (i.e.,M-matchE(Queue;M1;matchE)) with UTC(T) = Cand the obvious mapping of functions. Note that even allowing more relaxed function matches,exact module match of M1 with List or Set will never be true because both of these interfaceshave more functions than M1, and UF must be one-to-one and onto.4.1.2 Partial MatchesGeneralized MatchShould a querier really have to specify all the functions provided in a module in order to �ndthe module? A more reasonable alternative is to allow the querier to specify only the functionsof interest and match a module that is more general in the sense that its set of functions mayproperly contain the query's set.

64 CHAPTER 4. MODULE MATCHINGDe�nition 4.1.2 (Generalized Module Match)M-matchgen (�L;�Q;matchfn) is the same as M-matchE(�L;�Q;matchfn) exceptUTC and UF need not be onto.Thus, whereas withM-matchE(�L;�Q;matchfn), j�LF j = j�QF j, withM-matchgen (�L;�Q;matchfn),j�LF j � j�QF j, and �LF � TC �QF (where TC �QF is a shorthand for applying TC to eachelement of �QF).In Standard ML, the notion of signature matching is applied in determining when a structure(code module) matches a signature. We can de�ne this in terms of generalized module match.There are two conditions for a structure to match a signature. First, the structure must provideat least all the values (types and functions) declared in the signature. Second, the type of afunction in the structure must be at least as general as that function's type in the signature.Let �Q be an ML signature, and �S be the actual signature of an ML structure S. Then thestructure S matches the signature �Q if M-matchgen (�S ;�Q;matchgen).Generalized module match is also the module match we expect to be most useful in practice.Library interfaces will typically provide a range of functions. A querier is likely to need onlysome of them and should have to specify as little as possible. Consider queryM1 again, but withgeneralized module match. If we instantiate matchfn with matchE , M1 is still only matched byQueue. However, if we use matchtycon �matchreorder as the function match, M1 is matched bythe List interface as well. However, it is not matched by Set, since Set does not have a functionthat matches with the delete or remainder functions in M1.The following very simple query eliminates the distinction between modules that removea speci�ed object (like Set) and modules that remove a pre-determined object (like List andQueue): M2: �QT = f � C g�QF = f create: unit ! � C,add: � C � �! � C gM2 itself is a subset of M1 (i.e., M-matchgen (M1;M2;matchE)). In addition, with thefunction match matchtycon � matchreorder , M2 is matched by all three interfaces in the ToySignature Library. Table 4.1 summarizes the examples, showing which library interfaces matchwith which queries under exact and generalized module match and various function matches.Specialized MatchSpecialized module match is the opposite of generalized module match. With specialized modulematch, a library need not have all the functions de�ned in the query. This is useful in practice.

4.1. MATCH DEFINITIONS 65matchfnQuery Module Match matchE matchreorder matchtycon �matchreorderM1 Exact Queue Queue QueueM1 Generalized Queue Queue QueueListM2 Generalized M1 M1 M1Queue Queue QueueSet SetListTable 4.1: Which modules match which queriesIf a library module has most of the functionality you need, it may be possible to implement theremaining functions using the ones provided, or to use existing ones as prototypes.De�nition 4.1.3 (Specialized Module Match)M-matchspcl(�L;�Q;matchfn) = M-matchgen (�Q;�L;matchfn)where matchfn (�q; �l) = matchfn(�l; �q)matchfn reverses the order of the arguments tomatchfn . In particular, matchgen = matchspcl .We cannot simply useM-matchgen(�Q;�L;matchfn) because partial order matches are antisym-metric, so the order of arguments tomatchfn matters. For example, consider the following queryM3: M3: �QT = f string C g�QF = f create: unit ! string C,add: string C � string ! string C,delete: string C ! string,remainder: string C ! string C,length: string ! int gM3 is like Queue except that it uses a more speci�c type, string C, and has an extrafunction, length. Suppose we use the function match matchgen with specialized module match.Then M-matchspcl (Queue ;M3;matchgen) = M-matchgen (M3;Queue;matchspcl), which is true:the functions in Queue are matched by a subset of the functions in M3 under specializedfunction match. If we did not reverse the order of arguments to matchfn , the match would nothold (i.e., M-matchgen (M3;Queue;matchgen) is false) because the function signatures in M3are not more general than those in Queue.

66 CHAPTER 4. MODULE MATCHING4.2 Properties of the Matches4.2.1 Distinctions Between the MatchesThe key di�erence between the three module match de�nitions lies in the relation between thesets of function abstract �QF and �LF . All three de�nitions use the same two mappings, UTCand UF , to draw correspondences between two interfaces; what varies is whether all functionsin a particular interface are required to have a corresponding function in the other interface.That is, what varies is the relation between the sets �QF and �LF . Table 4.2 summarizes theset relation R for each match.Match �QF R �LFExact =Generalized �Specialized �Table 4.2: Relation between �QF and �LF for the module matches.4.2.2 Equivalence and Partial Order MatchesAs with function matches, we classify module matches by whether they are equivalence matchesor partial matches (Section 2.4.1, pg. 25). The classi�cation is dependent to some extenton whether the function match used as a parameter to the module match (matchfn) is anequivalence match or a partial order match. Exact module match is an equivalence matchwhen matchfn is instantiated with an equivalence match, a partial order match when matchfnis instantiated with a partial order match, and neither if matchfn is neither. Because the subsetrelation is antisymmetric, generalized and specialized module match are partial order matcheswhen matchfn is either an equivalence match or a partial order match and neither if matchfn isneither.4.3 ImplementationWe used Beagle, the retrieval tool for functions described in Section 2.5, and some shell scriptsto implement M-Beagle, a signature-based retrieval tool for modules using generalized modulematch. We make two simplifying assumptions: (1) any type constructor renamings are handledby matchfn (thus we ignore �QT and �LT) and (2) there are not two function signatures in �QF

4.4. DISCUSSION 67that match the same function signature in �LF . Given a query interface �Q = h�QT ;�QF i(where �QF = f�1; : : : �ng) and a library of interfaces L, we do the following:(1) For each �i 2 �QF , create a set of modules Mi 2 L.�L 2Mi i� 9 �l 2 �LF such that matchfn(�l; �i).(2) M = M1 \ : : :\MnMi is the set of module interfaces that contain a function signature that matches �i. M is theintersection of theMi's, and is the set of interfaces that match �Q. That is, for �L 2 L : �L 2Mi� M-matchgen (�L;�Q;matchfn).If we eliminate our two simplifying assumptions, it would be necessary to write a slightlymore complex tool that calculates TC and that tries several potential function mappings inthe cases where multiple query function signatures match a library function signature (i.e., wewould need to be able to try various permutations of the function mapping). In practice, such atool should not be signi�cantly more complex than our current implementation. We can reducethe search space for permutations with a few simple heuristics. One such heuristic would be toconsider a mapping from �q to �l only if they have the same number of input arguments (if thefunction match is an uncurry match, do the uncurrying �rst). Another heuristic for the casewhere matchfn does not include matchgen or matchspcl would be to check for occurrences of thesame base types in �q and �l.In the case where we simply wish to compare a particular pair of interfaces (e.g., for sub-typing), it is also reasonable to require the user to supply the mappings UTC and UF . Forexample, for speci�cation interfaces, if the user supplies a pairing of function names, we auto-matically generate the LP assertions for the match (we assume UTC is the identity function).See Section 5.3.2 for details.4.4 DiscussionThe module matches are highly parameterized and extensible. The function match relationbetween the pairs of functions is completely orthogonal to the module match de�nitions; wecan instantiate matchfn with any of the signature or speci�cation function matches. In fact,we could easily de�ne another relaxed module match where the function match can vary on aper-function-abstract basis.Most generally, a module interface consists of some global information (�T) and a set offunctions (�F). This framework allows the potential to extend the module interface to containeven more information. One such instance is the way the de�nitions allow not only signaturesbut also speci�cations. Additionally, we could extend module speci�cation interfaces to includeinformation about shared types or global invariants in �T . A new module match de�nitionincluding global invariants would be similar to De�nition 4.1.1 of exact module match, but

68 CHAPTER 4. MODULE MATCHINGUTC would change and point (2) of the de�nition would require some kind of consistencybetween invariants.We are able to use module matching to relate two modules. Section 5.3.2 contains anexample of how we use module speci�cation match to show that one type is a behavioralsubtype of another. When comparing two modules to show they are related (e.g., one is asubtype of another), the focus is on the relations between the types and functions provided bythe modules, i.e., their interfaces, which is exactly the focus of these module matches.In cases where we want to locate a set of functions with particular types, module match canbe used for retrieval, but it is less e�ective for this. One problem is that whereas with functionmatching, it is very easy for a user to \tweak" their query and relaxations based on previousresults, the tweaking in a module must be done on a per-function basis, which increases thenumber of queries exponentially. Consider a simple example. Suppose we need to create acontainer and use the query unit ! � C. Suppose that does not retrieve a satisfactory result,so we use the query � C to try to �nd initial values for empty containers. Next, supposewe want to �nd a function to add an element to a container. We are not sure whether weneed an additional argument for the location of the element in the container, so we try both��� C ! � C and ��� �� C ! � C. In both these cases, there is very little overhead involvedin trying two queries rather than one. But if this were a module match, we would have to tryall four combinations of create and insert signatures in order to cover all the possibilities.The problem here is that the focus of the module matches is the interface of a component(the types and functions provided by the module), but the conceptual goal of someone whowants to retrieve a component is likely to be more abstract, for example, \I need a container"rather than \I need a component that has a create function and an add function." So what weneed is a more abstract notion of the type of a module, in addition to the interface. With sucha module type system, we could then use function signature matching to search for what wewant, for example, for a program that takes a �le in dvi format and converts it to Postscript,or we could search for a container or a parser, in a type system that contains those things asbasic types.

Chapter 5ApplicationsThis chapter describes applications of both signature and speci�cation matching. We discussthree main kinds of applications: retrieval (Section 5.1), indexing (Section 5.2), and substitution(Section 5.3). Retrieval applications return the subset of components in a library that matcha query by the user. These subsets are useful in locating components for reuse or in analyzing,browsing, or �ltering the library. Indexing applications de�ne an index on the library for e�cientstorage and retrieval of components and for browsing the library. Substitution applicationscompare two components using a signature or speci�cation match. Depending on the match,we can guarantee various properties will hold when we substitute one component for the other.For each application, we illustrate with examples from signature or speci�cation matching asappropriate, using the implementations described in Sections 2.5, 3.4, and 4.3.5.1 RetrievalOne of the central problems with software libraries is the need to search for and retrieve com-ponents from the library. At the heart of any solution to the retrieval problem is some way ofcomparing a description of what is desired from the library (the query) with each componentin the library, to see whether it matches. We use abstracts (signatures or speci�cations) to de-scribe the components, and any of the signature or speci�cation matches to do the comparison.Formally, we de�ne the retrieval problem as follows:De�nition 5.1.1 (Retrieve)Retrieve: (Component � Set of Components � (Component � Component ! Bool))! Set of ComponentsRetrieve(Q;L;M) = fC 2 L : M(C;Q)g69

70 CHAPTER 5. APPLICATIONS
L

Q

R

M(C,Q)Figure 5.1: The retrieval problemFigure 5.1 illustrates this de�nition. Given a query componentQ, a signature or speci�cationmatch M , and a library (set of components) L, Retrieve returns the set of components inL that match with Q under M . The components may be either functions or modules andcomponents may contain either signature or speci�cation abstracts (or both), provided that Mis instantiated with an appropriate match. Parameterizing the de�nition by M also gives theuser the
exibility to choose the degree of relaxation in the match. Retrieval is signature-basedwhen M is instantiated with a signature match, and speci�cation-based when M is instantiatedwith a speci�cation match.There are many reasons we might want to describe or retrieve a subset of library components.These include� To locate a particular component for reuse� To analyze the library� To browse the library� To use the resulting subset as the library for another retrieval or to combine it with theresult of another retrieval (i.e., to do compound retrieval)

5.1. RETRIEVAL 71The following examples are drawn from actual use of the signature-based retrieval toolsBeagle and M-Beagle on the Community Library by ourselves and our colleagues. They illus-trate the usefulness of allowing the user to specify which relaxations to use for a match, as wellas showing successful use of signature-based retrieval for reuse, for analysis, for browsing, andin compound retrieval. In the reuse examples, we also include explanations of some cases wherefunctions matched but were not what we wanted, since they help us understand more abouthow retrieval works in practice.5.1.1 ReuseThe most obvious and widely discussed application of retrieval is to locate components forreuse. Components may be reused directly or may need to be modi�ed slightly.Reuse 1As part of the implementation of a version of Beagle, we needed to generate a list of \tag bits"(all initialized to false) to track which elements of a list have already been used. Thus, weneeded a function that takes a boolean b and an integer n and generates a list of length n whereeach element has value b. Since it seemed likely that a library function would be more general inthe list's element type we used the query (��int)! � list with relaxations reorder and uncurryon an earlier implementation of Beagle. This search results in exactly one match, the functioncreate (with type int ! �! � list, from the List module in the Edinburgh sub-library), whichdoes exactly what we want. If we do not take the step of generalizing from bool to � on ourown, but instead use the query (bool � int) ! bool list with relaxations reorder, uncurry, andgeneralized, we retrieve 28 functions instead of just create, since any of bool, int, bool list, andthe tuple bool � int can be generalized. Of the 28 functions retrieved by the more general match,24 have type � ! �, 3 have type � ! � !
, and 1 (create) has type int ! � ! � list . Thissecond query illustrates the tradeo�s in using relaxed matches, such as generalized match andspecialized match, that instantiate type variables: increasing recall may reduce precision, sothe query may retrieve more useless components.Reuse 2A colleague of ours needed a function to take two lists and create a list of pairs of elementsfrom those lists. He used the query � list ! � list ! (���) list with relaxation uncurry, whichretrieves three functions: the zip function in all three sub-libraries. The code for all threefunctions is the same (except that the zip from the CMU sub-library is curried while those inthe other two libraries are uncurried), and all three do exactly what he wanted.

72 CHAPTER 5. APPLICATIONSReuse 3In another case, we needed to convert the representation of a type constructor name from alist of strings to a single string with the elements of the list separated by \."s (e.g., convert[\Parser", \Table", \T"] to \Parser.Table.T"). We used the query string list ! string withno relaxations. Notice that in this case we do not want to allow generalization, since we areimplicitly assuming that the function will use string concatenation, which would not generalize.This query retrieves six functions, including pathImplode and implodePath, from the SML/NJand CMU sub-libraries respectively. Both of these functions take a list of strings and returnsa string which is the concatenation of those strings with \/"s between the strings (to form apath name) and both are easy to modify to do what we want by replacing \/"s with \."s. Theother four functions out of the six retrieved include implode from the Edinburgh sub-library,which does not put a separator between the strings, and three functions that perform othermanipulations on a list of strings that form a directory pathname.Another reasonable query to use for this example is one that also includes the separatorstring as a parameter. The query (string list � string) ! string with relaxations reorder anduncurry retrieves only the function �rstLine (in both the execute and getwd modules in theCMU sub-library), which does something completely di�erent (it takes a program name andlist of arguments as input, and returns the �rst line of program output as its output string).This example shows that a relaxation to allow more or fewer arguments in a tuple would beuseful.A third approach to this example is to assume that there is a more general function thattakes as input a function on strings in addition to the list of strings. One might try a query likestring list ! ((string � string) ! string) ! string. This query with just reorder and uncurryrelaxations does not match anything. Adding the generalized relaxation results in 30 matches,the majority of which have type � ! � or � ! � !
 and are not useful. Two of the results,foldL' and foldR' (from the Edinburgh sub-library), have type (� ! � ! �) ! � list ! �.The function foldL' is like the built-in function fold except that foldL' uses the �rst element ofthe list as the initial value, whereas fold requires an initial value as an additional input (foldR'is similarly related to the built-in function revfold). We write a function, specialConcat, toconcatenate two strings with a \." in between, and call foldR' with specialConcat and the listof strings to achieve our goal.Reuse 4An example that gives a somewhat surprising result is the query � list ! � using specializedmatch. We might expect this query to �nd functions that return an element from the list, likehd (although built-in functions are not in the library, so hd itself is not returned). This queryresults in nine matches, six of which have type string list ! string (the same ones describedin Reuse 3). Of the other three functions, two are
atten functions from di�erent sub-libraries

5.1. RETRIEVAL 73(type � list list ! � list), and the only one like hd is last from the Edinburgh sub-library.Reuse 5 (Module Reuse)Retrieval for reuse also occurs at the module level. Recall the module signature query M2presented in Chapter 4. The query de�nes an abstract container type and functions to createand add to a container. M2: �QT = f � C g�QF = f create: unit ! � C,add: � C � �! � C gUsing M-Beagle and the function signature match with type constructor, reorder, and un-curry relaxations, M2 retrieves two modules: the sortableQueue module (with functions emptyand enq) and the lstream (lazy stream) module (with functions empty and cons), both from theCMU sub-library.A more common way to initialize a container is to de�ne a constant that is the value of theempty container (e.g., [] on lists). M3 shows a module signature query for this approach.M3: �QT = f � C g�QF = fcreate: � C,add: � C � �! � C gUsing the same match instantiations as for M2, M3 retrieves four modules for sets, queues,and lists from the Community Library. Table 5.1 summarizes details of the four modules,showing the name of the module, the names of the constants and functions matching thefunction signatures, and which sub-library the module is in. The two queries, M2 and M3, �ndmost of the immutable containers in the library. They do not, however, retrieve the IntSet andBinarySet modules from the SML/NJ sub-library because the set type in these modules doesnot use a polymorphic variable. For example, the BinarySet module contains the value empty: set and the function add : set � item ! set .Even with just two functions in the query module, using module signatures rather thanfunction signatures signi�cantly reduces the number of matches. Using function-signature-based retrieval with the same relaxations (type constructor, reorder, and uncurry), the queryunit ! � C (M2.create) retrieves twelve functions, the query � C (M3.create) retrieves ninefunctions, and the query � C � �! � C (add) retrieves nine functions.

74 CHAPTER 5. APPLICATIONSModule � C � C � �! � C Sub-libraryEqSet empty insert Edinburgh�fo empty enqueue SML/NJ�fo2 empty enq CMUList empty updateLast EdinburghTable 5.1: Results of module library query M35.1.2 Statistical AnalysisAnother use of retrieval is to analyze a software library. We can characterize properties of thelibrary, make general statements about the types of the functions in the library, or generate aset of components we then further analyze by hand. Consider the following examples.Analysis 1We can use retrieval to gather statistical information about the size of a library. For example,to �nd the total number of functions in the library, we use the query � ! � with specializedmatch. When applied to the Community Library, this query retrieves 1451 functions. Notethat the query � with specialized match is matched by constants as well as functions. If we use� as the query with specialized match (i.e., count both constants and functions), we �nd 1739components in the Community Library.Similarly, we can use module match to count the number of modules in a library. Themodule query consists of just one function of type � ! � and the match uses generalizedmodule match with specialized function match. Using this query, M-Beagle �nds 129 modulesin the Community Library.Analysis 2A fellow graduate student wanted to gather statistics about what percentage of functions inthe libraries have a curried form (i.e., return a function). Under specialized match, the query� ! � !
 retrieves 577 functions out of 1451 (40%). Using the same query, we observe adistinction among the sub-libraries: 51% of the functions in the Edinburgh sub-library havethis form (352 out of 688), compared with 27% of the SML/NJ sub-library (98 out of 362) and32% of the CMU sub-library (127 out of 401).To �nd out more about the form of curried functions, we use the queries q4 = � ! � !
 ! �, q5 = �! � !
 ! � ! �, q6 = �! � !
 ! � ! �! �, and q7 = �! � !
 ! � !�! � ! �. Using these queries with relaxation specialized retrieves 184, 32, 7, and 0 functions,respectively.Each query qn+1 = v1 ! : : :! vn ! vn+1 retrieves a subset of the functions retrieved by

5.1. RETRIEVAL 75the query qn = v1 ! : : : ! vn, since qn+1 is itself a specialization of qn (by instantiating vnin qn to vn ! vn+1). Thus, when we reach q7, which retrieves no functions, we know that thelongest curried functions in the library are instantiations of q6. We use this fact in the nextanalysis.Analysis 3We wanted to see how the various base types (bool, int, real, string, and unit) are used in thelibrary. For each base type, bt, we used the query �! bt with relaxations specialized, uncurry,and reorder to �nd out which functions return a value of type bt.To �nd out how many functions take a type bt as one of the inputs is more di�cult becausethere is no single query that can match functions with an arbitrary number of inputs, oneof which is type bt. However, the number of inputs to a function is �nite and usually fairlysmall. We know from Analysis 2 that the uncurried versions of curried functions in the libraryhave no more than �ve elements in the input tuple. A scan of the library types with grepshows that the largest tuple in the library has four elements. Thus, we use queries of the formbt � v1 � : : : � vn�1 ! vn, where the vi's are type variables and n ranges from two to �ve. Weuse the relaxations specialized, uncurry, and reorder; specialized match allows instantiationof the vi's, uncurry allows us to also count curried functions, and reorder allows bt to occuranywhere in the tuple. We must use the uncurry relaxation on the query bt ! � to avoidmatching functions of the form bt ! X ! Y , since these are counted in the matches for thequery bt � �! �.Table 5.2 shows the results of the sequence of queries to �nd usage of the various base typesand for a variable. Each query was run with relaxations specialized, reorder, and uncurry.Each entry shows the number of functions retrieved by that query, where bt in the query isinstantiated by the base type shown at the top of each column. For example, for the base typereal (fourth column), the library contains 23 functions that return a real number (i.e., the query� ! real with relaxations specialized, uncurry, and reorder retrieves 23 functions). There are15 functions that take a real number as their only input; 24 functions that either take a realQuery bool int real string unit variable�! bt 197 81 23 164 198 1451bt ! � 3 41 15 132 87 1451bt � �! � 9 159 24 169 1 629bt � � � � !
 1 55 1 38 0 184bt � � � � �
 ! � 2 17 0 15 0 34bt � � � � �
 � � ! � 0 2 0 5 0 7Table 5.2: Usage of various base types (bt stands for the base type used in each column)

76 CHAPTER 5. APPLICATIONSnumber as part of an input pair or are curried functions of the form X ! Y ! Z, where Xor Y is real; and 1 function that either takes a real number as part of its three-element inputtuple or has an equivalent curried form. Thus, a total of 40 functions (the sum of all entriesin the column but the �rst) have the type real as one of the inputs. The rightmost columnin Table 5.2 uses a type variable rather than a base type for bt in the queries, and thus answersmore general questions about the number of input elements to functions in the library. Forexample, the query � � � � � !
 retrieves 184 functions, each of which has a three-elementinput tuple (or an equivalent curried form).Alternatively, we could have used something like grep to count the total number of functionsthat use a particular base type, but we could not have broken down the results based on thenumber of arguments or whether the base type is part of the input or part of the output.Analysis 4We can also use retrieval to �nd out how many functions have n elements in the input tuple,for n ranging from two to four (we know we can stop at four from the results of Analysis 3).For each n, we use the query v1 � : : : � vn ! vn+1 and specialized match. Table 5.3 shows theresults of the queries. These results are the number of matches with the queries using only thespecialized relaxation. For each query qn, the number of functions retrieved by qn in Table 5.3is less than the number of functions retrieved by qn in Table 5.2 because we do not include theuncurry relaxation here, since we do not want to include curried functions in these counts.Query Number of matches� � � !
 256� � � �
 ! � 32� � � �
 � � ! � 9Table 5.3: Number of functions with input tuples of various sizes5.1.3 Retrieval-based BrowsingAlthough having a structure on top of the library to browse through is generally preferable(see Section 5.2), retrieval is also useful for browsing. Retrieval provides a way to \break up"the library into more manageable pieces, or focus on a subset of functions that are likely to beof interest. Browsing through what has been retrieved allows a user to learn about the styleof a particular programming language or library, �nd out what is available in the library, seeexamples of how to program using a particular data structure or kind of function, or simplybecome more familiar with the contents of a library. In fact, using retrieval to browse a librarycan also help a user become familiar with a retrieval tool as well, by simply performing queries

5.1. RETRIEVAL 77with various relaxations and browsing through the results to see what matched.Browsing 1We wanted to see whether naming conventions for user-de�ned types in ML were the samefor each sub-library. Most user-de�ned types are likely to have at least one function thatreturns an object of that type, so we used the query � ! � X with relaxations specializedand type constructor. Browsing through the results of using this query on the SML/NJ andEdinburgh sub-libraries, we found that user-de�ned types tend to have meaningful names andto be lowercase (e.g., array, �fo, splay, and intmap in the SML/NJ sub-library, and arrayand vector in the Edinburgh sub-library). We also found some inconsistencies in naming. Forexample, in the SML/NJ sub-library, the hash table type is hash table while the integer maptype is intmap (i.e., one compound word uses an underscore and the other does not); in theEdinburgh sub-library, some of the user-de�ned types are lowercase (array and vector) whileothers are not (Set and Const). Looking through the results of using the same query on theCMU sub-library, we noticed that many of the functions name the user-de�ned type constructorT . This is not because they are the meant to be the same type, but rather simply a namingconvention adopted by many ML programmers.Browsing 2We can also use browsing to learn something about how to use a particular data structure.For example, to learn how to use higher-order functions, we begin by looking at the results ofAnalysis 2, which shows the percentage of higher-order functions for each of the sub-libraries.The Edinburgh sub-library has the highest percentage of higher-order functions, so we browsethrough the results of the query � ! � !
 with specialized match on the Edinburgh sub-library to �nd examples of higher-order functions. To really see the power of making a functionlike nth (int ! � list ! �) higher-order, we would also have to �nd uses of it (e.g., a functionsecond:� list ! � = nth 1). We also �nd functions such as iterate (int ! (� ! �) ! � ! �)and exists ((� ! bool) ! � list ! bool), which take a function as a parameter and apply thefunction either a certain number of times (iterate) or to each element of a list (exists), anothercommon use of higher-order functions.Browsing 3Suppose we are interested in seeing how side-e�ecting functions work. These functions oftenreturn unit since the actual work in the function is in modifying an object rather than creatinga new value. The query � ! unit with specialized match retrieves 114 functions from theCommunity Library. Browsing through some of these, we �nd a few general kinds of functions:I/O functions that close or write to an I/O stream, print functions, operating system functions

78 CHAPTER 5. APPLICATIONS(e.g., pwd, cd), thread control
ow, and updates on array-like data structures. We could browsespeci�c functions to see more details of how to implement each of these kinds of functions.Browsing 4When motivating the weak post speci�cation match (De�nition 3.2.6, pg. 46), we gave examplesof functions that match the signature but not the speci�cation of the query Q4 (shown againbelow). signature Q4 = sig Q4(�+ using Container +�)type � T (�+ based on Container.E Container.C +�)val remainder : � T ! � T(�+ remainder s = s2ensures length (s2) = (length (s) �1) +�)endTo �nd these examples, we use the query � T ! � T with relaxation type constructor toretrieve 13 functions that match with Q4's signature. We then characterize the functions bybrowsing through them, and looking at the code if the function name does not clearly indicatethe general purpose of the function. We classify the retrieved functions as follows:� Four functions return the container that results from removing an element from the inputcontainer (i.e., they informally match with Q4 under weak post match). Those functionsare dropLast and tl (on lists), tail (on lazy streams), and deq (on queues).� Four other functions also return a subpart of the input container, but do not necessar-ily decrease the size of the container by one (and hence do not match with Q4). ThedropRepeats function on lists removes duplicate elements from the list; the rootptr func-tion returns the root of a mergeable reference (which is itself a mergeable reference) {there are two di�erent versions of this function in the library; and the copy functionreturns a full copy of a hash table.� Three functions reverse an ordered container: rev on lists, vectors, and arrays.� The remaining two functions also permute or transform the container in some way. Thelrotate function rotates splay trees, and the mkblk function marks a red-black tree as black.All of the functions in the last three groups are examples of functions that match thesignature but not the speci�cation of Q4.

5.1. RETRIEVAL 795.1.4 Compound RetrievalThe result of retrieval is a set of components. Compound retrieval combines the results of tworetrievals using set operations (intersection, union, set di�erence). If R1 = Retrieve(Q1; L;M1)and R2 = Retrieve(Q2; L;M2), then� R1[R2 = fC 2 L : (M1(C;Q1)_M2(C;Q2))gThe union is the set of components in L that match with Q1 under M1 or match withQ2 under M2.� R1� R2 = fC 2 L :M1(C;Q1)^ :M2(C;Q2)gThe set di�erence is the set of components in L that match with Q1 under M1 but donot match with Q2 under M2.� R1\ R2 = fC 2 L :M1(C;Q1)^M2(C;Q2)gThe intersection is the set of components in L that match both with Q1 under M1 andwith Q2 under M2.The library (L) need not even be the same in the two retrievals, but must have the samegranularity (i.e., functions or modules). M1 and M2 may be matches that require di�erentretrieval tools (e.g., M1 is a signature match and M2 is a speci�cation match), providing thatthe components in the library include both kinds of abstracts.In the case where two retrievals use the same library and the set operation between themis \ or �, we can pipeline the retrievals. We form a pipeline by using the result of the �rstretrieval, R1, as the library of the second retrieval. Pipelining increases the e�ciency of acompound retrieval by reducing the number of components that must be checked by M2. Thisis particularly useful if M1 is a faster match than M2; we use M1 to \weed out" obviousnon-matches before applying M2. For example, M1 might be a signature match and M2 aspeci�cation match.The result of a pipelined pair of retrievals is equivalent to the intersection of the re-trievals if both are done on the original library. That is, if R1 = Retrieve(Q1; L;M1),R2 = Retrieve(Q2; L;M2), and R20 = Retrieve(Q2; R1;M2) (i.e., the pipelined result), thenR20 = R1 \ R2. Further, the results of set di�erence of R1 with R2 and of R1 with R20 areequivalent (i.e., R1� R2 = R1� R20).Figure 5.2 illustrates how pipelining works. The boxes represent the Retrieve function. Ar-rows entering the box represent inputs to the function (the query, components, and match), andthe arrow leaving the box represents the output (i.e., the result of the retrieval). Figure 5.2.a il-lustrates the general notion, where R1 = Retrieve(Q1; L;M1) and R20 = Retrieve(Q2; R1;M2).Figure 5.2.b shows an example of pipelining a signature match and a speci�cation match. The�rst retrieval uses the function signature query � T ! � and exact function signature matchon the Toy Speci�cation Library with the result R1 = fStack.top, Queue.deqg. The second

80 CHAPTER 5. APPLICATIONS
a. General pipeline

b. An example

Retrieve Retrieve

Q6T -> α α

Toy
Specification

match E match gen-pred

{ Stack.top,
 Queue.deq }

{ Stack.top }

Q1

L

M1

Retrieve R2’RetrieveR1

Q2

M2

Figure 5.2: The idea behind pipeliningretrieval then uses the speci�cation query Q6 from Section 3.2.2 (pg. 49; Q6 speci�es that thefunction returns the most recently inserted element of the input container), and generalizedpredicate match to retrieve Stack.top from R1. The advantage to using pipelining here is thatwe only had to apply the speci�cation match to the two functions in R1 rather than to all eightfunctions in the Toy Speci�cation Library.We now consider examples of compound retrieval using set union, di�erence, and intersec-tion. All examples in this section were obtained by using Beagle on the Community Libraryand doing the set operations by editing the search results and using various Unix tools (e.g.,diff, cat).Compound 1 (using [)We use set union to answer disjunctive queries. Suppose we want to look at functions thatreturn a path name of a �le, but are unsure whether the path name is represented as a stringor a list of strings where each element in the list is a directory in the path. To �nd all functionsthat return either a string or a list of strings, we cannot use just one query. Instead, we use twoseparate signature-based retrievals and combine the results, as shown in the following sequenceof queries and library manipulations:

5.1. RETRIEVAL 811. Let R1 be the result of the query � ! string on the library with specialized match, i.e.,R1 = Retrieve(�! string;Community;matchspcl).2. Let R2 be the result of the query � ! string list on the library with specialized match,i.e., R2 = Retrieve(�! string list;Community ;matchspcl).3. Let R3 = R1 [R2. R3 contains the functions that return either a string or a list ofstrings.When we perform these queries, R1 contains 105 functions, R2 contains 22 functions, andthus, R3 contains 127 functions that return either a string or a list of strings. For example,in R1 we �nd the function getwd: unit ! string, from the cshellDir module in the CMU sub-library, which returns the current working directory (as a string). In R2 we �nd the functionclearPath': string list ! string list, from the pathname module in the CMU sub-library, whichprocesses the \.." and \." components of a path to create a \clear" path (as a list of strings).Additionally, we �nd the functions pathImplode (in R1) and pathExplode (in R2), which convertbetween the list of string and string formats for path names.Compound 2 (using �)We use set di�erence to �nd the components that match one query but not another. Suppose wewant to �nd functions that take two inputs, of which one is a real number and the other is not.We use the query real��! � with relaxations specialized, uncurry and reorder to �nd functionsthat take a real number as one of its inputs, but this may include functions with real numbersas both inputs. We then use a second query, real � real ! �, again with relaxations specialized,uncurry and reorder to �nd and �lter out those functions that have two real numbers as inputs,as we show in the following sequence of queries and library manipulations:1. Let R1 be the result of the query real � �! � on the library, L, with specialized match,i.e., R1 = Retrieve(real � �! �;Community ;matchspcl).2. Let R2 be the result of the query real � real ! � on R1 with specialized match, i.e.,R2 = Retrieve(real � real ! �;Community ;matchspcl).3. Let R3 = R1�R2. R3 contains the functions that take two inputs, of which one is a realnumber and the other is not.As previously noted, if we use L rather than R1 to create R2, the result of R3 is still thesame, but using R1 is more e�cient. The �rst query retrieves 24 functions and the secondquery retrieves 13. Thus, R3 contains 11 functions with a real number as only one of its twoinputs, for example ** : (real � int)! real and mkRandom : real ! (unit ! real).

82 CHAPTER 5. APPLICATIONSCompound 3 (using �)Suppose we want to �nd functions of the form real ! X , where X is not a function type. Thequery real ! � with specialized match will retrieve functions of that form, but may also retrievefunctions of the form real ! Y ! Z, where Y and Z are type expressions, since � could beinstantiated with a function type. We �lter out the functions of the form real ! Y ! Z withthe following sequence of queries and library manipulations:1. Let R1 be the result of the query real ! � on the library with specialized match, i.e.,(R1 = Retrieve(real ! �;Community ;matchspcl).2. Let R2 be the result of the query real ! � ! � on R1 with specialized match, i.e.,(R2 = Retrieve(real ! �! �;R1;matchspcl).3. Let R3 = R1 � R2. R3 contains the functions of the form real ! X , where X is not afunction type.When we perform these queries, R1 contains 25 functions, and R2 contains 10, leaving uswith 15 functions in R3. Ten of those have type real ! real , four have type real ! int , and onehas type real ! (real � real). An alternative way to get this same result is to use a single querywith the uncurry relaxation in addition to specialized, since this will �rst uncurry functions ofthe form real ! Y ! Z to (real � Y)! Z, and hence will not match the query.Compound 4 (Using \)We use set intersection to do conjunctive queries, even when we use di�erent retrieval tools fordi�erent parts of the query. Suppose we want a function that returns the length or size of anobject. We could look for functions with signature �! int using signature-based retrieval, orfor the string \length" in the text of the code using grep, or we can look for things that matchboth queries. Because grep does not distinguish between di�erent functions in a module (�le),we do both queries at the module level. Also, grep searches the full text, so \length" may befunction name, may be a called function, or may occur in the comments.1. Let R1 be the result of the query �! int on the module library with specialized match,i.e.,. R1 = Retrieve(�! int ;Community;matchspcl).2. Let R2 be the result of a string search for the word \length" in modules in the library,i.e., R2 = grep length *.sml.3. Let R3 = R1 \R2.These queries result in 36 modules in R1, 28 modules in R2, and 10 modules in R3. Nineof the modules contain functions that do what we want, named either length (three functions),

5.1. RETRIEVAL 83size (�ve functions), or len (one function). The tenth module contains the function skipBlanks,which returns an integer position in a string (after skipping blanks) and uses string length inits calculations.Whereas R1 and R2 both have many modules that do not match our intent, R3 containsonly one \wrong" match. Thus, using conjunctive queries can increase the precision of thematch.Compound 5 (Using \)The implementation of M-Beagle, the module-signature-based retrieval tool described in Sec-tion 4.3, is also an example of compound function retrieval. Assume the following:� Retrieve0(Q;L;M):(Function � Set of Modules � (Function � Function ! Bool)) ! Set of ModulesRetrieve0(Q;L;M) = fC 2 L : 9 � 2 C :M(�; Q)g� Mmod(Q;L) = M-matchgen (Q;L;M) (where M is a function match)� �Q = h�QT ;�QF i where �QF = f�1; : : : ; �ngThen we de�ne module retrieval as follows:M-Retrieve(Q;L;Mmod) = n\i=1Retrieve0(�i; L;M)Retrieve0(Q;L;M) is a modi�ed function-based retrieval that returns the set of modules in Lthat contain functions that match with Q under M . Module retrieval (M-Retrieve(Q;L;Mmod))is then a compound retrieval using set intersection on the results of Retrieve 0 for each functionin Q.5.1.5 DiscussionThe examples in this section demonstrate how signature-based retrieval is used to locate func-tions for reuse, statistical analysis, and browsing. Most of the examples were actual uses ofBeagle by ourselves and our colleagues. We were able to use Beagle to retrieve the functionswe wanted. In fact, for some cases (e.g., the statistical analysis examples), the queries couldnot have been answered without a signature matcher.Retrieval for reuse is useful if it is fast and easy to retrieve, select, and reuse a component.We consider each factor (retrieval, selection, and reuse) in turn to see how using functionsignatures helps the reuse process.First, signature-based retrieval is fast and easy. Function signatures are easy to write, andretrieval using Beagle is reasonably fast. The search is linear in the size of the library, or better

84 CHAPTER 5. APPLICATIONSif we use an indexed library. For libraries of thousands or tens of thousands of functions, wecan expect search times of a few seconds or less. (The average search time for the CommunityLibrary of 1451 functions is .13 seconds.)Whether or not it is easy to select an appropriate component from those retrieved by aquery depends upon the contents of the library and the kind of query. The library should belarge enough so that there is a high likelihood of �nding something useful (and also too largefor random browsing to be e�ective). For queries that use generalized match, it is particularlybad to have a large number of functions with very general signatures like �! � or �! � !
.The Edinburgh library, for example, has 24 functions of type � ! �, including functions onstreams and functions for systems calls like cd or pwd. These functions will match any functionquery that uses the generalized relaxation, and yet they are not likely to be appropriate formost queries, so a library with a lot of these types of functions will have poor precision for anyqueries using generalized match. Queries for certain kinds of functions are particularly goodfor signature-based retrieval. The include queries for functions that are data oriented, such asfunctions on abstract data types and iterators (like fold and map on lists).The third factor a�ecting the usefulness of retrieval for reuse is how easy it is to reuse acomponent once it is found. There are three general ways that a component can be reused.First, it may be reused exactly. For example, using the zip function to create a list of pairs offunctions (Reuse 2). A function requiring no modi�cation is very easy to reuse by simply callingthe function (and linking the appropriate library, if necessary). Second, it may be possible tomodify a retrieved function slightly and then reuse it. For example, modifying the pathImplodefunction to separate strings with a \." rather than a \/" (Reuse 3). Third, it may be possibleto use a very general program, perhaps by writing a smaller \helper" function. For example,using foldR' with the helper function specialConcat to concatenate a list of strings (Reuse 3).This last class of appropriate functions are ones that are not likely to be found by string-basedretrieval, since they are usually very general functions.Even for relatively small libraries, such as the set of built-in functions for a language,signature-based retrieval is useful for �nding functions whose names are not known or for helpinga programmer learn a new language. For example, a functional programmer who is familiarwith SML knows that the function fold applies a function to a list accumulating a result (type(� � � ! �) ! � list ! � ! �), but this function is called reduce in Hope [FH88], it listin the CAML Light core library [Ler95a], and fold left in the CAML Special Light standardlibrary [Ler95b].As another example consider Lisp, which has over 500 functions listed in the manual in-dex [Ste84]. A signature-based retrieval tool would have been useful to have had when weused Lisp to implement the gnu-emacs interface for Beagle, even though gnu-emacs has a goodkeyword search facility (apropos) and we had a reasonable manual. To �nd the function towrite a string to an output �le, for example, we could use apropos on \�le" or \string" andget too many functions (93 for \�le" and 36 for \string"), or we could look up \�le" or \string"

5.1. RETRIEVAL 85in the manual index, and again be overwhelmed. What we really wanted was to be able to askfor the functions that take a string and a �le as input, i.e., signature match with the querystring � �le ! unit . It turns out there is not such a function, but we could have spent far lesstime discovering that fact.Signatures vs. TextSignature-based retrieval provides some advantages over text-based retrieval. First, signature-based retrieval enables us to do statistical analysis on the type of library functions, which wecould not do with text-based retrieval. Second, using generalized match, we can �nd moregeneral functions that can be instantiated to satisfy the query. The names of these moregeneral functions are unlikely to be related to any keywords used by a text-based retrieval. Forexample, in the third approach to Reuse 3, keywords for a function with type string list !((string � string) ! string) ! string might be \implode," \compress," or \convert," but areunlikely to be \fold" or any of the other keywords from the documentation that would retrievethe foldL' and foldR' functions. A third advantage of signature-based retrieval is that, unliketext-based retrieval, we know that any function retrieved by a signature query (using anyrelaxations but specialized), we are able to transform the type of the retrieved function intothe query type. This makes it easier to use the function and could allow us to automate thereuse of a library function.For cases where these advantages of signature-based retrieval are not important, other fac-tors in deciding whether to use signature-based retrieval or text-based retrieval include howeasy it is to express a query for either method and how easy the tools are to use. In manycases, a programmer initially thinks of a function in terms of its parameters. Thus, it is mostnatural to express the query in terms of the signature; there is no need to \translate" fromthinking in terms of the programming language to thinking in terms of descriptive words fortext-based retrieval. In some cases, there is an obvious word to express the desired function,such as \sort" or \create," and text-based retrieval is thus most appropriate. In other cases,there are several possible words for a function, such as \add," \insert," and \enqueue," or thereis no obvious word to use for text-based search, but the type of the function is easy to describe,so signature-based retrieval is most appropriate. For those unfamiliar with certain program-ming terminology, the function names \zip" (Reuse 2), \implode" (Reuse 3), or \fold" (Reuse3) would not have been at all obvious, but we successfully used signature-based retrieval to�nd the desired functions. Thus, the particular problem and how the user is thinking about itin
uences which method has an easier or more obvious query. Because signature-based retrievalis the better choice in many cases, it should be as easy to use as text-based retrieval techniqueslike the search commands in emacs or the Unix grep utility. Therefore, signature-based re-trieval should be well-integrated with the programming environment so that a user may choosethe appropriate approach based on the easiest way to express a particular query.

86 CHAPTER 5. APPLICATIONSLimitationsSignature-based retrieval is not always the best tool for the job. In some cases, there is notenough information in the signature to discriminate between a large number of functions. Forexample, many numerical operations have the types int � int ! int or real � real ! real , andmany side-e�ecting functions have the general type � ! unit . For these kinds of queries,signature matching will return a lot of matches between which the user will then have todiscriminate further. Speci�cation matching is one way of helping to discriminate furtherbetween functions with the same signatures.Another problem with signature matching arises when using types that contain user-de�nedtype constructors. If we know, for example, that queues have the type � Q, then we can usethat in our queries. But if we are not sure of the name of the user-de�ned type, we must usethe type constructor relaxations to allow our name for the user-de�ned type to match with allother user-de�ned types. This assures us that we do not miss anything with a di�erent typeconstructor name, but may result in matches with functions we are not interested in as well.Additionally, as we discussed in Section 4.4, signature-based retrieval of modules is note�ective in cases where the intent of the query is at a higher level of abstraction than themodule interface.Which Relaxations are BestFunction signature-based retrieval illustrates the advantages of allowing various combinations ofrelaxations, since the intended use of the retrieved component a�ects which relaxations will beused. In the case of retrieval for reuse, there are three relaxations or combinations of relaxationsthat we expect to be used most frequently (if none are used, then we are using exact match):� Reorder and Uncurry. Use these if the format of the input does not matter. These arelikely to be used together if they are used at all.� Type Constructor. Use this if the names of user-de�ned types are unknown.� Generalized. Use this if a more general function might also be useful. Generalized matchmay greatly increase the number of functions retrieved, often diluting the interesting hits,so it should be used with care.In contrast, retrieval for statistical analysis and for browsing uses type variables as queryvariables. Hence, we expect to use specialized match (the only relaxation we do not expect tobe especially useful for reuse). Whether a statistical analysis or browsing query uses any of theother relaxations (reorder, uncurry, or type constructor) will vary depending on the particularquery, based on the same guidelines described above.The relaxations used for compound retrieval will depend on whether the ultimate goal ofthe retrieval is reuse, statistical analysis, or browsing.

5.2. INDEXING 875.2 IndexingAnother class of applications uses signature or speci�cation match de�nitions to create an indexfor a component library. An index for a library is analogous to an index for a book or map inthat it is a structure over the library. We create an indexed library from a component libraryby organizing the components into a graph. Each node in the graph contains a set of equivalentcomponents, and an edge from one node to another indicates that the �rst node is more generalthan the second. We use an index pair, which is a pair of signature or speci�cation matches, todetermine equivalence between components and to determine whether one component is moregeneral than another.We use the additional information provided by an indexed library for e�cient storage andretrieval of components and for navigation when browsing a library. To show how indexedlibraries aid in these applications, we assume for now that we have function components anduse signature matches to form the indexed library, where exact match (De�nition 2.2.2) de�nesnodes, which contain equivalent components, and generalized match (De�nition 2.2.6) de�nesedges, which indicate that one component is more general than another. We present the formalde�nition of an indexed library in Section 5.2.1.Storage and RetrievalConsider �rst the storage of components. A user interested in one component in a node is verylikely also to be interested in equivalent components (which would be in the same node of anindexed library). Storing components of a node together can thus improve locality of referencesand could also be useful in predictive fetching. Depending on the application, a user may alsobe interested in the parents or children of a given node and thus smart storage of related nodescould also improve performance.Second, consider the use of indexes for retrieval from a library. Given a query, Q, weneed only check whether Q is matched by the node signature rather than by each componentsignature, since all components at a node have equivalent signatures. Thus, we reduce thenumber of match comparisons required to retrieve the components that match with Q.We can use the hierarchical structure of the index to prune the retrieval search space. Forexample, let Q be a query signature and suppose the retrieval match is exact match. Wetraverse the indexed library, beginning with the most general node, to retrieve all componentsthat match with Q. Once we �nd a node whose signature matches with Q, we are done, sinceall components whose signatures match with Q must be in that node. Additionally, if we �nda node, N , that Q is more general than, we prune the children of N , since none of them canbe more general than Q. By pruning in this way, we further reduce the number of matchcomparisons required for a retrieval.

88 CHAPTER 5. APPLICATIONSStructure-based BrowsingThe structure of an indexed library also provides a natural framework for browsing through alibrary. Given a particular function, a user could request the next most general functions, orthe functions that are equivalent modulo tuple reordering. For example, if users were lookingat the intsort function from the Toy Signature Library in Figure 1.2 (pg. 6), they might want toknow if there is a more general sorting function that works for arbitrary types of list elements.With an indexed library, they could simply ask to see all functions whose types are more generalthan intsort.For function signature match, an index de�nes a type hierarchy. If we apply the sameapproach to module signature or speci�cation matching, using the signature or speci�cationnotion of subtyping (Section 5.3.2), we have a class hierarchy. Thus, some aspects of objectbrowsers like the Smalltalk browser [Tes81] can be viewed as an instance of our more generalnotion of browsing on an indexed library.5.2.1 Indexed Library De�nitionRather than view the index as a separate structure, we de�ne an indexed library { a singlestructure that contains both the index and the contents of the library. We use the terms indexand indexed library interchangeably throughout this section.An indexed library is a directed acyclic graph. Nodes represent equivalent components;edges order components based on their relative generality. The notions of equivalence andgenerality are precisely de�ned by a pair of match predicates, (M=;M>), called the index pair.More formally:De�nition 5.2.1 (Indexed Library)MakeIndex : Library � Index Pair ! Indexed LibraryMakeIndex(L; (M=;M>)) = bL(M=;M>)Given a library L and an index pair (M=;M>), the indexed library bL(M=;M>) is adirected acyclic graph.Nodes:Each node is an equivalence class de�ned by M=.Each node n 2 bL(M=;M>) has two parts:� n.sig { a function signature.� n.elements { a list of library components whose signatures are equivalent(under M=) to n.sig.Edges:The edges form a partial order over L.

5.2. INDEXING 89In order for indexing to work properly, the index pair (M=;M>) must be instantiatedaccording to the following restrictions:1. M= must be an equivalence match.2. M> must be a partial order match.3. M= must be the corresponding equivalence match for M>, so thatM>(c1; c2)^M>(c2; c1),M=(c1; c2)4. There must be a maximal node, maxNode, such that 8n 2 bL(M=;M>);M>(maxNode; n).Equivalence match, partial order match, and the corresponding equivalence match are de-�ned in Section 2.4.1 (pg. 25). The third restriction ensures thatM= andM> will work togetherproperly. The partial order matches with which M> is instantiated are not strict; they includea notion of equality (as de�ned by the corresponding equivalence match of M>). We use M=to \weed out" equal components; hence, M= and M> must have the same notion of equality.Thus, the partial order relation de�ned by the edges of an index is strict, and we use M> ratherthan M�. The maximal node (maxNode) is the root of the graph and serves as the startingpoint for any traversals of the index.For example, if M= is matchtycon , then M> must be matchtycon �matchgen (matchspcl wouldnot guarantee us a maximal node). In general, for any equivalence match M= on functionsignatures, the corresponding M> is M= �matchgen and the maximal node has the signature �(all other types are instantiations of the type variable �).We de�ne indexed libraries for the case of function signature matching, so the index is atype hierarchy. Replacing n.sig with a module signature or a function or module speci�cationand using appropriate index pairs would de�ne indexes for module signatures or for functionor module speci�cations. Using module matching with a de�nition of subtyping (Section 5.3.2)creates an index that is a subtype hierarchy.Figure 5.3 illustrates an indexed version of the Toy Signature Library from Figure 1.2(pg. 6) using index pair ((matchtycon �matchreorder �matchuncurry); (matchtycon �matchreorder �matchuncurry � matchgen)). Each shaded rectangle is a node, n, with n.sig in the upper whiterectangle and n.elements in the lower white rectangle. For example, the lower rightmostnode has n.sig = unit ! � T and n.elements = (Set.create, Queue.create, and List.empty).Set.create:unit ! � T and List.empty:unit ! � list are both elements because M= on this in-dex allows type constructor renaming. An arrow from a node n1 to another node n2 indicatesthat M>(n1; n2). For example, there is an arrow from the second node in the second columnto the lower rightmost node because M>(�! � T; unit ! � T).Figure 5.3 includes some \special" nodes with the single element, Special: the maximal nodeof type �, and two others with types � T ! � and � ! � T to show more of a hierarchy. In

90 CHAPTER 5. APPLICATIONS
Set.union
Set.intersection
Set.difference

α T α T* ->α T

Set.create
Queue.create
List.empty

unit -> α T

((int*int)->bool) ->
 int list -> int list

List.intsort

(α −> β) −>
β list->α list

List.map

(Special)

α Queue.enq
List.cons
Set.insert
Set.delete

α T α T*α ->

(Special)

α T -> β

(Special)

β T->α

Set.member

α T*α -> bool

Queue.deq

α T α->

List.hd

List.tl
Queue.rest

α T -> α T

Figure 5.3: Indexed library for the Toy Signature Library with added \special" nodes. Indexpair = (matchtycon�matchreorder �matchuncurry ;matchtycon�matchreorder �matchuncurry �matchgen).the case of a library that does not have many polymorphic types, this is a way of adding moredepth. This structure has three levels: the maximal node � at the �rst level; four nodes on thesecond level (the two special nodes and two of the component nodes); and six of the componentnodes at the third level. The eight component nodes comprise the seventeen components in thelibrary, since in many cases, one node contains multiple components.

5.2. INDEXING 915.2.2 Indexes on the Community LibraryWe implemented aMakeIndex function and then built and analyzed indexes for the CommunityLibrary and each of its sub-libraries using two di�erent index pairs:1. EQ = (matchE , matchgen)2. R-U = (matchreorder �matchuncurry , matchreorder �matchuncurry �matchgen).The EQ index pair is the strictest possible match; it allows only exact matches in equivalenceclasses. The R-U index pair allows reordering and uncurrying.
a. SML sub-library b. CMU sub-library c. Edinburgh sub-libraryFigure 5.4: Graphs of indexes for the three sub-libraries using the EQ index pair.Figure 5.4 shows the resulting indexes for each of the three sub-libraries using the EQ indexpair. These graphs illustrate the general shape of the indexes for each of the sub-libraries andpoint out some di�erences among them. The SML sub-library (Figure 5.4a) has almost nohierarchy to it (only four nodes at the third level). The CMU sub-library (Figure 5.4b) is alsoshallow (three levels) but has a few more nodes with children and more nodes at the third level.In contrast, the Edinburgh sub-library (Figure 5.4c) has six levels and many more nodes withchildren; since many of the function types in the Edinburgh sub-library are polymorphic, theycan be instantiated to another type in matchgen . For example, the bottom-most third levelnode in Figure 5.4c (the one with the most children) has type � ! � !
. As illustrated inFigure 5.3, we could add depth to the
atter indexes by introducing special nodes.The overall structure of the indexes for each sub-library and the combined CommunityLibrary do not change signi�cantly between using EQ and R-U for the index pair. Figure 5.5

92 CHAPTER 5. APPLICATIONS

a. EQ b. R-UFigure 5.5: Graphs of indexes for the Community Library.shows the graphs of the indexes for both the EQ and R-U index pairs for the CommunityLibrary.Table 5.4 summarizes the statistics for the indexed libraries generated by applying the EQand R-U index pairs to each of the sub-libraries and to the Community Library, as we havedescribed. Using equivalence classes roughly halves the number of nodes in an indexed libraryfrom the number of components in the original library. There is not much further compressiongained from adding the reorder and uncurry relaxations. It is possible, however, that a morediverse library could gain additional compression by using the R-U index pair. Because of thelimited size of the libraries in the table, we should not draw any \deep" conclusions from thestatistics on these index structures; the information here is meant to show the results of buildingsuch structures.Figure 5.6 shows the details of some of the nodes with more than a few children and someof the shared nodes in the index for the Community Library (using the EQ index pair). Othernodes are compressed into diamonds labeled with the number of other nodes not shown. Thenumber in a diamond node that is the child of another diamond node is the number of nodesthat are children of a node in the parent diamond (the child nodes are not necessarily childrenof all nodes in the parent diamond). 'a, 'b, and 'c denote type variables. Let us consider

5.2. INDEXING 93SML CMU Edinburgh CommunityEQ R-U EQ R-U EQ R-U EQ R-U# of elements 385 385 431 431 923 923 1739 1739# of nodes 223 219 236 229 411 384 807 757Ave. # elements / node 1.7 1.8 1.8 1.9 2.2 2.4 2.1 2.3depth of structure 2 2 2 2 5 5 6 6Table 5.4: Statistics on indexes for the Community Library and sub-libraries.an example of how to use this index both to improve the e�ciency of retrieval and to browsethe library. Suppose we want a function to concatenate two lists. We use the query Q ='a list * 'a list -> 'a list with exact match. Matching the query against nodes ratherthan components cuts the number of attempted matches roughly in half (807 matches insteadof 1739). Pruning based onM> reduces this further. For example, since neither matchgen (Q; 'a-> 'b -> 'c) nor matchgen ('a -> 'b -> 'c, Q), there cannot be a node that is a descendantof 'a -> 'b -> 'c that matches with Q, so we prune all the descendants of the node 'a -> 'b-> 'c (360 nodes). Using the same reasoning, we also prune descendants of all other nodes atthe third level except 'a * 'b -> 'a and 'a * 'b -> 'b (another 169 nodes). Thus, betweencombining equivalent components and pruning subtrees of the indexed library, we reduced thenumber of attempted matches from 1739 to only 278.The �nal result of the query is the node with signature 'a list * 'a list -> 'a list,which contains �ve elements (functions with that signature): interleave and @ from list modulesin the Edinburgh sub-library; and union, intersection, and di�erence from a set module in theCMU sub-library. Suppose we now wanted to browse other, related functions. Starting at the 'alist * 'a list -> 'a list node in the graph, we could look at the next most general nodes(i.e., the parents of the node), namely 'a * 'b -> 'a and 'a * 'b -> 'b. We might thenchoose to look at the next most general node, or at other children of 'a * 'b -> 'a. Otherchildren of both 'a * 'b -> 'a and 'a * 'b -> 'b include nodes that contain functions toconcatenate a variety of types, including strings, vectors, arrays, sets (union), and splay trees(join). Without the index, it would be much harder to �nd functions related to our retrievalresult at all.

94 CHAPTER 5. APPLICATIONS

’a

’a -> ’b

46

’a * ’b -> ’b

string -> ’a

’a -> string

’a * ’b -> ’a

’a -> int

’a -> ’b -> ’c

’a -> ’a

unit -> ’a

’a -> bool

192 30

’a * ’a -> bool

26 1

6

13

11 3

33

16

23

12

242

(’a -> ’b) -> ’a -> ’b

’a -> ’b -> bool

’a -> ’b -> ’b

’a -> ’b -> ’a

18

22

’a -> ’a -> bool

1

7 1

6

35

1

2

5

26

’a list -> ’a list

16 4

4

29Figure 5.6: Details of some nodes in Community Library (EQ index pair).5.2.3 DiscussionWhile it is not possible to assume that all libraries will have exactly the same characteristics asthe Community Library, we expect that the main characteristics of the function types will bethe same for most libraries. There will be some components with equivalent types, and hencecompression of components into nodes. There is also not likely to be more depth, so we expect

5.3. SUBSTITUTION 95most indexes to be relatively shallow. In particular, libraries with no polymorphic types at allare completely
at. Even in shallow indexes, however, using the indexed library will reducethe number of matches required for retrieval as a result of the compression of components intonodes. Moreover, for queries where we can prune a large sub-branch, we reduce the number ofmatches dramatically.To take advantage of indexed libraries for these improvements in storage and retrieval, theaccesses or retrieval match must be the same as the equivalence or generality matches used tobuild the index. The choice of index pair depends on the intended use of the library. If we onlyexpect to use exact match to retrieve from the library, for example, than we should use the EQindex pair.If we cannot make any assumptions about which matches will be used to retrieve fromthe library, then we can use the most relaxed index pair (with relaxations type constructor,reorder, and uncurry).1 In this case, we only need one index, but also have to match againsteach element in a matched node for retrievals using a stricter match. For any stricter match Mthat uses a subset of the relaxations that were used to build the library (i.e., any match thatdoes not use the specialized relaxation), the elements that match a query under M will be asubset of the elements that match the query using all the relaxations, and hence all matcheswill be in the same node.Indexing is probably not the best way to browse a library, since indexed libraries are likelyto be shallow, with a few nodes that have a lot of children (e.g., nodes of type � ! � and� ! � !
). Adding special nodes does not improve the structure very much. We wouldprefer a deeper structure with fewer children at each node. When browsing, a user needs tobe able to choose a particular node from all the children of a node, a task that is much moredi�cult if a node has 100 children than if it has 10 children.5.3 SubstitutionSubstitution applications answer questions of the form \Can we substitute component C forcomponent Q?". Examples of substitution questions include� If I replace Q with C in a piece of code, will the code still type check?� If I replace Q with C in a piece of code, will the code still have the same observablebehavior?� If C and Q are speci�cations of object types, is C a subtype of Q?We use the various signature and speci�cation match de�nitions to answer these questions.Signature matching addresses the �rst question, speci�cation matching the second. To answer1We did not build indexes for the Community Library using this index pair because the type constructorrelaxation was not part of our signature matcher at the time, so we used only the reorder and uncurry relaxations.

96 CHAPTER 5. APPLICATIONSthe third question, we use either signature or speci�cation module matching to model subtyping,depending on which de�nition of subtyping we use. For a match M(C;Q), C is the componentwe would like to substitute for Q; we treat Q as the \standard" we expect C to meet.5.3.1 Substitution GuaranteesThe match de�nitions give us a range of guarantees about what conditions hold if we substitutea component C for another component Q.Signature matches generally verify that we can interchange components without type errors(potentially modulo some transformations). In particular, consider the case where C and Qare functions. Obviously, if C's signature matches Q's signature exactly, we can \plug" C indirectly (either by calling the function or by cutting and pasting the actual code), and the codeis guaranteed to type check. In ML, the same holds for generalized match. For reorder, uncurry,or type constructor match, we would need to change the order of tuple arguments, the formof the arguments, or the name of the user-de�ned types, respectively. The signature matcheractually calculates this information in determining the match, and thus could automaticallygenerate \wrapper" functions that would convert from the form expected by Q to the formexpected by C. The only relaxed match for which we cannot easily guarantee type correctnessis specialized match. If C matches with Q under specialized match, Q is more general than C.Plugging in C for Q directly instantiates some of the type variables of Q, which may break thetype correctness of something else that relies on the more general type of Q.If C and Q are modules, module signature match with function match matchfn guaranteestype checking modulo function names (and modulo whatever transformations are necessary toensure function type checking for matchfn).Speci�cation matches provide a range of guarantees about a program's behavior when sub-stituting C for Q. In particular:� If exact pre/post match holds on C and Q, then C and Q are behaviorally equivalentunder all conditions; using C for Q should be transparent.� If exact predicate or plug-in match holds, then C can be substituted forQ and the behaviorspeci�ed by Q will still hold, although we are not guaranteed the same behavior whenQpre is false.� If weak post match holds, then the speci�ed behavior holds when Spre is satis�ed. De-pending on the context, we may be able to ensure that Spre holds and hence guaranteethe behavior speci�ed by Q.Speci�cation matching is thus a cheap approximate method of program veri�cation: Supposewe have a component S that we want to use to implement something speci�ed by Q. We useexact pre/post match to verify that S satis�es Q. If exact pre/post match is too strong, we can

5.3. SUBSTITUTION 97use one of the other matches for a weaker but still useful guarantee. Of course, we are assumingthat the implementation of S satis�es its speci�cation.5.3.2 SubtypingA particular case of substitution is subtyping. In object-oriented programming languages, anobject type2 de�nes a collection of objects, which consist of data (state) and methods that acton the data [Car89, Ame91, Mey88]. Intuitively, a type � is a subtype of another type � if anobject of type � can be substituted for an object of type � .Precise de�nitions of subtyping vary in the strictness of this notion of substitutability fromsimply requiring the methods' signatures to match (signature subtyping) to requiring a corre-spondence between formal speci�cations of methods (behavioral subtyping). In the remainderof this section, we relate these de�nitions of subtyping to signature and speci�cation matching.To use signature and speci�cation matching to model signature and behavioral subtyping, wemust convert object types to our context. We base our de�nition of an object type speci�cationon that of Liskov and Wing [LW94].3 An object type speci�cation includes the followinginformation:� The object type's name� A description of the object type's value space� For each of the object type's methods mi{ Its name{ mi:sig { its signature{ mi:spec { its behavior in terms of pre- and post-conditionsWe model this as a module speci�cation with a type declaration for the object type, aglobal variable of the object type to hold the current state of the object (an element of thevalue space), and a function speci�cation for each method.For example, Figure 5.7 shows the module speci�cations for two objects. The �rst is BagObj,a mutable bag object with global variable b and methods put, get, and card. The clausemodi�esb in the functions put and get indicates that the value of b may be changed by the functions.In the ensures clauses, we use b% to stand for the value of the bag in the �nal state and b forthe value in the initial state. The second speci�cation is of a stack object. StackObj is basedon the same trait as bag, but has a stricter speci�cation for the method that removes an object(pop top) and an additional method, swap top. In keeping with the Liskov and Wing approach,2These are usually simply called \types", but we need to distinguish types of objects from types in signatures.3We di�er from Liskov and Wing in that we do not include invariants or constraints. We focus here onmodeling certain aspects of object speci�cations in our framework.

98 CHAPTER 5. APPLICATIONSsignature BagObj = sig(�+ using Container2 +�)type � t (�+ based onContainer2.E Container2.C +�)val b : � tval put : �! unit(�+ put (e)modi�es bensures b% = insert (e; b) +�)val get : unit ! �(�+ get () = erequires not (isEmpty(b))modi�es bensures (b% = delete (e; b)) and(isIn (e; b)) +�)val card : unit ! int(�+ card () = nensures n = size (b) +�)end
signature StackObj = sig(�+ using Container2 +�)type � t (�+ based onContainer2.E Container2.C +�)val s : � tval push : �! unit(�+ push (e)modi�es sensures s% = insert(e; s) +�)val pop top : unit ! �(�+ pop top () = erequires not (isEmpty (s))modi�es sensures (s% = butLast (s)) and(e = last (s)) +�)val swap top : �! unit(�+ swap top (e)requires not (isEmpty (s))modi�es sensures s% = insert (e, butLast (s)) +�)val height : unit ! int(�+ height () = iensures i = size(s) +�)endFigure 5.7: Larch/ML speci�cations of bag and stack object typeswe assume that create methods are de�ned elsewhere. Appendix B lists the Container2 traiton which both speci�cations are based.The StackObj speci�cation di�ers in several ways from the Stack speci�cation in Figure 3.1(pg. 40). First, in StackObj, stacks are mutable, whereas in Stack they are not. Because theStack speci�cation in Chapter 3 speci�es the behavior of a typical implementation in a functionallanguage, its stacks are immutable. Here, however, we wish to model the speci�cation of a stackin the object-oriented paradigm, and hence these stacks are mutable. Second, Stack has separatefunctions for pop and top while StackObj combines these in pop top. Again, this is mainly aby-product of the di�erence between a functional implementation and an object-oriented one.

5.3. SUBSTITUTION 99Third, each speci�cation has additional functions that the other does not.We now consider how to de�ne the subtype relation between two objects (modules). Wede�ne three di�erent subtype relations: one based on signature matching and two based onspeci�cation matching. Let T represent the module interface of the supertype and S the moduleinterface of the subtype. All subtype de�nitions require a correspondence between each methodin T and a method in S but allow additional methods in S. The correspondence betweenmethods varies among the subtype de�nitions but is always a function match de�nition. Thus,all three subtype de�nitions have the following general form:De�nition 5.3.1 (Generic Subtype)Subtype(S; T) = M-matchgen(S; T; matchmethod)S is a subtype of T if S matches with T under generalized module match. The particularnotion of subtyping depends on matchmethod , the match used at the method (function) level.We instantiate matchmethod with the appropriate function match de�nition for each of the threedi�erent subtype de�nitions.Signature SubtypingMost de�nitions of subtyping use the contravariant and covariant rules for function (method)signature match [Car89, Ame91]. For each method, m� , in the supertype, there is a method m�in the subtype such that m� 's input types are subtypes of m�'s input types (contravariance)and m�'s return type is a subtype of m� 's return type (covariance). We assume that thereis a subtyping relation <ST , which includes an assumed subtype relation between the typescurrently under consideration.We de�ne contra/covariance subtyping of object types by instantiating matchmethod in thegeneric subtype de�nition (De�nition 5.3.1) with contra/covariance function match. The con-tra/covariance function match is similar to the specialized function signature match except thatwe must reverse the ordering relation (<ST) for the return type.De�nition 5.3.2 (Contra/Covariance Signature Subtype)Subtypec=c(S; T) = M-matchgen (Ssig; Tsig; matchc=c)where matchc=c(�; �) =for � = (�1 : : : �n�1)! �nand � = (�1 : : : �n�1)! �n�i <ST �i 8 1 � i � n � 1 and�n <ST �nUnder contra/covariance signature subtype, StackObj is a subtype of BagObj using theobvious mapping of bag functions to stack functions, since for all three functions, the typesmatch exactly. Note that if we remove the swap top method from StackObj, BagObj is also

100 CHAPTER 5. APPLICATIONSa subtype of StackObj, even though using the get method from BagObj does not guaranteestack-like behavior. This illustrates the need for a stronger notion of subtyping based on thebehavior of the methods.Speci�cation (Behavioral) SubtypingMore recent work on subtyping has focused on adding semantic information to more preciselycapture the notion of substitutability of a subtype, as de�ned by Liskov in her OOPSLA '87keynote address [Lis87]:If for each object o1 of type S there is an object o2 of type T such that forall programs P de�ned in terms of T , the behavior of P is unchanged when o1 issubstituted for o2, then S is a subtype of T .Behavioral notions of subtyping that attempt to capture this substitutability property havesince been de�ned by many [Ame91, DL92, Lea89, LW90, LW94, Mey88]. There are subtledi�erences between all these subtype de�nitions, but common to all is the use of pre-/post-condition speci�cations both to describe the behavior of types and to determine whether onetype is a subtype of another. LetmT be a method of supertype T , andmS be the correspondingmethod of subtype S. Then America [Ame91], for example, de�nes subtype in terms of thefollowing pre-/post-condition rules4 for each method of the supertype:� Pre-condition rule. mT :pre) mS :pre� Post-condition rule. mS :post) mT :postwhich is exactly our plug-in match. As with signature subtyping, behavioral subtyping requiresthat each method in the supertype T have a corresponding method in the subtype S, but theremay be additional methods in S. We de�ne behavioral subtyping by instantiating matchmethodin the generic subtype de�nition (De�nition 5.3.1) with plug-in function speci�cation match(De�nition 3.2.4, pg. 44). We assume that the signatures match.De�nition 5.3.3 (Behavioral Subtype)Subtypebehav(S; T) = M-matchgen (Sspec; Tspec; matchplug�in)Another, slightly weaker pair of pre-/post-condition rules allows an additional assumptionabout the pre-condition in the post-condition rule:� Pre-condition rule. mT :pre) mS :pre� Post-condition rule. (mS:pre ^mS :post)) mT :post4We omit the abstraction function for simplicity.

5.3. SUBSTITUTION 101This post-condition rule is the same as our weak post function speci�cation match, and isused for the same reason: to allow us to prove the post-condition relation when it is necessaryto make an assumption about the pre-condition. We de�ne a new subtype de�nition that usesthe pre-/post-condition rules above:De�nition 5.3.4 (Weak Behavioral Subtype)Subtypeweak�behav(S; T) = M-matchgen(Sspec; Tspec; matchweak-plug-in)wherematchweak-plug-in(S;Q) = (Qpre) Spre) ^ ((Spre ^ Spost)) Qpost)Consider the StackObj and BagObj speci�cations in Figure 5.7. We would like to showthat StackObj is a behavioral subtype of BagObj. As the objects are speci�ed, we cannotshow the stronger behavioral subtype relation (De�nition 5.3.3), because we cannot provematchplug�in(pop top; get), since we cannot reason about the case where the stack or bag isempty. However, we can show that StackObj is a weak behavioral subtype of BagObj (De�ni-tion 5.3.4), since the weak plug-in de�nition speci�cally allows us to exclude the case where thestack or bag is empty.To show Subtypeweak�behav(StackObj ;BagObj) (or equivalently, M-matchgen (StackObj spec;BagObj spec; matchweak-plug-in)), we must de�ne the mappings UF and UTC to satisfy the threerequirements of module match.There is only one user-de�ned type in both StackObj and BagObj, and it is the same (i.e.,UserOp(�BagT) = UserOp(�StackT) = t). So UTC is the identity function (UTC(t) = t). Wede�ne UF as follows: UF (put) = push , UF (get) = pop top, and UF (card) = height . UTC andUF satisfy the three requirements of generalized module match:(1) UTC and UF are both one-to-one total functions. (UF is not onto, but does not need tobe for generalized module match.)(2) matchE (� t; � t)(3) matchweak-plug-in(push; put)matchweak-plug-in(pop top ; get)matchweak-plug-in(height ; card)We translated our speci�cations of StackObj and BagObj into LP input and were able toprove the weak plug-in matches with very little user guidance. Figure 5.8 shows the LP proofscript to load the speci�cations and prove the weak plug-in match between each pair of methods.The proofs for matchweak-plug-in(push; put) and matchweak-plug-in(height ; card) are trivial, sincethe speci�cations are identical modulo variable names. The proof formatchweak-plug-in(pop top; get)requires an additional lemma and some guidance. Appendix B shows the Container2 trait onwhich both BagObj and StackObj are based, as well as bagobj.lp and stackobj.lp, the resultof translating BagObj and StackObj into LP input.

102 CHAPTER 5. APPLICATIONSthaw Container2 Axioms%% execute bagobj.lp%% execute stackobj.lp% weak-plug-in(push, put)prove (putPre => pushPre) /n ((pushPre /n pushPost(b, b', e)) => putPost(b, b', e))[] conjecture% weak-plug-in(height, card)prove (cardPre => heightPre) /n ((heightPre /n heightPost(b, i)) => cardPost(b, i))[] conjecture% Additional lemma assert 0 <= count(e,s)prove delete(e,insert(e,s)) = sapply Container2.2 to conjecture[] conjecture% weak-plug-in(pop, get)prove(getPre(b, e) => popPre(b, e)) /n((popPre(b,e) /n popPost(b, b', e)) => getPost(b, b',e))..resume by induction on b<> basis subgoal[] basis subgoal<> induction subgoal[] induction subgoal[] conjectureqed Figure 5.8: LP subtype proof script

5.3. SUBSTITUTION 1035.3.3 DiscussionSection 5.3 shows how to use our match de�nitions, particularly speci�cation match, to showthat one component may be substituted for another. Here are two scenarios that illustrate howwe can use substitution in practice.Scenario 1. Suppose that as part of a system implementation we need a component thatwe have speci�ed with a module speci�cation �Q. Further, suppose that there is a modulein our library with speci�cation �L, and that the implementation of �L has been veri�ed tobe correct with respect to the speci�cation �L. If we can show that �Q is matched by �Lunder generalized module match with plug-in function match, then we know that we can usethe library module and the behavior will be consistent with that speci�ed by �Q. Thus, we usespeci�cation match to check that using a library component will not \break" our system.Scenario 2. Suppose that we have a piece of software that includes a component speci�edby �Q and that as part of the maintenance of the software, we need to replace the componentwith an upgrade speci�ed by �L. If we can show that �Q is matched by �L under generalizedmodule match with plug-in function match, then we know that replacing the component withthe upgrade will not change the observable behavior of the software. Thus, we use speci�cationmatch to check that upgrading will not \break" our system. An advantage of this scenario isthat the speci�cation �Q is known to the developer of the upgrade, and thus it is reasonable toassume that both speci�cations are based on the same trait (hence base terms are the same).Further, the speci�cations should be very similar (assuming the functionality of the componentdid not change), and thus the match should be easy to prove.Section 5.3.2 shows how the method rules of signature and behavioral subtyping are instancesof our more general notion of signature and speci�cation matching. Our de�nitions of behavioralsubtyping do not capture the ideas of other work in the area completely, however. First, wedo not address explicitly the use of an abstraction function for cases when the value spacesof the subtype and supertype di�er. We could, however, include an abstraction function inthe speci�cation of the subtype and explicitly map the values. Alternatively, we could userelaxed signature matches in some cases (for example, when the value space of the supertypeis more general than the value space of the subtype). Second, we do not handle invariants orconstraints in our speci�cations, although it should be possible to add this in our framework byextending �T to include constraint speci�cations in addition to user-de�ned type declarations.A third and more important exclusion in our de�nitions is the lack of a way to model additionalmethods in the subtype in terms of methods in the supertype (the extension rule in Liskov andWing[LW94]).What we have shown is how subtyping �ts into our framework of signature and speci�cationmatching. Subtyping based on just signatures is subsumed by module match using functionsignature matching, and with minor or no variation, we de�ne the core part of many behavioralnotions of subtyping with module match using function speci�cation matching. Additionally,by using this framework, we provide tools to automate subtype checking.

104 CHAPTER 5. APPLICATIONS

Chapter 6Related WorkRelated work generally divides by the application. There is no other work that applies auniform approach for all the applications we describe in the thesis, although a few considerboth retrieval for reuse and indexing. The primary area of related work addresses retrieval forreuse. We divide work on retrieval for reuse further into signature-based retrieval (Section 6.1),speci�cation-based retrieval (Section 6.2), and other retrieval approaches (Section 6.3).Our work on signature and speci�cation matching for retrieval is unique in three ways.First, for functions, we have identi�ed a small set of matches, each of which identify an intu-itive correspondence between components that are similar but not identical. The matches arepresented in a general framework that allows composition of function signature matches andallows us to describe much of the related work within our framework. Other work chooses one(or sometimes two) matches, and is not easily extensible to other matches as ours is. We talkmore about the advantages of our match de�nitions separately for signatures and speci�cations.Second, most related work has focused on matching at the function level (with the exceptionof [CHJ93, SC94] for signatures and [JC95] for speci�cations). We extend matching to themodule as well. Moreover, since we de�ne all our function match de�nitions to follow a commonform, we are able to use function match as a parameter to module match, and hence de�neboth signature and speci�cation module match with one parameterized de�nition. Thus, ourde�nition of module match is more
exible than the limited treatment in the few systems thatconsider modules at all.Finally, we go beyond retrieval for reuse and present three more retrieval applications (sta-tistical analysis, browsing, and compound retrieval), and two other applications (indexing andsubstitution). Other work focuses primarily on retrieval for reuse, although a few have a notionof indexing [RT89, JC95, MMM94]. 105

106 CHAPTER 6. RELATED WORK6.1 Signature-Based RetrievalSignature matching for retrieval was �rst proposed concurrently by Rittri [Rit89] and by Runci-man and Toyn [RT89]. Most related work on signature matching has focused either on signaturematching as an application of a particular theoretical de�nition of type isomorphism or as avery basic retrieval tool to be used in conjunction with other tools.Our work on signature matching (initial results published in [ZW93] with an extendedversion showing the new applications in [ZW95a]) is unique because (1) it takes a \pick andchoose" approach to function match de�nitions, (2) it includes module matching, and (3) itincludes applications other than retrieval for reuse. The second and third points are discussedfor both signatures and speci�cations at the beginning of this chapter. We elaborate hereon the �rst point. We have identi�ed a small set of primitive function matches based ontransformations of types. The other work identi�es and implements a single function signaturematch. With our approach, we can describe related work on signature matching in terms ofour framework and de�nitions (as elaborated below). We require one new match de�nition foruni�cation, which allows variables to be instantiated in both types with the same substitutions:matchunify (�l; �q) = 9 a sequence of variable substitutions, U; such that matchE (U �l; U �q)Our approach also supports orthogonality of concepts, allowing the user to pick and choosewhichever match is desired, perhaps through a combination of more primitive matches. Eachtransformation corresponds to an intuitive relationship between two types (e.g., reordering ofelements in a tuple). The only other work to take the same approach as ours is that of Stringer-Calvert [SC94], whose work was inspired by ours. His match de�nitions are based on ourde�nitions of exact, reorder, generalized, and specialized match (he does not include uncurryand type constructor matches); he de�nes an additional subset match, which is like reordermatch but allows tuple elements to be dropped. He has implemented a signature matcher forAda types.An additional distinction of our signature matching approach is that we chose our frameworkand de�nitions with an eye toward how the matches would be used in practice. In additionto examples that illustrate the match de�nitions, we provide a collection of experiences fromactual use of the system on a moderately-sized library. Although other systems have beenimplemented, at least as prototypes, there are few other examples of real use.6.1.1 Category Theoretic ApproachesResearch using category theory takes the approach of identifying a category and a set of axiomsthat are sound and complete for the category (i.e., the axioms �nd an equivalence betweentwo types if and only if the types are isomorphic in the category), and using the isomorphismsde�ned by the category as the basis for function type match and retrieval. Results vary basedon the category and axioms used, and based on whether variables can be instantiated in the

6.1. SIGNATURE-BASED RETRIEVAL 107query (matching), in both the query and the library component (uni�cation), or not at all(equality). This approach leverages o� the extensive work in the decidability and complexity ofuni�cation and matching of isomorphisms in various categories, but the extra axioms requiredfor completeness give rise to some isomorphisms that are surprising in the context of typematching (e.g., �! unit is isomorphic to unit).Rittri (along with Runciman and Toyn) was the �rst to propose using function signaturesfor retrieval. In his �rst work [Rit89, Rit91], he implemented a system to retrieve types thatare isomorphic to the query type in Cartesian closed categories. This isomorphism allowsequivalence between types that di�er only in their currying or argument order. The match issimilar to matchreorder+ � matchuncurry+ , but also admits some equivalences to get soundnessand completeness that do not make much intuitive sense in the context of types. For example, inRittri's system, unit�� is isomorphic to �, and �! unit is isomorphic to unit. The implementedretrieval system was for a restricted type system (only type variables, unit, function application,and tuples).Rittri then extended the system to also retrieve more general types from the library modulothe isomorphism [Rit90, Rit92b] (i.e., similar to our matchreorder+ �matchuncurry+ �matchgen ,and extended the type system to allow user-de�ned type constructors.Rittri's third system [Rit92a] makes two changes from the previous system. First, he restrictsisomorphisms to linear isomorphisms, which eliminate some of the un-intuitive equivalences(e.g., �! unit is not linearly-isomorphic to unit). Second, he retrieves types that are uni�ablewith the query modulo linear isomorphism (rather than just those that are more general).By allowing uni�cation, he is able to match types with di�ering numbers of tuple elements,since a tuple element can be instantiated with unit and reduced away. For example, � � int �=unit � int �= int (by substituting unit for � and then applying the axiom for tuples that containunit).Di Cosmo extends Rittri's approach with a theory that also handles isomorphisms of typeswith let expressions[DC92]. His implementation of retrieval is the only one we know of thatis widely available; it is distributed with the CAML-Light system [Ler95a]. There are twodi�erent searches available { equality modulo isomorphism (no instantiation of variables) andmatching modulo isomorphism (which retrieves more general types).6.1.2 In Conjunction with Speci�cation MatchSome speci�cation-based retrieval work has an explicit notion of signature match [RW91,SGS91]. We discuss the details of the signature matches for these systems along with theirspeci�cation matches in Section 6.2.Chen, Hennicker, and Jarke [CHJ93] describe a framework for both signature and speci�ca-tion matching, but have only implemented signature matching so far. Components are speci�edin the algebraic speci�cation language ASL; modules consist of a set of sorts, a set of operations

108 CHAPTER 6. RELATED WORKon the sorts, and a set of axioms about the operations. They de�ne an implements relation:S is an implementation of Q if the signatures match and Mod(S) � Mod(Q). Mod(S) is theclass of models in which the axioms of S are satis�ed. Two components S and Q match iftheir signatures match and if Mod(S) �Mod(Q), but currently only the signature match partis implemented. Their signature match de�nition is the same as generalized module matchwith function match matchreorder . Their implementation is interesting: library componentsare stored in a database, and a query signature is translated as into a database query to theknowledge base management system.6.1.3 OthersRunciman and Toyn [RT89, RT91] approach retrieval from a slightly di�erent angle. Theyassume that queries are constructed by example or by inference from context of use and matcha query and component if they are uni�able (i.e., matchunify). There can be multiple queriesfor a particular retrieval. One focus of their work is to reduce the search space for retrieval.They use initial/�nal indexes as abstractions of the type. Indexes of types form a tree over thelibrary. These indexes would not easily generalize to allow other matches like uncurrying.Runciman and Toyn also de�ne the notion that one type is an applicative instance ofanother,1 and discuss using this (partial order) relation to explore a library (i.e., as an in-dex), but they do not use it in conjunction with search.6.2 Speci�cation-Based RetrievalWork on speci�cation matching for retrieval varies widely in the kinds of speci�cations used, inthe expressiveness of the match, and in the reasoning power of the implementation. We dividethe work into approaches that use speci�cations with separate pre- and post-conditions, andthose that do not, since explicit pre- and post-conditions allow matches like plug-in, which wefeel are the most important.As summarized in the previous section, our work (initially published in [ZW95b]) di�ers inthree ways. We elaborate here on the di�erence in the function speci�cation match de�nitions.Our general approach allows us to de�ne and relate multiple matches within the lattice ofmatches. Our implementation lets us easily experiment with the di�erent de�nitions. Thematches correspond to intuitive ideas about how two components relate (indeed, plug-in matchis used as a de�nition in several of the other systems). The intuitiveness of some of the othermatch de�nitions (e.g., [JC95, MMM94]) is not clear in some cases. We feel that this couldhamper the willingness of a user to reuse a retrieved component, if he or she cannot understand1Intuitively, a type � is an applicative instance of another type � if � could be de�ned as an application of �(e.g., map: (� ! �) ! � list ! � list is an applicative instance of map2 : (� ! � !
) ! � list ! � list !
 list).

6.2. SPECIFICATION-BASED RETRIEVAL 109how the component is related to the query.An additional distinction between the various approaches is the \power" of the match engine.Most approaches [KYS85, KRT87, RW91, PP93] use a restricted form of reasoning about thematch for pragmatic reasons. For example, Rollins and Wing use higher-order uni�cationto implement the match de�nition, which allows them to leverage o� �Prolog, but cannotsupport equational reasoning in proving a match. Only recently [MMM94, FKS94, ZW95b]have researchers begun to push theorem proving technology to do more powerful reasoning forspeci�cation-based retrieval.6.2.1 Pre/Post Style Speci�cationsRollins and WingThe inspiration for our work comes from Rollins and Wing [RW91], who �rst proposed the ideaof function speci�cation matching. They implemented a prototype system using �Prolog asthe speci�cation and query languages. The system provides both signature and speci�cationmatching for ML functions, using �Prolog's higher order uni�cation for the matching.The signature match is the same as our function signature match with relaxations uncurry,reorder, and unify. They handle a subset of the ML type system that includes type variablesbut not user-de�ned types.Speci�cations are written in a Larch style, with a shared component and an interface com-ponent. A function component matches a query component if their signatures match and theirspeci�cations match. A function speci�cation matches a query speci�cation if the query pre-condition implies the function pre-condition, and the function post-condition implies the querypost-condition (i.e., plug-in match). One limitation of this approach is that �Prolog does notuse equational reasoning, and so the search may miss some functions that match a query butrequire the use of equational reasoning to determine that they match. For example, if a querythat speci�es that a function returns an empty container (s) with the clause isEmpty(s) anda library function speci�es the same thing with length(s) = 0, �Prolog cannot determine thatthey match.Rollins and Wing also have a rule to match a query with the composition of two libraryfunctions. For example, the signature query int list ! int list is matched by applying gensort:(� � �! bool)! (� list ! � list) to lessthan: int � int ! bool .InquirePerry's Inscape system [Per89] is a speci�cation-based software development environment. ItsInquire tool [PP93] provides predicate-based retrieval in Inscape. Components are either op-erations, data objects, or modules. Operations are speci�ed with pre-conditions and post-conditions in �rst order logic. (There are two kinds of post-conditions: predicates that aretrue as a result of executing the operation, and predicates that must eventually be satis�ed

110 CHAPTER 6. RELATED WORKobligations.) For operations, match is either exact pre/post or a form of generalized match.Inquire also allows speci�cations of data objects, and thus can retrieve data objects as well. Theprototype system has a simpli�ed and hence fairly limited inference mechanism. In Inscape,the user must provide speci�cations for each component anyway, so the query for a retrievalwill already be written. If no existing library components match, the user will start from thespeci�cation to implement the component.VCRA recent project that has had encouraging practical results is the VDM-based ComponentRetrieval System (VCR) [FKS94], which is part of the NORA software development environ-ment [SGS91]. This system is closest to ours in approach. Components are Modula-2 functionsthat are speci�ed in VDM. The library is the Lins Modula-2 library (50 modules, 1000 proce-dures), of which they have speci�ed about half. Match is a multi-step process. The �rst stepis signature matching. They use matchreorder � matchunify as the signature match (they allowvariables in the query types to allow incomplete speci�cations).Speci�cation matching uses thematchplug-in de�nition. A focus of this work is on e�ciency ofproving match; the tool performs a series of �ltering steps before doing the speci�cation match.In addition to the signature match, there is also a model checking step, which eliminates obviousnon-matches. The model checker tests the match obligations in �nite models { for example,they report good results from modeling integers as either 0 or 1, and lists as either nul or a listof one element. For the actual proof of plug-in match, they use the OTTER theorem prover.They are very selective about the axioms provided with each proof obligation in order to keepthe search space tractable.Jeng and ChengJeng and Cheng [JC92, JC95] de�ne two di�erent matches where components are speci�ed usingorder-sorted predicate logic (OSPL). Components are modules that consist of inherit clausesand a set of function speci�cations. A function speci�cation consists of a pre-/post-conditionpair where terms are in OSPL. Both matches are instances of our generalized module match.In the �rst case (relaxed exact match), the function match is primarily syntactic. The usersupplies a renaming of predicates, terms can be reordered in some cases (but not all), and aconjunction is matched if any of its subterms are matched.The second match (logical match) is based on the subsumption relation between clauses.But the example indicates that most of the increased
exibility in the match (compared withrelaxed exact match) comes from the type hierarchy (e.g., int � real) and from user-suppliedrelationships between terms (e.g., size=pred card). Neither of these matches seem to correspondto any of the intuitive ideas about when two speci�cations should match.Logical match is a partial order. Jeng and Cheng also describe how to use the match to

6.2. SPECIFICATION-BASED RETRIEVAL 111build a hierarchy of library components. They have a prototype system, but do not describetheir library or how they use the hierarchy.6.2.2 Other SystemsMili, Mili, and MittermeirMili, Mili and Mittermeir [MMM94] de�ne a speci�cation as a binary relation that containsall the pairs of input and output that are correct for a function. A speci�cation S re�nesanother speci�cation Q if S has information about more inputs and assigns fewer images toeach argument. This is like plug-in match except that the match is in terms of relations ratherthan predicates. They use the re�nes relation to build a lattice of the library components andas the primary match de�nition. They de�ne a relaxed match for the case where there is nota library speci�cation that re�nes the query. Relaxed match returns the functions that satisfy\the largest portion of the requirements of the search key," by computing the meet of libraryspeci�cations with the query speci�cation, and �nding the ones among those that re�ne all theother meets.They describe an implementation of the match using the Otter theorem prover, and showresults of building a lattice and doing a query over a library of twelve speci�cations of di�erentPascal compilers. We �nd that because the match de�nitions and lattice are all in terms ofbinary relations, it can be hard to get an intuitive feel for what the match means in terms ofwhat the functions actually do.Preliminary ApproachesTwo earlier works have the same
avor as speci�cation-based retrieval, but come at it fromslightly di�erent angles.Katoh, Yoshida, and Sugimoto [KYS85] propose using English-like speci�cations and queriesthat are translated into �rst-order predicate logic formulas. They use \ordered linear resolution"to determine matching between a query and speci�cation, and include relaxations for changingthe order of parameters, making some parameters constants, or renaming subroutines. However,the match does not verify that the subroutines match and checks only for equivalence, notpermitting any inference, and is hence closer in expressiveness to our signature matches.The PARIS system [KRT87] maintains a library of partially interpreted schemas. Eachschema includes a speci�cation of assertions about the input and results of the schema andabout how the abstract parts of the schema can be instantiated. Matching corresponds todetermining whether a partial library schema could be instantiated to satisfy a query. Thesystem does some reasoning about the schemas but with a limited logic.

112 CHAPTER 6. RELATED WORK6.3 Other ApproachesWe view signature and speci�cation matching as complementary approaches to more traditionalinformation retrieval techniques. A user chooses the most appropriate tool for a task based onwhat information he or she has available and which tool is expected to give the best resultsfor that particular task. A user can also use one tool as a �lter for another. We categorizeadditional less closely related work based on the kind of information being matched (i.e., thekind of abstract).Text-based RetrievalThe most common approach to software retrieval is text-based. Research in this area hasapplied techniques from information retrieval and relational databases to software retrieval.Queries and information on components are typically in a restricted keyword or attribute-valueapproach (often called facets). Matching corresponds to locating components in the systemwith the same or similar keyword/value pairs [AS87, FN87, PD89, MF93, SSS93, CE93, Pou93,MFCS95]. Another information retrieval approach extracts attributes from natural languagedocumentation associated with each component [MBK91].In some cases, additional structural information can be added in AI-based semantic netclassi�cations. Information is either extracted from components and their documentation orgenerated by domain experts [HM91, FHR91, OHPDB92, FF93, Hen95].The advantage to these approaches is that many e�cient tools are available to do thesearch and match in these structures. A well-structured faceted classi�cation also forms anindex that can be used to browse the library. The disadvantage is that the characterization ofthe component's behavior is completely informal.All of these other approaches require at the very least that the user learn the keywordlanguage (except for the natural language-based approach in [MBK91]). Except for [MBK91]and [PP94], the information about the library components must be created by hand as well. Ourwork on signature matching uses a query language with which software engineers are alreadyfamiliar { the programming language's type system.Code-based RetrievalAnother class of matches [PP94, CMR92] allow queries over a representation of the component'sactual code, e.g., abstract syntax trees. Such queries are useful for determining mainly struc-tural characteristics of a component, e.g., nested loops or circular dependencies, but provide nosupport for browsing or indexing.

6.3. OTHER APPROACHES 113Example-based RetrievalAnother interesting approach to retrieval is a query-by-example technique [PP92, Hal93]. Theuser forms a query by giving examples of correct output for an input (or set of inputs). Matchinginvolves executing library components to �nd one that generates the same outputs for thoseinputs (usually involving a basic notion of signature matching as a �lter). In a sense, this is aform of speci�cation matching, since the set of inputs and outputs specify the behavior of thecomponent on at least some inputs.Protocol-based Match (Interoperability)There is a growing body of work about how to connect modules and determining whethertwo modules are interoperable. The notion of match is slightly di�erent: looking at whethertwo components can be connected (i.e., plugged together) rather than whether one can besubstituted for the other (i.e., plugged in). But the basic notions of a signature or speci�cationto describe the module are the same.Wileden et. al. survey speci�cation-level interoperability [WWRT91]. Most work thus farhas focused on signature-based interoperability, and how to convert types in a heterogeneousenvironment. Of particular interest is the ability to automatically generate the adapters thatwill interface between two components [Kon93, YS94, Tha94]. An additional concern whenconnecting modules is how the modules communicate or interact with one another. Allen andGarlan [AG94] use a subset of CSP to specify protocols for modules (ports) and the connectionsbetween modules (roles). A port matches a role (port-role compatibility) if the behaviors of therole include those of the port (within the context of the port's connection to the role). In ourwork, we assume that all communication is achieved with procedure calls, so we do not have anotion of protocol match.The focus of each of these approaches is slightly di�erent. Information retrieval approaches(with or without semantic nets) and query-by-example retrieval typically only address reuseas an application; code-based approaches focus mostly on browsing or analyzing the actualcode; protocol-based approaches are concerned with interoperability, which is comparable tosubstitution. Of these approaches, only protocol matching could address all the applicationscovered by signature and speci�cation matching. Text-based approaches lack the ability toexpress relations between the semantic properties of two components in order to do substitution.Code-based retrieval is not easily extensible to indexing or browsing. Example-based retrievaldoes not yield a relation between components other than exact match, so there is no relaxedretrieval and no way to generate an index. Protocol matching has a di�erent focus, sincetwo components are connected rather than substituting one for the other. But protocols areessentially an extended form of speci�cation and hence �t within our general framework.

114 CHAPTER 6. RELATED WORK

Chapter 7Conclusions and Future Work7.1 ConclusionsThis dissertation lays the foundation for using semantic information to match software com-ponents and for using semantic matches for a variety of applications, particularly to utilizelibraries of components more e�ectively. We present precise de�nitions of a variety of matchesfor signatures and speci�cations of functions and modules; we have implemented the variousmatches to use as a testbed for our ideas; and we show how the matches are used for a varietyof applications.Function signature matching provides a way to retrieve components. Function speci�cationmatch addresses the problem of knowing when we can substitute one component for another.Module matching is good for cases where we are concerned with details of the interface ofa module. The limitations of our approach to module matching indicate a need for a moreabstract type system for modules.Conclusion 1: Function signature matching should be a part of every software developmentenvironment and every software library interface.Signature-based retrieval is an e�cient, easy to use tool for locating functions of interest in alibrary. Using an indexed library makes retrieval even more e�cient. Signature-based retrievalprovides a way to locate functions for reuse in terms of the programmer's existing conceptionof the function, since programmers often think of a function in terms of what is input to thefunction and what the function returns. Further, signature-based retrieval is the only way to�nd functions whose types are more general than or are instances of another type. This is whatmakes browsing and statistical analysis possible.An important factor in signature-based retrieval is controlling the number of functionsretrieved by a query. If there are too many, a user will have di�culty choosing the relevant one(or ones). If there are none or no relevant ones, the user must try again. The key to controlling115

116 CHAPTER 7. CONCLUSIONS AND FUTURE WORKthe number of matches is the appropriate use of relaxations. We can either allow the userto pick and choose relaxations (as we do in Beagle) and thus control the number of matcheshimself or herself, or we can use metrics about the ideal number of matches and automaticallyadd or drop relaxations to get within a desired range of number of matches.Conclusion 2: If cost is not a factor, speci�cation matching is useful for determining when onecomponent can be substituted for another.The case for speci�cation matching is less conclusive. With our approach, the cost ofproving a match is too high to use speci�cation matching for retrieval. Given a particularpair of functions or modules, however, speci�cation match can prove that the behavior of aprogram will not change if we substitute one component for another, a property that can beused when deciding whether to use a library component, when determining subtype relations,or when upgrading an existing system with a new version of a component. Thus, the bene�tsof doing speci�cation match indicate that the general approach has merit. However, to becomecommonly used, we must reduce the cost of doing the match. We discuss some ways of doingthat in Section 7.2.2.Conclusion 3: Match frameworks provide a general, highly extensible, and modular approach tothe problem of matching.Each kind of matching (function signature, function speci�cation, and module) has a genericform that we instantiate for each particular match de�nition. These frameworks make it possiblefor use to compose function signature matches easily, relate the matches within each kind ofmatch, de�ne module match independent of the function match used, and extend the systems(e.g., with some of the things we discuss in Section 7.2).Conclusion 4: De�ning multiple matches provides necessary
exibility to address a range ofapplications.Given a particular component granularity and kind of abstract (e.g., function signature),we de�ne multiple matches rather than a single match. Initially, the reason for having multiplematch de�nitions was to explore which relaxation (or combination of relaxations) is most useful.What we discovered, however, is that which match de�nition is the \right" one depends on theapplication and the context, and thus the right approach is to provide multiple matches andallow the user the freedom to specify which notion of match he or she wants.Having multiple de�nitions is not uncommon. On a general level, signature and speci�ca-tion matching are multiple de�nitions of semantic matching, and semantic matching and textmatching are multiple de�nitions of component matching. Even focusing on a particular de-

7.2. FUTURE WORK 117scription language, multiple notions of match abound. Consider the case of text matching.Notions of match include exact match, match using a thesaurus to identify similar terms, andregular expression match to �nd patterns. Even within regular expression matching, thereis disagreement over what the \right" match is. The Unix commands grep and egrep havedi�erent regular expression languages, which is analogous to having di�erent kinds of relaxedmatches. Another indication that we need multiple match de�nitions comes from related workin function signature matching that attempts to de�ne match as an isomorphism with or with-out uni�cation. Rittri [Rit89, Rit92b, Rit92a] and DiCosmo [DC92] take this approach andhave now identi�ed four di�erent matches, each time claiming to have found the right one.Tools that manage the use of multiple de�nitions alleviate the problem of users being unableto decide which match to use. Such tools order the results by the closeness of the match (e.g.,how many variable substitutions did we have to make) or set a range of acceptable number ofhits and either relax or strengthen the match automatically until the number of componentsretrieved is within the range.7.2 Future WorkDirections for future work include considering various ways of making both signature and spec-i�cation matching more practical, exploring new applications of signature and speci�cationmatching, and applying our ideas to matching larger components. We consider future work�rst in signature matching (Section 7.2.1), then in speci�cation matching (Section 7.2.2), workapplicable to both signatures and speci�cations (Section 7.2.3), and approaches for matchinglarger components (Section 7.2.4).7.2.1 Function Signature MatchingPractical UseFunction signature matching applies for any statically-typed programming language. If we builta signature-based retrieval tool for more commonly used languages and libraries, then we wouldbe able to show the e�ectiveness of signature matching in a more widely accepted environmentwith larger libraries and more users. Examples of larger libraries include the C++ library fromNIH [Gor87] or some of the growing number of software repositories available on the WorldWide Web [BDGM95, PW95].Given a real library and active users, we would then be able to do a variety of user studiesto learn more about how signature matching is used in practice. Beagle, the signature-basedretrieval tool for SML, includes the means to log what queries users made, which match re-laxations they used, and which results they looked at further. Due to a limited library anduser community, however, we did not have enough other users to reach any conclusions aboutits practicality. Implementing a tool for a larger library, publicizing the tool, and making it

118 CHAPTER 7. CONCLUSIONS AND FUTURE WORKavailable on the World Wide Web should generate a lot more data about how a signature-basedretrieval tool is used.An alternative approach would be to gather a collection of programming tasks and then doa controlled comparative study that measures how long it takes users to complete the taskswith signature-based retrieval versus text-based retrieval.For any retrieval system, an important factor is the way that relaxations are controlled andhow the results are presented. With Beagle, we allow the user to control which relaxations areused for the match. As we discussed in Chapter 5, which relaxations are appropriate dependson the application. For statistical analysis, the user usually wants complete control over whichrelaxations are used. For retrieval for reuse, it may be more appropriate to focus on providingthe user with a reasonable number of matches from which to choose. In this case, we couldextend the system to add or remove relaxations until it gets a reasonable number of matches (ifpossible). For example, suppose a user speci�es that he or she would like to choose from between�ve and 25 matches. Given a query, the system would start with the most relaxed match. Ifthat retrieves more than 25 matches, the system would try again with all but one relaxation(using heuristics to determine which relaxation to remove). This process would repeat until theresults are either within the range or as close as possible.The main relaxations a�ecting the number of matches are usually generalized and specializedmatch. Another potential addition to a signature-based retrieval system would be to providethe user with more control over the way in which type variables are instantiated. In particularthe user could specify that the instantiation of a variable should be limited to either justbase types or to anything but functional types. Such a limitation would be useful in reducingunwanted matches. For example, we could extend the Analysis 1 example (pg. 74) by also�nding out how many functions are instances of � ! � but not � ! � !
 by requiring that� in the �rst query not be instantiated by a function type. Similarly, in Reuse 3 (pg. 72),we could eliminate the 24 library functions of type � ! � from the results of the querystring list ! ((string � string)! string)! string by limiting instantiation of type variables tonon-functional types. Thus, instead of two useful functions out of 30 matches, we would �ndtwo useful functions out of only six matches.Another approach to managing the results of a retrieval is to try to order the results of aretrieval so that the matches that are most likely to be useful are listed �rst. Other systems(e.g., Rittri [Rit92a]) have reported that in the presence of variable substitution or uni�cation,ordering results by the number of substitutions required tended to put the most useful functions�rst. Their experience is consistent with our examples in Section 5.1.1 (e.g., Reuse 1 and Reuse3), where using generalized match included not only useful functions (which in these casescontained only one variable) but also non-useful functions with the very general types � ! �and �! � !
 (hence two or three variables).

7.2. FUTURE WORK 119Signature Matching and Type CheckingAnother direction for future work on signature matching is to consider other applications. Oneexample would be to integrate function signature matching with a language's type checkingsystem to provide additional feedback when a type checking error is found. Relaxed matcheswould detect problems with the order or format of arguments to a function, and retrieval wouldsuggest other functions in cases where the programmer has gotten the name of the functionwrong.Consider the following scenario of how such a system would work. Suppose the code beingchecked contains the function application foo x, where x : �1 and (foo x): �2 by type inference,and foo has type � 01 ! � 02. Suppose there is a type checking error because �1 6= � 01 or �2 6= � 02(or because �1 ! �2 6� � 01 ! � 02 in a polymorphic system). With signature matching, wecheck whether � 01 ! � 02 is matched by �1 ! �2 under relaxations reorder, uncurry, and typeconstructor. If they match, we print an error message suggesting how to reformat the input(e.g., \foo (y,z) does not type check, but foo (z,y) would"). Second, we use signature-basedretrieval to search for functions in the environment that match the query �1 ! �2. If we�nd such a function bar, then in addition to the regular error message, we add a suggestion:\Perhaps you meant bar rather than foo," or we provide a way for the user to see a list offunctions that matched �1 ! �2.7.2.2 Function Speci�cation MatchingOther Speci�cationsOne direction for future work on function speci�cation matching is to ask whether there is somemiddle ground between signature matching and matching of full-blown formal speci�cations.By constraining the speci�cation language, we improve the tractability of the match. Forexample, rather than allowing unrestricted predicate logic terms in pre- and post-conditions,we could restrict the clauses to conjunctions of attribute/value pairs (e.g., ensures operation= add ^ ordering = increasing). The set of possible attribute and value terms would be de�nedin advance; there may be relations between values of a particular attribute, e.g., (ordering =increasing)) (ordering = nondecreasing). Matching is a matter of checking a �nite number ofattributes to see whether their values match (or are related). Most of the same match de�nitionsstill apply, but the match is always decidable. An additional advantage to this approach is thatthe speci�cations might be easier for users to write and understand. Relaxing speci�cationsto conjunctions of attribute/value pairs is similar to keyword text-based matching approaches(Section 6.3), but doing it within the framework of speci�cation match might enable us todraw correspondences between attribute/value speci�cations and an underlying more formalspeci�cation so that we still get some of the same substitution behavior guarantees that we getwith the formal speci�cation matching approach.Another example of reduced speci�cation match speci�es a function with a set of legal

120 CHAPTER 7. CONCLUSIONS AND FUTURE WORKinput/output pairs (like the query-by-example approach in Section 6.3). A function S can besubstituted for a function Q if S's set of input/output pairs is a superset of Q's.Better Practical ResultsAnother direction for future work on speci�cation matching is to make it easier to prove thematches presented in Chapter 3. Many of the proofs that we did for the examples in Chapter 3(10 out of 14) required at least some user guidance. With further experience, we might �ndthat adding a few more default proof strategies would eliminate much of the user guidance.For example, three of the proofs that required guidance needed only the additional commandresume by induction. If induction is added as a default proof strategy, those matches gothrough without additional guidance.With further experience, we will also be able to determine how often in practice a componentS matches with a component Q under weak post match but not under plug-in match or plug-inpost match. Recall that weak post match allows us to assume that Spre holds, thus allowing usto exclude cases for which we might not be able to show a relation between the post-conditions(e.g., the case where a container is empty on a delete operation).One of the issues with speci�cation matching is knowing which base terms to use in the spec-i�cation clauses. Currently we assume that the two speci�cations we are attempting to matchare based on the same LSL trait and thus use the same operator names. This is a reasonableassumption for applications like maintenance, where we are matching the speci�cation of anupgraded component with the speci�cation of the old component, and the speci�cation of theold component was probably known to the speci�er of the upgraded component. If we want tomatch two components that were speci�ed independently, however, we will need to relate non-equivalent base terms. One way of identifying base terms that have di�erent names but mightintend the same thing is to use signature matching. Sorts would correspond to user-de�nedtypes and operators would correspond to functions. Matching would use the type constructorand reorder relaxations. So for example, an operator add : C, E ! C in trait Container1would match an operator insert : E, S ! S in trait Container2. Once signature matching hasidenti�ed a correspondence between sorts and operators in the two traits, we would then haveto prove that, under the correspondence, the theory of one trait contains the theory of the other(with the appropriate renamings), which we could do with LP [GGH90].7.2.3 Signatures and Speci�cationsAutomatic ProgrammingA potential application of both signature and speci�cation matching is automatic programgeneration from library components. We would need to extend signature-based retrieval witha notion of a composite match. Given a query �1 ! �2, �nd two components f1 : �1 ! �3 andf2 : �3 ! �2 (or use relaxed signature matching so that the types need not match exactly).

7.2. FUTURE WORK 121Then use speci�cation matching to check that the speci�cation of f1 � f2 matches with thequery speci�cation. If necessary, recurse to get a chain of functions to be composed. Note thatthis is very similar to the planning task in AI [IJC95].MismatchFor both signature and speci�cation matching our focus so far has been on when two componentsmatch. We could just as easily consider the question of when two components do not match.Depending on the components, identifying mismatches may be faster or easier than showing amatch.Pruning an indexed library is an example of using signature mismatch. Let �q be the query,�1 and �2 are in the indexed library, and �2 is a child of �1 (i.e., �1 > �2). Then if �q � �1, weknow that �2 6� �q (i.e., there is a mismatch between �2 and �q), and hence we are able to prune�2 (and all other children of �1).For speci�cation matching, suppose we want to substitute S for Q, and Q modi�es nothing.If S modi�es anything at all, we cannot substitute and get the same observable behavior, sothere is a mismatch between S and Q. Identifying other such mismatches might even makespeci�cation matching practical for retrieval.7.2.4 Larger ComponentsIn order to build really large systems, we need building blocks that are bigger than the functionsand modules we have considered so far. The higher-level design of a software system is describedby a software architecture [GS93], which consists of descriptions of the components of a systemand of the way that components interact.Components are like our modules in that they contain information about the functionalityof the component (i.e., an interface). However, components also include information about howthe component communicates with the rest of the world. Thus, there are two factors to considerin order to do signature or speci�cation matching of these kinds of components: matching theinterface and matching the communication protocols. We believe that the solution to the �rstproblem is the use of a type system at the module level, as described in Section 4.4. Thereare formal descriptions of protocols and protocol matching [AG94]. Our approach would be totry to combine this notion of protocol match with signature or speci�cation match (e.g., twocomponents match if their speci�cations match and their protocols match). It is also possiblethat we could apply some aspects of our approach to matching to protocol matching. Forexample, we could consider whether there are any forms of relaxed protocol matches.There are two di�erent kinds of match to consider. First, matching to determine when wecan replace one component with another (such as the matches we have considered in this thesis).A second kind of match is to determine when two components can be connected together. Thisis the kind of match that other work on interoperability has focused on [AG94, WWRT91,

122 CHAPTER 7. CONCLUSIONS AND FUTURE WORKKon93, YS94, Tha94]. The same techniques apply to both, but the actual match de�nitionsare di�erent. In the �rst case, the functionality of the two components should be similar; inthe second case, the results (e.g., output) of the �rst component should be compatible with theexpectations (e.g., input) of the second component. Both kinds of match are important andboth are amenable to signature and speci�cation matching and to checking for mismatch.7.3 EpilogueWe envision a world where semantic abstracts and semantic-based matching provide tools thatgreatly improve the tasks of creating and managing software. At the function level, a retrievalsystem like Beagle should be a part of every software development environment. At higher levels,we imagine the development of richer type systems to capture the important abstractions aboutcomponents. Moving beyond software components, we use the same approach to address theissue of managing the increasing amounts of information: type systems and speci�cations todescribe the data, various notions of relaxed matches to compare the data, and tools based onthe matches to help us manage the data.

Appendix AThe Container TraitThe Container trait de�nes operators to generate containers (empty and insert), to return theelement or container resulting from deleting an element from the beginning or end (�rst, last,butFirst, and butLast), to return the length of a container (length), and to determine whethera container is empty (isEmpty).Container(E;C) : traitincludes Integerintroducesempty :! C butFirst : C ! Cinsert : E;C ! C butLast : C ! C�rst : C ! E isEmpty : C ! Boollast : C ! E length : C ! IntassertsC generated by empty ; insertC partitioned by isEmpty ; length8 e : E; c : C�rst(insert(e; c)) == ebutFirst(insert(e; c)) == clast(insert(e; c)) == if c = empty then e else last(c)butLast(insert(e; c)) == if c = empty then empty else insert(e; butLast(c))isEmpty(empty):isEmpty(insert(e; c))length(empty) == 0length(insert(e; c)) == length(c) + 1123

124 APPENDIX A. THE CONTAINER TRAIT

Appendix BSubtype Speci�cationFigure B.1 shows the Container2 trait on which object speci�cations BagObj and StackObj arebased. This speci�cation is di�erent from the Container trait in Appendix A in that it hasadditional operators delete, isIn, and count. Figures B.2 and B.3 show the results of translatingthe speci�cations to LP input.

125

126 APPENDIX B. SUBTYPE SPECIFICATION
Container2 (E , C) : traitincludes Integerintroducesempty : ! C butFirst : C ! Cinsert : E;C! C butLast : C ! Cdelete : E;C ! C isEmpty : C ! Bool�rst : C ! E isIn : E;C ! Boollast : C ! E count : E;C! Intsize : C ! IntassertsC generated by empty, insertC partitioned by count8 e; e1 : E; c : Clast(insert(e; c)) == ebutLast(insert(e; c)) == c�rst(insert(e; c)) == if c = empty then e else �rst(c)butFirst(insert(e; c)) == if c = empty then empty else insert(e; butFirst(c))isEmpty(empty):isEmpty(insert(e; c)):isIn(e; empty)isIn(e; insert(e1; c)) == (e = e1) _ (isIn(e; c))size(empty) == 0size(insert(e; c)) == size(c) + 1count(e; empty) == 0count(e; insert(e1; c)) == count(e; c) + (if e = e1 then 1 else 0)count(e; delete(e1; c)) == if e = e1 then max (0; count(e; c)� 1) else count(e; c)Figure B.1: Container2 trait

127%% signature BagObjset name BagObj%% type 'a t based on Container2.E Container2.C%% Variable declarationsdeclare varb : Cb' : Ce: En: Int..%% Speci�cation declarationsdeclare opputPre: -> BoolputPost: C, C, E -> BoolgetPre: C, E-> BoolgetPost: C, C, E-> BoolcardPre: -> BoolcardPost: C, Int-> Bool..%% Speci�cation assertionsassertputPre = true;putPost(b, b', e) = (b' = insert(e,b));getPre(b, e) = (�(isEmpty(b)));getPost(b, b', e) = (b' = delete(e,b) /n isIn(e,b));cardPre = true;cardPost(b, n) = (n = size(b)).. Figure B.2: Bag speci�cation translated to LP input

128 APPENDIX B. SUBTYPE SPECIFICATION%% signature StackObjset name StackObj%% type 'a t based on Container2.E Container2.C%% Variable declarationsdeclare vars : Cs' : Ce: Ei: Int..%% Speci�cation declarationsdeclare oppushPre: -> BoolpushPost: C, C, E -> BoolpopPre: C, E-> BoolpopPost: C, C, E-> Boolswap topPre: C, E -> Boolswap topPost: C, C, E -> BoolheightPre: -> BoolheightPost: C, Int-> Bool..%% Speci�cation assertionsassertpushPre = true;pushPost(s, s', e) = (s' = insert(e,s));popPre(s, e) = (�(isEmpty(s)));popPost(s, s', e) = (s' = butLast(s) /n e = last(s));swap topPre(s, e) = (�(isEmpty(s)));swap topPost(s, s', e) = (s' = insert(e,butLast(s)));heightPre = true;heightPost(s, i) = (i = size(s)).. Figure B.3: Stack speci�cation translated to LP input

Bibliography[AG94] Robert Allen and David Garlan. Formalizing architectural connection. In Proceed-ings of the 16th International Conference on Software Engineering, pages 71{80,Sorrento, Italy, May 1994.[AM87] William W. Agresti and Frank E. McGarry. The Minnowbrook workshop onsoftware reuse: A summary report. In Will Tracz, editor, Tutorial: SoftwareReuse: Emerging Technology, pages 33{40. Computer Society Press, 1987.[Ame91] Pierre America. Designing an object-oriented programming language with be-havioural subtyping. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg,editors, Foundations of Object-Oriented Languages, REX School/Workshop, No-ordwijkerhout, The Netherlands, May/June 1990, volume 489 of LNCS, pages60{90. Springer-Verlag, NY, 1991.[AS87] Susan P. Arnold and Stephen L. Stepoway. The REUSE system: Cataloging andretrieval of reusable software. In Will Tracz, editor, Tutorial: Software Reuse:Emerging Technology, pages 138{141. Computer Society Press, 1987.[ATT93] The Standard ML of New Jersey library reference manual. Technical report, AT&TBell Laboratories, February 1993.[BDGM95] Shirley Brown, Jack Dongarra, Stan Green, and Keith Moore. Location-independent naming for virtual distributed software repositories. In Proceedings ofthe ACM SIGSOFT Symposium on Software Reusability (SSR'95), pages 179{185,April 1995.[Ber91] Dave Berry. The Edinburgh SML library. Technical Report ECS-LFCS-91-148,University of Edinburgh, April 1991.[Bis92] Walter R. Bischofberger. Sni� { a pragmatic approach to a C++ programmingenvironment. In USENIX C++ Conference, pages 67{81, August 1992.[BP89] Ted J. Biggersta� and Alan J. Perlis, editors. Software Reusability Vol. 1: Conceptsand Models. ACM Press, N.Y., 1989.129

130 BIBLIOGRAPHY[Car89] Luca Cardelli. Typeful programming. Report 45, DEC Systems Research Center,Palo Alto, CA, May 1989.[CE93] Yuk Fung Chang and Caroline M. Eastman. An information retrieval system forreusable software. Information Processing and Management, 29(5):601{614, 1993.[CHJ93] P. S. Chen, R. Hennicker, and M. Jarke. On the retrieval of reusable software com-ponents. In Proceedings of the 2nd International Workshop on Software Reusability,pages 99{108. IEEE Computer Society Press, March 1993.[CMR92] Mariano Consens, Alberto Mendelzon, and Arthur Ryman. Visualizing and query-ing software structures. In Proceedings of the 14th International Conference onSoftware Engineering, pages 138{156, May 1992.[Cor95] InfoSeek Corporation. Infoseek home page. Santa Clara, California.http://www.infoseek.com, 1995.[DC92] Roberto Di Cosmo. Type isomorphisms in a type-assignment framework. In Pro-ceedings of the 19th Annual Symposium on Principles of Programming Languages,pages 200{210, January 1992.[DL92] Krishna Kishore Dhara and Gary T. Leavens. Subtyping for mutable types inobject-oriented programming languages. Technical Report 92-36, Department ofComputer Science, Iowa State University, Ames, Iowa, November 1992.[FF93] M. G. Fugini and S. Faustle. Retrieval of reusable components in a developmentinformation system. In Proceedings of the 2nd International Workshop on SoftwareReusability, pages 89{98. IEEE Computer Society Press, March 1993.[FH88] Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-Wesley, 1988.[FHR91] Gerhard Fischer, Scott Henninger, and David Redmiles. Cognitive tools for lo-cating and comprehending software objects for reuse. In Proceedings of the 13thInternational Conference on Software Engineering, May 1991.[FKS94] B. Fischer, M. Kievernagel, and W. Struckmann. VCR: A VDM-based softwarecomponent retrieval tool. Technical Report 94-08, Technical University of Braun-schweig, Germany, November 1994.[FN87] W. B. Frakes and B. A. Nejmeh. Software reuse through information retrieval.In Proceedings of the 20th Annual Hawaii International Conference on SystemSciences (HICSS), Volume II, pages 530{534, 1987.

BIBLIOGRAPHY 131[GG91] Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover.Report 82, DEC Systems Research Center, Palo Alto, CA, December 1991.[GGH90] Stephen J. Garland, John V. Guttag, and James J. Horning. Debugging LarchShared Language speci�cations. Report 60, DEC Systems Research Center, PaloAlto, CA, July 1990.[GH93] John V. Guttag and James J. Horning, editors. Larch: Languages and Toolsfor Formal Speci�cation. Texts and Monographs in Computer Science. Springer-Verlag, 1993. With Stephen J. Garland, Kevin D. Jones, Andr�es Modet, andJeannette M. Wing.[Gor87] Keith E. Gorlen. An object-oriented class library for C++ programs. Software {Practice and Experience, 17(12):899{922, December 1987.[GS93] David Garlan and Mary Shaw. An introduction to software architecture. In V. Am-briola and G. Tortora, editors, Advances in Software Engineering and KnowledgeEngineering, Volume 1. World Scienti�c Publishing Company, N.J., 1993.[Hal93] Robert J. Hall. Generalized behavior-based retrieval. In 15th International Con-ference on Software Engineering, pages 371{380, 1993.[Hen95] Scott Henninger. Supporting the process of satisfying information needs withreusable libraries: An empirical study. In Proceedings of the ACM SIGSOFTSymposium on Software Reusability (SSR'95), pages 267{270, April 1995.[HM91] Richard Helm and Yo�elle S. Maarek. Integrating information retrieval and domainspeci�c approaches for browsing and retrieval in object-oriented class libraries. InOOPSLA Conference Proceedings, pages 47{61, 1991.[IEE84] IEEE Transactions on Software Engineering, September 1984. SE-10(5).[IJC95] Working notes, IJCAI workshop on formal approches to the reuse of plans, proofs,and programs, August 1995.[JC92] J.-J. Jeng and B. H. C. Cheng. Formal methods applied to reuse. In Proceedingsof the 5th Workshop in Software Reuse, 1992.[JC95] J.-J. Jeng and B. H. C. Cheng. Speci�cation matching for software reuse: A foun-dation. In Proceedings of the ACM SIGSOFT Symposium on Software Reusability(SSR'95), pages 97 {105, April 1995.[Jon86] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall Inter-national, 1986.

132 BIBLIOGRAPHY[Kon93] Dimitri Konstantas. Object-oriented interoperability. In Oscar M. Nierstrasz,editor, ECOOP'93 { 7th European Conference on Object-Oriented Program-ming, Kaiserslautern, Germany, July 1993, volume 707 of LNCS, pages 80{102.Springer-Verlag, NY, 1993.[KR78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.Prentice-Hall, 1978.[KRT87] Shmuel Katz, Charles A. Richter, and Khe-Sing The. PARIS: A system for reusingpartially interpreted schemas. In Proceedings of the 9th International Conferenceon Software Engineering, pages 377{385, March 1987.[Kru92] C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131{183, June1992.[KYS85] Hideki Katoh, Hiroyuki Yoshida, and Masakatsu Sugimoto. Logic-based retrievaland reuse of software. Technical Report TR-153, Institute for New GenerationComputer Technology, October 1985.[Lea89] Gary Leavens. Verifying object-oriented programs that use subtypes. TechnicalReport 439, MIT Laboratory for Computer Science, February 1989. Ph.D. thesis.[Ler95a] Xavier Leroy. CAML light manual. Technical report, INRIA, July 1995.[Ler95b] Xavier Leroy. The Caml Special Light system, release 1.07, documentation anduser's manual. Technical report, INRIA, September 1995.[Lis87] Barbara Liskov. Data abstraction and hierarchy. In OOPSLA '87: Addendum tothe Proceedings, pages 17{34, 1987.[LW90] Gary T. Leavens and William E.Weihl. Reasoning about object-oriented programsthat use subtypes. In ECOOP/OOPSLA '90 Proceedings, 1990.[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping.ACM Transactions on Programming Languages and Systems, November 1994.[MBK91] Yo�elle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. An information retrievalapproach for automatically constructing software libraries. IEEE Transactions onSoftware Engineering, 8(17):800{813, August 1991.[Mey88] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York,1988.[MF93] Jean-Marc Morel and Jean Faget. The REBOOT enviornment. In Proceedingsof the 2nd International Workshop on Software Reusability, pages 80{88. IEEEComputer Society Press, March 1993.

BIBLIOGRAPHY 133[MFCS95] Eliseo Mambella, Roberto Ferrari, Francesca De Carli, and Angela Lo Surdo.An integrated approach to software reuse practice. In Proceedings of the ACMSIGSOFT Symposium on Software Reusability (SSR'95), pages 63{71, April 1995.[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of Com-puter and System Sciences, 17(3):348{375, December 1978.[ML94] M. Mauldin and J. Leavitt. Web-agent related research at the CMT. In ACM Spe-cial Interest Group on Networked Information Discovery and Retrieval (SIGNIDR-94), August 1994.[MMM94] A. Mili, R. Mili, and R. Mittermeir. Storing and retrieving software components:A re�nement-based approach. In Proceedings of the 16th International Conferenceon Software Engineering, May 1994.[MMM95] Hafedh Mili, Fatma Mili, and Ali Mili. Reusing software: Issues and researchdirections. IEEE Transactions on Software Engineering, 21(6):528{562, June 1995.[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML.MIT Press, 1990.[OHPDB92] Eduardo Ostertag, James Hendler, Rub�en Prieto-D�iaz, and Christine Braun. Com-puting similarity in a reuse library system: An AI-based approach. ACM Trans-actions on Software Engineering and Methodology, 1(3):205{228, July 1992.[PD89] Rub�en Prieto-D�iaz. Classi�cation of reusable modules. In Ted J. Biggersta� andAlan J. Perlis, editors, Software Reusability Vol. 1: Concepts and Models, pages99{123. ACM Press, N.Y., 1989.[Per89] Dewayne E. Perry. The Inscape environment. In Proceedings of the 11th Interna-tional Conference on Software Engineering, pages 2{12, 1989.[Pou93] Je�ery S. Poulin. Integrated support for software reuse in computer-aided softwareengineering (CASE). ACM SIGSOFT Software Engineering Notes, 18(4):75{82,October 1993.[PP92] Andy Podgurski and Lynn Pierce. Behavior sampling: A technique for automatedretrieval of reusable components. In 14th International Conference on SoftwareEngineering, pages 349 { 360, 1992.[PP93] Dewayne E. Perry and Steven S. Popovich. Inquire: Predicate-based use and reuse.In Proceedings of the 8th Knowledge-Based Software Engineering Conference, pages144{151, September 1993.

134 BIBLIOGRAPHY[PP94] Santanu Paul and Atul Prakash. A framework for source code search using programpatterns. IEEE Transactions on Software Engineering, 6(20):463{475, June 1994.[PW95] Je�ery S. Poulin and Keith J. Werkman. Melding structured abstracts and theworld wide web for retrieval of reusable components. In Proceedings of the ACMSIGSOFT Symposium on Software Reusability (SSR'95), pages 160{168, April1995.[Rit89] Mikael Rittri. Using types as search keys in function libraries. Conference onFunctional Programming Languages and Computer Architectures, pages 174{183,September 1989.[Rit90] Mikael Rittri. Retrieving library identi�ers via equational matching of types. In10th International Conference on Automated Deduction, Lecture Notes in Arti�cialIntelligence, Number 449, pages 603{617. Springer-Verlag, July 1990.[Rit91] Mikael Rittri. Using types as search keys in function libraries. Journal of Func-tional Programming, 1(1):71{89, January 1991.[Rit92a] Mikael Rittri. Retrieving library functions by unifying types modulo linear iso-morphism. Technical Report 66, Programming Methodology Group, Depart-ment of Computer Sciences, Chalmers University of Technology and Universityof G�oteborg, 1992.[Rit92b] Mikael Rittri. Retrieving library identi�ers via equational matching of types.Technical Report 65, Programming Methodology Group, Department of ComputerSciences, Chalmers University of Technology and University of G�oteborg, May1992.[RT89] Colin Runciman and Ian Toyn. Retrieving re-usable software components by poly-morphic type. Conference on Functional Programming Languages and ComputerArchitectures, pages 166{173, September 1989.[RT91] Colin Runciman and Ian Toyn. Retrieving reusable software components by poly-morphic type. Journal of Functional Programming, 1(2):191{211, April 1991.[RW91] Eugene J. Rollins and Jeannette M. Wing. Speci�cations as search keys for soft-ware libraries. In Proceedings of the Eighth International Conference on LogicProgramming, June 1991.[SC94] David W.J. Stringer-Calvert. Signature matching for Ada software reuse. Master'sthesis, University of York, 1994.

BIBLIOGRAPHY 135[SGS91] Gregor Snelting, Franz-Josef Grosch, and Ulrik Schroeder. Inference-based supportfor programming in the large. In A. van Lamsweerde and A. Fugetta, editors,3rd European Software Engineering Conference, number 550 in Lecture Notes inComputer Science, pages 396{408. Springer Verlag, October 1991.[SM83] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.McGraw-Hill, 1983.[Spi88] J. M. Spivey. Understanding Z: A Speci�cation Language and its Formal Seman-tics. Cambridge University Press, 1988.[SSS93] Lars Sivert S�rumg�ard, Guttorm Sindre, and Frode Stokke. Experiences from ap-plication of a faceted classi�cation scheme. In Proceedings of the 2nd InternationalWorkshop on Software Reusability, pages 116{124. IEEE Computer Society Press,March 1993.[Sta86] Richard Stallman. GNU Emacs Manual, 1986.[Ste84] Guy L. Steele Jr. Common Lisp, The Language. Digital Press, 1984.[Tes81] Larry Tessler. The Smalltalk environment. BYTE, pages 90{147, August 1981.[Tha94] Satish R. Thatt�e. Automated synthesis of interface adapters for reusable classes.In Proceedings of the 21st Annual Symposium on Principles of Programming Lan-guages, pages 174{187, January 1994.[TR93] David Tarditi and Gene Rollins. Local guide to Standard ML. Technical report,CMU, March 1993.[Wad89] Philip Wadler. Theorems for free! In Fourth International Conference on Func-tional Programming Languages and Computer Architecture, pages 347{359. ACMPress, September 1989.[WRZ93] J.M. Wing, E. Rollins, and A. Moormann Zaremski. Thoughts on a Larch/MLand a new application for LP. In Ursula Martin and Jeannette M. Wing, editors,First International Workshop on Larch. Springer Verlag, 1993.[WWRT91] Jack C. Wileden, Alexander L. Wolf, William R. Rosenblatt, and Peri L. Tarr.Speci�cation-level interoperability. CACM, 34(5):72{87, May 1991.[YS94] Daniel M. Yellin and Robert E. Strom. Interfaces, protocols, and the semi-automatic construction of software adaptors. OOPSLA Conference Proceedings,ACM SIGPLAN Notices, 29(10):176{190, October 1994.

136 BIBLIOGRAPHY[ZW93] Amy Moormann Zaremski and Jeannette M. Wing. Signature Matching: A Keyto Reuse. In Proceedings of SIGSOFT'93 First ACM SIGSOFT Symposium onthe Foundations of Software Engineering, ACM SIGSOFT Software EngineeringNotes, 18(5), pages 182{190, December 1993. Also CMU-CS-93-151, May, 1993.[ZW95a] Amy Moormann Zaremski and Jeannette M. Wing. Signature Matching: a Toolfor Using Software Libraries. ACM Transactions on Software Engineering andMethodology, 4(2):146{170, April 1995.[ZW95b] Amy Moormann Zaremski and Jeannette M. Wing. Speci�cation Matching ofSoftware Components. In Proceedings of SIGSOFT'95 Third ACM SIGSOFTSymposium on the Foundations of Software Engineering, ACM SIGSOFT Soft-ware Engineering Notes, 20(4), pages 6{17, October 1995. Also CMU-CS-95-127,March, 1995.

