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ABSTRACT

Springback, the geometric difference between the
loaded and unloaded configurations, is affected by many
factors, such as material properties, sheet thickness,
lubrication conditions, tooling geometry and processing
parameters. It is extremely difficult to develop an
analytical model for springback control including all
these factors. The proposed neural network model is an
attempt to deal with such a complicated non-linear
system in a predictive way. For demonstration, an
aluminum channel forming process is considered in this
work. Our previous research [1] has shown that a
variable binder force history during the forming operation
can reduce the springback amount significantly while
maintaining a relatively low maximum strain if an initial
low binder force was used followed by a higher binder
force.  However, when and how much of the increase is
depends on the forming conditions of the current
process.  Here, several numerical simulations using
Finite Element Method (FEM) were performed to obtain
the teaching data required for training the neural network
by means of the back-propagation algorithm. In the
predictive mode, different process inputs from the ones
used in the previous stage were considered. For each
case, the displacement where binder force increases
and the level of the high binder force were predicted by
the learned neural network and were numerically tested.
Consistent low springback angle (< 0.5°) and moderate
stretching amount (< 16%) were obtained even in the
cases where the process parameters were varied as
much as ±25% on friction coefficient and sheet thickness
or ±10% on material’s mechanical properties.  The
neural network can be easily implemented in the
experiments and/or in real production to resolve the
uncertainty of springback amount due to the variations in
material properties and friction conditions.

INTRODUCTION

One of the largest challenges in manufacturing is the
consistency of final products.  Two basic approaches
have been investigated to achieve this goal.  One is to
use intelligent assembly methodologies to select a
suitable set of parts to be assembled, that is, taking
advantage of tolerance stack up.  However, to our
knowledge, no fundamental theory on how to efficiently
select the parts has been developed and applied to
various manufacturing processes.  The other approach
aims at each individual manufacturing process module,
for example, sheet metal forming process, which is the
approach and the focus of this work.

As known, during unloading (tooling retreat) in the
forming process, the elastic component of the stress
generated during the deformation is released leading to
a partial return of the deformed part toward the initial
configuration.  This is so-called ‘Springback’, which has
been intensively studied in many recent proceedings of
NUMISHEET and SAE conferences.  To minimize the
geometrical errors in the final shape, the reduction and
the consistency of the springback are the two key
issues.  Springback can be reduced by a proper tooling
design (die design, binder design, etc.) or by controlling
the magnitude and the history of the plastic stretch
imposed to the sheet by a proper binder force trajectory
(process control).  Karafillis and Boyce [2,3] proposed a
method, “SpringForward”, for tool and binder design to
obtain the desired part shape. Using finite element
analysis of a forming process, the amount of springback
and its associated section bending moment can be
calculated and fedback to a tooling design algorithm,
which provides the new tooling shape compensating the
springback. The design process is repeated until
reaching the desired springback amount.  The
“SpringForward” method provides a powerful tool for
designing the tooling taking the amount of potential
springback into account.  The tooling geometry is often
not the same as the desired part geometry.  However,
“SpringForward” is not designed to and therefore, not
able to deal with the variations in the processes.  In the
aspect of the process design, Ayres [4] developed a
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‘passive’ two-step SHAPESET process and Sunseri,
Cao et al. [1] proposed a strategy to actively control the
binder force during the forming operation.  In both works,
springback was reduced by having two levels of binder
force in the forming process.  Ayres [4] achieved the
goal by having two different die sets and Sunseri et al [1]
utilised an active binder force controller.  Using a VBF
trajectory, the springback amount was less than 1.14°
[1].  Furthermore, in order to maintain stable
performances in springback control at the presence of
variations in lubrication conditions, a real-time closed-
loop control of the binder force was implemented to
achieve the same punch force history [1].  The approach
was able to obtain the consistent springback amount
when friction coefficient was varied from 0.25 to 0.10.
However, the effectiveness of the proposed approach
under large scattering in material properties and sheet
thickness was not discussed.

An alternative approach for obtaining consistent
springback amount could be the development of an
artificial neural network model system capable of dealing
with such arbitrary non-linear systems.  Artificial neural
networks have been studied for many years in the hope
of achieving human-like performances in solving
problems that are generally ill defined and require a
great amount of processing. Human brains accomplish
this data processing by utilizing massive parallelism, with
millions of neurons working together to solve complicate
problems. Similarly, artificial neural network models
consist of many computational elements operating in
parallel connected by links with variable weights that are
typically adapted during the learning process.
Development of detailed mathematical models began in
the 1960s with the works of Rosenblatt [5] and Widrow
[6] in the years following these discoveries, many new
techniques have been developed in the field of neural
networks and the discipline is growing rapidly. More
recent applications regard vehicular control simulation
[7], speech generation [8], speech recognition [9] and
expert systems [10].

In recent years, applications of artificial neural in sheet
metal forming process control have been also proposed.
For example, an attempt to apply a neural network
control scheme for springback reduction in a 60° V-
punch air bending process of an aluminium alloy was
made, among other authors [11-12], by Forcellese et al.
[13]. Five parameters describing the measured punch
force-displacement curve were utilized as input data
during the neural network training; additional inputs
included the sheet thickness and the bend angle after
unloading. The system was trained on several sets of
experimental data. In the predictive mode, the target
angle, the off-line measured sheet thickness and the “in-
process” estimated parameters were given as inputs to
the trained neural network to determine the appropriate
punch stroke for the desired bend angle.  The work had
one process parameter and required the offline
measurement of sheet thickness, which adds additional
cost to manufacturing.

In this paper, the objective of our work is to resolve the
problem of springback reduction for a more complicated
sheet metal forming process using a neural network
based control system. FEM simulations of a channel
forming process of sheets from an aluminium alloy are
used for demonstration. A step function as proposed in
Sunseri et al [1] is used as the binder force history. The
effects of lubrication conditions, sheet thickness and
material properties on springback are considered. Since
all these factors affect the punch force-displacement
curve, 8 parameters characterizing such a curve are
considered as inputs to learn the neural network. The
output pattern is constituted by the punch stroke
corresponding to the increase in the binder force and by
the level of the high binder force, the lower binder force
is set constant. Despite of large variations on material
parameters and friction conditions (±10% and ±25%,
respectively), excellent results were obtained -- a
consistent springback angle of less than 0.3°.

Although the methodology is verified by means of the
numerical simulation, the method can been easily
implemented in experiments and/or on manufacturing
floor as well. The requirements of the hardware are an
extremely low powered CPU, the ability to measure the
punch force-displacement data in “real–time” and the
ability setting binder force during the press cycle.  Many
new presses in stamping plants have the above
capacity.  The optimal binder force trajectory for
controlling and minimizing the springback will then be
adjusted based on the current manufacturing conditions.
This design indeed provides a very robust control
system at a very low cost.

CHANNEL FORMING PROCESS AND ITS FINITE
ELEMENT MODEL

As is generally known, springback is due to the uneven
distribution of stress states in the loading configuration.
This fact can be easily demonstrated in a channel
forming operation where the entire punch stroke is 19.2
mm (Fig. 1).  Figure 2 shows a quarter model of the
channel forming in Finite Element Analysis using a
commercial package (ABAQUS 1997).  The binder, the
die and the punch were modelled as three separate rigid
surfaces and each surface was modelled using four-
node interface elements (ABAQUS type IRS4) and taken
to be frictional.  A Coulomb friction law was assumed.
With proper symmetric conditions applied on A-A and B-
B section, the entire blank of 220mm x 46mm was
modelled by 40 x 4 four-node shell elements with
reduced integration (ABAQUS type S4R).  The material
was modelled to be isotropic elastic-plastic following the
Mises yield criterion and isotropic strain hardening. The
elastic properties were the tensile modulus E=70GPa
and Poisson ratio ν=0.3.  The plastic behavior of the
material is modelled using a power law relation (σ=Kεn)
with a material strength coefficient K of 528 MPa and a
strain hardening component n of 0.265. The forces
reported here are of a quarter model.
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THE NEURAL NETWORK AND THE BACK-
PROPAGATION ALGORITHM

Multi-layer neural networks are fed-forward nets with one
or more layers of nodes between the input and output
ones (hidden layers). In a fully connected layered
network, each neuron receives inputs from all the
elements in the preceding layer; no connection exists
between neurons belonging to the same layer.

Fig. 3  Model of artificial neuron

At adaptation cycle k, a weight vector Wk and an input
vector Xk are associated to each neuron (Fig. 3). The
output Xl

i produced by element i in layer l is:
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where n(l-1) is the number of elements in the layer l-1, f
is the activation function, and Wl

i,j is the weight
associated with the connection between the neuron i in
the layer l and the neuron j in the layer l-1 whose output
is Xj

l-1. Usually, the input Wl
i,0 is a constant and equal to

1 so that the corresponding weight  (offset or Bias) shifts
the activation function along the abscises axis.

During learning, Q sets of input and output data (Q input-
output patterns) are provided to the neural network.  An
iterative algorithm adjusts the weights so that the
responses (y) generated at output nodes (Eqn. 1)
according to the input patterns will be as close as
possible to their respective desired responses (d).
Considering a neural network with N0 outputs, the Mean
Square Error function (MSE) is to be minimized:
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The back-propagation algorithm [14, 15] is most widely
used to minimize MSE. It is based on the current pattern
error estimation and works with one pattern at a time.
For each neuron, the gradient of the current MSE
function is measured and the weight vector is altered in
the direction corresponding to the negative measured
gradient following

)( kk1k ∇−η+=+ WW (3)

where η, the learning rate, is the parameter controlling
the stability and rate of convergence and ∇∇∇∇ k is the
gradient of the local squared error corresponding to W =
Wk. Details can be found in [16]. The effects of errors on
each output are swept backward through the network to
associate a “square error derivative” δl

i to each element i
somewhere in layer l. It can be shown that each square
error derivative for neurons in the output layer is
computed by multiplying the output error associated with
that element by the derivative of the associated
activation function.  For the other layers, the square error
derivative for a given neuron is obtained by multiplying
each derivative δi

l+1 associated to each neuron in the
layer immediately downstream by the weight that
connects it to the given neuron. These weighted square-
error derivatives are then added together and multiplied
by the derivative of the given element‘s activation
function calculated at its operation point. This process of
backpropagation is repeated until that a square error
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Fig. 1 Geometry of the channel forming.

Fig. 2a  Finite element mesh of the blank.

Fig. 2b Finite element model of the channel forming.
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derivative is computed for each element in the network.

Finally, the relationship between the gradient and the
square error derivative is:

kkk Xδ2−=∇ (4)

From equations (3) and (4) it follows:

kkk1k X2ηδ+=+ WW (5)

A back-propagation iteration is applying Eqn. 5 to each
neuron of the network. The process restarts with a new
input-output pattern presentation. Once the weights are
adjusted, the responses of the trained system can be
tested by supplying various input patterns.  If the
network responds correctly to input patterns that were
not included in the training set, it is said that
generalisation has taken place. To demonstrate its
applicability in real problems, Cybenko [17] has shown
that given sufficient number of hidden elements,
feedforward networks with two hidden layers with
sigmoidal activation function can implement any
continuous input-output mapping to arbitrary accuracy.
Consequently, it is appropriate to regard neural networks
as a control model capable of dealing with non-linear
systems. Furthermore, once the generalization
performance has been verified, the training set can be
continuously updated improving the neural network
modeling capability.

PROCESS ANALYSIS

In this section, constant binder force (CBF) and variable
binder force (VBF) will be studied to demonstrate the
advantage of VBF and to explore the feasibility of using
punch force history as the signature of the forming
conditions.

CONSTANT BINDER FORCE

The conventional forming process utilizes the same
binder force throughout the drawing process.   Numerical
FEM simulations were performed in order to examine the
effect of a constant binder force (CBF) upon springback
after unloading. The stamping process of a workpiece of
1 mm with friction coefficient µ =0.16 is considered for
demonstration. Simulations were performed for cases of
CBF varying from 4 kN to 36 kN. The unloaded and
desired configurations for the two extreme cases of CBF
are shown in Fig.4, while the corresponding values of
the springback angle θ are depicted in Fig.5.

It can be observed that very large deviation in shape
occurs with the lower binder force case and how it is
gradually reduced with the increasing of the restraining
force. In the low binder force conditions, due to the
substantially bending nature of the process, one side of
the sheet is in compression and the other side is in

tension; consequently, a large internal bending moment
is generated leading to a large amount of springback
after unloading. Conversely, with increasing the plastic
stretch induced in the sheet, the gradient of the stress
distribution throughout the thickness is gradually
reduced leading to a decreasing in springback. However
the decrease in the internal bending moment is achieved
with a large increase of the maximum principal strain
ε11(max) as shown in Fig.6.  In order to obtain acceptable
amount of springback (θ < 0.5°) under CBF conditions,
the maximum level of ε11 must increase approaching the
limit of material failure. In fact, the Forming Limit
Diagram for this material shows a failure strain of 19 %
[18] in plane strain.

Fig. 6 ε11 (max) for the CBF cases.
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VARIABLE BINDER FORCE

As proposed by Sunseri, Cao et. al. [4], Variable Binder
Force (VBF) histories were considered in order to reduce
the springback angle without producing too large
deformations in the formed part. An initial low binder
force is used to allow the metal to flow easily into the die
cavity to obtain a preliminary shape. Springback is
severe at the end of this step due to the essentially
bending working state that characterises the
deformation. At the later stage of punch stroke, the
binder force is instantaneously increased to a higher
value in order to introduce a larger amount of stretching
with respect to the previous forming stage. By selecting
the punch travel where the high binder force is applied
and the level of the higher binder force, springback
minimization can be obtained and associated to a
remarkable reduction in the maximum principal strain
incurred in the formed part. For the process parameters
considered in this section, simulations have shown that a
very good result is obtained for the case in which the
load is increased from 4kN to 13 kN at the punch stroke
of 75 % of the total stroke. The springback angle is θ =
0.31° and ε11(max) = 11.78 %. Figure 7 shows both the
desired and the unloaded shapes for this case; the step
function that describes the binder force trajectory is
shown in Fig.8. The corresponding Punch force-
displacement curve is depicted in Fig. 9 together with the
punch force trajectories of two extreme CBF cases.

In any case, the selections of both the timing for applying
the additional stretch and the level of the high binder
force are critical aspects in order to obtain good results
in terms of springback reduction and integrity of the final
product.

SPRINGBACK REDUCTION UNDER SCATTERING IN
FRICTION CONDITIONS AND SHEET THICKNESS

The neural network capability in springback minimization
for the forming process with variations in lubrication
conditions and in sheet thickness is investigated in this
section. The material characteristics are kept the same
as described in section 2.

TRAINING OF THE NETWORK

12 various sets of friction coefficient and thickness are
used as the training cases.  Friction coefficient was
varied from 0.12 to 0.2 with an increment of 0.02 and
sheet thickness was varied from 0.8 mm to 1.2 mm with
an increment of 0.2mm.  For each combination of friction
coefficient µ and sheet thickness, 10 different step
functions of the binder force history were tested in the
FEM simulations with an initial low binder force of 4kN.
In order to decrease the probability of failure and
improve the integrity of the formed part, results from
simulations leading to a maximum principal strain ε11

greater than 16% were not considered. Finally, the
simulation characterized by the lower springback angle
was chosen as the teaching set for the neural network
training as shown in Table 1.

Columns 3 and 4 show respectively the level of the High
Binder Force (HBF) and the punch position (PSstep) at
which the binder force is instantaneously increased to
the higher value. The springback angle and the
maximum strain achieved at the end of the process are
reported in columns 5 and 6. Notice that those shown
above are not guaranteed to be the “best” possible
solutions; they rather represent a selected set of
possible ones for springback reduction to an acceptable
level. For each sheet thickness, it can be observed that
the level of HBF decreases as the friction coefficient
increases. It’s well known that the reduction in the level
of friction reduces the restraining force imparted to the
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sheet thereby reducing stretching and increasing
springback; consequently a greater binder force is
required for springback minimization. Similarly, it can be
also seen that considering the same friction coefficient
value, a higher restraining force is associated with an
thicker sheet; this can be explained considering that
more stretching is required for the gradient reduction of
the stress distribution throughout the thickness of the
workpiece in bending.  A similar monotonic behaviour
can not be observed in the position of the increase,
which scatters in a very random manner; this is the
principal reason why a neural network model is utilized
to model the relationship between binder force
trajectories and process parameters.

Thickness

 (mm)

Fric.

Coeff

HBF

KN

PSstep,%

tot. stroke.

θθθθ,

(°°°°)

εεεε11(max)

(%)

0.8  0.12 18 75 0.12 11.76
“  0.14 15 74 0.053 12.61
“  0.16 13 82 0.015 9.82
“  0.20 9 80 0.004 10.74
1  0.12 20 70 0.18 13.59
“  0.14 16 68 0.25 12.97
“  0.16 13 75 0.31 11.52
“  0.20 10 72 0.24 11.78
1.2  0.12 24 71 0.16 13.34
“  0.14 21 68 0.176 14.81
“  0.16 16 74 0.3 13.54
“  0.20 13 71 0.22 14.64

Table 1 – Set of FEM simulations for training neural network

         Figures 10 describe the punch force-displacement
curves obtained by the numerical simulations for the
cases shown in Table 1. It can be seen how variations in
process parameters lead to remarkable differences in
the behaviour of the punch force history.

         Furthermore, material properties affect the punch
force-stroke data as well. For this reason, the
mechanical behaviour of the sheet during deformation is
described in this work by the coefficients obtained by the
least square polynomial fitting of the curves shown in
figures 10, such parameters are estimated on the “real-
time” punch force-displacement data. Stelson [20-22]
proposed methods for the mechanical characterization of
the sheet based on the punch-force displacement data in
different metal forming processes. However, since
restrictive hypotheses on both the deformation and
geometrical modelling were made, such models did not
provide results completely error-free. In this work, no
simplifying assumptions on the mechanical modelling of
the sheet are used. Moreover, the negative errors due to
the mathematical manipulation of numerical data are
avoided.  The force displacement curves were divided in
two regions: Region A, where the punch strokes less
than 1.5 mm. A 4th order polynomial function was used
for the curve fitting analysis. Region B, where the punch
strokes between 3 mm and 10 mm.  A polynomial order
equal to 3 was considered. Figure 11 shows all the 12
punch force histories where the punch displacements
are less than 10 mm.
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Notice that, in Region A, distinguishing differences exist
among various thickness and no significant qualitative
differences exist among the same sheet thickness.
However discrepancies are evident in region B.  Data
corresponding to displacements from 1.5 mm up to 3
mm were neglected because they were referred to a
transition zone between region A and region B.
Furthermore, as it will be explained later in this paper,
the curve parameters are to be estimated before the end
of the forming process. Consequently, the upper limit of
region B results from the trade-off of having enough data
for a good curve fitting and of being sufficiently lower
than the total punch stroke so that real-time control can
be executed.  From figures 10, it is evident that
qualitative differences between the curves are also
present for displacement greater than 10 mm. However,
as it will be demonstrated later, the data prior to 10mm is
sufficient for the neural network control system.

PREDICTIONS OF THE NEURAL NETWORK

An artificial neural network model was developed for the
springback minimization in the channel stamping
process investigated in this paper. The network is
constituted of one input layer, one hidden layer and two
output units; no neurons are present in the input layer
and each hidden unit receives all the input signals. The
net was trained by initially selecting small random
weights and internal offsets and then presenting all
training data repeatedly. Weights were adjusted after
every trial by the backpropagation algorithm outlined in
section 2 until the MSE was reduced to an acceptable
small value. Each input pattern was formed by the
mechanical behaviour parameters obtained by the curve
fitting analysis described earlier. Since all the curves
pass through the origin in Fig.11, a polynomial
coefficient carried out by the regression analysis of the
portion of the curves in region A is always equal to zero.
Therefore it was not included in the teaching set and 8
parameters (4 for region A and 4 for region B) were used
as input signals. The corresponding punch displacement

where binder force increases and the level of the high
binder force constituted the output patterns.

        There are many numbers of network architectures
that could be tested. As a general rule, the number of
nodes must be large enough to form a map region that is
as complex as is required by a given problem. It must
not, however, be so large that the many weights required
can not be reliably estimated from the available training
data. Furthermore, a trained net is of little utility unless it
is accomplished by useful generalization.

        Several feed-forward fully connected neural
networks were investigated in this work, considering
different a) topologies (number of layers, number of
nodes), b) learning parameters, c) activation functions,
and d) initial random weights. Each net was trained to
different levels and, among all, the one characterized by
the global lowest generalization error was selected; a
network with six hidden units provided the best results in
generalization. The following activation function was
implemented for the elements in the hidden and output
layers:

x-e + 1

G
 -G 2 = )( αxf   (6)

The α and G coefficients in equations (6) were varied
accordingly to the speed of convergence in learning.
Table 2 shows the learning rate η and the optimal
iteration number utilized for training the network and the
MSE value achieved at the end of the learning stage.

Iterations Learning
rate ηηηη

10
log(MSE)

100000 0.01 -75

Table 2 Learning coefficients

  After the network was trained, it was utilized to
predict the forming parameters for 9 different
combinations of sheet thickness and friction coefficient
from Table 1.  The punch was initially displaced to 10
mm (Fig. 11) in the FEM simulations. All the mechanical
behaviour parameters were then calculated by
performing a polynomial regression analysis of the force-
displacement data obtained from the numerical
simulations. Finally, the predicted parameters defining
the binder force step function were considered to restart
the FEM analysis. The results obtained in the predictive
mode are shown in Table 3.
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Thick-
ness
mm

Fric.

 coeff.

HBF

 kN

PSstep, %

tot. stroke

θ

(°)

ε11(max)

%

t=0.9  0.13 16 76 0.16 11.59
t=0.9 0.15 15 76 0.12 12.08
t=0.9 0.18 12 75 0.03 13.14
t=1.1 0.13 20 75 0.19 12.16
t=1.1 0.15 16 74 0.22 12.40
t=1.1 0.18 13 75 0.22 12.83
t=1 0.15 15 76 0.16 11.99
t=1.2 0.15 20 71 0.15 14.20

Table 3:  Neural network predictions

By comparing results shown in Tables 1 and 3, it
can be observed that the maximum springback angles
obtained using the neural network predictions is
consistently lower than the maximum allowed springback
angle (θ = 0.5°). Furthermore, it can be noticed that the
springback reduction is obtained with low probability of
failure in the formed part. In particular, the maximum
level of deformation and springback angles are even
lower than the maximum value shown in Table 1,
confirming the neural network capability of springback
minimization in presence of process uncertainties and
variations without reaching critical conditions.

EFFECT OF MATERIAL PROPERTIES ON SPRING-
BACK IN THE CHANNEL FORMING PROCESS

In real production, variations in material properties occur
frequently even in a same coil. In order to take into
account such possibilities, the neural network must be
robust with respect to the scattering of yield stress σy as
well as of the n and K coefficients on springback.

MATERIAL PROPERTIES SCATTERING: YIELD
STRESS

Two more verification run were performed considering
scattering in yield stress (±10% of the nominal YS); the
other material properties, such as elastic modulus,
Poisson ratio, strain hardening exponent and strength
coefficients, were identical to those presented earlier.
The friction coefficient and the sheet thickness were µ =
0.12 and t =0.8 mm, respectively. Again, each FEM
analysis was stopped at a punch stroke = 10 mm and
the mechanical parameters were estimated on the basis
of the punch force-displacement data. Since such
coefficients describe how the mechanical behaviour of
the workpiece is affected by “all” the process conditions,
including material properties, the previous learned neural
network was utilized to predict the optimal binder force
step function for springback reduction in presence of
yield stress variation.  The results are shown in Table 4.
Notice that extreme good results are obtained using the
same network

Thick
ness

(mm)

Fric.
Coeff.

HB
F

KN

PSstep

%Tot.
stroke

θ

(°)

ε11(max

)

(%)

σy

Mpa

K

MPa

n

0.8 0.12 17 75 0.145 11.9 126 528 0.265

0.8 0.12 21 81 0.005 10.0 154 528 0.265

Table 4 Neural network predictions in the presence of
yield stress scattering

MATERIAL PROPERTIES SCATTERING: STRENGTH
COEFFICIENT, HARDENING EXPONENT

Variations in the K and n parameters were also
evaluated. Taking advantage of the additional data
available from the previous predictions, the neural
network was trained again using the same learning
parameters utilized in the previous training process
(Table 2). 120.000 iterations were necessary to obtain
about the same final MSE value achieved previously due
to the increased number of training data. The results
provided by the FEM simulations using the predicted
HBF and PSstep values are reported in Table 5.

Thick
ness

(mm)

Fric.
Coeff.

HB
F

KN

PSstep

%Tot.
stroke

θ

(°)

ε11(max

)

(%)

σy

Mpa

K

MPa

n

0.8 0.12 18 82 0.21 8.77 140 560 0.29

0.8 0.12 16 76 0.123 10.0 140 500 0.25

Table 5 Neural network predictions in presence of n and
K scattering

In all the above cases, excellent results were obtained,
confirming once again the effectiveness of neural
networks in springback reduction with variations from
lubrication, sheet thickness and material property.

SUMMARY

A neural network control system for springback reduction
in a channel section stamping process of aluminum was
proposed in this paper.

•  Influences of variations in both sheet thickness t and
lubrication conditions µ were examined. Although a
monotonic behavior in the level of High Binder Force
(HBF) characterizing the teaching data in terms of µ
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and t individually can be observed, the punch
displacement corresponding to the increase in the
binder force scatters in a vary random manner. In
addition, the effects of µ and t are highly coupled.
This initiates the investigation of using an artificial
neural network control system for the reduction of
angular errors.

•  The punch force history is identified as the
characteristic parameter since it reflects the changes
of µ, t and material properties.  8 parameters were
used to characterize each individual punch force
behavior.

•  By selecting appropriate VBF histories for the
teaching data, the learned neural network was able
to predict an optimal binder force trajectory for
springback minimization without reaching failure
conditions in the formed part. Once the best net
morphology was individuated, the learning process
was performed very easily and quickly.

•  Variation in material properties was considered for a
given sheet thickness and friction condition. The
relationship between springback and such variations
was modeled very well by the neural network,
confirming the capability of the proposed approach
of dealing with all the process conditions
uncertainties considered in this paper.

Although FEM simulations of the stamping process were
used, the method can be utilized in real production as
well. After the network is learned, the mechanical
behavior parameters can be determined in “real time”
while the process is going on, so neural network
predictions will be available before the end of the
process. Furthermore, once sufficient data for the initial
teaching set are developed, the data base can be
updated with new results to improve the net springback
modeling capability under process variations.
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