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Abstract

We consider finite-order moving average and nonlinear autoregressive processes with no parametric assumption
on the error distribution, and present a kernel density estimator of a bootstrap series that estimates their marginal
densities root-n consistently. This is equal to the rate of the best known convolution estimators, and faster than
the standard kernel density estimator. We also conduct simulations to check the finite sample properties of our
estimator, and the results are generally better than corresponding results for the standard kernel density estimator.

Keywords: Kernel function; convolution estimator; nonparametric density estimation; moving-average process;
nonlinear autoregressive process.

1 Introduction

A common statistical problem involves estimating an unknown density function f(x) given a limited number of
observations X1, X2, . . . , Xn independently drawn from that density. The standard approach today, first suggested
by Rosenblatt (1956) and Parzen (1962), is to use a kernel density estimator

f(x) =
1
nhn

n∑
i=1

K

(
x−Xi

h

)
, (1)

where K is a nonnegative kernel function and hn is a bandwidth. With optimal bandwidth determination, this
estimator typically has a n−2/5 rate of convergence.

Often, e.g. in a time-series setting, independence does not hold. Roussas (1969) and Rosenblatt (1970) were
among the first to study the behavior of the kernel estimator under dependence; many later references can be found
in Györfi et al. (198) chapter 4 and Fan & Yao (2003) chapter 5.

Recently, methods have been developed to exploit information about the form of dependence to improve density
estimates. Saavedra & Cao (1999) introduced a convolution-kernel estimator for the marginal density of a moving
average process of order 1 (Zt = at−θat−1 with unknown θ), which they proved to have a n−1/2 rate of convergence—
surprisingly superior to what is achievable in the independent case. Müller et al. (2005) introduced a similar estimator
for the innovation density in nonlinear parametric autoregressive models, Schick & Wefelmeyer (2007) (SW, for short)
proved root-n consistency of the convolution density estimator for weakly dependent invertible linear processes, and
Støve and Tjøstheim (2007) (ST, for short) proved root-n consistency of a convolution estimator for the density in
a nonlinear regression model.

This article is concerned with demonstrating that one can get root-n consistent estimation of the marginal
density for MA(p) and nonlinear AR(1) time series with a simple kernel density estimator of a bootstrap series, thus
bypassing the need for a convolution. Our bootstrap is the usual model-based (semiparametric) residual bootstrap
(see e.g. Efron & Tibshirani (1993) or Davison & Hinkley (1997)). Interestingly, and in contrast to some recent work
involving bootstraps with smaller resample sizes (e.g. Bretagnolle (1983), Swanepoel (1986), Politis (1993), Datta
(1995), Bickel (1997), Politis (1999)), our proposed bootstrap has resample size larger than n by orders of magnitude.
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The estimator is presented in section 2, and its root-n consistency is first proved in the MA(1) case and then
extended to MA(p). An application of the estimator to the nonlinear AR(1) case is presented and analyzed in section
3; simulation results are described in section 4, and a short conclusion is stated in section 5. Appendix A contains
all technical assumptions; all proofs are in Appendix B.

2 MA(p) Density Estimation

2.1 MA(1)

Consider a stationary linear process with MA(1) representation

Xt = εt + aεt−1, t ∈ Z, a 6= 0, |a| < 1, εt iid with density f . (2)

The density f is assumed to satisfy smoothness conditions to be specified later.
Our objective is to estimate the stationary density h of the Xt’s as accurately as possible. A first step toward this

is a good estimate â of a. The usual choice is the least squares (LS) estimate regressing X2, . . . , Xn on X1, . . . , Xn−1,
which minimizes

∑n
j=2(

∑j−1
k=0(−â)kXj−k)2; this is adequate for our purposes.

To execute the residual bootstrap that is based on the MA model, it is necessary to use â to estimate the
sequence of residuals, use the estimated sequence to estimate the underlying residual density, and finally, use the
density estimate to construct bootstrap replications of the linear process. We address each of these steps in turn.

If we express εj in terms of a and the Xis, we get an infinite geometric sum:

εj = Xj − aεj−1

= Xj − aXj−1 + a2εj−2

= . . .

=
∞∑
k=0

(−a)kXj−k

Thus it is necessary to choose a sequence of cutoff values pn indicating the number of Xi terms we will use in
extracting residuals. We use pn := min(1, b(log n)(log logn)c). Then our residual estimates are

ε̂n,j = Xj +
pn∑
k=1

(−ân)kXj−k,

Next, apply a kernel density estimator to this sequence that utilizes the centering assumption and converges at
a o(n−1/2) rate. Müller et al.’s (2005) weighted kernel density estimator

f̂n(x) :=
1

n− pn

n∑
j=pn+1

wn,jkbn
(x− ε̂n,j),

where kbn
is a kernel, bn is a bandwidth, and wn,j := 1

1+λε̂j
are the weights, suffices for this purpose. We’ll use a

bandwidth proportional to n−1/4.
Then, construct a bootstrap residual sequence ε∗j for 1− pn ≤ j ≤ N(n) using iid sampling from density f̂n; here

the replication length N(n) satisfies n5/2/N(n) = o(1)—see the subsection “Determination of necessary bootstrap
length” in Appendix B. Finally, calculate bootstrap pseudo-data X∗j = ε∗j + ânε

∗
j−1 for j = 1, . . . , N(n), and estimate

h with

ĥ∗n :=
1
N

N∑
j=1

KdN
(x−X∗j ) (3)

where {dn} is a second sequence of bandwidths, and K is another kernel function. We’ll use dn proportional to
n−1/5.

Our main result is the following:
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Theorem 2.1. Given an MA(1) process of form (2), let ĥ∗n be as defined above, dn := Dn−1/5 for some constant
D, N satisfy n5/2/N = o(1), and all the conditions in Section 6.1 hold. Then ĥ∗n = h+OP (n−1/2).

Note that the notation ĥ∗n = h+OP (n−1/2) is short-hand for ĥ∗n(x) = h(x) +OP (n−1/2), uniformly in x.

2.2 Extending to MA(p)

Now consider the process

Xt = εt +
p∑
j=1

ajεt−j , ap 6= 0, εt iid with density f , (4)

where the aj ’s are such that 1 +
∑p
j=1 ajz

j has no roots on the complex unit disk, and f satisfies (SW-F). Since
the process is invertible, the least squares estimators â1,n, . . . , âp,n of a1, . . . , ap are root-n consistent and satisfy
(SW-R) with pn = min(b| log|b| nc|+ 1, bn2 c), where b is the root of 1 +

∑p
j=1 ajz

j with magnitude closest to 1. Next,
calculate the residuals ε̂n,j = Xj−

∑pn

s=1 %̂sXj−s, where 1−
∑∞
s=1 %̂sz

s = 1
1+

P∞
s=pn

âszs . Compute the weighted kernel
estimator

f̂n(x) :=
1

n− pn

n∑
j=pn+1

wn,jkbn(x− ε̂j).

where wn,j satisfies (MSW-W), k satisfies (SW-K), and bn satisfies (SW-Q) for some ζ satisfying (SW-B). Construct
a bootstrap replication ε∗j of the residuals (iid f̂n) for 1 − pn ≤ j ≤ N , and calculate X∗j = ε∗j +

∑pn

s=1 âs,nε
∗
j−s.

Finally, estimate h with ĥ∗n(x) := 1
N

∑n
j=1Kdn

(x−X∗j ) where K satisfies (ST-K).
Then we have the following result:

Theorem 2.2. Given a MA(p) process of form (4), let ĥ∗n be as defined above, dn := Dn−1/5 for some constant D,
N satisfy n5/2/N = o(1), and all the conditions in Section 6.1 hold. Then ĥ∗n = h+OP (n1/2).

3 Nonlinear AR(1)

Next, consider a stationary and geometrically ergodic nonlinear process with representation

Xi+1 = g(Xi) + ei, ei iid with density f , (5)

where f has mean zero and g is differentiable and invertible. Note that the differentiability condition excludes some
common nonlinear AR(1) models, such as SETAR.

For clarity of exposition, we will assume S.1 and S.2 in Appendix A are satisfied; this is slightly stronger than
stationary and geometrically ergodic.

As before, let h be the stationary density of the Xi’s. Since Xi has the same distribution as g(Xi) + ei, following
Stove (2008) we have

h(x) =
∫
f(x− g(u))h(u) du = E[f(x− g(X))].

In light of this, construct an estimator

h̃n(x) = Ê[f̂n(x− g̃n(X))] (6)

where f̂n is a weighted kernel estimator of the density of the ei’s, g̃n is a root-n consistent estimator of g (such as a
parametric least squares estimator), and Ê represents an average taken over the observed Xis. (Note that a root-n
consistent estimator of g may not always exist.)

More precisely, estimate ẽn,i = Xi − g̃n(Xi−1) for 2 ≤ i ≤ n. Then, for some kernel k satisfying (SW-K)
and infx∈C k(x) > 0 for all compact sets C, and a sequence of bandwidths bn satisfying (SW-B), set f̂n(x) =

1
n−1

∑n
j=2 wn,jkbn(x − ẽn,j) where wn,j satisfies (MSW-W) with ε̂ replaced with ẽ. Plugging that into (6) yields

h̃n(x) = 1
n(n−1)

∑n
i=1

∑n
j=2 wn,jkbn

(x− g̃n(Xi)− ẽn,j).
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Preliminary results by Støve and Tjøstheim (2008) suggest that h̃un is a root-n consistent estimator of h, i.e.

h̃un = h+OP (n−1/2). (7)

Since h̃n performs no worse than h̃un, (7) implies

h̃n = h+OP (n−1/2).

Now we propose a bootstrap kernel estimator of h that is root-n consistent given (7).
Construct a bootstrap replication e∗j,n of the residuals using f̂n for −mn ≤ j ≤ N(n) where mn := d(log n)2e

and N(n) is to be determined later. Let X∗−mn−1,n be randomly drawn from the observed Xi’s, and compute
X∗j,n := g̃n(Xj−1,n) + e∗j,n for −mn ≤ j ≤ N(n). Our estimator of h is

ĥ∗n :=
1
N

N∑
j=1

KdN
(x−X∗j,n)

where K and dN are still defined as in the first section.
Then we have the following result:

Theorem 3.1. Given a nonlinear AR(1) process of form (5), let ĥ∗n and h̃n be as defined above, dn := Dn−1/5

for some constant D, N satisfy n5/2/N = o(1), and all the conditions in Section 6.2 hold. If (7) is true, then
ĥ∗n = h+OP (n−1/2).

3.1 Application: AR(1) Density Estimation

Assume a stationary linear process with AR(1) representation

Xt = aXt−1 + εt, t ∈ Z, a 6= 0, |a| < 1, εt ∼ f∀t,

where f has mean zero and infx∈C f(x) > 0 for all compact sets C. As usual, let h be the true density of the Xt’s.
Compute the least squares estimator of a (i.e. minimize

∑n
j=2(Xj − aXj−1)2); this estimator, which we’ll denote

as ân, is root-n consistent. Then estimate ẽn,t = Xt − ânXt−1 for 2 ≤ t ≤ n, and finish the calculation of h̃n as with
a nonlinear AR(1) process. If (7) is true for the general nonlinear case, it’s true for this h̃n.

We now propose a bootstrap kernel estimation procedure that’s root-n consistent given (7). Draw an iid sample
ε∗j,n from the density f̂n for −mn ≤ j ≤ N(n) where mn = d(log n)2e and N(n) ∼ n5/2+ε. Let X∗−mn−1,n be randomly
drawn from the observed Xi’s, and compute X∗j,n := âXj−1,n + ε∗j,n for −mn ≤ j ≤ N(n). Estimate h with

ĥ∗n :=
1
N

N∑
j=1

KdN
(x−X∗j,n)

where K and dN are defined as in the first section.
Root-n consistency of this estimator, given (7), is shown by Theorem 3.1.

3.2 Application: Nonlinear Parametric AR(1) Density Estimation

Now assume a stationary and geometrically ergodic nonlinear process

Xi+1 = gϕ(Xi) + ei

just like the general nonlinear AR(1) case, except that g is known up to a q-dimensional parameter ϕ, and this
provides a framework for estimating g root-n consistently. For instance, we can have a root-n consistent estimator
ϕ̂ of ϕ, and have the parametrization of g obey the following condition from Muller (2005):

The function τ 7→ gτ (x) is differentiable for all x with derivative τ 7→ ġτ (x), and for each constant C,

sup
|τ−ϕ|≤Cn−1/2

n∑
i=1

(gτ (Xi)− gϕ(Xi)− ġϕ(Xi)(τ − ϕ))2 = oP (1).
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Also, E[|ġϕ(X)|5/2] <∞.

Then (given (7)) a root-n consistent estimator of h can be constructed as follows:
Estimate ẽn,t = Xt − gϕ̂(Xt−1) for 2 ≤ t ≤ n, and finish the calculation of h̃n as with a nonlinear AR(1)

process. Draw an iid sample ε∗j,n from the density f̂n for −mn ≤ j ≤ N(n) where, as before, mn = d(log n)2e and
N(n) ∼ n5/2+ε. Let X∗−mn−1,n be randomly drawn from the observed Xi’s, and compute X∗j,n := âXj−1,n + ε∗j,n for
−mn ≤ j ≤ N(n). Estimate h with

ĥ∗n :=
1
N

N∑
j=1

KdN
(x−X∗j,n)

where K and dN are defined as in the first section.

4 Simulation study

To evaluate our proposed estimator on finite samples, we compare its (numerically estimated) mean integrated
squared error (MISE) to that of the classical kernel estimator (1).

For each entry in the following tables, 200 simulated realizations with fixed sample size (usually n = 100 or
n = 400) of the process {Xt} were generated, and then a bootstrap replication of length n5/2 was generated off each
sample. The first 200 elements of these replications were discarded. (Note that the computation of a single long
bootstrap replication of length ≥ 1000n is as computer intensive as the usual procedure of generating 1000 or more
length-n replications and averaging the results; but using a single replication is slightly advantageous because the
initial “break-in” period doesn’t have to be repeated. In the n = 100 case, n5/2 is precisely 1000n, while n5/2 = 8000n
when n = 400.)

The estimated MISEs (denoted by ˆMISE) of our proposed estimator and the classical kernel estimator were
computed by averaging the results of numerically integrating the square of the difference between the density estimates
and the true marginal density.

Gaussian kernels were used. Bandwidth selection was left to R 2.9’s default behavior, namely 0.9 min(stdev, IQR
1.34 )n−1/5.

The AR(1) model Xt = φXt−1 + et was investigated first, with the following choices of densities for et:
Gaussian: N(0, 1)
Skewed unimodal: 1

5N(0, 1) + 1
5N( 1

2 ,
2
3 ) + 3

5N( 4
5 ,

5
9 )

Kurtotic unimodal: 2
3N(0, 1) + 1

3N(0, 1
10 )

Separated bimodal: 1
2N(− 3

2 ,
1
2 ) + 1

2N( 3
2 ,

1
2 )
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Density Coef. Sample size Bootstrap ˆMISE Standard kernel ˆMISE SE of difference % advantage

Gaussian

0.8
100 .00286 .01256 .01084 77
400 .00075 .00440 .00397 83

0.5
100 .00272 .00859 .00626 68
400 .00072 .00247 .00130 71

0.2
100 .00423 .00695 .00383 39
400 .00132 .00219 .00102 39

-0.2
100 .00407 .00604 .00255 32
400 .00134 .00203 .00080 34

Skewed unimodal

0.8
100 .00481 .01867 .01623 74
400 .00166 .00553 .00432 70

0.5
100 .00502 .01347 .01017 63
400 .00157 .00390 .00199 60

0.2
100 .00698 .01000 .00592 30
400 .00222 .00359 .00166 38

-0.2
100 .00680 .00897 .00465 24
400 .00251 .00338 .00144 26

Kurtotic unimodal

0.8
100 .00338 .01414 .01082 76
400 .00078 .00414 .00360 83

0.5
100 .00302 .00880 .00628 66
400 .00078 .00305 .00186 74

0.2
100 .00518 .00825 .00441 37
400 .00195 .00289 .00121 32

-0.2
100 .00562 .00743 .00303 24
400 .00192 .00262 .00102 27

Separated bimodal

0.8
100 .00135 .00712 .00698 81
400 .00035 .00204 .00178 83

0.5
100 .00242 .00544 .00441 56
400 .00101 .00173 .00086 41

0.2
100 .02702 .02047 .00880 -32
400 .01059 .00876 .00395 -21

-0.2
100 .02759 .01989 .00868 -39
400 .01104 .00866 .00453 -28

Table 1: AR(1) simulation results.

It’s easily seen from Table 1 that our bootstrap estimator almost always yields better results, though the im-
provement is smaller when the AR coefficient is low (unsurprising since our theoretical results show the bootstrap
estimator would yield no improvement in the a = 0 case), and in the separated bimodal subcase the bootstrap
estimator exhibits worse performance than the classical kernel estimator. However, even there the superior asymp-
totic performance of the bootstrap is in evidence, as a 32% to 39% MISE disadvantage when n = 100 declines to a
roughly 25% disadvantage when n increases to 400; and larger sample sizes are slightly associated with better relative
performance of our estimator across the board.

Next, we looked at the MA(1) model Xt = et + aet−1, with the same mix of densities.
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Density Coef. Sample size Bootstrap ˆMISE Standard kernel ˆMISE SE of difference % advantage

Gaussian

0.8
100 .00504 .00632 .00600 20
400 .00112 .00222 .00103 49

0.5
100 .00462 .00689 .00320 33
400 .00137 .00241 .00105 43

0.2
100 .00600 .00670 .00241 11
400 .00199 .00245 .00075 19

-0.2
100 .00477 .00575 .00230 17
400 .00174 .00213 .00063 18

Skewed unimodal

0.8
100 .00856 .01045 .00758 18
400 .00327 .00464 .00192 29

0.5
100 .00772 .01024 .00484 25
400 .00256 .00395 .00182 17

0.2
100 .00899 .01002 .00389 10
400 .00315 .00367 .00127 14

-0.2
100 .00814 .00900 .00436 9
400 .00257 .00311 .00100 17

Kurtotic unimodal

0.8
100 .02130 .02106 .00975 -1
400 .00807 .01140 .00336 29

0.5
100 .01873 .02268 .00933 17
400 .00792 .01190 .00325 33

0.2
100 .03822 .03645 .01388 -5
400 .01373 .01614 .00520 15

-0.2
100 .03407 .03244 .01490 -5
400 .01385 .01500 .00631 8

Separated bimodal

0.8
100 .02141 .01560 .00523 -37
400 .00980 .00789 .00189 -24

0.5
100 .00706 .00726 .00207 3
400 .00354 .00336 .00103 -5

0.2
100 .02554 .02038 .00820 -25
400 .01075 .00921 .00471 -17

-0.2
100 .02659 .01990 .00946 -34
400 .01068 .00884 .00481 -21

Table 2: MA(1) simulation results.

Table 2 exhibits most of the same patterns seen in Table 1. Our estimator outperforms the standard kernel density
estimator for all error densities except the separated bimodal, though, as expected, the performance advantage is
smaller for low MA(1) coefficients. Larger sample sizes are associated with superior relative performance.

Our third simulation generated data from the MA(3) process Xt = et + a1et−1 + a2et−2 + a3et−3.

Density Coefs. Sample size Bootstrap ˆMISE Std. kernel ˆMISE SE of difference % advantage

Gaussian
1, 0, -0.5

100 .00237 .00554 .00325 57
400 .00064 .00166 .00087 61

0.6, 0.3, 0.1
100 .00528 .00757 .00345 30
400 .00157 .00272 .00115 42

Skewed unimodal
1, 0, -0.5

100 .00437 .00789 .00421 45
400 .00210 .00372 .00175 44

0.6, 0.3, 0.1
100 .00869 .01271 .00571 32
400 .00320 .00466 .00193 31

Kurtotic unimodal
1, 0, -0.5

100 .00519 .00779 .00439 33
400 .00154 .00323 .00140 52

0.6, 0.3, 0.1
100 .01194 .01543 .00866 23
400 .00319 .00508 .00243 37

Separated bimodal
1, 0, -0.5

100 .00212 .00342 .00162 38
400 .00083 .00119 .00062 30

0.6, 0.3, 0.1
100 .00418 .00469 .00145 11
400 .00150 .00172 .00064 13
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Table 3: MA(3) simulation results. The MA coefficients are from lowest to highest order.

From Table 3, we can observe that a more complex known dependence structure leads to consistently better
relative performance of our estimator even on moderately sized samples.

Finally, we simulated nonlinear AR(1) data from the process Xt = φ tan−1Xt−1 + et.

Density Coef. Sample Bootstrap ˆMISE Std. kernel ˆMISE SE of difference % advantage

Gaussian

1
36 .14843 .15623 .01682 5
100 .14344 .14591 .00865 2
400 .14290 .14302 .00399 0

0.5
36 .00844 .01851 .01254 54
100 .00375 .00782 .00522 48
400 .00141 .00284 .00130 50

-0.2
36 .00796 .01272 .00783 37
100 .00421 .00594 .00246 29
400 .00151 .00218 .00077 31

-0.8
36 .01584 .02057 .00914 23
100 .01557 .01798 .00518 13
400 .01679 .01731 .00240 3

Skewed unimodal

1
36 .21769 .22613 .02888 4
100 .20533 .20829 .01607 1
400 .19800 .19827 .00694 0

0.5
36 .01306 .02533 .01940 48
100 .00463 .00996 .00639 53
400 .00200 .00419 .00255 52

-0.2
36 .01645 .02134 .01067 23
100 .00675 .00824 .00335 18
400 .00230 .00300 .00124 23

-0.8
36 .02332 .02827 .01543 18
100 .01889 .02216 .00900 15
400 .01972 .02082 .00400 5

Kurtotic unimodal

1
36 .15627 .16352 .01981 4
100 .14788 .15114 .00951 2
400 .14799 .14773 .00419 0

0.5
36 .00891 .01828 .01273 51
100 .00324 .00788 .00510 59
400 .00161 .00311 .00157 48

-0.2
36 .01104 .01582 .01076 30
100 .00530 .00652 .00256 19
400 .00193 .00239 .00080 19

-0.8
36 .01899 .02219 .00885 14
100 .01696 .01846 .00539 8
400 .01736 .01787 .00264 3

Separated bimodal

1
36 .07139 .07211 .00389 1
100 .07154 .07089 .00209 -1
400 .07309 .07210 .00102 -1

0.5
36 .00788 .01126 .00476 30
100 .00968 .00990 .00472 1
400 .01540 .01407 .00537 -9

-0.2
36 .04551 .02861 .01399 -59
100 .02152 .01424 .00837 -51
400 .00586 .00411 .00239 -42

-0.8
36 .01364 .01482 .00404 8
100 .01500 .01454 .00350 -3
400 .01584 .01531 .00245 -3

Table 4: Nonlinear AR(1) simulation results.
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From Table 4, we can see that, with the exception of the separated bimodal φ = −0.2 case, our estimator
continued to outperform (or match, in the nearly nonstationary φ = 1 case) the standard kernel density estimator.
It appears that multimodality of the error distribution genuinely lowers effectiveness in the nonlinear AR case as
also noted by Støve and Tjøstheim (2008) in the non-bootstrap implementation of the convolution estimator.

However, there was one unexpected pattern: larger sample sizes were no longer associated with better relative
performance, and this phenomenon was not due to errors in estimating φ. Our limited simulation data does not
appear to exhibit a root-n convergence rate. Since our theoretical root-n convergence result is dependent on the
validity of eq. (7) as conjectured by Støve and Tjøstheim (2008), one possibility is that the conjecture is false. Further
investigation of this case is in order.

5 Conclusions

A bootstrap-based kernel density estimator was presented, and proved to estimate the marginal density of certain
finite-order moving average processes and order 1 autoregressive processes root-n consistently. This matches the
asymptotic performance of the best known convolution estimators, and is a significant improvement over the n−2/5

rate of the usual kernel density estimator.
Simulations indicate that a sample size of 100 is sufficient to realize this performance advantage in most cases,

though the advantage is greater across the board given a sample size of 400 (confirming our asymptotic analysis).
Small dependence coefficients lower the effectiveness of our estimator, as would be expected from considering the
independent case where no improvement is possible. Multimodality of the error distribution also lowers effectiveness,
as also noted by Støve and Tjøstheim (2008). When these factors are present, simulation results indicate that our
estimator still does not perform much worse than the standard kernel density estimator, but it is unlikely to provide
a significant advantage, either.

Our estimator also tends to outperform the usual kernel density estimator for nonlinear autoregressions. However,
the picture there is less complete as our simulation does not appear to exhibit a root-n rate, and our theoretical
result predicting that convergence rate is dependent on a conjecture.

6 Appendix A: Technical conditions

6.1 MA(1), MA(p)

Conditions on estimation of â and initial extraction of residuals:

(SW-R) pn is a sequence of positive integers where pn

n → 0 and npnc2pn → 0 for all c ∈ (−1, 1). If {Xt} is instead
expressed as an autoregression, viz. εt = Xt −

∑∞
s=1 %sXt−s, the estimators %̂i,n = −(−ân)i of the autoregression

coefficients %i = −(−a)i satisfy

pn∑
i=1

(%̂i,n − %̂i)2 = Op(qnn−1)

Conditions on the weighted kernel density estimator:

(MSW-W) wn,j := 1
1+λε̂j

for a choice of λ satisfying
∑n
j=pn+1 wn,j ε̂n,j = 0,

(SW-K) k ≥ 0 integrates to one, and has bounded, continuous, and integrable derivatives up to order two
satisfying

∫
tik(t) dt = 0 for i = 1, 2 and

∫
|t|4|k(t)| dt <∞,

(SW-Q)
∑
s>pn

|as| = O(n−1/2−ζ) for some ζ > 0.
(SW-B) The sequences bn, pn and qn and the exponent ζ satisfy pnqnb−1

n × n−1/2 → 0, nb4n = O(1), n1/4sn → 0
and n1/2bnsn = O(1), where sn = b

−1/2
n n−1/2 + pnqnb

−5/2
n n−1 + b

−3/2
n n−ζ−1/2.

Conditions on the kernel used in constructing the final marginal density estimate:
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(ST-K)K ≥ 0 is bounded, two times differentiable, symmetric, integrates to one,
∫
K ′(z) dz = 0, and

∫
z2K ′(z) dz =

0.

Conditions required to use results in Schick & Wefelmeyer (2007) in the proof of the MA(1) convergence result:

(SW-C) If Xt is expressed as εt +
∑∞
s=1 ϕsεt−s, at least one of the moving average coefficients ϕs is nonzero.

(SW-I) The function φ(z) = 1 +
∑∞
s=1 ϕsz

s is bounded, and bounded away from zero, on the complex unit disk.
(SW-S)

∑∞
s=1 s|ϕs| <∞.

6.2 Nonlinear AR(1)

Pair of sufficient conditions for stationarity and geometric ergodicity (Franke (2002a)):

S.1. infx∈C f(x) > 0 for all compact sets C.
S.2. g is bounded on compact sets and lim sup|x|→∞

E[|g(x)+e1|]
|x| < 1.

Franke et al.’s (2002b) geometric ergodicity theorem and conditions (used in the final proof):

F.1. There exists a compact set K such that
(i) there exist ρ > 1 and ε > 0 with

E[|Xt||Xt−1 = x] ≤ ρ−1|x| − ε ∀x 6∈ K

(ii) there exists A <∞ with

sup
x∈K
{E[|Xt||Xt−1 = x]} ≤ A.

F.2. K is a small set, i.e. there exist n0 ∈ N, γ > 0 and a probability measure φ such that

inf
x∈K
{Pn0(x,B)} ≥ γφ(B)

holds for all measurable sets B. Pn(x, ·) denotes the n-step transition probability of the Markov chain started in x.
F.3. There exists κ > 0 such that

inf
x∈K
{P (x,K)} ≥ κ.

Theorem 6.1. (Franke et al. (2002b)) Given F.1, F.2, and F.3, {Xt} is geometrically ergodic with convergence rate
ρµ only dependent on K, ρ, ε, A, n0, γ, and κ.

This is used to establish the existence of a single geometric bound in the proof of Theorem 3.1.

7 Appendix B: Proofs

7.1 Determination of necessary bootstrap length

The bootstrap length N(n) must be chosen such that the pdf ĥ∗n is within Cn−1/2 of

ĥn := f̂n ∗ f̂n,ân
(8)

everywhere with probability converging to 1. I.e., P ∗(supx |ĥ∗n(x) − ĥn(x)| > Cn−1/2) → 0 as n → ∞, where C is
some constant, f̂n,c(x) := c−1f̂n(x/c), and ∗ indicates convolution. The following lemma tells us how to do this.
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Lemma 7.1. If ĥ∗n is as defined in (3), ĥn is as defined in (8), and dn := Dn−1/5 for some constant D, choosing
N(n) such that n5/2/N(n) = o(1) guarantees P ∗(supx |ĥ∗n(x)− ĥn(x)| > Cn−1/2)→ 0 as n→∞.

Proof. ĥ∗n is a convergent kernel density estimator of ĥn with mean integrated squared error (MISE) of order N−4/5

over bootstrap resamples (see e.g. Jones (1995) pg. 22–23). Thus, the L2 distance between ĥ∗n and ĥn in a bootstrap
resample will, for any fixed probability p < 1, be less than a constant multiple of N−4/5

1−p with probability p. Also,

the first derivative of ĥ∗n is bounded above by a constant multiple of N1/5, because the maximal first derivative of
KdN

is of order d−1
N , and similarly, the first derivative of ĥn is bounded above by a constant multiple of b−1

n . So
the first derivative of |ĥ∗n − ĥn| is bounded above by a constant multiple of max(d−1

N , b−1
n ); for n5/2/N = o(1) and

b−1
n = O(n1/4), d−1

N is asymptotically larger.
Note that, if one is trying to maximize the L∞ norm of a function with fixed L2 norm and bounded first derivative,

a triangular spike with sides of maximal slope is optimal. To see this, assume toward a contradiction that there
exists a function g with identical L2 norm but greater L∞ norm γ′, and denote the L∞ norm of the triangular spike
by γ. Then, there must exist some x for which |g(x)| = γ+γ′

2 . Let the function j be the triangular spike centered at
x. |g(x)| > |j(x)|, and |g| cannot descend faster than |j| on either side of x since first derivatives are bounded and
|j| is defined to attain the extremal values. Thus, |g| ≥ |j| everywhere and g must have a larger L2 norm than j.

We can now use calculus to compute an upper bound on maxx |ĥ∗n(x)− ĥn(x)| as a function of N .

N−4/5 = 2
∫ HN−1/5

0

(N1/5x)2 dx

=
2
3
N2/5(HN−1/5)3

=
2
3
H3N−1/5

3
2
N−3/5 = H3

H = O(N−1/5)

So choosing N such that n5/2/N = o(1) guarantees maxx |ĥ∗n(x)− ĥn(x)| ≤ H = o(n−1/2) for dn = Dn−1/5 with
probability converging to 1.

7.2 Proof of Theorem 2.1

Proof. First, we verify that conditions (SW-C), (SW-S), and (SW-I) are satisfied. a 6= 0 ensures (SW-C) is met.
(SW-S) is automatic since there’s only one moving average coefficient. |a| < 1 guarantees (SW-I).

Next, Lemma 7.1 shows that ĥ∗n = ĥn + OP (n−1/2), so it remains to prove that ĥn = f̂n ∗ f̂n,ân
is a root-n

consistent estimator of h. Since the true density h satisfies h = f ∗ fa (where fa(x) := a−1f(x/a)), we can write
ĥn − h as:

ĥn − h = (f̂n ∗ f̂n,â − f̂n ∗ fn,â) + (f̂n ∗ fâ − f ∗ fâ) + (f ∗ fâ − f ∗ fa). (9)

Now Muller (2005) demonstrates that the weighted estimator f̂n performs no worse than the corresponding
unweighted estimator f̂un , so we can use results in SW concerning f̂un .

The second and third components of (9) are o(n−1/2) under the supremum norm (by Theorem 4 and Theorem 3
in SW, respectively; these theorems apply as long as (SW-C), (SW-I), (SW-S), (SW-F), (SW-R), (SW-K), (SW-Q),
and (SW-B) hold, all of which have been verified above). The first component can be rewritten as f̂ ∗ (f̂â − fân

),
which has supremum norm equal to â−1

n times that of f̂â−1
n
∗ (f̂ − f). This last convolution is o(n−1/2) by SW

Theorem 4.

7.3 Proof of Theorem 2.2

Proof. Lemma 7.1 shows that ĥ∗n is a root-n consistent estimator of ĥn. Since ĥn = f̂n ∗ f̂n,â1,n ∗ · · · ∗ f̂n,âp,n and
h = f ∗ fa1,n

∗ fa2,n
∗ · · · ∗ fap,n

, we have
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ĥn − h = (f̂n ∗ ĝ1,â,n − f̂n ∗ g1,â,n) + (f̂n ∗ g1,â,n − f ∗ g1,â,n) + (f ∗ g1,â,n − f ∗ g1,a) (10)

where we define gk,a := fak
∗ fak+1 ∗ · · · ∗ fap , gk,â,n := fâk,n

∗ fâk+1,n
∗ · · · ∗ fâp,n , and ĝk,â,n := f̂n,âk,n

∗ f̂n,âk+1,n
∗

· · · ∗ f̂n,âp,n .
Note that (SW-C) and (SW-S) are satisfied by any nondegenerate MA(p) process, and the statement of (4)

ensures (SW-I). Also, as before, we need not concern ourselves with the difference between f̂n and f̂un . Thus, as in
the MA(1) case, the second and third components of (10) are shown by SW to be o(n−1/2). The first component
can be rewritten as (f̂ ∗ (ĝ1,â,n − g1,â,n)), which has supremum norm bounded above by that of ĝ1,â,n − g1,â,n since
||f̂ ||1 = 1. We can rewrite this upper bound as

ĝ1,â,n − g1,â,n = (f̂n,â1,n
∗ ĝ2,â,n − f̂n,â1,n

∗ g2,â,n) + (f̂n,â1,n
∗ g2,â,n − fn,â1,n

∗ g2,â,n);

the second term is o(n−1/2) again, and the first term can be bounded and recursively expanded in the same manner.
In the end, we have p separate terms, all o(n−1/2).

7.4 Proof of Theorem 3.1

Proof. Define ĥ−mn,n(x) to be the density function of X∗−mn,n, ĥk,n(x) :=
∫
f̂n(x− g̃n(u))ĥk−1,n(u) du for k > −mn

(i.e. the density function of X∗k,n), and ĥ∞,n(x) := limk→∞ ĥk,n(x) (the existence of this limit will be proved below).
Then ĥ∗n − h̃n = (ĥ∗n − ĥ∞,n) + (ĥ∞,n − h̃n).

Because infx∈C k(x) > 0 for all compact sets C, and g̃n satisfies S.2, the process {X∗j,n} (for fixed n) is geometri-
cally ergodic and the associated autoregression has a stationary solution. Furthermore, geometric ergodicity assures
us that ĥk,n converges (as k → ∞) at a geometric rate to the density of the autoregression’s stationary solution.
Thus the latter is limk→∞ ĥk,n.

The next question is whether the rate of geometric convergence can be bounded by the same value across different
values of n.

For this, F.1, F.2, and F.3 are verified to hold when n is allowed to vary, and then Theorem 6.1 is applied. Because
of S.2, there exists c < 1 where lim sup|x|→∞

E[|g(x)+e1|]
|x| < c. It follows that E[|g̃n(Xt)||Xt−1 = x] ≤ 1+c

2 |x| − e1 for
all sufficiently large n, so F.1.i holds. Also, S.2 ensures g̃n is uniformly bounded on compact sets for sufficiently large
n, so F.1.ii also holds. F.2 and F.3 follow from S.1 and the consistency of f̂n as an estimator of f .

Therefore, since logn
mn
→ 0, and ||ĥ−mn,n − ĥ∞,n||∞ = OP (1), ||ĥ1,n − ĥ∞,n|| = OP (cn) where c < 1 is a positive

constant. It follows that ĥ∗n is close to a convergent kernel density estimator of ĥ∞,n. If the X∗j,n’s were drawn from
ĥ∞,n, ĥ∗n would have mean integrated squared error of order N−4/5 as long as N only grows polynomially in n, and
by Lemma 7.1 we can choose N ∼ n5/2+ε to ensure ĥ∗n − ĥ∞,n = OP (1/

√
n). Since the actual X∗j,n’s are drawn

from distributions differing from ĥ∞,n by a geometrically small (w.r.t. n) amount, the additional bias and variance
introduced by nonstationarity is of no consequence.

Finally, since h̃n is at least as good an estimator of E[f̂n(x − g̃n(X))] as it is of E[f(x − g(X))] (two sources of
error are eliminated, and none are introduced), and the former has density ĥ∞,n, we have ĥ∞,n − h̃n = OP (n−1/2).
Since h̃n − h = OP (n−1/2) given (7), it immediately follows that ĥ∗n = h+OP (n−1/2).

8 References

P. Bickel, F. Götze, W. van Zwet, 1997. Resampling fewer than n observations: Gains, losses, and remedies for
losses, Statistica Sinica 7, pp. 1–32.

J. Bretagnolle, 1983. Lois limites du Bootstrap de certaines fonctionnelles, Ann. Inst. Henri Poincare. 19, pp.
281–296.

S. Datta, 1995. On a modified bootstrap for certain asymptotically nonnormal statistics, Stat. & Probability
Letters 24, pp. 91–98.

A. Davison, D. Hinkley, 1997. Bootstrap Methods and their Application, Cambridge University Press, Cambridge.
B. Efron, R. Tibshirani, 1993. An Introduction to the Bootstrap, Chapman & Hall, New York.
J. Fan, Q. Yao, 2003. Nonlinear Time Series: Nonparametric and Parametric Methods, Springer-Verlag, New

York.

12



J. Franke, J.-P. Kreiss, E. Mammen, 2002a. Bootstrap of kernel smoothing in nonlinear time series, Bernoulli 8,
pp. 1–37.

J. Franke, J.-P. Kreiss, E. Mammen, M. Neumann, 2002b. Properties of the Nonparametric Autoregressive
Bootstrap, J. Time Series Analysis 23, pp. 555–585.
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