
From Structured Documents toNovel Query Facilities�V. Christophides, S. Abiteboul, S. Cluet and M. SchollyI.N.R.I.A.78153 Le Chesnay, CedexFrance(y Cedric/CNAM, 292 rue St Martin 75141, Paris Cedex 03, France)fVassilis.Christophides, Serge.Abiteboul, Sophie.Cluet, Michel.Schollg@inria.frFebruary 29, 1996AbstractStructured documents (e.g., SGML) can bene�t a lot from database support and morespeci�cally from object-oriented database (OODB) management systems. This paper de-scribes a natural mapping from SGML documents into OODB's and a formal extension oftwo OODB query languages (one SQL-like and the other calculus) in order to deal withSGML document retrieval.Although motivated by structured documents, the extensions of query languages that wepresent are general and useful for a variety of other OODB applications. A key element isthe introduction of paths as �rst class citizens. The new features allow to query data (and tosome extent schema) without exact knowledge of the schema in a simple and homogeneousfashion.1 IntroductionStructured documents are central to a wide class of applications such as software engineering,libraries, technical documentation, etc. They are often stored in �le systems and document accesstools are somewhat limited. We believe that (object-oriented) database technology (OODB)can bring a lot of bene�t to documents management, e.g., recovery, concurrency control andhigh level query capabilities. In particular, whereas existing tools for accessing documents aresophisticated with respect to pattern matching facilities, they do not support queries on nontextual data, often totally ignore document structure, and are extremely primitive from a logicalviewpoint. For these reasons, we introduce extensions of an OODB data model and of two querylanguages (one SQL-like and the other calculus) to �t the needs of structured document storageand retrieval. The main contribution of the paper resides in novel language features that areimportant beyond the scope of structured documents.The Standard General Mark-up Language (SGML) [2] is becoming de facto the standard forstructured document creation and exchange. An SGML document has a hierarchical structuresatisfying a document type de�nition (DTD). In the spirit of [4], we design a mapping from�Work partially supported by Esprit BRA FIDE2. 1

DTD's to OODB schemas1. It will be shown that, although straightforward, this mappingrequires structuring primitives such as ordered tuples, lists, and union types. To the best of ourknowledge none of the existing OODB management systems (OODBMS) provide all the neededfeatures. We choose as a target system the O2 OODBMS [15] for its type system and moreoverfor its elegant query language O2SQL [8]. The �rst part of our work consists of an appropriateextension of the O2 data model in order to facilitate the mapping from SGML documents to O2instances.Once in the database, documents can be queried like other data. However, standard querylanguages lack features that are essential for documents retrieval such as pattern matchingfacilities and querying data without exact knowledge of its precise structure. We introduceappropriate extensions of OODB query languages to answer these needs as well as those inducedby the new structuring primitives. The new features lead into a number of subtle issues, inparticular, with respect to typing. We demonstrate how these can be resolved by formallypresenting an extension of the OODB calculus underlying IQL [6].The most interesting novelty (from a technical viewpoint) comes from the use of paths (tonavigate through the database objects/values). In the language, paths are �rst class citizensand in particular, path variables may be used in queries. We will see how these new featurescan be incorporated in O2SQL allowing to query documents (even without precise knowledge oftheir structure) in a simple and homogeneous fashion. For instance, we will show how to obtainthe \di�erence" between the structures of two documents with a short and very intuitive query.Recently, many researchers have studied the modeling of document databases [14, 19, 25, 27].These models provide only some of the features that, as will be seen in the sequel, are criticalfor the representation of SGML documents. Additionally, several query languages for structureddocuments can be found in the literature [18, 20, 26, 11, 9]. As opposed to these approaches,the language we propose (i) can be applied in the general framework of OODB applications and(ii) allow queries that address both the content and the structure of the documents. The OODBlanguages presented in [10, 24] like our language allow to query data with incomplete knowledgeof its structure. Compared to these, our language has simpler formal foundations and does notconsider paths as strings but as �rst-class citizens that can be queried. Finally, the use of pathsrelates our language to query languages proposed for graph databases or hypertext systems,e.g., [13, 7]. Indeed, we believe that our language is particularly suited for current extensions ofSGML to multi and hypermedia documents such as HyTime [1].This paper is organized as follows. Section 2 introduces the SGML standard. The mapping fromSGML to the O2 DBMS is de�ned in Section 3. Section 4 presents the extension of the O2SQLlanguage and Section 5 the formal bases for this extension. Section 6 concludes the paper andbriey presents the status of the implementation.2 SGML preliminariesIn this section, we present the main features of SGML [2, 17]. (A general presentation is clearlybeyond the scope of this paper.)In order to de�ne a document's logical structure, SGML adds descriptive mark-up (tags) indocument instances. Each SGML document has: (i) A prologue including a Document TypeDe�nition (DTD), i.e., a set of grammar rules specifying the document generic logical structure(see Figure 1); and (ii) a document instance containing the information content as well as thetags e.g., the speci�c logical structure of the document (see Figure 2).1The inverse mapping from database schema/instances to SGML DTD/documents also opens interesting per-spectives for exchanging information between heterogeneous databases, writing reports, etc. This is not considered2

]>

1. <!DOCTYPE article [

2. <!ELEMENT article - - (title, author+, affil, abstract, section+, acknowl)>

18. <!ATTLIST paragr

6. <!ELEMENT author - O (#PCDATA)>

5. <!ELEMENT author - O (#PCDATA)>

4. <!ELEMENT title - - (#PCDATA)>

12. <!ATTLIST figure label ID #IMPLIED>

14. <!ATTLIST picture sizex NMTOKEN "16cm"

10. <!ELEMENT body - O (figure | paragr)>

11. <!ELEMENT figure - O (picture, caption?)>

7. <!ELEMENT abstract - O (#PCDATA)>

9. <!ELEMENT subsectn - O (title, body+)>

15. <!ELEMENT caption O O (#PCDATA)>

17. <!ELEMENT paragr - O (#PCDATA)>

19. <!ELEMENT acknowl - O (#PCDATA)>

reflabel IDREF #REQUIRED>

13. <! ELEMENT picture - O EMPTY>

sizey NMTOKEN #IMPLIED
file ENTITY #IMPLIED>

8. <!ELEMENT section - O ((title, body+) | (title, body*, subsectn+))>

3. <!ATTLIST article status (final | draft) draft>

16. <!ENTITY fig1 SYSTEM "/u/christop/SGML/image1" NDATA > Figure 1: A DTD for a document of type articleIn SGML jargon, the logical components of a document are called elements. For example line 2of Figure 1 de�nes the structure of the element with name article. Element names are used astags in the document. The speci�cation of an element in the DTD gives its name, its structureand some indications (e.g., \-O" indicates that the tag can be omitted if there is no ambiguity).The element structure is built using other elements or basic types such as #PCDATA, EMPTY,etc. and connectors that can be further quali�ed with occurrence indicators. In particular, thefollowing can be used:� The aggregation connector (\,") implies an order between elements. For example, a �gureis composed of a picture followed by a caption (line 11). There is also an alternativeaggregation connector (\&") that does not imply an order.� The choice connector (\j") provides an alternative in the type de�nition. For instance,element body is either a �gure or a paragraph (line 10).� The optional indicator (\?") indicates zero or one occurrence of an element (e.g., captionsin �gures (line 11)); the plus sign (\+") indicates one or more occurrences of an element(e.g., sections in articles, line 2); and the asterisk (*") zero or more occurrences.There are a number of other features in SGML that we do not present here because of spacelimitations. We conclude by mentioning one important modeling feature. Cross referencesbetween elements are speci�ed using keywords ID (for the element that will be referenced) andin the present paper. 3

<article status="final">

<author> V. Christophides
<author> S. Abiteboul
<author> S. Cluet
<author> M. Scholl
...

...
<body><paragr> This paper is organized as follows. Section 2
introduces the SGML standard. The mapping from SGML to the O2
DBMS is defined in Section 3. Section 4 presents the extension ...

<abstract> Structured documents (e.g., SGML) can benefit a lot from

<section>

<body><paragr> In this section, we present the main features of
SGML. (A general presentation is clearly beyond the scope of this paper.)

...

<section>
(OODB) management systems...
database support and more specifically from object-oriented database

<title> From From Structured Documents to Novel Query Facilities </title>

<title> Introduction </title>

</body></section>

</body></section>

</article>

<title> SGML preliminaries </title>Figure 2: An SGML document of type articleIDREF (for the element referencing it). For instance, �gures may be referenced in paragraphs(Figure 1 lines 12 and 18).3 From SGML to O2In this section, we consider the representation of SGML documents in an OODB, namely O2.We show briey what portions of the document model are easily handled by the database modeland the extensions that are needed to support the rest. We consider the problem of translationfrom documents to database instances.None of the existing OODBMS's provides all the features we need. We chose O2 [15] becauseof (i) its sophisticated type system and (ii) its query language that can easily be extended.The SGML hierarchical structure can be naturally represented using the complex values in O2.Indeed, O2 has an hybrid data model including objects and constructed values. The modelingwould be more complicated in a pure object model. The aggregation and list constructors of O2are very useful to describe the structure of elements.Documents possibly require multimedia types (e.g., images) that can easily be incorporatedinto any OODB and cross references between logical components that are easily modeled usingobject identity. Furthermore, object sharing provided by OODB's is useful for the manipulationof documents, notably in the support of their evolution (e.g., versions).On the other hand SGML document modeling leads to other requirements mainly related to theuse of connectors and occurrence indicators mentioned in Section 2 that are missing in O2 and4

class Article public type tuple (title: Title, authors: list (Author), affil: Affil,

abstract: Abstract, sections: list (Section),

acknowl: Acknowl, private status: string)

sections != list(), status in set ("final", "draft")

constraint: title != nil, authors != list(), abstract != nil,

class Title inherit Text

class Author inherit Text

class Affil inherit Text

class Abstract inherit Text

class Section public type union (a1: tuple (title: Title, bodies: list (Body)),

a2: tuple (title: Title, bodies: list (Body),

subsectns: list (Subsectn)))

constraint: (a1.title != nil, a1.bodies != list())

| (a2.title != nil, a2.subsectns != list())

class Subsectn public type tuple (title: Title, bodies: list (Body))

constraint: title != nil, bodies != list()

class Body public type union (figure: Figure, paragr: Paragr)

constraint: figure != nil | paragr != nil

class Figure public type tuple (picture: Picture, caption: Caption,

constraint: picture != nil

class Picture inherit Bitmap

class Caption inherit Text

class Paragr inherit Text

constraint: reflabel != nil

class Acknowl inherit Text

name Articles: list (Article)

private label: list (Object))

public type tuple (private reflabel: Object)
 Figure 3: O2 Classes for Documents of Type Articlein other OODB's as well. In particular, two main modeling features lead to extensions of thedata model:Ordered tuples. The ordering of tuple components is meaningful in SGML. Sometimes, theordering is imposed; sometimes some exibility is left. We propose an original solutionbased on polymorphism that blurs the distinction between tuples and lists. A more ad-hoc solution based on adding to the tuple an attribute recording the ordering between the�elds would lead to inelegance in the query language.Union of types. In SGML, alternative structures may be provided for the same elementtype. Union of types is the appropriate solution for this. We felt that type union is auseful modeling feature that was missing in O2 and added it to our model. We use markedunion, i.e., a tag speci�es the alternative type that is chosen. Union (generalization) couldalso be simulated using multiple inheritance but we did not adopt this solution that misusesthe original inheritance semantics (specialization). In addition, this latter solution wouldneedlessly increase the size of the class hierarchy.We will see in Section 5 how these features can formally be added to the model.5

The problem of extracting data from sequential structured �les has been quite popular lately(see for example [28, 4, 21]). More speci�cally, our problem consists in getting an O2 databaserepresentation from an SGML document. In other words, we need to map a DTD into an O2schema and a document instance into corresponding objects and values. In the spirit of [4],we propose to do this by annotating SGML DTD's (or some intermediate BNF grammar) withsemantic actions. This is quite standard in the compilation �eld, see for example [22]. EachSGML element de�nition in the DTD is interpreted as a class having a type, some constraintsand a default behavior (i.e., standard display, read and write methods for each attribute). Forinstance, Figure 3 presents the O2 classes corresponding to the elements de�nition in the DTDof Figure 1.An SGML basic type is represented by an O2 class of an appropriate content type (e.g., Text,Bitmap). The O2 tuples should be viewed as ordered. The choice connector (\j") is modeled by aunion type (e.g., class Body). For unnamed SGML elements de�ned through nested parentheses(e.g., (title, body+) line 7, Figure 1), system supplied names are provided (e.g., a1 in classSection, Figure 3). Observe the use of inheritance (in class Picture) and that of private attributes(e.g., status in class Article). The element components marked by a \+" or *" occurrenceindicator are represented by lists (e.g., attribute authors in class Article). Finally, note thatconstraints had to be introduced to capture certain aspects of occurrence indicators, the fact thatsome attributes are required and also the range restrictions. Constraints will not be consideredin this paper.To conclude this section, it should be noted that the representation of SGML documents in anOODB such as O2 comes with some extra cost in storage. This is typically the price paid toimprove access exibility and performance.4 The Query LanguageIn this section, we present an extension of the O2SQL language. The presentation relies on exam-ples. The running example uses the O2 schema of the previous section. The formal foundationsare considered in Section 5.In the SGML world, documents are usually queried by means of Information Retrieval Systems(IRS). These systems provide two main facilities lacking in OODB query languages: (i) IRS'sprovide sophisticated pattern matching facilities for selecting documents according to their con-tent relying on full text indexing; and (ii) IRS's do not require users to know the exact structureof documents. Obviously, if we intend to query documents from a database, we must providesuch facilities in the richer model of the previous section. To answer (i), we show how sophisti-cated string predicates are introduced in the language. Then, to answer (ii), we introduce twonew sorts (PATH and ATT) and their basic operations. Finally, we show how the extensions ofthe model impact the query language. In particular, we show how union type a�ects the O2SQLlanguage. This leads to a language that combines (we believe nicely) the features of both IRSand database access languages.4.1 Querying StringsThe semantics of O2SQL relies on a functional approach. O2SQL is de�ned by a set of basicqueries and a way of building new queries through composition and iterators. Thus, to add anew functionality to the language one often has only to add new basic queries. This is what wedo here.The next query introduces the predicate contains which o�ers pattern matching facilities.6

Q1: Find the title and the �rst author of articles having a section with a title containing thewords \SGML" and \OODBMS".select tuple (t: a.title, f author: first(a.authors))from a in Articles, s in a.sectionswhere s.title contains (\SGML" and \OODBMS")The contains predicate allows to match a string with a pattern or a boolean combinationof patterns. (Patterns are constructed using concatenation, disjunction, Kleene closure, etc.)Among other textual predicates, we only cite near that allows to check whether two words areseparated by, at most, a given number of characters (or words) in a sentence.From a linguistic viewpoint, this raises no issue. On the other hand, the integration of appro-priate pattern matching algorithms and full text indexing mechanisms are interesting technicalissues that we are currently studying. This is clearly beyond the scope of the present paper.4.2 Managing Union TypesThe introduction of union types involves some serious modi�cation of the type checking ofO2SQL queries as well as of the evaluation of O2SQL iterators (select-from-where, exists,etc). We �rst explain the typing mechanism.O2SQL imposes typing restrictions. For instance, when constructing a collection, we checkthat its elements have a common supertype (e.g., sets containing integers and characters areforbidden). Since we introduce union types in the model, we have to specify their subtypingrules. We briey present the two main rules here.1. There is no common supertype between a union type and a non union type. Note thatthis forbids, for instance, to perform an intersection between a set of integers and a set of(a:integer + b:char)'s.2. Two union types have a common supertype if they do not have an attribute (marker)conict (i.e., types with the same attribute a whose domains do not have a commonsupertype). When it exists, the (least) common supertype of two union types is theunion of the two types. For instance, (a:integer + b:char + c:string) is the least commonsupertype of (a:integer + b:char) and (b:char + c:string). Note that this second typingrule may result into a combinatorial explosion of types. However, (i) this should rarelyhappen and (ii) some semantic rules can be added to the O2SQL typing mechanism inorder to control this ination.The following example shows how the O2SQL evaluation of iterators is modi�ed to take intoaccount union types.Q2: Find the subsections of articles containing the sentence \complex object".select ssfrom a in Articles, s in a.sections,ss in s.subsectnswhere text(ss) contains (\complex object")Compared to Q1, the contains operation in query Q2 is evaluated not over individual dataobjects but over complex logical objects (e.g., subsectns). For that we use a system suppliedoperator text performing an inverse mapping from a logical object (e.g., a subsectn) to thecorresponding portion of text [5]. 7

Recall now that, in the schema of Figure 3, sections have a union type: a section marked with a1corresponds to a tuple with attributes title and bodies and a section marked with a2, to a tuplewith attributes title, bodies and subsectns. In query Q2, the variable ss ranges over subsectnsof sections marked with a2. Two remarks are noteworthy. First, in the de�nition of variable ssin the from clause, the a2 marker is omitted. This syntactic sugaring is required because usersare not always aware of markers in union types. Second, we do not want the evaluation to failon sections whose instance type does not correspond to the a2 marker (e.g., sections that do nothave subsectns).To deal with this problem, we introduce the notion of implicit selectors. Any operation on avariable ranging over a domain with union type implies an implicit selection. In the above query,the implicit selection is that s.a2 should be de�ned. It must be noted that this mechanism standsonly for variables and not for named instances. For example, suppose the existence of the namemy section which has been instantiated with a section marked with a1. In this case, the querymy section.subsectns will return a type error detected at execution time.Let us now come back to the syntactic sugaring with a more complex example. Suppose that,instead of the subsections, we are now interested by the bodies of articles. The from clause ofthe query becomes:from a in Articles, s in a.sections, b in s.bodies.Variable b will range over the union of s.a1.bodies and s.a2.bodies and two implicit selectors willbe used to avoid failure at evaluation. In this example, both attributes bodies have the sametype. However, this cannot be guaranteed in all cases. When this is not the case, a markedunion type is generated by the system.4.3 Querying PathsIn order to query data without exact knowledge of its structure we introduce two new sorts:PATH and ATT. A value of the former denotes a path through complex objects/values (crossingobjects, tuples, unions, lists, etc.) and a value of the latter represents an attribute name (of atuple or a marked union). For instance, .sections[0].subsectns[0] is a path selecting the attributesections of type list, then the �rst section, the attribute subsectns of this section and �nally the�rst subsection. Paths can be queried like standard data. The following queries illustrate the useof path querying.Like all types manipulated in O2SQL, PATH and ATT come with their variables and basicqueries. To distinguish variables according to their sort (standard data, PATH or ATT), PATHvariables are pre�xed by \PATH " and ATT variables by \ATT ". In the next query, my articleis a root of persistence representing an article. Consider the query:Q3: Find all titles in my article.select tfrom my article PATH p.title(t)The result is a set of titles reached by following various paths in the article structure (generaltitle, title of each section, subsection, etc.).In query Q3, the subquery my article PATH p.title(t) illustrates a new basic query. It is apath expression with variables (here PATH p and t), whose semantics is di�erent from thattraditionally used in path expressions without variables. These queries return a set of tupleswith one attribute per variable. In the example, it returns a set of tuples with two attributes:t, PATH p. The attribute PATH p ranges over all the path values that start from the rootof my article and that end with an attribute named title. The value of attribute t in tuple8

(t, PATH p) corresponds to the title that can be reached from my article following the pathPATH p. Several points need further comments.1. We may allow the syntactical sugared formfrom my article .. title(t)if we are not interested in the actual values of path variables.2. Note that the presence of path variables will often imply that the corresponding datavariable is of a union type. Indeed, following di�erent paths, one should expect reachingdi�erent types. This is particularly true if we query data from di�erent sources, e.g.,various authors may structure sections di�erently.3. Path variables may be used outside a from clause without being de�ned in such a clause.For instance, the expressionmy article PATH p.titleis a query that returns the set of paths to a title �eld.4. Paths is a data type that comes equipped with functions. In particular, list functions canbe used on paths. For instance, suppose that P is a path of value .sections[0].subsectns[0]we can compute the length of P : length(P) = 4 and project P on its �rst two elements:P [0 : 1] = .sections[0].5. When path variables are used in a path expression, there is always the possibility of cycles(in the schema and in the data). Our interpretation avoids cycles as will be shown in thenext section.To see another example of the use of paths for querying data with incomplete knowledge of theirstructure, let us assume the existence of a name my old article representing an old version ofmy article. Consider the query:Q4: Find the structural di�erences between two versions of my article.my article PATH p � my old article PATH pThe left (resp. right) argument of the di�erence operation returns the set of paths starting frommy article (resp. my old article). Thus, the di�erence operation will return the paths that arein the new version of my article and not in the old one. Supplementary conditions on datawould allow the detection of possible updates or moves of individual textual objects within thedocument logical structure.In a last example, we also use attribute variables:Q5: Find the attributes de�ned in my article whose value contains the string \�nal".select name(ATT a)from my article PATH p.ATT a(val)where val contains (\�nal")In this example, the data variable val ranges over data that can be accessed from my articlefollowing a path denoted by PATH p (which possibly is the empty path) and ending with theattribute denoted by the variable ATT a. Accordingly, the initial type of val is the union of allthe types found in the structure of my article. The subquery val contains (\�nal") uses theimplicit selector val.a where a : string represents an attribute of type string in the correspondingunion type. As a result O2SQL restricts val to type string. The returned attributes are thosewhose value contains \�nal". We believe that this is an important feature of the extensionof O2SQL allowing the user to perform search operations like Unix grep inside an OODBMS.Finally, the function name returns a string, the name of an attribute.9

4.4 Querying Attributes on their PositionIn this last section, we consider the problem of ordered tuples. We have seen that the tuplesused in the representation of documents are ordered. This implies that there is another way ofviewing a tuple: as an heterogeneous list. For instance, we suppose that our database containsletters with a preamble including, the recipient (attribute to) and the sender (attribute from)addresses, in permutable order (i.e., introduced by the SGML \&" connector, see Section 2).Consider the query:Q6: Find the letters where the sender precedes the recipient in the preamble.select letterfrom letter in Letters, letter.preamble[i].to,letter.preamble[j].fromwhere i < jIn this query, we consider the tuple [to: string, from: string, : : :] representing the preambleof a letter as a list of elements belonging to a union type [(to: string + from: string + : : :)],each of the types being marked by the attributes name of the original tuple. Thus, the fromclause of the query de�nes three data variables: letter that ranges over the letters, i and j thatrange respectively over the positions of markers from and to in the corresponding letters. Thewhere clause is used to select the correct triples (letter,i,j) and the select clause returns thecorresponding letters.5 The Formal ModelIn this section, we reexamine the issues found in previous sections by formalizing the data model.5.1 PreliminariesFor the data structure, we use the formalism of IQL [6] and O2 [23] with two notable distinctions:(i) marked union is introduced; and (ii) tuples are ordered. The new material is highlighted withboxes.To start, we need a number of atomic types and their pairwise disjoint corresponding domains:integer, string, boolean, oat. The set dom of atomic values is the union of these domains.We also need an in�nite set att of attributes names (a1; a2; : : :); an in�nite set obj of objectidenti�ers also called oids (o1; o2; : : :); and a set class of class names (c1; c2; : : :). A special namenil represents the unde�ned value. Given a set O of oids, a value over O is de�ned by: (i) nil,and each element of dom or O, are values over O; (ii) if v1; : : : ; vn are values, and a1; : : : ; andistinct attributes, the tuple [a1 : v1; : : : ; an : vn], the set fv1; : : : ; vng and the list [v1; : : : ; vn]are values.The set of all values over O is denoted val(O). An object is a pair (o; v) where o is an oid and v avalue. Observe that since we consider ordered tuples, for each permutation i1; : : : ; in of 1; : : : ; n,which is not the identity, [a1 : v1; : : : ; an : vn] 6= [ai1 : vi1 ; : : : ; ain : vin].Typing is an essential component in our framework. Typing is de�ned with respect to a givenset C of classes2. The types over C, denoted types(C), are de�ned as follows:2We follow here the IQL or O2 tradition. A class is a typing notion that should not be confused with theclass extension, the set of objects of that class. So, the class hierarchy is a hierarchy of types that is not the classextension hierarchy. 10

1. integer, string, boolean, oat, are types;2. the class names in C are types; any (the top of the class hierarchy) is a type;3. if � is a type, [�] and f�g are types (resp. list and set types);4. if �1; : : : ; �n are types and a1; : : : ; an attribute names, [a1 : �1; : : : ; an : �n] is a (tuple) type;5. if �1; : : : ; �n are types and a1; : : : ; an attribute names,(a1 : �1 + : : :+ an : �n) is a (union) type.Note that we allow marked union a feature not found in the standard O2 data model. A tuple ofthe form [ai : v] (for i in [1::n]) where v is of type �i is a value of the type (a1 : �1+ : : :+an : �n).Another extension of the O2 data model is that the ordering of tuple attributes is meaningful.This is to capture the use of such ordering in, for instance, SGML. It can be easily ignored forapplications where this ordering makes no sense.Inheritance is important in the OODB context (and perhaps less so in the SGML context). Wedescribe it next insisting only on the non-standard portion.A class hierarchy is a triple (C; �;�) where C is a �nite set of class names, � a mapping from Cto types(C), and � a partial order on C. The sub-typing relationship (�) is de�ned as in O2except that we add two rules. The �rst one deals with union:[ai : �i] � (: : :+ ai : �i + : : :):Observe that as a consequence of the sub-typing rules, we now have that:[a1 : �1; : : : ; an : �n] � [ai : �i] � (a1 : �1 + : : :+ an : �n):Furthermore, we introduce a second new rule to view a tuple as a special case of heterogeneouslist: [a1 : �1; : : : ; an : �n] � [(a1 : �1 + : : :+ an : �n)]:This allows us to blur the distinction between a tuple (e.g., [A : 5; B : 6]) and the correspondingheterogeneous list (e.g., [[A : 5]; [B : 6]]). We only consider well-formed class hierarchies, i.e.,hierarchies (C; �;�) such that for each c; c0, if c � c0, then �(c) � �(c0). We give now thesemantics of classes and types.De�nition Let (C; �;�) be a class hierarchy. A disjoint oid assignment is a function �dmapping each name in C to a disjoint �nite set of oids. The oid assignment � (inherited from�d) is given by: for each c, �(c) = [f�d(c0) j c0 � cg: 2The syntax and semantics of types are now de�ned for a given class hierarchy and an oidassignment �. Given an oid assignment �, the interpretation of a type � , denoted dom(�), isgiven by:� for each atomic type, take its corresponding domain;� dom(any) is [f�(c) j c 2 Cg;� for each c 2 C, dom(c) = �(c)[fnilg.� dom(f�g) = ffv1; : : : ; vjg j j � 0; and vi 2 dom(�); i= 1; : : : ; jg,� dom([�]) =f[v1; : : : ; vj] j j � 0; and vi 2 dom(�); i= 1; : : : ; jg,11

� dom([a1 : �1; : : : ; ak : �k]) =f[a1 : v1; : : : ; ak : vk; : : : ; ak+l : vk+l] j vi 2 dom(�i); i = 1; : : : ; k; l � 0g:� dom(a1 : �1 + : : :+ ak : �k) = Sfdom([ai : vi]) j 1 � i � kg:By abuse of notation, we denote by dom the mapping which associates to each type � the setof (�) equivalence classes of the elements in dom(�). Then one can show that for each �; � 0in types(C), if � � � 0, dom(t) � dom(t0). For instance, to blur the distinction between atuple and the corresponding heterogeneous list, consider the equivalence relation obtained with:[a1 : vi; : : : ; ak : vk] � [[a1 : vi]; : : : ; [ak : vk]] for each tuple [a1 : vi; : : : ; ak : vk]. It must bestressed that the typing mechanism of the extended O2SQL (see Section 4.2) relies on the abovesubtyping rules.To conclude these preliminaries, we present schemas and instances and comment on their def-initions. Our schema does include methods in the style of O2 but we do not discuss methodshere and introduce them just for the sake of completeness.De�nition A schema S is a 5-tuple (C; �;�;M;G) where (C; �;�) is a well-formed classhierarchy; M is a set of method signatures; and G is a set of names (the roots of persistence)with a type type(g) associated with each name g in G. 2De�nition An instance I of schema (C; �;�;M;G) is a 4-tuple (�; �; �;), where (i) � is anoid assignment and O = [f�(c) j c 2 Cg; (ii) � maps each object to a value in val(O) of correcttype (i.e., for each c, and o 2 �(c), �(o) 2 dom(�(c))); (iii) � assigns a semantics to methodnames in agreement with the types of methods given in M ; and (iv) associates to each namein G of type � , a value in dom(�). 25.2 The CalculusWe de�ne a many sorted calculus in the spirit of [3]. The sort issue is quite intricate and wewill come back to this in Subsection 5.3. For the time being, we only distinguish between threesorts: val, att and path. All variables have one of these sorts. The main additions are theintroduction of attribute and path variables to provide more exibility in querying data withoutprecisely knowing its structure. Therefore most of our presentation is devoted to presenting anddiscussing path expressions.As we have seen in Section 4 paths allow to navigate within database objects/values. Within adata value, if we are located at a tuple or a marked union, we may follow an attribute selector3(�a below); if we are at a list, we may choose an element of the list ([i] below); if we are at aset, we may choose an element of the set (fvg below). Finally, if we are at an object (and soreached the frontier of a value), we may use dereferencing (! below). Formally, a path variablewill be interpreted using concrete paths which are sequences of:1. \�a" where a is an attribute name;2. [i] where i is an integer;3. ! (dereferencing);4. fvg where v is a value.Several examples of concrete paths can be found in Subsection 4.3.3Although not done here it is also possible to consider paths that goes though method calls.12

The set of all concrete paths is denoted path. Observe that as de�ned here a path is allowed tocross the boundary of the value of an object; as a consequence, it may be the case that the numberof concrete paths in a database is in�nite because of the existence of cycles. Our semantics willenforce that only a �nite number of concrete paths will be considered when navigating from agiven value.We denote variables with capital letters. We use three disjoint alphabets of variables: (i) datavariables (X; Y; Z possibly with subscripts); path variables (P;Q;R possibly with subscripts);attribute variables (A;B;C possibly with subscripts). We next de�ne attribute terms, pathterms and data terms.An attribute term is either an attribute name or an attribute variable. Now, path terms aregiven by:1. each path variable is a path term;2. � (the empty string) and ! are path terms;3. if A is an attribute term, then �A is a path term;4. if i is an integer term4, then [i] is a path term;5. if P;Q are path terms and X is a data variable, then PQ, P (X), PfXg are path terms.Finally, we de�ne the data terms which are given by:1. each name in G, each atomic value (nil, elements of dom or O), and each data variableare data terms;2. if t1; : : : ; tn are data terms and A1; : : : ; An attribute terms, then [t1; : : : ; tn], [A1 : t1; : : : ; An :tn] and ft1; : : : ; tng are data terms;3. if t1; : : : ; tn are data terms and m a method in M , then m(t1; : : : ; tn) is a data term;4. if t is a data term and P a path term, then tP is a data term.To illustrate these de�nitions, suppose that we are interested in the third chapter of secondvolume of Knuth, and suppose that we have Knuth Books as a root of persistence. Then thisinformation can be reached by: Knuth Books P � volumes[2] Q � chapters[3](X):This assumes that a tuple with an attribute volumes (the list of volumes) can be reached fromthe persistent root Knuth Books and from a volume, one can reach a tuple (or a marked union)with an attribute chapters (the list of chapters). Here, for instance, P �volumes[2]Q �chapters[3]is a path term and Knuth Books P � volumes[2]Q � chapters[3] a data term. The data variableX will denote the relevant chapter.The core calculusThe atoms are �rst formed from the data terms using equality, containment, and membership.If t; t0 are data terms, then t = t0; t 2 t0; t � t0 are atoms. Since we are particularly interested inthe speci�cation of paths, we introduce a second kind of atoms, namely path predicates. If vP isa term with v a data term and P a path term, then hvP i is an atom. The interpretation of pathpredicates is as follows. A ground path predicate hvP i holds if an instance of P is a concrete path4Strictly speaking, we do not have integer types at this stage. We can just assume that only valuations tointegers will be de�ned when indexing lists. This issue will disappear when we introduce typing in the next section13

from the root of v. An example of path predicate is given by: hKnuth Books P � status(X)iwhich should be interpreted as P is a path from the root of Knuth Books to a tuple (or amarked union) with an attribute status whose value is denoted by X .The literals are obtained from atoms using conjunction (^), disjunction (_), negation (:)and quanti�cation over data, path and attribute variables (9; 8). A query is an expressionfx1; : : : ; xn j 'g were x1; : : : ; xn are the only free variables in '.The semantics is then (almost) standard. The semantics of data terms will be within the setval of values; the semantics of path terms within path, and that of attribute terms within att.Range-RestrictionWe impose range-restrictions in the style of [3]. All variables in a formula must be rangerestricted. The reader will �nd in [3], the range-restrictions coming for instance from the useof equality, membership or containment. We insist here only on the novel aspect, the range-restriction obtained from path expressions.Consider path predicates. The role of such predicates is twofold: (i) state the existence of paths,and (ii) range restrict the variables speci�ed on the path. More precisely, a path variable or anattribute variable are range-restricted if they occur in a path from a root of persistence or froma range-restricted variable. For instance, inhKnuth Books P � volumes[2] Q � chapters[J](X) �A(Y)i ^ Y = \Introduction"the variables P,Q,J,X,A,Y inherit their range-restriction from Knuth Books.A subtlety is the interpretation of path variables. Consider a database of persons with spousesand the data term Alice P name. For path !, the data term denotes Alice's name, for path! husband !, it denotes Alice's husband's name, etc. There are alternatives for interpretingsuch path variables:The semantic we choose: Paths variables are interpreted by concrete paths with no twodereferencing of objects in the same class5. For instance, the path ! husband ! willnot be considered since it would involve two dereferencings of Person. This guaranteessafety and indeed as we will see the resulting language can be implemented with e�cientalgebraic techniques. Observe also that queries going more in depth in the search can stillbe speci�ed using paths of the form P ! P 0, etc.A more liberal semantics: One can alternatively allow paths that are not visiting twicethe same object (vs. the same class). This forces to consider paths of unbounded length,i.e., length determined by the data and not the schema and to introduce a loop detectionmechanism.In hypertext applications, navigation is crucial and the liberal semantics should be used. In thispaper, we use the restricted path semantics. We believe that such form of recursive navigationwithin the data structure is not necessary for structured documents. (Recursion can always besimulated with method calls.)Observe that the language allows to query paths and attributes. We consider examples of queriesinvolving path expressions:In which attribute, can \Jo" be found?fA j 9P (hKnuth Books P �A(X)i ^X = \Jo")g5This is a forward pointer since we didn't mention typing yet.14

Which paths lead to \Jo"? fP j hKnuth Books P (X)i ^X = \Jo"gWhat are the new paths in Doc?fP j hDoc P i ^ :hOld Doc P igWhat are the new titles in Doc?.fX j 9P (hDoc P � title(X)i)^ :9P 0(hOld Doc P 0 � title(X)i)Finally it must be stressed that any O2SQL query of the form Doc PATH p[i]:ATT a(x) : : :can be translated into a calculus expression of the form:f[P; I; A;X; : : :] j hDoc P [I] �A(X) : : :ig:Interpreted Predicates and FunctionsOur calculus also uses interpreted functions and predicates in the style of [3]. We assumethat a set of interpreted functions and a set of interpreted predicates are given. For instance,for information retrieval, pattern matching is essential. This can be captured by appropriateinterpreted functions and predicates. For instance, we assume that we have an interpretedpredicate contains that we can use with patterns.Interpreted predicates and functions may be useful also for the path and attribute domains. Forinstance, the functions length and name of the previous section can be used as follows:fX j 9P (hKnuth Books P (X) � titlei ^ length(P) < 3)gfX j 9P;A(hKnuth Books P �Ai ^ name(A)contains \(tjT)itle" ^ length(P) < 3)g:Finally, observe that the result of a query is always a set6. To obtain lists, interpreted functionssuch as set to list or sort by could be introduced in the language. Consider a persistent rootMyList of type [(a : string + b : string)], i.e., a list of a or b-strings. A list of the b-stringsoccurring after an a-string is given by:fY j Y = set to list(fX j 9I; J(hMyList[I] � ai ^ hMyList[J] � b(X)i ^ I < J)g)g:This query also illustrates the nesting of queries in a calculus a la [3].5.3 TypingTyping is a fundamental programming discipline. We focus here on only one of its aspects crucialin databases, namely, its role for the algebraization of programs and therefore their optimization.For us, typing is essentially a consequence of range restriction. Given a formula ' over a schemaS, one infers the precise types of each data variable basically by following the testing for range-restriction: once the range of a variable is known, it determines its type. Let us consider query:fX j 9P (hKnuth Books P � sectionsfXgi)^ X � title = Y ^ Y contains \type"g:Then X obtains its range-restriction from Knuth Books and has the type �section; and Y obtainsits range-restriction from X and has the type string. However, the polymorphism obtained6This is also a limitation of standard relational calculus.15

from using attribute and path variables complicates the issue. For instance, consider variableX in the formula 9P (hKnuth Books P (X) � titlei):Suppose that X may a volume, chapter, section or subsection. The type of X is a union:(�1 : �volume + �2 : �chapter + �3 : �section + �4 : �subsectn)where �i are system supplied attribute names. Observe that (as usual when considering uniontypes) this may result in a combinatorial explosion and resulting types which are unions of manytypes. Observe also that the \interesting" valuations may also be restricted by the types as in:9P (hKnuth Books P (X) � titlei ^ \D. Scott" 2 X � review):If only chapters have reviewers, then only valuations of X with chapters may occur in the result.We now have to make two comments. Firstly, strictly speaking, the type of X is a marked union,so we should be using X � �i � review for some i (see below Important Omissions). Secondly,what is the meaning of X � review when X is of type, say �subsectn . We will assume that eachatom where this occurs is false. It is important to see that this is not a way of turning o� thetype checking: if no alternative of the type union has an attribute review, this leads to a typeerror.To conclude this section, let us reconsider the example of letters with to and from �elds toillustrate the subtlety of marked union and its interaction with ordered tuples in the formalsetting.Example Consider a root of persistence Letters which is of type[(a1 : [from : string; to : string; content : string]+a2 : [to : string; from : string; content : string])]i.e. a list of tuples where the attribute to comes before or after the attribute from . If we knowthe exact structure, it su�ces to query:fY j 9IhLetters[I] � a1(Y)igto obtain the letters starting with the attribute from. Else, a more involved equivalent queryuses the ordering of the tuple:(y)fY j 9A; I; J;K(hLetters[I] �A(Y)[J] � toi ^ hLetters[I] �A[K] � fromi ^ J < K)g:We are using here the fact that a tuple is also an heterogeneous list. In the formula, Letters[I]denotes the I-th letter, A is an attribute (a1 or a2), Y is the desired letter, J is the rank of theattribute to, and K that of the attribute from .In (y), there is still some inelegance in the use of a variable (A) to denote an attribute (a1 ora2) not present in the original view of the document. To solve the problem we use the followingsyntactic sugaring.Important OmissionsMarking attributes (attributes used as markers in the marked union) can be omitted in queries.In O2SQL (see Section 4.2) this was referred as implicit selectors. This is clearly at the cost ofsome little extra work for the type checker but is imposed by the fact that the user ignores theseattributes. This allows to directly \project" on the attribute to as in:fX j 9IhLetters[I] � to(X)igto obtain the set of letter recipients. This also allows to slightly simplify query (y):fY j 9I; J;K(hLetters[I](Y)[J] � toi ^ hLetters[I][K] � fromi ^ J < K)g:216

5.4 Algebraization (sketch)First consider the restriction of the calculus obtained by disallowing attribute and path variables.An algebra can be obtained in the spirit of the algebras for complex objects (e.g., [3, 12]). Tohandle union of types, a variant-based selection (using implicit selectors) over heterogeneous sets(or lists) has in particular to be introduced. Next, consider the subset of the calculus obtainedby allowing formulas of the form(?) 9P1; : : : ; Pn; A1; : : : ; Am(')where ' contains no quanti�cation over path or attribute variables. By analysis of the queryusing schema information, one can �nd candidate valuations for the Pi and Aj . Therefore, onecan transform the query into a union of queries with no attribute or path variables. This mayresult in introducing new variables to quantify over the elements of a set or a list. Also, we mayhave to introduce marking before being able to do the union.In general, one can show that an arbitrary calculus query can be translated into a booleancombination of queries of the form (?). This provides an algebraization of the calculus.Remark: Although not done here, it is possible to extend the equivalence between relationalcalculus and algebra to this extended calculus and algebra. The mapping between O2SQL andcalculus/algebra can also be demonstrated. 2To conclude, observe that this technique would not work if we choose the liberal semantics forpath expressions. Indeed, if we want to compile queries to algebra expressions in this largersetting, our algebra should include some form of transitive closure/�xpoint operator.6 SummaryIn this paper a mapping from SGML documents to an OODB was de�ned. This requiredthe extension of the O2 data model [23] to union types (in the spirit of IQL [6]) and orderedtuples. We then extended the O2 query language to deal with these new features and withthe requirements of documents retrieval such as querying data with incomplete knowledge oftheir structure. The formal bases for these new features uses an extension of the calculus of[3]. Although motivated by structured documents, the new query facilities should be useful toa variety of other OODB applications. Among other facilities the introduction of paths as �rstclass citizens allows users to query data (and to some extent schema) without exact knowledgeof the schema in a simple and homogeneous fashion.The work described here is currently being implemented on top of the O2 DBMS. In particular,an extension of the Euroclid SGML parser [16] has been developed to translate SGML documentsinto O2 schemas and instances. This extension requires the annotation of the BNF grammargenerated by the parser, with appropriate semantic actions. The extension of O2SQL is alsobeing designed. Optimization is crucial in this context. We mentioned already on-going studiesfor the integration of full-text indexing facilities. Query optimization techniques were alreadypresented in [4]. An other key aspect is that of providing the means to update the documentfrom the database. The update semantics for this context is the topic of [5].Acknowledgments: We are grateful to O2Technology, Euroclid and AIS Berger-Levrault fortheir technical support during this project. We also thank J. Stein, B. Amann, C. Lecluse,A. Rizk and A. M .Vercoustre. 17

References[1] ISO/IEC 10744. Information Technology- Hypermedia/ Time- based Structuring Language(HyTime), 1992.[2] ISO 8879. Information Processing-Text and O�ce Systems-Standard Generalized MarkupLanguage (SGML), 1986.[3] S. Abiteboul and C. Beeri. On the Power of Languages for the Manipulation of ComplexObjects. Rapports de Recherche 846, VERSO, INRIA, BP. 105, 78153 Le Chesnay, France,1988.[4] S. Abiteboul, S. Cluet, and T. Milo. Querying and Updating the File. In VLDB'93, pages73{84, Dublin, Ireland, August 1993.[5] S. Abiteboul, S. Cluet, and T. Milo. More on Updating the File. Rapports de recherche,VERSO, INRIA, BP. 105, 78153 Le Chesnay, France, 1994.[6] S. Abiteboul and P. Kanellakis. Object Identity as a Query Language Primitive. In SIG-MOD'89, pages 159{173, Portland Oregon, June 1989. ACM.[7] B. Amann and M. Scholl. GRAM: A Graph Model and Query Language. In ECHT'92,pages 201{211. ACM, December 1992.[8] F. Bancilhon, S. Cluet, and C. Delobel. A Query Language for the O2 Object-OrientedDatabase System. In DBPL'89, pages 122{138, Salishan Lodge, Oregon, June 1989. MorganKaufmann.[9] AIS Berger-Levrault. SGML/Search, Description du Langage. Internal Document, 34Avenue du Roule 92200 Neuilly sur Seine, 1993.[10] E. Bertino, F. Rabitti, and S. Gibbs. Query Processing in a Multimedia Document System.ACM Transactions on O�ce Information Systems, 6(1):1{41, January 1988.[11] F. J. Burkowski. An Algebra for Hierarchically Organized Text-Dominated Databases.Information Processing & Management, 28(3):333{348, 1992.[12] S. Cluet and C. Delobel. A General Framework for the Optimization of Object-OrientedQueries. In SIGMOD'92, pages 383{392, San Diego, California, June 1992. ACM.[13] M. P. Consens and A. O. Mendelzon. GraphLog: A Visual Formalism for Real Life Recur-sion. In PODS'90, pages 404{416, Nashville Tennesee, April 1990.[14] P. Dadam and V. Linnemann. Advanced Information Management (AIM): Advanceddatabase technology for integrated applications. IBM Systems Journal, 28(4):661{681,1989.[15] O. Deux et. al. The Story of O2. IEEE Transactions on Knowledge and Data Engineering,2(1):91{108, Mars 1989.[16] Euroclid. Le Parseur SGML d'Euroclid. Internal Document, 12, Avenue des Pr�es 78180Montigny le Bretonneux, 1991.[17] C. F. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1990.[18] G. H. Gonnet and F. W. Tompa. Mind Your Grammar: a New Approach to ModelingText. In VLDB'87, pages 339{346, Brighton, 1987.18

[19] R. H. G�uting, R. Zicari, and D. M. Choy. An Algebra for Structured O�ce Documents.ACM Transactions on O�ce Information Systems, 7(4):123{157, April 1989.[20] M. Gyssens and J. Paredaens. A Grammar-Based Approach towards Unifying HierarchicalData Models. In SIGMOD'89, pages 263{272, Portland Oregon, 1989. ACM.[21] N. Ide, J. Le Maitre, and J. V�eronis. Outline of a Model for Lexical Database. InformationProcessing & Management, 29(2):159{186, 1993.[22] I. Jacobs and L. Rideau-Gallot. A CENTAUR tutorial. Rapports Techniques 140, INRIA,BP. 105, 78153 Le Chesnay, France, July 1992.[23] P. Kanellakis, C. Lecluse, and P. Richard. Introduction to the Data Model. In F. Bancilhon,C. Delobel, and P. Kanellakis, editors, Building an Object-Oriented Database System: TheStory of O2, chapter 3, pages 61{76. Morgan Kaufmann Publishers, San Mateo, California,1992.[24] M. Kifer, W. Kim, and Y. Sagiv. Querying Object-Oriented Databases. In SIGMOD'92,pages 393{402, San Diego, California, June 1992. ACM.[25] W. L. Lee and D. Woelk. Integration of Text Search with ORION. Data Engineering,13(1):56{62, March 1990.[26] I. A. Macleod. Storage and Retrieval of Structured Documents. Information Processing &Management, 26(2):197{208, 1990.[27] R. Sacks-Davis, W. Wen, A. Kent, and K. Ramamohanarao. Complex Object Support for aDocument Database System. In Thirteenth Australian Computer Science Conference, pages322{333, Victoria, Australia, 1990. Monash University.[28] J.D. Ullman. The Interface between Language Theory and Database Theory. In TheoriticalStudies in Computer Science, pages 133{151. Academic Press, 1992.

19

