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Abstract

Volume illustration is a developing trend in volume vi-
sualization, focused on conveying volume information ef-
fectively by enhancing interesting features of the volume
and omitting insignificant data. However, the calcula-
tions involved have limited the illustration process to non-
interactive rendering. We have developed a new interactive
volume illustration system (IVIS) that harnesses the power
of programmable graphics processors, and includes a novel
approach for feature halo enhancement. This interactive
illustration system is a powerful tool for exploration and
analysis of volumetric datasets.

1. Introduction

Efficient exploration and highlighting of volume struc-
tures has been a major emphasis of visualization research.
The main challenge is conveying the volume structure ef-
fectively to the user. Traditionally, visual realism has been
a goal of many visualization approaches. Although photo-
realistic approaches can be used with volume rendering as
a technique to enhance volumetric perception (e.g. Phong
lighting model for isosurfaces), realism might not be the
best approach for volumetric datasets. In contrast, the vol-
ume illustration approach combines traditional volume ren-
dering with non-photorealistic (illustrative) techniques. The
main goal of the volume illustration approach is to enhance
the expressiveness of volume rendering by highlighting im-
portant features within a volume, providing depth cues and
omitting “uninteresting” data. The resulting images resem-
ble a technical or medical illustration, hence the term “vol-
ume illustration”.

Our current work extends the volume illustration re-
search by Ebert and Rheingans [5] to interactive rates
through utilization of modern graphics hardware and new
algorithms for some illustration techniques. The original
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work presented a set of flexible volume rendering enhance-
ments at non-interactive rates.

This new work takes advantage of current PC graph-
ics hardware capabilities and uses the recently introduced
Cg language[1], which is a compiler for facilitating ver-
tex/fragment programs development and making the imple-
mentation details reasonably transparent. With the help of
these tools, a number of volume illustration enhancements
can be implemented in a straightforward manner. However
the algorithms for complicated enhancements, like feature
halos, require redesign. This paper presents methods for
adapting and accelerating the enhanced visualization pro-
cess using modern graphics hardware.

2. Related work

Volume illustration can be viewed as non-photorealistic
rendering (NPR) applied to volume visualization. The ap-
proaches for the problem can be roughly divided into two
categories: the first approach enhances standard volume
rendering algorithms with NPR techniques, while the sec-
ond approach applies illustrative drawing styles to volumes,
creating a new way to demonstrate volume features.

The first category of volume illustration techniques is de-
scribed by Ebert and Rheingans [5]. Csebfalvi et al. [4] use
accelerated ray-casting and shear-warp rendering for fast
object contour rendering and Lum et al. [10] describe using
graphics board capabilities and clusters of PCs to achieve
interactive rates for tone shading, silhouettes, and depth-
based color cues [11].

The second approach applies common drawing styles
to volume illustration. One popular technique is hatching,
or rendering images by the means of monochrome strokes.
Praun [14] and Hertzmann [6] describe hatching for surface
shape illustration, and Nagy and Westermann [12] describe
hatching for conveying the shape of volume isosurfaces. In-
terrante [7] uses the approach of stroke advection along the
natural “flow” over the surface of an object, achieving a
similar result. Lu et al. [9] introduced another approach
for non-photorealistic rendering using volumetric stippling.



3. Algorithm

We use texture-based volume rendering [2] in combina-
tion with programmable fragment programs for our volume
illustration system. Some illustration techniques are easily
adapted to modern graphics hardware and are briefly dis-
cussed in Section 3.2. Feature halos are computationally
very expensive and, therefore, we have developed a new al-
gorithm for rendering feature halos interactively. This algo-
rithm is described in Section 3.3.

For volume rendering, the volume is sliced by view-
aligned quadrilaterals that are rendered in back-to front or-
der and blended together to form the final image. Extensive
hardware programmability allows us to enhance the original
approach, pushing the transfer function and enhancement
calculation down to the fragment processing level as shown
in Figure 1.

As each slice is being rendered, the application level pro-
gram clips the slice against the volume boundary, while
shading and enhancement occur at the fragment level.
Thus to change the rendering parameters, we only need to
change the input of the fragment program, which avoids re-
processing the data. Figure 1 illustrates the general opera-
tions of the rendering process for a single slice.

Figure 1. Interactive rendering pipeline for
single slice

3.1. Fragment program structure

The fragment program reads the density value from the
volume dataset texture and applies the transfer function and
volumetric illustration enhancements. There are two ways

that the transfer function can be applied in the fragment pro-
gram. The first way is in-shader calculation, where the func-
tion takes the density value as input and uses the fragment
GPU instructions to calculate the RGBA output. The sec-
ond way uses a 1-D texture that stores RGBA output and is
indexed by the density value.

The first method provides us with floating-point preci-
sion, since the calculation occurs inside the fragment pro-
gram and does not involve 8-bit textures. However, an im-
plementation of transfer functions with complicated profiles
would require long fragment programs, which would cause
slow performance. Therefore, in order to provide speed
and flexibility in the transfer function specification, we use
the second method. The precision is increased with new
graphics hardware which provides 16-bit textures through
OpenGL extensions.

3.2. Enhancements

Our basic set of illustrative enhancements are the feature
and orientation enhancements introduced in [5]. Since the
adaptation of most of these enhancements to graphics hard-
ware is straightforward, they are briefly summarized below.
The new feature halo enhancement algorithm is presented
in Section 3.3.

Boundary enhancement: Areas with high gradient repre-
sent boundaries between materials. To highlight them,
we need to increase the opacity proportional to the
gradient magnitude. For a more effective outline of
the high gradient areas, we use the gradient magnitude
term raised to a power:

oe = oo · |
−→
∇(P )|p

where −→
∇(P ) is the gradient at the sampled point P, oo

is the original sample opacity, and oe is the enhanced
sample opacity.

Silhouette enhancement: Silhouettes are useful for orien-
tation cues and for rendering a sketch of the feature
shape. The silhouette term is strongest at areas where
the view vector is orthogonal to the surface normal
vector. Thus, the opacity enhancement term becomes:

oe = oo · (1 − |(
−→
∇′(P ) ·

−→
V )|)p

−→
∇′(P ) is the normalized gradient at the sampled point
P and −→

V is the normalized eye-vector.

Tone shading: Tone shading is an extension of the tradi-
tional illumination model used to convey shape by giv-
ing surfaces facing the light source “warm” colors,
while other surfaces get “cooler” colors. The color
modification term becomes the following:
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Enhancements Per-voxel data required
Boundary Gradient magnitude
Silhouette Gradient direction
Lighting Gradient direction

Tone shading Gradient direction
Distance color blending Eye-space z coordinate

Distance color cue Eye-space z coordinate
Feature halos Halo effect intensity

Table 1. Required per-voxel information for
the enhancements

bwc = (1 + (
−→
∇′(P ) ·

−→
L ))

Color = bwc · Colorwarm + (1 − bwc) · Colorcool

where −→
L is light direction.

Distance color blending: This technique essentially dims
volume sample colors as they recede from the viewer.
At the front of the volume, voxel color remains un-
changed, but as the depth value increases, the color is
gradually blended with the background color. Using
blue as the background color gives a result resembling
aerial perspective.

Color = (1−d) ·Colororiginal +d ·Colorbackground

where d is screen-depth of the current voxel.

Distance color cues: It is common practice to convey
depth information through color, so we can have the
enhancement that maps screen depth (eye distance) to
an arbitrary color map.

Feature halos: Feature halos are the enhancements that
highlight strong features by putting a null “halo”
around them, i.e. by darkening the region around the
features. The next section describes the calculations
required for the halos and reviews our new algorithm.

Having this set of basic enhancements, it is possible to
combine them for more effective enhancement (e.g., apply-
ing boundary, sihouette, and tone shading simultaneously).
The shaders for such combinations can be easily derived
from the basic enhancement shaders with additional param-
eters allowing the interactive adjustment of the strength of
each enhancement.

All of the enhancements require extra data per voxel. Ta-
ble 1 summarizes the values needed for each specific en-
hancement. To determine the gradient, we use the gradi-
ent table that is stored as a separate texture and used in-
side the shader. We generate it during pre-processing, using
the central difference technique [8]. There are many alter-
native ways for gradient estimation and a survey of these

techniques can be found in [13]. Another option is calcu-
lating central differences within the fragment shader, since
modern hardware places virtually no restrictions on how
many texture lookups we can do in a single rendering pass.
This approach requires 50% less texture memory and uses
floating-point precision in the calculations. However, in or-
der to sample volume at the neighbor voxels, seven texture
lookups are required instead of two (for the pre-generated
gradient option).

The eye-space z coordinate, mentioned in Table 1, is
passed to the shader through the vertex parameters of the
slice. The halo value is view-dependent, and cannot be pre-
computed. However, a portion of the halo calculation is
view independent as described in the following section.

3.3. Feature halos

Feature halos make regions around strong features darker
and more opaque, obscuring the background elements
which would otherwise be visible. These “null” halos are
effective for making important features stand out from the
background. The strongest halos are created in the empty
regions just outside (in the plane perpendicular to the view
direction) the strong feature, so we examine the immedi-
ate neighborhood of the voxel in calculating feature halos.
The algorithm suggested in [5] calculates an extra value per
voxel, the halo-effect intensity H , using Equation 1:

Hi = (

neighbours∑

j

dwjhij) · (1 − |
−→
∇(Pi)|) (1)

dwij are the weights of each neighbor’s halo influence and
are inversely proportional to the square distance between
the considered voxel and the neighbor. hij is the maximum
potential halo contribution of a neighbor j with respect to
voxel i, given by Equation 2:

hij = |
−→
∇(Pj) · ~eij |

khpe(1 − |
−→
∇′(Pj) ·

−→
V )|)khse (2)

Here, −→∇(Pj) is the neighbor’s gradient,
−→
∇′(Pj) is the nor-

malized neighbor’s gradient, khpe controls how directly the
neighbors gradient must be oriented toward the current lo-
cation, and khse controls how tightly halos are kept in the
plane orthogonal to the view direction −→

V . The sample is
then modified according to the magnitude of the halo-effect,
usually increasing the opacity and decreasing the color pro-
portional to H .

Calculation of the halo-effect intensity can be imple-
mented in the fragment shader; however, it would be inflex-
ible (the neighborhood cannot be changed once the shader
is written), involve excessive redundancy in calculation, and
have extremely slow performance. For example, to consider
the 3 × 3 × 3 neighborhood of a voxel we would need 27
texture lookups.
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In order to overcome this obstacle, we have developed an
alternative version of the algorithm, using the paradigm of
multi-pass rendering. We generate the halo influence vol-
ume in the first pass and use the resulting volume texture in
the second pass. According to Equation 2, every voxel po-
tentially affects the halo values of its neighborhood. In other
words, every voxel generates a spherical halo influence area
around it. To determine this halo-effect intensity for each
voxel, we must add up all the neighbors’ influences.

We, therefore, create a halo-buffer, which is essentially
a 3D-texture with voxels containing the value of the sum
of the neighbor voxels’ halo influences (i.e. each voxel in
the halo-buffer holds the value for the first term in Equa-
tion 1). We calculate this by “additive rendering to vol-
ume”: we traverse the voxels, determining the amount of
halo-influence in each voxel’s neighborhood and generate
halo-splats. Here, the halo-splat is a fixed size sub-volume
that covers the specified neighborhood. After generating the
halo-splat, it is added to the result volume. Figure 2 shows
an example of how two splats contribute to the point, using
the 2D case for simplicity.

Figure 2. Additive rendering approach for
halo calculation a) one splat b) two splats c)
three splats

3.4. Acceleration

To accelerate feature halo computations, we use the
following three techniques. First, we incorporate a low-
gradient cutoff. One of the common techniques for accel-
erating the volume rendering process is to eliminate non-

Dataset 0.1 0.2 0.4
Bunny 7% 4.5% 2.3%
Engine 9.5% 6.5% 1.4%

Aneurysm 1.4% 0.9% 0.5%
Head 7% 1.6% 0.1%

Table 2. Percentage of high-gradient voxels,
depending on the threshold value

qualified areas of the volume from the processing. In our
case, the significant halo influences are generated by the
voxels with high gradient. Statistical analysis of volume
data shows that the percentage of such voxels is low for
volumetric datasets (see Table 2). Therefore, we can pre-
process the volume and filter out voxels that will not con-
tribute to the halo.

Second, we can calculate the halos at a lower resolution.
Ideally, for every voxel in the original dataset we should
have a halo-buffer value. However, if an approximate value
will suffice, we can use a lower resolution halo-buffer. In
this case, for each voxel in the halo-buffer, the gradient has
to be interpolated using an appropriate filter. In our case, we
either use a trilinear interpolation filter, or average a 2×2×2
voxel block (when halo-buffer dimensions are exactly half
of the original volume dimensions). Again, this filtering
is done at the pre-processing stage and does not affect the
interactive performance.

Finally, for the generation of the halo-buffer, we can use
the graphics hardware for most of the calculations. We ini-
tialize the resulting frame buffer on the graphics card to
have exactly the same number of pixels as our result 3D
texture. As the algorithm uses a pixel buffer as a rendering
target, which is later converted into a 3D-texture, we define
a 2D to 3D mapping. One popular approach to achieve this
is to layout the 3D-texture slices on a 2D-plane. An exam-
ple of this mapping is in Figure 3.

We need to render halo-splats for every voxel. Since the
halo-splat is essentially a small volume, we need to render
a set of halo-splat slices, designated slabs: 2D decompo-
sitions of the splat. Thus, for a n × n × n splat we have
n slabs with size n × n. Rendering of these slabs uses an
approach similar to texture-based splatting [3], where splats
are rendered as texturized quadrilaterals. For each slab, the
rendering implements Equation 2. The result depends on
the view vector, gradient vector for the current voxel. Each
element of the halo-splat depends on the neighbor-vector
and the weight. Thus, we need the following data:

• Per-frame information: view vector −→V

• Per-voxel information: gradient vector −→G

• Per-texel information (in halo buffer): vector eij ,
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Figure 3. Mapping of 3D-texture 64x64x64 to
a 512x512 framebuffer. Each slice is 64x64

weight w.

In order to provide fast calculation of the result, we cre-
ate a fragment shader that takes the above parameters as
input and computes the result of Equation 2.

Per-texel information is supplied by the splat-texture,
which essentially defines the shape of the splat. The splat-
texture is the same for all the voxels, and, therefore, we
generate it at the initialization phase. The generation pro-
ceeds as follows: for each element inside the splat-texture,
we calculate the normalized vector toward the splat center
(neighbor-vector −→eij) and the weight. The weight value is
inversely proportional to the squared distance from the cur-
rent voxel to the splat center, and the weights for all the
voxels in the splat must sum to 1. The −→eij and w value are
put into RGBA fields of the texture, as shown in the Fig-
ure 4. The generated 3D splat-texture is then sliced up into
n 2D slab-textures.

ex
ij e

y
ij ez

ij w

Figure 4. Texel of the splat-texture

The next stage is the first rendering pass, which gener-
ates the halo-buffer. At this step, all the halo-splats are ren-
dered into a pixel buffer. Since overlapping halo-splats are
summed according to Equation 1, we use additive blend-
ing. For each qualified voxel in the halo-buffer, we load
its gradient −→G as a parameter to the shader and then ren-
der each slab as a quadrilateral textured with the respective
slab-texture. Thus, during each pixel’s calculation of the re-
sulting splat, the shader takes all the required data (−→V ,

−→
G

as parameters, −→eij and w from the respective texel in the
slab-texture) and calculates the halo-influence accordingly,
placing the result in the RGBA components of the output

Figure 5. Halo-buffer rendering flowchart

fragment. The complete process of halo-buffer generation
is outlined in Figure 5.

After all the splats are rendered, we need to create a 3D-
texture from the resulting pixel buffer, completing the halo-
buffer creation. This is done using the standard OpenGL
call glCopyTexSubImage3D for copying areas from the
buffer into 3d-texture slices.

During the second pass, the final volume rendering
shader enhancement becomes a straightforward multiplica-
tion of the halo-buffer value by (1 − |∇(Pi)|), according
to Equation 1. When the halo effect intensity H has been
calculated, we apply it by increasing the opacity of the frag-
ment by c1H , and decreasing the color by c2H , where c1

and c2 are constant parameters, controlling the impact of
the halo on the final image.

4. Results and analysis

We have implemented the previously described volume
illustration techniques and applied them to several differ-
ent datasets. In our images, we have used the following
datasets: head1 (CT scan of a human head), an engine2 (CT
scan of an engine block), a rabbit3 (CT scan of a hollow clay

1UNC Chapel Hill
2http://www.volvis.org
3National Library of Medicine
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rabbit figurine), and an aneurysm4 (CT scan of the arter-
ies with a contrast agent, with aneurysm) dataset. Figure 6
shows results of applying the different enhancements de-
scribed in the paper. The first row compares non-enhanced
volume rendering, rendering with color transfer function
and boundary enhancement, and rendering with silhouette
enhancement; the second row presents our results in ap-
plying illumination, tone shading, and combined silhou-
ette/boundary enhancement. Figure 7 shows the application
of feature halos, along with boundary enhancement.

The performance (i.e., the frame rate) of the particu-
lar enhancement implementation depends on the dataset
size, image resolution, fragment shader complexity, and the
number of fragments to render.

Essentially, to render an image, we need to render N

slices. During the shading of each slice, the current frag-
ment program is executed for each pixel in the slice. Thus,
it is reasonable to expect the rendering to be proportional to
the number of slices, the screen area, and the complexity of
the fragment program code.

Fragment program execution time obviously depends on
the number of instructions generated by the compiler and
the type of those instructions. However, since we do not
have detailed information about fragment program loading
and execution, we cannot predict exactly how much time
a certain program will take. Generally, we can compare
the performance of the program by either benchmarking
or approximately comparing programs using the number of
standard operations (dot-products, texture lookups) used in
them.

The number of slices can serve as the main quality-vs-
performance parameter. A lower number of slices increases
performance; however, this may lead to slicing artifacts,
where the volume is not sampled with sufficient frequency.

We have tested our unoptimized system with a number
of volumetric datasets, resulting in very good performance.
For a typical volume size of 256 x 256 x 128, we achieve
frame rates of 6 to 10 frames per second for the gradient
enhancement, about 4 frames per second for the tone shad-
ing, and 4 to 5 frames per second for the halo rendering and
gradient enhancement combined. With optimization, we be-
lieve we should be able to achieve a 50% to 100% perfor-
mance increase. Our tests were performed on the Pentium
4 1.5 Ghz PC with 1.5 Gbytes of RAM and a GeForce FX
5800 Ultra card (128 Mbytes of VRAM), using 250 slices,
and a screen area of about 300 × 300.

5. Conclusions and Future Work

We have presented an interactive volume illustration sys-
tem, which incorporates many feature enhancements, pro-

4Philips Research, Hamburg, Germany

vides interactive exploration of volume datasets and fea-
tures, and allows interactive adjustment of enhancement pa-
rameters. This new system is a very powerful exploration,
previewing, analysis, and educational tool. Most common
volume illustrative enhancements are part of the system and
can be easily combined to achieve the most appropriate ren-
dering of the volume dataset. Our new halo-buffer algo-
rithm is a very fast alternative to traditional halo generation
and this approach can be used for other local area enhance-
ments and for volumetric shadow buffer creation.
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No enhancement Colored transfer function, boundary enhancement Boundary + silhouette enhancement

Tone shading Phong illumination Boundary/silhouette, colored Silhouette

Figure 6. Example interactive volume illustration enhancements.
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Aneurysm: no enhancements Boundary enhancement Feature halos

Engine: no enhancements Boundary enhancement Feature halos

Bunny: boundary enhancement Feature halos Head: highlighted silhouettes Head: silhouettes and halos

Figure 7. Feature halos effect applied to various datasets
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