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Neural prostheses translate neural activity from the brain 
into control signals for guiding prosthetic devices, such as 
computer cursors and robotic limbs, and thus offer individuals 
with disabilities greater interaction with the world. However, 
relatively low performance remains a critical barrier to 
successful clinical translation; current neural prostheses are 
considerably slower, with less accurate control, than the native 
arm. Here we present a new control algorithm, the recalibrated 
feedback intention–trained Kalman filter (ReFIT-KF) that 
incorporates assumptions about the nature of closed-loop 
neural prosthetic control. When tested in rhesus monkeys 
implanted with motor cortical electrode arrays, the ReFIT-KF 
algorithm outperformed existing neural prosthetic algorithms 
in all measured domains and halved target acquisition time. 
This control algorithm permits sustained, uninterrupted use 
for hours and generalizes to more challenging tasks without 
retraining. Using this algorithm, we demonstrate repeatable 
high performance for years after implantation in two monkeys, 
thereby increasing the clinical viability of neural prostheses.

Neural prostheses have recently shown considerable promise in proof-
of-concept animal experiments1–9 and in human clinical trials10–13 
for partially restoring motor output in paralyzed individuals. Studies 
in this field primarily focus on adapting insights and methods from 
the basic neuroscience of cortical motor control to this engineering 
context. A critical example of this is the use of motor cortex tuning 
models, which describe the relationship between single unit firing 
rates and arm-movement kinematics, to define a mapping for neural 
control of a computer cursor in a closed loop (for example, refs. 1–3). 
When such a neural prosthesis is introduced to a monkey, perform-
ance can improve over days through learning3. In addition to control-
ling computer cursors, these systems have successfully driven robotic 
end effectors4. Neural prosthesis studies have incorporated additional 
concepts from motor neuroscience, demonstrating the potential to 
augment system performance by modeling neural activity related to 

movement preparation5 and proprioceptive feedback8. Recent work 
also suggests that when the recorded neural population and control 
algorithm are held constant, neural prosthetic performance increases 
over time as a stable neural output map is formed, and multiple map-
pings, once learned, can be retained and retrieved across different 
control contexts7. Despite these new insights and additional algorithm 
advances (for example, ref. 12), system performance on simple cursor-
control tasks remains low relative to the performance of native arm 
control, presenting a critical barrier to clinical translation14.

To improve the performance of neural prostheses, we focused on a 
systems engineering approach. Building on existing methods in the 
field, we developed two key innovations that alter the modeling assump-
tions made by these algorithms and the methods by which these algo-
rithms are trained. In addition, we chose signal-conditioning methods, 
which transform recorded neural signals into control algorithm input, 
to improve system stability and performance15,16. As demonstrated in 
closed-loop neural control experiments, these methods resulted in 
high performance across multiple cursor-control tasks.

RESULTS
Performance overview
We trained monkeys to acquire targets with a cursor controlled by 
either native arm movement or neural activity. We developed an 
algorithm, ReFIT-KF, that led to substantially higher-performance 
neural prosthetic control. Figure 1 compares cursor movements for 
three different modalities: native arm control, ReFIT-KF and a veloc-
ity Kalman filter (Velocity-KF), which is state of the art for current 
neural prostheses (for example, refs. 11–13). Monkeys were required 
to move the computer cursor to a visual target and hold the cur-
sor within a demand box for 500 ms to successfully complete a trial 
and receive a liquid reward. In this center-out-and-back task, targets 
alternated between a central location and eight peripheral locations. 
During online neural control sessions, the monkey’s contralateral arm 
was not restrained and movement continued. However, the physical 
movement was not stereotyped and would often attenuate or even stop 
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during some neural control sessions while retaining performance. 
In additional control experiments, both arms of the monkey were 
restrained, and we observed little or no arm movement with similar 
neural control performance (Table 1).

The ReFIT-KF algorithm outperformed the Velocity-KF algorithm 
by several measures. First, cursor movements with ReFIT-KF control 
were straighter (Fig. 1a,b and Supplementary Fig. 1), producing less 
movement away from a straight line to the target. Cursor movements 
produced using the ReFIT-KF were qualitatively similar to native arm 
movements (Fig. 1a, Supplementary Figs. 1–2 and Supplementary 
Videos 1 and 2). Second, these movements were also completed faster. 
ReFIT-KF cursor-control performance, as measured by the time to 
successfully acquire the target (Fig. 1c,d), was 75–85% of native arm 
control performance and at least twice Velocity-KF control perform-
ance (Supplementary Modeling). In addition to lower mean time to 
target, the variance was substantially smaller, which is important as this 
signifies greater movement consistency and fewer potentially frustrat-
ing long trials. Finally, critical to achieving this lower time to target, 
ReFIT-KF–controlled cursor movements stopped better. The ability 
to stop is a critical differentiator between the three control modes. 
The Velocity-KF–controlled cursor took only modestly longer to first 
acquire the target compared to native arm and ReFIT-KF control, but 
often significantly overshot the target, requiring additional time and 
multiple passes to stably acquire and hold the target. This overshoot-
correction time dominated the overall time to successful target acquisi-
tion for Velocity-KF control and is captured by the metric ‘dial-in time’, 
which is the average time required to make the final target acquisition 
after having first reached the target (Fig. 1c–f).  
Both native arm and ReFIT-KF control 
allowed more precise stopping as compared 
to that with Velocity-KF control (Fig. 1e,f).

In all trials in eight experimental sessions 
with two monkeys, when given 4 s to acquire 
targets, ReFIT-KF achieved a success rate of 
>99%, whereas Velocity-KF had a success 
rate of 95%. We chose a task difficulty to 
achieve a high success rate for all three con-
trol modalities on the first experimental day 

(Supplementary Table 1). When we increased task difficulty, the suc-
cess rate with Velocity-KF can drop relative to the success rate with 
ReFIT-KF, and similarly ReFIT-KF success rates and performance can 
drop relative to those with native arm control (see below).

Experiments across days and years demonstrated consistent high 
performance of ReFIT-KF control (Fig. 2). Performance was stable as 
measured by throughput (Supplementary Modeling) on 280 individual 
experimental days. We collected these data over 29 months for monkey 
L and over 16 months for monkey J, spanning 0.4–4.4 years after array 
implantation. To explore the possibility that performance changed with 
time, we computed least-squares linear fits on these performance data 
for each monkey. The slopes of both regression lines are positive, sug-
gesting that performance was stable over the time period of the study 
and providing evidence consistent with the hypothesis that intracortical 
microelectrode arrays may permit years of high-performance neural 
control15 (Online Methods and Supplementary Table 2).

Generalization and robustness
We also tested additional behavioral tasks to assess generalization of 
the ReFIT-KF control algorithm. We fit the ReFIT-KF algorithm with 
center-out-and-back reaches, as before, and then tested the algorithm 
with a pinball task in which targets could appear at any location in the 
two-dimensional workspace. Monkeys were again required to move 
the cursor to the target and hold it for 500 ms to successfully complete 
a trial. Monkey L continuously acquired targets for over 90 min  
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Figure 1 Cursor control with native arm, ReFIT-KF and Velocity-KF.  
(a) Representative traces of cursor path during center-out-and-back reaches 
by monkey J. Dotted lines (not visible to the monkey) are the demand boxes for  
the eight peripheral targets and the central target, shown as translucent green 
circles. Targets alternated between the center and the peripheral in the sequence 
indicated by the numbers shown. Traces were continuous for the duration of all 
16 center-out-and-back movements, representing 15.27 s, 16.87 s and 32.23 s  
of native arm, ReFIT-KF and Velocity-KF reaching, respectively. (b) Maximum 
deviation from a straight-line path to the target on each successful trial (mean 
 s.e.m.). (c,d) Time to target for successful trials for monkeys J and L. Insets 

show the time to target (mean  s.e.m.). (e,f) Mean distance to the target as a 
function of time. Insets, mean  s.e.m. of the dial-in time, or the time required 
to finally settle on the demand box, after first acquired, to successfully hold for 
500 ms. Hold time is not included in the dial-in time. Thickened portions of 
line graphs also indicate dial-in time, beginning at the mean time of first target 
acquisition and ending at mean trial duration minus 500 ms. These data are 
from experiments (designated by monkey identifier letter, year, month and day) 
J-2010-10-27, J-2010-10-28, J-2010-10-29, J-2010-11-02, L-2010-10-27,  
L-2010-10-28, L-2010-10-29 and L-2010-11-02. Native arm control is shown 
in blue, ReFIT-KF control in orange and Velocity-KF control in green. All 
plots, except the cursor-path traces, were constructed from successful 
center-out trials from four experimental days for each monkey on which all 
three control methods were tested. They are computed from 644 native 
arm, 659 ReFIT-KF, and 619 Velocity-KF trials for monkey J and 632 native 
arm, 632 ReFIT-KF, and 545 Velocity-KF trials for monkey L.

Table 1 Performance of ReFIT-KF–based control with observation-based algorithm training

Experiment
Target center  

distance (mm)
Window  

size (mm)
Acquisition  

time (s)
Index of  

difficulty (bits)
Throughput  
(bits s−1)

Success  
rate (%)

L-2010-08-10 80 40 0.89 1.32 1.49 94
L-2010-08-11 80 40 0.89 1.32 1.48 95
L-2010-08-12 80 40 0.82 1.32 1.59 94
J-2010-08-10 80 40 0.76 1.32 1.74 97
J-2010-08-16 80 40 0.82 1.32 1.60 97
J-2010-08-17 80 40 0.76 1.32 1.73 98

Throughput values, which normalize for task difficulty, are similar to values with ReFIT-KF trials for experimental sessions 
with arm-based algorithm training (Fig. 2 and Supplementary Modeling), suggesting equivalent control performance.
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during two pinball-reaching sessions (Fig. 3), one with native arm 
control and one with the ReFIT-KF control (Supplementary Videos 3 
and 4). Given 2 s to acquire a target in each trial, both sessions had suc-
cess rates >98%. Across the whole session, the mean time to target for 
ReFIT-KF control was 72% as fast as that for native arm control (ReFIT-
KF, 710 ms  317 ms and native arm, 519 ms  196 ms; mean  s.d.). 
We observed comparable performance for monkey J (Supplementary 
Video 5). Performance with ReFIT-KF was not only high (over two-
thirds as fast as the natural arm, with comparable acquisition-time 
distributions; Fig. 3a), but was also sustained without intervention 
(Fig. 3b). Sustained performance was typical of ReFIT-KF control ses-
sions, whereas Velocity-KF control sessions with the same task param-
eters had much lower success rates (<40%), and the monkeys could not 
be motivated to acquire targets for more than 30 min.

To further test ReFIT-KF control, we trained monkey J to avoid 
visually defined obstacles that appeared in the direct path of the target 
(Fig. 4 and Supplementary Video 6; maze task17–19). The monkey 
reached from a central starting target to either a left or right periph-
eral target. In some trials, a barrier appeared along with the peripheral 
target. To successfully complete a trial, the monkey had to use the 
cursor to acquire and hold the peripheral target for 500 ms without 
hitting the barrier. This task was difficult, but the monkey success-
fully acquired and held the target in 77% of trials with his native arm 
(Fig. 4a) and on 75% of trials with ReFIT-KF control (Fig. 4b). Under 
ReFIT-KF control, mean time to target for this task was 74% as fast 
as with native arm control (ReFIT-KF, 1,253 ms  588 ms and native 

arm, 932 ms  709 ms; mean  s.d.). With Velocity-KF control, the 
monkey could not complete the task, and quickly became frustrated 
and disengaged. As in previous tasks, ReFIT-KF was fit with center-
out-and-back movements and was used without modification for the 
maze task, demonstrating generalization across behavioral contexts.

ReFIT-KF: two innovations for closed-loop neural control
We achieved the described cursor-control performance by redesign-
ing the Velocity-KF algorithm from a closed-loop control perspective 
(Supplementary Modeling). The prosthetic device constitutes a new 
physical plant with different dynamic properties than the native arm 
(Fig. 5a). The subject controls this new plant by modulating measured 
neural signals (yt), which are then decoded into a velocity (vt) by the 
control algorithm. This velocity is used to update the cursor on screen, 
which affects neural signals in subsequent time steps. This closed-loop 
control perspective suggests two design innovations that both contrib-
ute to the described performance (Supplementary Figs. 3–4). The first 
innovation is a modification of neural prosthetic model-fitting method-
ology. The second innovation is an alteration of the control algorithm.

First innovation
The first design innovation was to fit the neural prosthesis against esti-
mates of intended velocity. Previous algorithms1,3,5,10 implicitly assume 
that the subject uses the same control strategy to move the native arm 
and the prosthetic cursor. As these control strategies may be quite differ-
ent, we, in the vein of past studies2,4,6,9,12,20–22, evaluated methods that 
attempt to better capture the subject’s strategy during prosthetic control. 
Ideally, the control algorithm would be fit to the subject’s intended  
cursor velocity during closed-loop neural control. As we lack explicit 
access to the monkey’s intentions, we hypothesized that the monkey 
wished to move directly toward the target; this resembles movements 
made by the native arm and is a good strategy for acquiring rewards.

We used a two-stage optimization procedure (Fig. 5b) to fit the neural 
prosthetic model to these estimates of intended velocity during online 
neural control. In stage 1, the monkey controls the cursor using his 
arm. An initial model is fit using arm trajectories and simultaneously 
recorded neural signals. The monkey then controls the neural prosthesis 
with this initial model. In stage 2, neurally controlled cursor kinemat-
ics and neural signals are recorded and used to fit a new model with an 
estimate of intended cursor velocity. By starting with cursor velocities 
collected during the previous online control session (recorded cursor 
kinematics), these estimates are calculated for model fitting using two 
transforms. First, the velocities are rotated toward the target to generate  
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Figure 2 Performance of ReFIT-KF control across four years. Performance 
was measured by the Fitts’s law metric (Supplementary Modeling). Data 
from monkey J and monkey L are shown as 98 orange circles and 182 cyan 
squares, respectively. Each point plots the performance of the ReFIT-KF 
algorithm trained on that experimental day. The eight filled data points (four 
for each monkey) within the time period indicated in gray are calculated from 
the same data sets used to generate Figure 1. Linear regression lines for 
data for monkey J (orange) and monkey L (cyan) are shown. For all data sets 
shown, the trial success rate was >90%. Additional details for these data are 
summarized in Supplementary Table 2 and Supplementary Figure 9.

Figure 3 Performance comparison of native  
arm versus ReFIT-KF for the pinball task.  
(a) For two 20-min segments (columns), shown 
are randomly selected cursor traces from four 
consecutive target acquisitions (top; target-
demand boxes are shown as dotted lines and 
target sequence is indicated from 0 to 4). 
In normalized histograms of time to target 
for successful trials (bottom), arrows below 
the plots indicate average time. (b) Target 
acquisition rate per minute throughout the 
sessions; the sharp rate drop indicates when 
the monkey lost interest in the task. Inset, 
acquisition rate across the sessions. The native 
arm and ReFIT-KF sessions (L-2010-04-01 
and L-2010-04-12) were on two separate days, 
within 11 d of each other, when the monkey 
demonstrated a high degree of motivation. Native arm control is shown in blue and ReFIT-KF control in red. In this task, each target location was 
selected from a uniform distribution spanning the workspace.
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estimated intended velocities. Second, if the cursor is on target, the 
monkey’s best strategy is to keep the cursor still to satisfy the hold-time 
requirement. Thus, in the training set, we assumed that the monkey’s 
intention during these hold periods was to maintain the cursor position 
by commanding zero velocity. This zero-velocity assumption applied 
to the fitting of model parameters improved online performance with-
out changing the control algorithm (Supplementary Modeling and 
Supplementary Fig. 5). These estimated intentions and corresponding 
neural data were used to fit the ReFIT-KF control algorithm. Note that 
we applied the intention estimation only to training data: during online 
control the neural prosthesis has no knowledge of the task goal or place-
ment of targets (unlike, for example, in refs. 5,23,24).

The aforementioned training protocol used arm-controlled reaches 
as training data. In a paralyzed individual, it is not possible to record 
arm kinematics for this step. Instead, this training step could rely on the 
individual imagining a set of instructed movements. To test this possible 
strategy, we trained the initial algorithm based on visual-cue observa-
tion8,12, removing the requirement for arm control in step one. During 
these trials the monkey watched a computer-controlled training cursor 
that automatically moved to targets. The initial model was fit using auto-
mated training cursor trajectories and simultaneously recorded neural 
activity, without using measured arm movement (Online Methods). 
Table 1 summarizes ReFIT-KF performance for three experimental 
sessions from each monkey in which stage 1 of ReFIT-KF model train-
ing was based on observation data instead of arm movements. The 
performance, as measured by Fitts’s law25 (Supplementary Modeling), 
for these sessions was similar to that attained for the native arm con-
trol–initiated sessions described (Figs. 1 and 2).

Second innovation
The second design innovation builds on the observation that neural 
activity is correlated with both the velocity and the position of the 
cursor. Most existing neural prostheses model a relationship between 
neural activity and either velocity2,4 or position1,10. A clinical trial 
in humans has shown that neural prostheses modeling velocity have 
better performance than those modeling position11,12. However, 
if the control algorithm models only the velocity relationship, then 
position-based changes in firing will confound decoded velocities 
(Supplementary Modeling). To mitigate this effect, we explicitly mod-
eled velocity as the user’s intention and cursor position as an additional 
variable that affects neural output. This modification allows the user 
to control velocity with measured neural signals while accounting for 
the influence of cursor position. We explicitly assumed that the current 
cursor position, determined by integrating the previous velocity out-
put, is encoded in the neural activity along with the monkey’s current 
intended velocity output. Thus, the expected contribution of position 
to neural activity is removed, enabling more accurate estimation of 
intended velocity (Fig. 1 and Supplementary Modeling).

DISCUSSION
Other studies have noted the potential change in plant-and-control 
strategy and have addressed it by iteratively refining parameters dur-
ing experiments with neural prosthetics2,4,6,9,12,20,21. This approach 
recognizes that control strategies, and therefore model parameters, are 
best measured and understood during closed-loop neural prosthetic 
experiments. However, randomizing initial parameters2,4,21 may cre-
ate a control algorithm that never attains the best possible perform-
ance, just as optimization problems can easily become trapped in 
local optima (Supplementary Modeling). Although, if the recorded 
neural population and the neural control mapping are held constant, 
the consequences of the plant mismatch can be overcome through 
learning. Such learning has been demonstrated with neural control 
mappings built to reconstruct arm kinematics, as well as with a neural 
control mapping in which neuron identities have been shuffled, so the 
decoder output was no longer predictive of native arm kinematics7.

The focus of our study was to obtain high control performance in a 
single session by improving the neural control algorithm and optimizing  
its parameters. Although the neural prosthesis constitutes a new plant 
with different properties than the native arm, the motor cortices are 
involved in native arm control (for example, ref. 26). Therefore, we 
hypothesized that initializing a model with the relationship between neu-
ral activity and natural arm movement would allow the second stage of 
our training method to achieve greater optimization. Previous studies4,21 
have relied on manipulating the control task to refine the neural decoder, 
such as by providing assisted control. In those studies, an automated 
correct answer had been mixed with the output of the neural prosthesis. 
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Figure 4 Performance comparison of native arm versus ReFIT-KF for the 
obstacle-avoidance task. (a,b) In this task the monkey had to move the cursor 
from the initial target (labeled 0) to the final target (labeled 1; demand 
box shown as dotted line) without hitting the magenta-colored barrier. One 
representative cursor trace is shown from each of the four principal observed 
movement types: curve under, curve over, straight (no barrier) and collision 
into barrier. These data are from experiment J-2010-03-09. Native arm 
control (a) is shown in blue and ReFIT-KF control in red (b).

Figure 5 Illustrations of the online neural  
control paradigm and the ReFIT-KF training  
methodology. (a) The input to the control  
algorithm at time i is a vector of spike counts,  
yt, from implanted electrodes. yt is translated  
into a velocity output, vt to drive the cursor.  
(b) ReFIT-KF is trained in two stages. Initially,  
cursor kinematics and neural activity are  
collected during arm control or during an  
observation phase in which cursor movement is  
automated. These arm movement kinematics or observed  
cursor kinematics are regressed against neural activity to generate an initial control algorithm.  
Then, a new set of cursor kinematics and neural activity are collected using the initial algorithm in a closed loop.  
The kinematics collected during neural control (red vectors) are used to estimate intention by rotating the velocities toward the goal (blue vectors).  
This estimate of intended kinematics is regressed against neural activity to generate and run ReFIT-KF.
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Over successive iterations the weight of automated control had been 
decreased by experimenter’s intuition until only neural activity drove the 
control. Our approach is different, as the control task remained constant 
throughout a neural prosthetic experiment session and only the training 
data were manipulated between the first and second sessions.

In a study with quadriplegic humans11,12, the neural prosthesis ini-
tially had been trained with visual-cue observation, which is similar to 
the control experiments described above. The study also uses a second 
neural prosthetic training session to account for differences during 
online control. Unlike in ReFIT-KF training, in that study both the 
neural cursor and the automated training cursor were on screen dur-
ing the second session. The neural cursor was presented to provide 
feedback so that the participant could attempt to alter their neural 
output to better follow the training cursor. After this second session, 
the neural prosthesis was fit with the training cursor kinematics. Thus, 
the underlying assumption is that the training cursor kinematics cap-
ture the intended kinematics during online control, whereas ReFIT-KF 
fitting assumes that intended kinematics are best inferred by the output 
of the neurally controlled cursor and knowledge of the task goals.

In studies with adaptive decoders6,9, the kinematics of the neurally 
controlled cursor are continuously used to refine neural prosthetic 
parameters, also allowing them to account for differences when 
switching to online control. However, they take different approaches 
to estimating intended kinematics for retraining. One approach is 
to use decoder parameters noncausally, via smoothing, to estimate 
intended kinematics for retaining without task or target informa-
tion9. This method has been shown to slow performance declines 
in one monkey over 29 d when using static spike sorting. However, 
unlike with ReFIT-KF model fitting, initial performance had not 
been surpassed, perhaps because without incorporating task goals, 
the method is subject to inaccuracies present in the initial model fit. 
In another adaptive study6, target information had been incorporated 
in the kinematics used for retraining. Their algorithm was retrained 
with a weighted average of decoded trajectory positions and the target 
position for each trial as an estimate of intended position. In con-
trast, ReFIT-KF estimates intended velocities based on intuitive rules 
applied to cursor position, decoded velocity and target position.

ReFIT-KF explicitly treats position and velocity differently. The 
resulting neural prosthesis assumes that the monkey controls veloc-
ity and not position, providing performance gains over a posi-
tion and velocity Kalman filter that does not make this distinction 
(Supplementary Figs. 6–8 and Supplementary Modeling). We struc-
tured the model assuming that velocity intentions evolve smoothly 
and that the influence of position is based on the monkey’s internal 
model of the cursor. Furthermore, we assumed that the control algo-
rithm output and the monkey’s internal belief about cursor position 
agree. In reality, there is some mismatch between the control algo-
rithm’s position estimation and the monkey’s internal belief because 
of inaccuracies in assessing visual information. There are likely spatial 
and temporal components to this inaccuracy that are not modeled. 
The spatial aspect is an inexact assessment of the last seen location, 
and the temporal aspect is due to visual latency. The spatial aspect 
could be modeled as fixed position uncertainty. To fully account for 
the temporal aspect, one could attempt to algorithmically model the 
monkey’s internal model of cursor dynamics since the last known 
position of the cursor. In this work, we chose to start with a simpler 
model, assuming that this estimation, which is local in time, is exact.  
It is possible that augmenting the algorithm to account for the 
 mismatch between the temporally local forward model and our 
dynamics model could improve control performance. Such work 
could also lead to improvements in the intention-estimation methods 

used for model training. It is important to note that there may be 
other explanations for the presence of position information in neural 
output. For example, this information could be intended cursor posi-
tion instead of an internal model estimate of current cursor position. 
In support of the internal model hypothesis, a recent study suggests 
that a forward model of cursor position is used during closed-loop 
control27. However, additional study of the role of position informa-
tion in the neural activity during online control is necessary and could 
aid in the development of future control algorithms.

In experimental sessions, ReFIT-KF performance was stable until the 
monkey appeared to lose interest in the task (for example, drop in target 
acquisition rate; Fig. 3b). This rapid drop-off is consistent with native 
arm control session performance and is presumably the analog of when 
a hypothetical human user is finished using their neural prosthesis. It is 
expected that performance will drift over time14, and methods for con-
tinuous adaptation of neural-control algorithm parameters may be nec-
essary. In a previous study9, information from the output of the control 
algorithm has been used with a Bayesian approach to adapt parameters 
throughout sessions to sustain performance. If task goals were known 
throughout neural prosthesis use, the intention estimates defined in this 
study could be used in conjunction with these parameter-adaptation 
methods. It may be possible to estimate these task goals based on features 
of the neural prosthetic output. For example, if a click or target selection 
signal is simultaneously decoded12, indicating user intended target selec-
tion, intended cursor velocities could be estimated for moments before 
target selection. Additionally, in future work, it will be important to assess 
how multiday learning7 affects the performance and robustness when 
control algorithm parameters are set as described in this work, based 
on estimated movement intention, versus existing methods for param-
eter initialization. Adapting the methods of this work to enable multiday 
learning and plasticity, such as by providing a consistent controller day 
over day, may well lead to even better performance over time.

Long-duration, continuous, high-performance operation is central 
to successful translation of neural prostheses to human patients14. The 
above performance depended on three specific design choices used by 
both Velocity-KF and ReFIT-KF, in addition to the two key innovations 
defining ReFIT-KF. First, we did not use spike sorting. The goal of spike 
sorting is to separate single channels composed of action potentials 
from many neurons into multiple channels of spiking activity from 
individual neurons. This standard practice can yield more decodable 
kinematic information per electrode but requires tracking each sorted 
action potential shape over days, which has recently been shown to be 
extremely difficult for many electrode channels7,28,29. To reduce signal 
instabilities that can result from imperfect spike sorting and neuron 
tracking, we counted the number of threshold crossings per electrode 
instead of spike sorting (Online Methods)15,21. Second, the results 
reported here were acquired from arrays 19–53 months (monkey L) 
and 4–21 months (monkey J) after neurosurgical implantation15,28.  
The number of highly distinguishable single neurons on an electrode 
array tends to decrease over time. Yet remaining multiunit activity 
often has neural prosthesis–relevant tuning. By using these older array 
implants, which had relatively few clearly distinguishable single units, 
we confirmed that threshold crossing–based activity, together with the 
ReFIT-KF, provides high performance for months and years after array 
implantation (Fig. 2, Supplementary Table 2 and Supplementary 
Fig. 9). Finally, we used a single, relatively short, 50-ms neural integra-
tion time window with no additional temporal lag, unlike some neural 
prosthetic designs that explicitly incorporate neural data with longer 
histories and additional lags (for example, multiple 100-ms time bins7 
and multiple 50-ms time bins with history as far back as 1 s (refs. 8,10). 
This choice was based on experiments with humans using an online 
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prosthetic simulator16 and on subsequent neural control experiments 
with monkeys. Both indicated that shorter time bins are preferable 
owing to reduced closed-loop feedback time.

This study demonstrated the utility of an online control perspective 
for the development of neural-control algorithms. Although perform-
ance advances must ultimately be verified online, this perspective 
can be applied in offline simulation studies to examine algorithm-
design decisions (Supplementary Modeling). However, as with any 
simulation study, the applicability of the results is subject to both the 
limitations of the simulation platform and the design decisions made 
in developing the simulation16.

The sustained performance and robustness of these ReFIT-KF neu-
ral prosthetic experiments demonstrate the potential to provide func-
tional restoration for patients with a limited ability to move and act 
upon the world because of neurological injury and disease. Although 
descending pathways are compromised, the motor cortex may be 
largely intact, enabling this class of technology10–12,30. In recent years, 
brain-interface technologies using a variety of signal sources, such as 
the intracortical arrays described here, electroencephalography31 and 
electrocorticography32, have been developed. The neural prostheses 
research community continues to create options for individuals with 
disabilities and to assess relative risk and benefit33. Here we investi-
gated the principled design of closed-loop neural control algorithms, 
resulting in the development of the ReFIT-KF and demonstrations of 
a substantial advance in performance and robustness. This algorithm, 
closed-loop control perspective and system-design methodology may 
be applied to other neural prosthetic domains with the potential to 
considerably increase benefit and the clinical viability of prostheses.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Surgical procedures and behavioral experiments. All procedures and experi-
ments were approved by the Stanford University Institutional Animal Care and 
Use Committee (IACUC). Experiments were conducted with adult male rhesus 
macaques (L and J), implanted with 96-electrode Utah Microelectrode arrays 
(Blackrock Microsystems) using standard neurosurgical techniques34. Data were 
collected 19–53 months and 4–21 months after implantation for monkeys L and J,  
respectively. Electrode arrays were implanted in the dorsal aspect of premotor 
cortex (PMd) and primary motor cortex (M1), as estimated visually from local 
anatomical landmarks.

The monkeys were trained to make point-to-point reaches in a two-dimensional  
plane with a virtual cursor controlled by the contralateral arm or by a neural 
decoder16. The virtual cursor and targets were presented in a three-dimensional 
environment (MusculoSkeletal Modeling Software, Medical Device Development 
Facility, University of Southern California). Hand-position data were measured 
at 60 Hz with an infrared reflective bead–tracking system (Polaris, Northern 
Digital). Behavioral control and neural decode were run on separate PCs using 
the Simulink/xPC platform (Mathworks) with communication latencies of less 
than 3 ms. This system enabled millisecond timing precision for all computations. 
Neural data were initially processed by the Cerebus recording system (Blackrock 
Microsystems) and were available to the behavioral control system within 5 ms 

 1 ms. Visual presentation was provided via two LCD monitors with refresh 
rates at 120 Hz, yielding frame updates of 7 ms  4 ms. Two mirrors visually 
fused the displays into a single three-dimensional percept for the user, creating 
a Wheatstone stereograph (see figure 2 in ref. 16).

Central results were replicated on multiple days in each monkey, using a 
within-day A-B-A block structure trial design to highlight algorithmic impact 
and thereby quantify performance and robustness (Supplementary Figs. 3–4).

Center-out-and-back task configurations. Training sets for fitting the neural 
control algorithm were collected using the same center-out-and-back task shown 
in Figure 1a. Targets were either uniformly placed at an 8-cm radius or at a 12-
cm radius. For some native arm control sessions, the top target was at 14 cm and  
the upper right and upper left targets were at 13 cm from center. Training sets 
were typically composed of about 500 (peripheral and central) target acquisitions. 
All of the test sets shown in Figure 1 were collected using a standardized target 
configuration, with eight peripheral targets uniformly placed 8 cm away from the 
central target with either 5-cm or 6-cm acceptance windows.

Signal acquisition and conditioning. Neural signals were acquired from an 
implanted 96-channel Utah Microelectrode Array (Blackrock Microsystem) using 
the Cerebus Recording System (Blackrock Microsystems). An analog band-pass 
filter with a 0.3 Hz to 7.5 kHz pass-band wass applied to each channel. Channels 
were sampled at 30,000 samples s−1 and are filtered with a 250 Hz to 7.5 kHz 
digital band-pass filter. A threshold detector was applied to each band-passed 
channel. The threshold value was set automatically as −4.5 times the measured 
root mean squared value of the channel. When the signal value was less than 
threshold, a spike event registered for that channel. The number of spike events 
was counted in nonoverlapping temporal bins (typically 50 ms). The counts for 
each channel were the inputs to the control algorithm.

Quantifying performance across months. The same center-out-and-back task 
was run on 280 sessions across monkeys L and J, spanning at least 16 months 
for each monkey. Although additional experiments (using different control 
algorithms and behavioral tasks) may have been run on these experimental 
days, at least 200 trials of center-out-and-back with the ReFIT-KF control algo-
rithm were tested. On most experimental days, the task difficulty was greater 
than that shown in Figure 1 and Supplementary Table 1. For the experiments 
documented in Figure 1, the task difficulty was selected so that the monkey 
could successfully complete the task with the lower quality of control afforded 
by the Velocity-KF algorithm.

The Fitts’ law calculation was used to provide a metric that normalizes 
across task difficulty. For reference, monkey L was implanted on 22 January 
2008 and monkey J was implanted on 24 August 2009. Data for monkey L 
were collected on 182 sessions over 29 months (from 24 months to 53 months 
after implantation). Data for monkey J were collected on 98 sessions over  
16 months (from 5 months to 21 months after implantation). Each open square 
and circle in Figure 2 corresponds to a single experimental day on which the 
index of difficulty was 1.32 (4-cm targets 8 cm from center) and throughput 
was calculated from at least 40 trials of center-out to either a vertical or hori-
zontal target. All experiments from the time spans indicated that match these 
criteria were included, except for days on which other experiments may have 
impacted animal behavior. Regression lines were fit for data from each monkey 
using least-square regression, and P values were calculated using an ANOVA 
for linear regression models.

Observation-based model training. As paralyzed users of neural prostheses 
cannot generate overt arm movements, an observation based algorithm training 
methodology can be used, as in previous animal studies8 and clinical trials10. 
We tested the ReFIT-KF algorithm with observation-based training, replac-
ing the native arm movement stage of algorithm training with an observation  
stage (Fig. 5b).

Observation-based decode models were built with both of the monkey’s arms 
comfortably restrained along his side. A previously recorded arm-controlled 
experimental block of 500 center-out-and-back trials was shown to the monkey 
while in this posture. The kinematics of this recording were derived from an 
arm-controlled session for monkey L. To help keep the monkey engaged in the 
task, he was rewarded when the computer-controlled cursor acquired and held 
the target for 500 ms.

Under this experimental context, the neural data recorded during these 
observation sessions and the previously recorded cursor kinematics served as 
the training data to build the initial decode model. This resulting model was 
then run online and used as training data to build the ReFIT-KF decoder. Little 
to no arm movement was visually noted during both observational blocks and 
decoding blocks.

Performance of ReFIT-KF–based control during these sessions, as measured 
by the Fitts’ law metric, was roughly equivalent to performance in sessions that 
initially trained from arm-movement data.

34. Santhanam, G., Ryu, S.I., Yu, B.M., Afshar, A. & Shenoy, K.V. A high-performance 
brain-computer interface. Nature 442, 195–198 (2006).
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Supplementary Figure 1: Path Quality Measures for Three Control Modes. Five ad-

ditional measures of path quality were computed for the data presented in Fig 1 of the main text

(maximum deviation from a straight line path, calculated from target onset to first target acquire

is shown in that figure). (a) Calculated from target onset until first target acquisition. (b) Calcu-

lated from target onset until the last target entry before target successfully held. These measures

comprise all of those used in two studies [1, 2] and lower values indicate higher control quality.

Path length is defined as the integrated cursor displacement throughout the trial. The remaining

measures rely on the definition of a movement axis, defined by the direct line path from the cur-

sor position at the start of the trial to the target position. Mean error is the integrated distance

from that axis and mean variability is the standard deviation of this distance. Movement direction

change (MDC) count is the number of times the cursor velocity in the movement axis reversed signs.

Orthogonal direction change (ODC) count is the number of times the cursor velocity orthogonal to

the movement axis reversed signs. Native arm control performs best with respect to all measures.

When computing until the time of first target acquire, ReFIT-KF outperforms Velocity-KF on all

measures except for ODC count. If we include the dial-in time in the computation, ReFIT-KF

outperforms on all measures, with a wider performance gap.
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Supplementary Figure 2: Average Velocity vs. Time for Three Control Modes. Average

cursor velocity is plotted as a function of elapsed time from target onset. Velocity is calculated at

100 ms intervals and interpolated to a 10 ms sampling interval. Each control type is plotted up to a

time point for which at least 300 trials are in the dataset. These data are from the same trials used

to generate Fig. 1 of the main text. Note that the average ReFIT-KF profile is more local in time

than Velocity-KF. Both neural control modes have lower peaks in this average profile than native

arm control. The peak velocities (mean ± standard deviation) of the native arm, ReFIT-KF, and

Velocity-KF are 40.1 ± 10.8 (35.5 ± 9.5), 29.6 ± 5.7 (27.0 ± 8.2), 35.7 ± 7.3 (28.6 ± 7.2) cm/s for

monkey J (monkey L). Although the peak velocities were higher for Velocity-KF than ReFIT-KF,

ReFIT-KF control resulted in faster target acquisitions than Velocity-KF control. This is likely

due to more precise control with ReFIT-KF.
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Supplementary Figure 3: Innovation Contribution Breakdown (Monkey L). Here we

show the relative contributions to performance that each innovation makes. We tested algorithms

in succession, switching between them on the same day against identical trial conditions. Observed

di↵erences in performance between trial blocks while holding both behavioral task and neural

recording conditions constant can be attributed primarily to di↵erences in the control algorithm.

(a) shows Monkey L’s performance with Velocity-KF (green) compared against the Kalman filter

with only the first innovation (yellow) (L-2010-01-13) and (b) shows the Velocity-KF with the first

innovation (yellow) compared against the ReFIT-KF (both innovations, red) (L-2010-08-19). The

task conditions for these trial blocks were a randomized center-out and back chain of 8 targets,

with a demand box of 5cm for (a) and 4cm for (b), allowing up to 3 seconds to acquire the target.

Note that each innovation reduced the average acquire time. In some instances, the overall success

rate also increased. Given that these tasks have a maximum acquire time (typically 2.5 seconds),

improved performance is marked by higher success rates and/or lower acquire times.
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Supplementary Figure 4: Innovation Contribution Breakdown (Monkey J). Here we

show the relative contributions to performance that each innovation makes. We tested algorithms

in succession, switching between them on the same day against identical trial conditions. Observed

di↵erences in performance between trial blocks while holding both behavioral task and neural

recording conditions constant can be attributed primarily to di↵erences in the control algorithm.

(a) shows Monkey J’s performance with Velocity-KF (green) compared against the Kalman filter

with only the first innovation (yellow) (J-2010-08-20) and (b) shows the Velocity-KF with the first

innovation (yellow) compared against the ReFIT-KF (both innovations, red) (J-2010-01-20). The

task conditions for these trial blocks were a randomized center-out and back chain of 8 targets,

with a demand box of 5cm for (a) and 4cm for (b), allowing up to 3 seconds to acquire the target.

Note that each innovation reduced the average acquire time. In some instances, the overall success

rate also increased. Given that these tasks have a maximum acquire time (typically 2.5 seconds),

improved performance is marked by higher success rates and/or lower acquire times.
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Supplementary Figure 5: Contribution Breakdown for Components of Innovation 1.

We can further dissect innovation 1 into two procedures applied to the training data. The first is

the rotation of the velocity vectors towards the target and the second is zeroing velocity when the

cursor is on target. The figure shows the e↵ect of zeroing velocity for both monkeys (L-2010-01-27

& J-2010-01-26). These plots follow the convention of Figure 1c of the main text. The initial thin

line is the mean distance to the target as the cursor approaches the target, the thick line is the

mean distance after the monkey has initially acquired the target and is attempting to “dial-in”

and stop on the target. Zeroing velocity has little e↵ect on the time taken to initially acquire the

target, but substantially decreases the time required to stop on the target. Note, innovation 2 has

not been applied in these online sessions.
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Supplementary Figure 6: Performance Comparisons to Position/Velocity-KF Based

Control. The top row is histograms of time to target for successful trials are shown as line graphs.

The inset bar graphs plot the time to target (mean ± SE). The bottom row is mean distance

to the target as a function of time. Thickened portion of the plotted lines indicate dial-in time,

beginning at the mean time of first target acquire, and ending at mean final target acquisition time.

These data are from four experiment sessions with monkey J (J-2010-10-27, J-2010-10-28, J-2010-

10-29, J-2010-11-02) and three experiment sessions with monkey L (L-2010-10-28, L-2010-10-29,

L-2010-11-02). For each of these sessions, data were collected for all four control modes. The task

parameters were identical to those used in the experiments presented in Fig. 1 of the main text,

facilitating direct comparison to the data presented in the main text. We note that performance

was comparable for both the Velocity-KF and the Pos/Vel-KF on the center-out-and-back task

with respect to both acquisition and dial-in time. On the pinball task, Fig. 3 of the main text,

Pos/Vel-KF performance was low, with a success rate of 42%. As with the Velocity-KF it was

di�cult to keep the monkey engaged in the task.
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Supplementary Figure 7: Average Velocity vs. Time for Four Control Modes. Average

cursor velocity is plotted as a function of elapsed time from target onset. Velocity is calculated at

100 ms intervals and interpolated to a 10 ms sampling interval. Each control type is plotted up

to a time point for which at least 300 trials are in the dataset. These data are from experiments

J-2010-10-27, J-2010-10-28, J-2010-10-29, J-2010-11-02, L-2010-10-28, L-2010-10-29, and L-2010-

11-02. Note that the average ReFIT-KF profile is more local in time than Pos/Vel-KF. The peak

velocities (mean ± standard deviation) of the native arm, ReFIT-KF, Velocity-KF, and Pos/Vel-

KF are 38.4 ± 10.0 (35.5 ± 9.2), 29.2 ± 5.6 (27.0 ± 8.4), 35.7 ± 7.3 (28.8 ± 7.2), 49.1 ± 10.5

(56.9 ± 14.9) cm/s for monkey J (monkey L). Although the peak velocities were higher for Pos/Vel-

KF and Velocity-KF than ReFIT-KF, ReFIT-KF control resulted in faster target acquisitions.
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Supplementary Figure 8: Example Single Trial Velocities for Four Control Modes.

Trials were selected randomly from experiments J-2010-10-27, J-2010-10-28, J-2010-10-29, J-2010-

11-02, L-2010-10-28, L-2010-10-29, and L-2010-11-02. Velocity was calculated in 50 ms intervals

and traces were color coded to correspond to a di↵erent reach direction (left, right, top, bottom).

12Nature Neuroscience: doi:10.1038/nn.3265



Technical Report Supplement A High-Performance Neural Prosthesis
Enabled by Control Algorithm Design

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Unit Amplitude (+V)

Th
ro

ug
hp

ut
 (F

itt
s 

bi
ts

/s
ec

)

Monkey L
Monkey J

Supplementary Figure 9: Correlation Between Performance and Waveform Ampli-

tude. Scatter plot of average action potential amplitudes from our previous study [3] versus online

performance in this study. Each point in the scatter plot represents one experimental session. We

previously published a study that analyzes datasets from a total of 382 days across four electrode

arrays implanted in three di↵erent monkeys [3]. The results suggest that decoding performance,

when using threshold crossings, is not strongly correlated with measures of signal quality, including

action potential amplitude. Two of the implants analyzed were used in this study and a subset

of the experiments shown in Figure 2 of the main text correspond to data analyzed in this prior

longevity study of o✏ine performance. For monkey L, 31 experimental sessions were tested in both

studies and are plotted. These sessions were run 2.02 to 2.61 years post implantation. The linear

regression of these data is Throughput = 1.35 + 0.0023 ⇥ (Unit Amplitude in µV ). The slope of

the regression and the intercept is statistically significant from zero (p<0.026). For monkey J, 32

experimental sessions were tested in both studies and are plotted. These sessions were run 0.43 to

0.87 years post implantation. The linear regression of these data is Throughput = 1.49 + 0.00045

⇥ (Unit Amplitude in µV ). The slope of the regression is not statistically significant from zero

(p>0.74). Consistent with [3], these data suggest that a correlation between peak waveform ampli-

tude and online performance is present, but that this correlation is weak (R2 values are 0.16 and

0.0036 for monkey L and monkey J, respectively). Although a correlation was present for monkey

L in the period analyzed, decline was not present across the years of online performance measured

in this study.
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Dataset Native arm ReFIT-KF Velocity-KF

2010-10-27
(Monkey J)

99.7% 100% 97.8%

2010-10-28
(Monkey J)

100% 100% 99.0%

2010-10-29
(Monkey J)

100% 100% 99.3%

2010-11-02
(Monkey J)

99.3% 100% 99.7%

2010-10-27
(Monkey L)

100% 100% 92.3%

2010-10-28
(Monkey L)

100% 100% 67.5%

2010-10-29
(Monkey L)

100% 100% 99.4%

2010-11-02
(Monkey L)

100% 100% 94.7%

Supplementary Table 1: Success Rates for Center-Out-and-Back Task. Calculated for

all datasets used to generate Figure 1 of the main text.
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Monkey L Monkey J

Number of sessions 182 98
Avg. success rate (% ± s.d.) 96.6±4.3 95.7±4.4
Avg. throughput (bits/s ± s.d.) 1.69±0.26 1.60±0.22
Linear regression intercept (bits/s) 1.16 1.55
Linear regression slope (bits/s/year) 0.17 0.052
Linear regression slope p-value <0.001 >0.43

Supplementary Table 2: Summary of ReFIT-KF Performance Across Years.
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3.1 Online Performance Measurement & Comparison

3.1.1 Fitts’ Law Performance Metric

Since reach distance and target diameters vary across experiments, we apply the Fitts Law

derived index of di�culty to provide a summary statistic for comparisons within this study

and across studies. This metric has been suggested as a method for standardized assessment

of neural prostheses [4]. Briefly, index of di�culty provides a metric in bits based on target

size and distance. From this metric we can calculate the throughput as Fitts bits/sec based

upon target selection rate. This calculated bits/sec has been shown for a variety of computer

input devices to be invariant over a larger range of target sizes and distances [5].

Here we measure index of di�culty and throughput as:

Index Of Di�culty = log2
Distance +Window

Window
(3.1)

Throughput =
Index Of Di�culty

Acquire Time
(3.2)

Note that here we use a one dimensional index of di�culty metric. Although a few two-

dimensional derived Fitts metrics exist in the literature [6], none have been standardized or

universally accepted. ISO 9241-9 details performance requirements for non-keyboard input

devices and utilizes the one-dimensional Fitts calculation as the measure of throughput as

we have in this study. Furthermore, given that some of the neural prosthetic tasks used

in the papers compared below do not require dwelling on target or an explicit click, such

measures are not valid. Success is essentially marked in such tasks by crossing the target

boundary, as in a standard one-dimensional Fitts’ law task.
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3.1.2 Comparison to Other Studies

Study Target
center
distance
(mm)

Window
size (mm)

Acquire
time
(sec)

Index of
di�culty
(bits)

Fitts
bits/sec

Native Arm
(Monkey L)

80 60 0.48 0.87 1.82

Native Arm
(Monkey J)

80 50 0.54 1.07 1.98

ReFIT-KF
(Monkey L)

80 60 0.59 0.87 1.48

ReFIT-KF
(Monkey J)

80 50 0.59 1.07 1.81

Velocity-KF
(Monkey L)

80 60 1.36 0.87 0.64

Velocity-KF
(Monkey J)

80 50 1.56 1.07 0.69

Ganguly et
al., 2009 [7]

70 15 2.5 2.37 0.95

Kim et al.,
2008 [1]

210 (pixels) 120 (pixels) 2.47 1.17 0.47
255,300
(pixels)

40 5.51 2.89 0.52

Taylor et al.,
2002 [8]

87 70 1.5 0.80 0.53

Table 3.1: Performance comparison between studies employing center-out target acquisition
tasks with hold times greater than 250 ms and a free running neural control algorithm (no
assistance, such as automatic cursor recentering). Data from the current study (first 6 rows)
are from experiments J-2010-10-27, J-2010-10-28, J-2010-10-29, J-2010-11-02, L-2010-10-27,
L-2010-10-28, L-2010-10-29, and L-2010-11-02.

Each neural prosthetic study presented in Table 3.1 uses a variant of the basic target acqui-

sition task (i.e., unless noted, the center-out task and not the pinball or obstacle avoidance

task).

The data from Figure 1 of the main text are summarized in Table 3.1. The target sizes

were larger (and consequently the index of di�culty lower) than those typically tested with

the ReFIT-KF algorithm. Target sizes were selected to permit a high success rate with

Velocity-KF control, to allow a direct comparison of acquire times between these control

modes. All three control modes were tested on each of the eight experimental days analyzed
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to generate the data in the table. Data presented in Figure 2 and Table 1 of the main

text show Fitts’ Law performance for smaller targets. Although the index of di�culty is

higher for these examples, the throughput is comparable, which is expected as the Fitts’

Law throughput metric is meant to normalize these task di↵erences.

In this study, all behavioral tasks described in the main text require the neural cursor

to acquire the target and stay within the demand box for 500 ms. This, in turn, requires

a tradeo↵ between the swiftness of cursor movement and stopping ability. In studies with

behavioral tasks in which no hold-time is required or enforced, there is no such trade o↵,

and cursors could be made to move rapidly, hitting the target without the ability to stop

or hold on the target location. Stopping ability is a critical di↵erentiator between the three

control modes presented in this study. The dial-in time metric in Figure 1c of the main

text demonstrates this by measuring the di↵erence between the time it takes to get out

to the target and the time it takes to make the final target acquisition before holding for

500 ms. Both native arm and ReFIT-KF cursor control require much shorter dial-in times

than Velocity-KF control, and also achieve more precise cursor stops and holds at the target

location.

Study Target
center
distance
(mm)

Window
size (mm)

Acquire
time
(sec)

Index of
di�culty
(bits)

Fitts
bits/sec

Current Study* 60 20 0.60 1.81 3.01

Suminski 2010 [2]# 55 15 1.1 2.06 1.87
Fraser et al.,
2009 [9]*

85 32 0.81 1.66 2.05
79 36 0.63 1.43 2.27

Chase et al., 2009* [10] 85 32 1.04 1.66 1.60
Mulliken et al., 2008
[11]

12.85°
(visual angle)

9°
(visual angle)

0.88 0.95 1.08

Serruya et al., 2002
[12]#

7.8°
(visual angle)

2.4°
(visual angle)

0.90 1.91 2.12

Table 3.2: Performance comparisons between studies on target acquisition tasks with hold
time shorter than 250 ms. Studies marked with * use automatic recentering of the cursor.
All tasks are center out, except for those marked with #, these are pinball tasks. For the
pinball tasks, the average distance between successive targets was approximated based on
the specified workspace size.

Another important subtlety is that we used a free-running neural cursor which is ini-

tialized once and is then controlled by solely neural activity. Some studies in the literature
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reinitialize the neural cursor to the center of the screen at the beginning of every trial, possi-

bly simplifying control. Noting the importance of this feature and the hold time requirement,

we have constructed Table 3.2. Table 3.1 studies have a task design that matches the cur-

rent study and Table 3.2 studies have recentering and/or no hold time requirement. Also,

we performed a study using ReFIT-KF with automatic recentering and no hold period (not

discussed in the main text) to aid in comparison (Table 3.2, top row).

For Tables 3.1 and 3.2, we list the distance to the center of the target, as is typically

done in neural prostheses papers. To calculate the distance to target we use:

Distance = (Target center distance)� Window

2
(3.3)

3.1.2.1 Individual Study Behavioral Task Details

Although we make an e↵ort here to compare results across studies, it should be emphasized

that a precise quantitative comparison between studies is not possible. The studies in tables

3.1 and 3.2 have many di↵erences that we cannot account for, including: laboratory setups,

research subjects (possibly di↵erent species), implantation location, implant technology, sur-

gical techniques, and prior behavioral training. These tables are a best e↵ort at comparison,

presented to provide intuition, but should be viewed with the above limitations in mind.

Not all studies included explicitly list the statistics necessary for the Fitts calculation, so we

describe how these data were estimated:

Ganguly et al., 2009 [7]: The cursor radius, target distance, and target radius are specified

in the main text. We assume that the cursor radius does not a↵ect the task di�culty, that

the center of the cursor must be on target. In multiple sections of the main text a 2.5 s

acquire time is mentioned.

Kim et al., 2008 [1]: The methods section defines two tasks with di↵erent levels of di�-

culty. In the results section, there are two tables that specify movement times for each task,

respectively. From each table we take the lowest mean movement time. We subtract 500 ms

from this time, as it includes a 500 ms hold period.

Taylor et al., 2002 [8]: Target distance and size for closed loop neural control are defined

in the supplement. The time to target was the best reported mean time for peripheral target

acquisition in table 2 of the main text. It is important to note that this is a 3D task, which

increases the task di�culty in a manner that is not captured by the Fitts calculation defined
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in this section. Thus, the calculated performance is likely an underestimate relative to the

other studies.

Suminski 2010 [2]: The methods section of the main text describes a 12 cm x 6 cm

workspace and 2.25 cm2 square targets (so 15 mm x 15 mm). They specify that subsequent

targets were selected with a uniform distribution. We simulated such target selection with

the constraint that subsequent targets must be at least 3 cm apart (so that they do not

overlap), and took the mean distance between subsequent targets in this simulation, 55 mm,

as the target distance. It is important to note that this pinball task is more di�cult than

the center-out task.

Fraser et al., 2009 [9]: The task parameters are defined in the methods section of the

main text. Acquire times are from the table in the results section.

Chase et al., 2009* [10]: The mean acquire time, cursor radius, and target radius are from

personal correspondence with a study author (S. Chase). This correspondence mentioned

that the cursor radius and target radius were both 16 mm. The cursor and target had to

touch for acquisition (the center of the cursor was not required to be on target as in most

of the other studies listed). Thus the e↵ective window size is 32 mm as listed in the table.

The target distance was specified in the methods section of the study.

Mulliken et al., 2008 [11]: The study lists a range of distances to target with respect to

visual angle, 11°-14.7°; we use the middle of this range, 12.85°. A target size of 9° for brain
control is specified in the methods section. In the results section, they mention that with

subject training time to target dropped to a median (not mean) of 883 ms.

Serruya et al., 2002 [12]: The study specifies a 14° x 14° workspace with targets appearing

at random within this space. A 2.4° window size was assumed by measuring a 1.2° cursor
and target radius from figure 1. Based on the description of this figure, it was assumed

that target and cursor had to touch, not necessarily overlap, to acquire a target, so cursor

and target radii were summed to estimate window size. Figure 1 also plots the median (not

mean) acquire time, we estimate this median as 0.9 s. It is important to note that based on

the data shown, this median is less than the mean, and so the Fitts score for this study is

likely overestimated.

3.1.2.2 Individual Study Neural Implant Descriptions

The studies listed in the tables above use either microwire arrays (MWA) or the Utah

microelectrode array (MEA) with channel counts from 64-128. Table 3.3 summarizes the
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recording technologies used in these studies. It is important to note that the relationship

between channel count and performance is nonlinear, with performance saturating as channel

count increases [13, 14]. Additionally, each study uses di↵erent methods for channel inclusion

and threshold detection and/or spike sorting. As shown in [13], when adding units in order

based on a measure of informativeness, maximum performance is achieved with a subset

of units. Thus, there is no simple way to normalize performance to account for implant

di↵erences.

Study Implant
type

Potential
channel
count

Implant location

Current Study MEA 96 Contralateral primary motor and
premotor cortex

Ganguly et al., 2009 [7] 2 MWAs 128 Bilateral primary motor cortex
Kim et al., 2008 [1] MEA 96 Primary motor cortex
Taylor et al., 2002 [8] MWA 64 Contralateral primary motor cortex

Suminski 2010 [2] MEA 96 Contralateral primary motor cortex
Fraser et al., 2009 [9] MEA 96 Contralateral primary motor cortex
Chase et al., 2009 [10] MEA 96 Contralateral primary motor cortex
Mulliken et al., 2008 [11] 2 MWAs 64 Posterior parietal cortex
Serruya et al., 2002 [12] MEA 96 Contralateral primary motor cortex

Table 3.3: Summary of implant technologies and locations for the studies listed in Tables
3.1 and 3.2.
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3.2 Algorithm Design

In this section we describe the ReFIT-KF control algorithm design. First we discuss the

basic Kalman filter algorithm that has been used in previous work for neural decoding. The

remainder of the section describes the two algorithm innovations to the Kalman filter that

comprise ReFIT-KF and the rationale behind them.

3.2.1 Kalman filter based control algorithm

Many control algorithms, or continuous decoding methods, have been studied for neural

prosthetics applications. There are three methods commonly applied online: the population

vector (e.g., [8]), the optimal linear filter (e.g., [15, 16]), and the Kalman filter (e.g [1]). The

population vector was first suggested by Georgopolous et. al. as a method for decoding

intended movement direction [17]. The population vector, as implemented for neural pros-

theses, can be seen as a special case of a linear filter [10]. In turn, the linear filter can be

viewed as a special case of the more general Kalman filter [18]. The Kalman filter, as imple-

mented in their work and in this study, will converge to a recursive linear filter over time.

Given this similarity and the e↵ectiveness of the Kalman filter online and in simulation, we

chose to base this work on the Kalman filter.

Since its initial description [19] as a method for recursive linear filtering, the Kalman filter

has been applied in many engineering disciplines, including aerospace, radio communications,

robotics, and computer vision. The basic intended application of this filter is to track the

state of a dynamical system throughout time using noisy measurements. Although we have a

model of how dynamics evolve through time, the underlying system may not be deterministic.

If we know the state of the system perfectly at time t, our dynamical model only gives us an

estimate of the system state at time t+1. We can use the measurements (or observations) of

the system to refine our estimate, and the Kalman filter provides the method by which these

sources of information are fused over time. The filter can be presented from a dynamical

Bayesian network (DBN) perspective, and is considered to be one of the simplest DBNs.

A graphical model of the basic DBN representation of the Kalman filter is shown in

Figure 3.1. For neural prosthetic applications, the system state vector x
t

is commonly used

to represent the kinematic state. In this study, the state vector represents position and

velocity of the cursor (x
t

= [posvert
t

, pos

horiz

t

, vel

vert

t

, vel

horiz

t

, 1]T ). The constant 1 is added

to the vector to allow observations to have a fixed o↵set (i.e., baseline firing rate). y
t

is the

measured neural signal, which is binned spike counts. The choice of bin width can a↵ect
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the quality of prosthetic control: assuming local stationarity, long bin widths can provide

a more accurate picture of neural state but with poorer time resolution. Thus, there is an

implicit tradeo↵ between how quickly the prosthesis can change state and how accurately

those states are estimated. Typical bin widths used in studies range from 10 ms to 300 ms.

Through online study (see [20] for details), we find that shorter bin widths result in better

performance. The results discussed in this study use 50 ms bin widths.

xt-1 xt xt+1

yt-1 yt yt+1

. . . . . .

Figure 3.1: A graphical model representing the assumptions of a Kalman filter. x
t

and y

t

are the system state and measurement at time t, respectively.

When applying the standard Kalman filter, the system is modeled with linear dynam-

ics, a linear relationship between kinematic state and neural observations, and Gaussian

distributed noise and uncertainty:

x

t

= Ax

t�1 + w

t

(3.4)

y

t

= Cx

t

+ q

t

(3.5)

where A 2 IRp⇥p and C 2 IRk⇥p represent the state and observation matrices, and w and

q are additive, Gaussian noise sources, defined as w

t

⇠ N (0,W ) and q

t

⇠ N (0, Q). A

is the linear transformation from previous kinematic state, or dynamics, and C is mapping

from kinematic state to expected observation. This formulation allows for very fast inference

(decoding) of kinematics from neural activity and the parameters ✓ = {A,C,W,Q} can be

quickly learned from training data with a closed form solution. The observation model of

the Kalman filter, C and Q , is fit by regressing neural activity on observed arm kinematics:
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C = Y X

T (XX

T )�1 (3.6)

Q =
1

D

(Y � CX)(Y � CX)T (3.7)

where X and Y are the matrices formed by tiling the D total data points x

t

and y

t

. For

the Kalman filter, we also assume that the dynamics of observed arm kinematics match the

desired neural cursor kinematics, and so the parameters of the dynamics or trajectory model,

A and W , are fit from observed arm kinematics:

A = X2X
T

1 (X1X
T

1 )
�1 (3.8)

W =
1

D � 1
(X2 � AX1)(X2 � AX1)

T (3.9)

X1 is all columns of X except for the last column and X2 is all columns of X except for the

first column, introducing a one time-step shift between the two matrices.

In practice we constrain the form of the A and W matrices to obey simple physical

kinematics; integrated velocity perfectly explains position:

A =

0

BBBBBB@

1 0 dt 0 0

0 1 0 dt 0

0 0 a

vel

horiz

,vel

horiz

a

vel

horiz

,vel

vert

0

0 0 a

vel

vert

,vel

horiz

a

vel

vert

,vel

vert

0

0 0 0 0 1

1

CCCCCCA
(3.10)

After fitting with either set of kinematics, a
vel

vert

,vel

horiz

and a

vel

horiz

,vel

vert

are typically close

to 0 and a

vel

horiz

,vel

horiz

and a

vel

vert

,vel

vert

are less than 1. The resulting model introduces

damped velocity dynamics. Therefore, given no neural measurements, we expect a cursor in

motion to smoothly slow down. We also constrain the W matrix, so that for the dynamics

model, integrated velocity fully explains position:
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W =

0

BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 w

vel

horiz

,vel

horiz

w

vel

horiz

,vel

vert

0

0 0 w

vel

vert

,vel

horiz

w

vel

vert

,vel

vert

0

0 0 0 0 0

1

CCCCCCA
(3.11)

If we fit the full C matrix, the resulting filter is a position/velocity Kalman filter (neural

firing simultaneously describes position and velocity). If we constrain the position terms to

be 0, the resulting filter is a velocity only Kalman filter (neural firing describes only velocity).

Figure 3.2 is a graphical representation of the position/velocity Kalman filter. Note that

it di↵ers from the standard Kalman filter presented in Figure 3.1 in two ways. The first

is that x

t

has been split into two components, p
t

for position variables and v

t

for velocity

variables. The second is that, position variables do not have any direct influence on velocity

variables. This representation explicitly states that position does not influence velocity as is

also dictated by the described constraints on the A matrix.

vt-1 vt vt+1

yt-1 yt yt+1

. . . . . .

. . . . . .pt-1 pt pt+1

. . . . . .

Figure 3.2: A graphical representation of the position/velocity Kalman filter used for neural
control.
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3.2.2 Innovation 1: Model Fitting

Many existing proof-of-concept neural prosthetics control algorithms are initially designed,

tested, and fit o✏ine using data collected without the neural prosthesis in the loop (e.g.,

[15, 16, 18]). The data are fit against real, observed (i.e., previously recorded arm-movements

replayed on a screen that can be observed [21]), or imagined movement (i.e., while viewing

automated movement of a cursor) [2, 16]. For example, at the beginning of the session, the

movement of the cursor is controlled by the native limb as illustrated in Figure 3.3a. During

this task, the kinematics of arm movements (x
t

) and neural activity (y
t

) are recorded. These

data are used to develop the mathematical model used for neural control. The underlying

assumption is that observations of neural signals during arm control provide a good estimate

of signal characteristics while under brain control (Figure 3.3c).

Kalman filter parameters found to explain arm kinematics from neural observations can

be for used brain control. The hypothetical plot in Figure 3.3b shows the relationship be-

tween parameter settings and reconstruction quality or control performance suggested by

this perspective. Imagine we were to systematically sweep one of the Kalman filter param-

eters and measure the filter’s e↵ectiveness1. For arm kinematic reconstruction quality, this

is a measure of correspondence between observed and reconstructed arm movements, which

can be fully quantified and understood o✏ine. For neural prosthetic control performance, we

wish to measure the user’s ability to complete task goals during online control. The o✏ine

perspective assumes that both applications have the same optimal parameters and so the

o✏ine and online measures share the same global maximum, as shown by the black arrow.

It could be that these two maxima are not necessarily aligned, such as in the hypothetical

plot in Figure 3.3d. More concretely, a model designed for o✏ine reconstructions may not

necessarily translate to a good online controller. Thus, we pursued a di↵erent approach and

start with the observation that the system can also be fit online, while the user is getting

real-time feedback, as in Figure 3.3c. Such a strategy regresses neural activity against the

kinematics of the neural cursor (Figure 3.3c), and has been employed previously [1, 22]. One

strategy is to randomly seed decoder parameters and to provide assistive control during the

training procedure [22]. In this assistive control scheme, the prosthetic output is driven by

a mixture of decoder output and task relevant movements, such as precomputed trajectories

directly to the target. At each iterative refinement the decoder’s contribution is increased,

until the prosthesis is fully driven by the decoder. This scheme works well in practice,

especially when easing monkeys into performing the task, but the space of possible decode

1The Kalman filter parameter space is high dimensional, so a full parameter sweep is not practical, nor
something we could easily visualize. Thus, in this hypothetical case we imagine sweeping a single parameter
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Figure 3.3: A comparison of the o✏ine and online perspectives for neural pros-
thetic design. (a) is a depiction of a monkey controlling a cursor with native arm move-
ments; neural data y

t

and arm kinematics x
t

are collected to fit the parameters of a neural
prosthesis. (b) is a hypothetical plot of parameter setting vs. quality/performance of the
resulting system by such a fitting procedure, given the assumptions of the o✏ine perspective,
essentially that the maximum for arm reconstructions and neural prosthetic control occur
with the same parameter settings. (c) is a depiction of a monkey controlling a cursor via
neural control. x

t

is no longer arm kinematics; data are collected under closed loop neural
control and x

t

is derived from the kinematics of the neural cursor. This model fitting proce-
dure assumes that ideal parameter settings for a neural prosthesis and arm reconstructions
may vary, as indicated in hypothetical plot (d).
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parameters is vast and in principle it is possible to get stuck in local maxima (such as the

one pointed to by the gray arrow in Figure 3.3d). When randomly seeding, if the random

seed is close to a suboptimal local maximum, performance may be limited as the system is

likely to end up in a mode near these initial parameter settings.

Since prosthetic systems typically aim to record from arm related motor areas, it is

possible that the global maximum is close to the parameter set fit by the o✏ine perspective

(the black arrow in Figure 3.3d). Thus, instead of a random seed, the decoder can be seeded

with this reasonable choice of parameters. Previous reports have employed this approach

by having the prosthetic user observe movements to establish an initial model fit [1, 2, 22] .

Then iterative training procedures fit the model with either the kinematics of an observed

[1, 2] or controlled [22] cursor. The kinematics of the observed cursor are subject to the

same limitations as arm kinematics: since the control algorithm is not in the feedback loop

during this initial observation stage, this model fitting procedure is still fundamentally an

o✏ine approach. Regressing against the kinematics of the controlled cursor is, therefore,

perhaps a step in the right direction, since it regresses against measurements of the neural

control signals during online control. However, this approach will tend to carry forward

aspects of model misfit acquired during the initial seeding of decoder parameters. As a

simple example, imagine an initial decoder (see Figure 5(b) in main text) that rotates the

user’s desired velocity by 90 degrees. All measured movements of this cursor will retain this

bias and when we refit the prosthesis this bias will remain.

To address the presumed limitations described above, we propose and test a new method

for training neural prosthetic parameters, which is the first innovation described in the main

manuscript. Initially, the neural prosthetic system is fit from neural data and cursor data,

where the cursor moves along with the native arm. Next, the monkey is placed in online

brain control mode with this “o✏ine perspective” control algorithm. Training data are

collected during brain control and are transformed to estimate the user’s intended control

command. The details of this transformation are summarized in Figure 3.4. The kinematics

of the neurally driven cursor at each time-step may not be the best estimate of the user’s

intentions. The monkey generates intentions by applying knowledge of the task goal, in this

case “acquire the green target,” to the current state of the cursor. We make the simple

assumption that the monkey intends to generate a velocity oriented towards the target at

every time-step, since this is the most direct path to the goal and should lead to most

rapid trial completion and reward. Thus, for model training purposes only, we rotate the

velocity vector of the neural cursor (in red) to orient towards the goal, resulting in a new

set of “intention-based” kinematics (in cyan). Additionally, when the cursor is on target,
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Neural Control Kinematics

Estimated Intended Kinematics

Figure 3.4: Generating an “intention-based” kinematic training set. In (a) the user
is engaged in online control with a neural cursor. During each moment in the session, the
neural decoder drives the cursor with a velocity, shown as a red vector. We assume that the
monkey intended the cursor to generate a velocity towards the target in that moment, so
following data collection we rotate this vector to generate an estimate of intended velocity,
shown as a blue vector. Note that this blue vector is not rendered on the screen as part of
the experiment; it is drawn here just to aid in explanation. This new set of kinematics is
the training set used to train the ReFIT-KF control algorithm. (b) is an example of this
transformation applied to successive cursor updates.

we assume that the user wishes to instruct zero velocity. We believe that this new set

of kinematics are a better estimate of the user’s intention than the original neural cursor

kinematics. Importantly, after refitting the model in this way, the resulting decoder can be

used with neural data alone, in the exact same manner as the decoder trained with arm or

neural cursor kinematics. A similar manipulation to training data was used in a rat study to

adapt one dimensional neural controller over time [23]. The study shows how this approach

can be used to continuously update the control algorithm as the user is engaged in the task.
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3.2.3 Innovation 2: Filter Design

Existing work typically decodes either position (e.g., [12, 16]) or velocity (e.g., [22]). In a

comparison of position and velocity decoders, tetraplegic patients demonstrated a higher

performance control with velocity decoders than with position decoders [1] . We find that

when position decoding is removed, decoded velocities tend to be less stable. Colloquially

put, the cursor appears to get caught in “force fields” resulting in “orbiting” around the

target and getting “stuck” in parts of the workspace. This is not surprising, given that firing

rates in the recorded brain areas are correlated to cursor position.

Imagine a hypothetical prosthesis that decodes from a single neuron. This neuron fires

more vigorously when leftward velocities are instructed and also happens to fire more when

the cursor is positioned on the left side of the workspace. If our decoder translates this

firing rate into velocities, without any knowledge of positional e↵ects, every time the cursor

enters the left side of the screen positive feedback will accelerate the cursor to the left.

Positive feedback results because the firing rate increase due to leftward position is mapped

to leftward velocity by the decoder, thereby driving the cursor faster to the left than the

user intends. By accounting for position, some of the increased firing can be explained by

the position of the cursor, and this feedback e↵ect can be mitigated.

However, the way in which the position/velocity Kalman filter (Figure 3.2) models the

relationship between position and velocity leads to undesired high frequency jitter in the

cursor position. The dynamics model described in the previous section is physically based,

acting like an object moving in a gravity free 2-D space with damped velocity, so we may

expect cursor position to evolve smoothly. However, the Kalman filter translates velocity

uncertainty into position uncertainty at subsequent time-steps. To understand why this

occurs, we examine how the filter is run online. At time t we have a previous estimate of the

kinematic state, x̂
t�1 and a new neural observation, y

t

. The first step in each filter iteration

is to apply the dynamics model, estimating x

t

= [p
t

, v

t

] with all neural observations up to

time t� 1. This is the a priori estimate of x
t

:

x̂

t|t�1 = Ax̂

t�1 (3.12)

The matrix A is the trajectory model, describing how the kinematic state is expected to

evolve given no additional information. The model also estimates the a priori covariance (or

uncertainty) of x̂
t|t�1:
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⌃
t|t�1 = A⌃

t�1A
T +W (3.13)

W is a covariance matrix that is the uncertainty introduced by the trajectory model update.

We know that the W adds no uncertainty to a priori position, given its structure as defined

in equation 3.11. However, A⌃
t�1A

T translates previous velocity uncertainty into current

position uncertainty. This makes sense: if we do not know the previous velocity with cer-

tainty, we do not know the integrated velocity with certainty and so our position estimate

may have error. Thus, in practice, there is uncertainty in the a priori estimate of every

kinematic variable. To see how this uncertainty in position translates to jitter in the decode,

we can continue to step through the algorithm. Once we update the a priori estimate, we

must incorporate the information acquired from the neural observation. The model has an

expected neural output given x̂

t|t�1, and this output may not match y

t

. This error is the

measurement residual, ỹ
t

, and also has a corresponding covariance (or uncertainty) estimate,

S

t

:

ỹ

t

= y

t

� Cx̂

t|t�1 (3.14)

S

t

= C⌃
t|t�1C

T +Q (3.15)

If this residual is nonzero (which is almost always true in practice), then the measurement

and x̂

t|t�1 do not agree and we must decide how much weight this observation residual has

relative to x̂

t|t�1. This weight is based on how much uncertainty is present in the kinematics

suggested by the a priori estimate of x
t

versus the kinematics suggested by ỹ

t

:

K

t

= ⌃
t|t�1C

T

S

�1
t

(3.16)

Finally, we can useK
t

, called the Kalman gain, to find the estimate of x
t

that incorporates

all of the neural observations up to time t, this is called the a posteriori estimate. We

calculate the a posteriori estimate for x
t

and its covariance:
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x̂

t

= x̂

t|t�1 +K

t

ỹ

t

(3.17)

⌃
t

= (I �K

t

C)⌃
t|t�1 (3.18)

The Kalman gain transforms the measurement residual into the kinematic space. Since

a priori estimates of both position and velocity kinematics have uncertainty and neural

measurements have information about position and velocity, the Kalman gain will translate

neural measurements into updated a posteriori estimates of both position and velocity. For

o✏ine trajectory reconstruction, this makes sense, as this coupled position/velocity uncer-

tainty exists throughout time. However, these assumptions breakdown in the online setting,

and substantially limit performance.

We must distinguish online and o✏ine use of the Kalman filter. In the online setting,

the user is presented with the a posteriori estimate of cursor kinematics at every time-step.

If we believe that the user sees and internalizes the presentation of the cursor on the screen

at each time-step, then the way in which we model a posteriori covariance no longer makes

sense, as the user accepts the presented position as the current position state. By presenting

the decode to the user, we are creating a causal intervention, that explicitly sets the value of

the kinematic variable. This operation is defined by probability theory and is well described

by causal calculus [24] (see also [25, 26]).

vt-1 vt

yt-1 yt

. . . . . .

. . . . . .pt-1 pt

. . . . . .

Figure 3.5: The position/velocity Kalman filter modeling position feedback
through causal intervention. The intervention is indicated by the double circle shown in
green.

As a first step to modify the filter to incorporate this feedback, we presume that the
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user internalizes the filter’s estimate of cursor position, p̂
t

, with complete certainty at time

t. Accordingly, p
t

is explicitly set to p̂

t

, with no uncertainty. We are assuming that the

user knows the previous cursor position via feedback and that his forward model is exact.

This is shown graphically in Figure 3.5, where the intervened variable is in green (adding

another circle is standard notation for causal interventions, see [26]). Note also that the

arrows coming into p

t

have been removed, to indicate that p

t

has been externally set and

uncertainty is not propagated.

The result of this intervention is to remove uncertainty in p

t

. All parameter fitting meth-

ods described in previous sections remain unchanged. To implement this position feedback

filter, only a small change in the online operation of the standard filter is necessary. All steps

outlined above are the same except for equation 3.13. Previously, we had:

⌃
t|t�1 = A⌃

t

A

T +W where ⌃
t|t�1 =

2

64
⌃p,p

t|t�1 ⌃p,v

t|t�1 0

⌃v,p

t|t�1 ⌃v,v

t|t�1 0

0 0 0

3

75 (3.19)

where each block of the matrix ⌃
t|t�1 represents the uncertainty propagated from previous

kinematic estimates (position to position, position to velocity, and so on). Each one of

these sub-matricies of ⌃
t|t�1 is 2x2, representing horizontal and vertical components of each

kinematic type. The bottom row and right column of zeros encodes the fact that the bias

or constant o↵set term of x
t

, the last element of the state vector, is known with certainty.

Since we have intervened and set p
t

with feedback, this matrix becomes:

⌃
t|t�1 =

2

64
0 0 0

0 ⌃v,v

t|t�1 0

0 0 0

3

75 . (3.20)

We are zeroing out all a priori position uncertainty, as we are explicitly assuming that the

monkey and the control algorithm have matching beliefs about the position of the cursor

at time t. Otherwise, this filter is run in the same manner as the standard Kalman filter.

This modified Kalman filter is used online and, together with Innovation 1 described above,

comprise the ReFIT-KF control algorithm.
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3.3 O✏ine Analyses of Decoder Performance

Although, o✏ine decoding results may not be indicative of closed-loop decoding performance

[10, 20, 27], they o↵er a quick and low cost method for exploring and piloting the design of

new decoders. Any manipulations made to decoder designs must ultimately be compared in

closed loop experiments. In this section we provide an analysis of o✏ine decoding to provide

further insight into the design of ReFIT-KF.

3.3.1 Open Loop Trajectory Analysis of Innovation 2

A standard method for assessing the quality of new online decoding methods is to test o✏ine

trajectory reconstruction quality of native arm reaches. We can apply this methodology to

test innovation 2, which introduces a causal intervention for position estimates. Thus, we

test three filters types:

• Velocity Kalman filter

• Position/Velocity Kalman filter

• Velocity Kalman filter with causal position (innovation 2 as described in supplement

section 6)

Multiple datasets from each of the two monkeys were used (J-2010-10-27, J-2010-10-

28, J-2010-10-29, J-2010-11-02, L-2010-10-27, L-2010-10-28, and L-2010-10-29). For each of

these datasets, the three filters were fit to data collected during 150 native arm control trials

and were tested against native arm control trials. Neural threshold counts were summed in

50 ms bins for the regression and for the test set. Training set kinematics were calculated in

matching 50 ms bins. Training and test sets were from the same day and were partitioned,

so no trials were in both the training and test sets. Training and test sets for all three

filters were identical, allowing for direct comparison of the resulting metrics. For testing,

the Kalman filter is applied to each trial separately, resetting initial kinematics to match the

conditions during the online native arm control session and resetting the uncertainty of the

prior on kinematics.

In Figure 3.6, we plot metrics for Kalman filter decoded native arm trajectories. All

metrics, except mean hold time speed, are calculated from initial cursor movement out to

the target, or the time from target onset until the first target acquire, as the monkey’s
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Figure 3.6: Metrics for Kalman filter decoded native arm trajectories.

strategy during this epoch is clear. The first row of metrics is reconstruction error relative

to native arm trajectory and mean hold time speed2. The remaining metrics are identical

to those defined in supplement section 12. The inclusion of position information, both in

the Pos/Vel-KF and the Vel-KF with causal position, reduces reconstruction error for both

monkeys. However, the Pos/Vel-KF increases the jitter of the reconstructed trajectories, note

the increase in ODC count and mean hold speed. Vel-KF with causal position outperforms

Pos/Vel-KF and Vel-KF on all metrics except MDC.

The increase in jitter for Pos/Vel-KF is expected (as described mathematically in sup-

plement section 6) and is worse during online sessions. For the linear Gaussian model used

2Calculated for the last 350 ms of the hold period
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Figure 3.7: Mean velocity profiles for Kalman filter and steady state Kalman filter
decoded native arm trajectories. All trials are aligned to target onset and are averaged
at 50 ms bins. The profiles are smoothed with neighboring bins.

in these studies and described in supplement sections 4-6, position uncertainty starts at zero

and increases as the update equation stabilizes. When tested empirically, this stabilization

occurs within 10s of iterations or within the first few seconds / trials of online experiments,

resulting in a set of steady state equations. We can test the o✏ine performance of each of

these three filters in steady state, setting initial kinematics as before, but using the steady

state equations to update the trajectory updates at each time step. O✏ine comparisons

made with the steady state versions of all three filter types may be more appropriate for

gaining insight into online performance, because the filters stabilize within a few trials and

are not reset during the sessions.
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If we plot the average velocity profiles, Figure 3.7, for these control modes, and compare

the Kalman filter to the steady state Kalman filter, the impact of this di↵erence is apparent.

The initial velocity for Pos/Vel-KF is much higher. Metrics for the steady state Kalman

filter are plotted in Figure 3.8. Note that the relative performance of Pos/Vel-KF is worse

across all metrics. However, the o✏ine steady state Kalman filter analysis also suggest that

performance gains in Velocity-KF due to the addition of causal position are smaller (the

gap between the green and red bars in Figure 3.8 is smaller than the gap in Figure 3.6).

However, it is important to note that comparing o✏ine trajectory reconstruction quality to

online performance is not straightforward. Thus, in the next section, we o↵er an alternative

analysis that better correlates with the presented online performance.
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Figure 3.8: Metrics for steady state Kalman filter decoded native arm trajectories.
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3.3.2 Observation Model Based Analysis

In the previous subsection, both the trajectory and observation models of the Kalman filter

were applied to data o✏ine. In this subsection, we focus on the observation model by com-

paring o✏ine velocity decoding performance for di↵erent training set manipulations related

to innovation 1 and to di↵erent relationships between velocity and position related to inno-

vation 2. In particular, we are interested in the quality of velocity reconstruction for the

target acquisition task. We assess this quality using two metrics, one estimating direction

decoding accuracy and one measuring relative velocity magnitude between movement and

hold epochs.

The metrics in the previous section were focused upon reconstruction of trajectories

during native arm control. In this section, we assess the ability of di↵erent observation

models to decode the velocity of previously recorded online cursor control trials. Thus, new

metrics are defined in this section that focus on instantaneous control quality by assessing

decoded time bins separately, instead of scoring the quality of entire trajectories.

We analyze o✏ine decoding for two epochs of each trial. The first epoch is from 150 ms

after target onset until initial acquisition3. During this epoch of the trial, we assume that the

monkey is actively attempting to move directly to the target. The second epoch is the final

hold period for each trial. During the second epoch, we assume the monkey is attempting

to minimize velocity magnitude.

We estimate direction decoding accuracy only during the movement epoch, as the monkey

has a clear directional goal. We define angular decoding error as the angle between the

decoded velocity and a straight line path from current cursor position to the target. To assess

velocity direction, we calculate the angular deviation[28] of this angular decoding error. To

assess velocity magnitude, we calculate the ratio of mean speed (or velocity magnitude)

across each hold epoch to the mean speed during movement epochs. A lower value indicates

better ability to modulate between movement and stopping.

3.3.2.1 Dataset preparation

Datasets from each of the two monkeys were used. For each of these datasets, multiple

decoders were tested by fitting models to data collected during either 150 native arm control

trials or 75 position/velocity Kalman filter control trials. Half as many neural control trials

were used because, on average, neural control trials were twice as long as native arm control

3We skip 150 ms from target onset to allow for visual delay.
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trials. Using a matched number of trials did not change the reported trends. Neural threshold

counts were summed in 50 ms bins for the regression. Training set kinematics were calculated

in matching 50 ms bins, by either using the kinematics during the control session or by

applying the “intention-based” kinematic transformations defined in supplement section 5.

In total, four kinematic transformations were tested:

• Identity Transform: unaltered control session kinematics.

• Vector Rotation: rotate velocity vectors towards the target.

• Magnitude Scaling: scale all velocities during the hold period to zero.

• Vector Rotation & Magnitude Scaling (innovation 1 as described in supplement section

5)

Thus, for each dataset, eight di↵erent training sets were tested: four kinematic transfor-

mations applied to kinematics from two control methods. The test set was partitioned from

the training set and was composed of trials from position/velocity Kalman filter control.

3.3.2.2 Filter building and o✏ine decoding

These training sets were used to fit the observation models of three di↵erent filters:

• Velocity Kalman filter

• Position/Velocity Kalman filter

• Velocity Kalman filter with causal position (innovation 2 as described in supplement

section 6)

Decodes were calculated as the maximum likelihood estimate of velocity without a kine-

matics model. To simulate causal position, the cursor position during the control session

was used, as is done during online decoding. The maximum likelihood estimator for this

linear Gaussian regression problem is often referred to as weighted linear regression and an

optimal weighting matrix from neural observations to kinematics has a closed form solution

(for a detailed description with respect to brain machine interface, see [10]):
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K = (CT

Q
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�1 (3.21)
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T (XX

T )�1 (3.22)

Q =
1

D

(Y � CX)(Y � CX)T (3.23)

Note C and Q are fit as described for the Kalman filters used in online experiments.

For the velocity Kalman filter, the neural dataset, Y , was regressed against corresponding

horizontal and vertical velocities as defined by one of the four kinematic transformations

described above. For the Pos/Vel and Causal Pos/Vel Kalman filter, Y was regressed against

horizontal and vertical position in addition to the velocities. As before, a column of ones was

added to X for all filter regressions to allow for a mean o↵set in firing rate. Note that K,

C, and Q are identical for Pos/Vel and Causal Pos/Vel Kalman filter fits. For each 50 ms

bin, intended velocity was estimated:

x̂

v

t

= K

v(y
t

� CFx

t

) (3.24)

where Kv is the sub-matrix (rows) of K that map to velocity and F is a diagonal matrix

with only ones and zeros on the diagonal to select which expected contributions of x
t

to

subtract o↵ (as Cx

t

is the expected firing rate for x
t

kinematics). For the Velocity and the

Pos/Vel Kalman filters, F is set to only remove the baseline firing rate (the constant one

element of x
t

). For the Causal Pos/Vel Kalman filter, F is set to also remove the expected

contribution of position as presented on screen during the previously recorded online session.

Thus, for o✏ine decoding, the Causal Pos/Vel Kalman filter is the only filter that is provided

with neural cursor position information from the session. During online sessions, the Pos/Vel

Kalman filter does use this information as well, but the filter assumes position information

is unreliable and so it is down-weighted.

Training and test sets were always partitioned, so no trials were in both the training

and test sets. For each monkey multiple datasets were tested (J-2010-10-27, J-2010-10-28,

J-2010-10-29, J-2010-11-02, L-2010-10-27, L-2010-10-28, and L-2010-10-29). The test set was

identical for each training set type and filter type, allowing for direct comparison.
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Figure 3.9: O✏ine decoding metrics for Monkey J for all training set and filter types, error
bars indicate standard deviation.
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Figure 3.10: O✏ine decoding metrics for Monkey L for all training set and filter types, error
bars indicate standard deviation.
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Figure 3.11: O✏ine decoding metrics for Monkey J comparison across filter types with vector
ration and magnitude scaling training sets, error bars indicate standard deviation.
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Figure 3.12: O✏ine decoding metrics for Monkey L comparison across filter types with vector
ration and magnitude scaling training sets, error bars indicate standard deviation.

3.3.2.3 Results

Figures 3.9 and 3.10 plot the two o✏ine metrics for both monkeys across all 24 training set

conditions. Note that for both measures lower values indicate better performance. Major

trends are similar for both monkeys and are consistent with online experiments. Specifi-

cally, vector rotation applied to neural control kinematics improves performance and the

addition of the magnitude scaling transform results in further improvement. The causal po-

sition/velocity Kalman filter performance is better than both the velocity Kalman filter and

the position/velocity Kalman filter by these metrics as well. Figures 3.11 and 3.12 compare

performance of the three filters when training from kinematics transformed with vector rota-

tion and magnitude scaling (these data are plotted in Figures 3.9 and 3.10, but are reprinted
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to facilitate comparison). For monkey L, the standard deviation of both metrics when using

native arm control trained decoders was relatively large. This is consistent with the day to

day online performance of native arm control trained filters for monkey L, which tended to

vary more than neural cursor control trained filters.
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