From Structured Documents to
Novel Query Facilities”

V. Christophides, S. Abiteboul, S. Cluet and M. Scholl

[LN.R.I.A.
78153 Le Chesnay, Cedex
France
(f Cedric/CNAM, 292 rue St Martin 75141, Paris Cedex 03, France)
{Vassilis.Christophides, Serge.Abiteboul, Sophie.Cluet, Michel.Scholl} @inria.fr

February 29, 1996

Abstract

Structured documents (e.g., SGML) can benefit a lot from database support and more
specifically from object-oriented database (OODB) management systems. This paper de-
scribes a natural mapping from SGML documents into OODB’s and a formal extension of
two OODB query languages (one SQL-like and the other calculus) in order to deal with
SGML document retrieval.

Although motivated by structured documents, the extensions of query languages that we
present are general and useful for a variety of other OODB applications. A key element is
the introduction of paths as first class citizens. The new features allow to query data (and to
some extent schema) without exact knowledge of the schema in a simple and homogeneous
fashion.

1 Introduction

Structured documents are central to a wide class of applications such as software engineering,
libraries, technical documentation, etc. They are often stored in file systems and document access
tools are somewhat limited. We believe that (object-oriented) database technology (OODB)
can bring a lot of benefit to documents management, e.g., recovery, concurrency control and
high level query capabilities. In particular, whereas existing tools for accessing documents are
sophisticated with respect to pattern matching facilities, they do not support queries on non
textual data, often totally ignore document structure, and are extremely primitive from a logical
viewpoint. For these reasons, we introduce extensions of an OODB data model and of two query
languages (one SQL-like and the other calculus) to fit the needs of structured document storage
and retrieval. The main contribution of the paper resides in novel language features that are
important beyond the scope of structured documents.

The Standard General Mark-up Language (SGML) [2] is becoming de facto the standard for
structured document creation and exchange. An SGML document has a hierarchical structure
satisfying a document type definition (DTD). In the spirit of [4], we design a mapping from

*Work partially supported by Esprit BRA FIDE2.

DTD’s to OODB schemas'. It will be shown that, although straightforward, this mapping
requires structuring primitives such as ordered tuples, lists, and union types. To the best of our
knowledge none of the existing OODB management systems (OODBMS) provide all the needed
features. We choose as a target system the O OODBMS [15] for its type system and moreover
for its elegant query language O3SQL [8]. The first part of our work consists of an appropriate
extension of the Oy data model in order to facilitate the mapping from SGML documents to O4
instances.

Once in the database, documents can be queried like other data. However, standard query
languages lack features that are essential for documents retrieval such as pattern matching
facilities and querying data without exact knowledge of its precise structure. We introduce
appropriate extensions of OODB query languages to answer these needs as well as those induced
by the new structuring primitives. The new features lead into a number of subtle issues, in
particular, with respect to typing. We demonstrate how these can be resolved by formally
presenting an extension of the OODB calculus underlying IQL [6].

The most interesting novelty (from a technical viewpoint) comes from the use of paths (to
navigate through the database objects/values). In the language, paths are first class citizens
and in particular, path variables may be used in queries. We will see how these new features
can be incorporated in 02SQL allowing to query documents (even without precise knowledge of
their structure) in a simple and homogeneous fashion. For instance, we will show how to obtain
the “difference” between the structures of two documents with a short and very intuitive query.

Recently, many researchers have studied the modeling of document databases [14, 19, 25, 27].
These models provide only some of the features that, as will be seen in the sequel, are critical
for the representation of SGML documents. Additionally, several query languages for structured
documents can be found in the literature [18, 20, 26, 11, 9]. As opposed to these approaches,
the language we propose (i) can be applied in the general framework of OODB applications and
(ii) allow queries that address both the content and the structure of the documents. The OODB
languages presented in [10, 24] like our language allow to query data with incomplete knowledge
of its structure. Compared to these, our language has simpler formal foundations and does not
consider paths as strings but as first-class citizens that can be queried. Finally, the use of paths
relates our language to query languages proposed for graph databases or hypertext systems,
e.g., [13, 7]. Indeed, we believe that our language is particularly suited for current extensions of
SGML to multi and hypermedia documents such as HyTime [1].

This paper is organized as follows. Section 2 introduces the SGML standard. The mapping from
SGML to the O3 DBMS is defined in Section 3. Section 4 presents the extension of the O,5QL
language and Section 5 the formal bases for this extension. Section 6 concludes the paper and
briefly presents the status of the implementation.

2 SGML preliminaries

In this section, we present the main features of SGML [2, 17]. (A general presentation is clearly
beyond the scope of this paper.)

In order to define a document’s logical structure, SGML adds descriptive mark-up (tags) in
document instances. Each SGML document has: (i) A prologue including a Document Type
Definition (DTD), i.e., a set of grammar rules specifying the document generic logical structure
(see Figure 1); and (ii) a document instance containing the information content as well as the
tags e.g., the specific logical structure of the document (see Figure 2).

!The inverse mapping from database schema/instances to SGML DTD/documents also opens interesting per-
spectives for exchanging information between heterogeneous databases, writing reports, etc. This is not considered

1. <IDOCTYPE article][
2. <|I[ELEMENT article - - (title, author+, affil, abstract, section+, acknowl)>
3. <IATTLIST article status (final | draft) draft>
4. <!IELEMENT title -- (#PCDATA)>
5.<IELEMENT author -O (#PCDATA)>
6. <!|ELEMENT author -O (#PCDATA)>
7.<!IELEMENT abstract - O (#PCDATA)>
8. <!IELEMENT section -O ((title, body+) | (title, body*, subsectn+))>
9. <IELEMENT subsectn - O (title, body+)>
10. <!ELEMENT body -0 (figure | paragr)>
11. <!IELEMENT figure -O (picture, caption?)>
12. <IATTLIST figure label ID #MPLIED>
13. <! ELEMENT picture -O EMPTY>
14. <!IATTLIST picture sizex NMTOKEN "16cm"

sizey NMTOKEN #MPLIED

file ENTITY #IMPLIED>
15. <I[ELEMENT caption OO (#PCDATA)>
16. <IENTITY figl SYSTEM "/u/christop/SGML/imagel" NDATA >
17. <IELEMENT paragr -O (#PCDATA)>
18. <!ATTLIST paragr reflabel IDREF #REQUIRED>
19. <!IELEMENT acknowl - O (#HPCDATA)> 1>

Figure 1: A DTD for a document of type article

In SGML jargon, the logical components of a document are called elements. For example line 2
of Figure 1 defines the structure of the element with name article. Element names are used as
tags in the document. The specification of an element in the DTD gives its name, its structure
and some indications (e.g., “-O” indicates that the tag can be omitted if there is no ambiguity).
The element structure is built using other elements or basic types such as #PCDATA, EMPTY,
etc. and connectors that can be further qualified with occurrence indicators. In particular, the
following can be used:

e The aggregation connector (“,”) implies an order between elements. For example, a figure
is composed of a picture followed by a caption (line 11). There is also an alternative
aggregation connector (“&”) that does not imply an order.

e The choice connector (“|”) provides an alternative in the type definition. For instance,
element body is either a figure or a paragraph (line 10).

e The optional indicator (“?”) indicates zero or one occurrence of an element (e.g., captions
in figures (line 11)); the plus sign (“+”) indicates one or more occurrences of an element
(e.g., sections in articles, line 2); and the asterisk (“*”) zero or more occurrences.

There are a number of other features in SGML that we do not present here because of space
limitations. We conclude by mentioning one important modeling feature. Cross references
between elements are specified using keywords ID (for the element that will be referenced) and

in the present paper.

<article status="final">

<title> From From Structured Documents to Novel Query Facilities </title>
<author> V. Christophides

<author> S. Abiteboul

<author> S. Cluet

<author> M. Scholl

2abstract> Structured documents (e.g., SGML) can benefit alot from

database support and more specifically from object-oriented database
(OODB) management systems...

<section>

<title> Introduction </title>

<body><paragr> This paper is organized as follows. Section 2
introduces the SGML standard. The mapping from SGML to the O2
DBMS s defined in Section 3. Section 4 presents the extension ...
</body></section>

<section>

<title> SGML preliminaries </title>

<body><paragr> In this section, we present the main features of

SGML. (A genera presentation is clearly beyond the scope of this paper.)
</body></section>

</article>

Figure 2: An SGML document of type article

IDREF (for the element referencing it). For instance, figures may be referenced in paragraphs
(Figure 1 lines 12 and 18).

3 From SGML to O,

In this section, we consider the representation of SGML documents in an OODB, namely O,.
We show briefly what portions of the document model are easily handled by the database model
and the extensions that are needed to support the rest. We consider the problem of translation
from documents to database instances.

None of the existing OODBMS’s provides all the features we need. We chose O3 [15] because
of (i) its sophisticated type system and (ii) its query language that can easily be extended.
The SGML hierarchical structure can be naturally represented using the complex values in Os.
Indeed, O3 has an hybrid data model including objects and constructed values. The modeling
would be more complicated in a pure object model. The aggregation and list constructors of O,
are very useful to describe the structure of elements.

Documents possibly require multimedia types (e.g., images) that can easily be incorporated
into any OODB and cross references between logical components that are easily modeled using
object identity. Furthermore, object sharing provided by OODB’s is useful for the manipulation
of documents, notably in the support of their evolution (e.g., versions).

On the other hand SGML document modeling leads to other requirements mainly related to the
use of connectors and occurrence indicators mentioned in Section 2 that are missing in Oy and

class Article public type tuple (title: Title, authors: list (Author), affil: Affil,
abstract: Abstract, sections: list (Section),
acknowl: Acknowl, private status: string)
constraint: title = nil, authors != list(), abstract != nil,
sections != list(), statusin set ("fina", "draft")

class Titleinherit Text
class Author inherit Text
class Affil inherit Text
class Abstract inherit Text
class Section public type union (al: tuple (title: Title, bodies: list (Body)),
a2: tuple (title: Title, bodies: list (Body),
subsectns: list (Subsectn)))
constraint: (al.title!=nil, al.bodies!=list())
| (@2.title = nil, a2.subsectns = list())

class Subsectn public type tuple (title: Title, bodies: list (Body))

constraint: title = nil, bodies != list()
class Body public type union (figure: Figure, paragr: Paragr)

constraint: figure !=nil | paragr != nil
class Figure public type tuple (picture: Picture, caption: Caption,

private label: list (Object))

constraint: picture !=nil
class Picture inherit Bitmap
class Caption inherit Text
class Paragr inherit Text

public type tuple (private reflabel: Object)
constraint: reflabel 1= nil

class Acknowl inherit Text
name Articles: list (Article)

Figure 3: Oy Classes for Documents of Type Article

in other OODB’s as well. In particular, two main modeling features lead to extensions of the
data model:

Ordered tuples. The ordering of tuple components is meaningful in SGML. Sometimes, the
ordering is imposed; sometimes some flexibility is left. We propose an original solution
based on polymorphism that blurs the distinction between tuples and lists. A more ad-
hoc solution based on adding to the tuple an attribute recording the ordering between the
fields would lead to inelegance in the query language.

Union of types. In SGML, alternative structures may be provided for the same element
type. Union of types is the appropriate solution for this. We felt that type union is a
useful modeling feature that was missing in O4 and added it to our model. We use marked
union, i.e., a tag specifies the alternative type that is chosen. Union (generalization) could
also be simulated using multiple inheritance but we did not adopt this solution that misuses
the original inheritance semantics (specialization). In addition, this latter solution would
needlessly increase the size of the class hierarchy.

We will see in Section 5 how these features can formally be added to the model.

The problem of extracting data from sequential structured files has been quite popular lately
(see for example [28, 4, 21]). More specifically, our problem consists in getting an O, database
representation from an SGML document. In other words, we need to map a DTD into an O,
schema and a document instance into corresponding objects and values. In the spirit of [4],
we propose to do this by annotating SGML DTD’s (or some intermediate BNF grammar) with
semantic actions. This is quite standard in the compilation field, see for example [22]. Each
SGML element definition in the DTD is interpreted as a class having a type, some constraints
and a default behavior (i.e., standard display, read and write methods for each attribute). For
instance, Figure 3 presents the O classes corresponding to the elements definition in the DTD
of Figure 1.

An SGML basic type is represented by an Oy class of an appropriate content type (e.g., Text,
Bitmap). The O; tuples should be viewed as ordered. The choice connector (“|”) is modeled by a
union type (e.g., class Body). For unnamed SGML elements defined through nested parentheses
(e.g., (title, body+) line 7, Figure 1), system supplied names are provided (e.g., ay in class
Section, Figure 3). Observe the use of inheritance (in class Picture) and that of private attributes
(e.g., status in class Article). The element components marked by a “47 or “*”
indicator are represented by lists (e.g., attribute authors in class Article). Finally, note that
constraints had to be introduced to capture certain aspects of occurrence indicators, the fact that
some attributes are required and also the range restrictions. Constraints will not be considered
in this paper.

occurrence

To conclude this section, it should be noted that the representation of SGML documents in an
OODB such as Oz comes with some extra cost in storage. This is typically the price paid to
improve access flexibility and performance.

4 The Query Language

In this section, we present an extension of the O;5QL language. The presentation relies on exam-
ples. The running example uses the O, schema of the previous section. The formal foundations
are considered in Section 5.

In the SGML world, documents are usually queried by means of Information Retrieval Systems
(IRS). These systems provide two main facilities lacking in OODB query languages: (i) IRS’s
provide sophisticated pattern matching facilities for selecting documents according to their con-
tent relying on full text indexing; and (ii) IRS’s do not require users to know the exact structure
of documents. Obviously, if we intend to query documents from a database, we must provide
such facilities in the richer model of the previous section. To answer (i), we show how sophisti-
cated string predicates are introduced in the language. Then, to answer (ii), we introduce two
new sorts (PATH and ATT) and their basic operations. Finally, we show how the extensions of
the model impact the query language. In particular, we show how union type affects the O,SQL
language. This leads to a language that combines (we believe nicely) the features of both IRS
and database access languages.

4.1 Querying Strings

The semantics of O2SQL relies on a functional approach. O25QL is defined by a set of basic
queries and a way of building new queries through composition and iterators. Thus, to add a
new functionality to the language one often has only to add new basic queries. This is what we
do here.

The next query introduces the predicate contains which offers pattern matching facilities.

Q1: Find the title and the first author of articles having a section with a title containing the
words “SGML” and “OODBMS”.

select tuple (t: a.title, f_ author: first(a.authors))

from a in Articles, s in a.sections
where s.title contains (“SGML” and “OODBMS”)

The contains predicate allows to match a string with a pattern or a boolean combination
of patterns. (Patterns are constructed using concatenation, disjunction, Kleene closure, etc.)
Among other textual predicates, we only cite near that allows to check whether two words are
separated by, at most, a given number of characters (or words) in a sentence.

From a linguistic viewpoint, this raises no issue. On the other hand, the integration of appro-
priate pattern matching algorithms and full text indexing mechanisms are interesting technical
issues that we are currently studying. This is clearly beyond the scope of the present paper.

4.2 Managing Union Types

The introduction of union types involves some serious modification of the type checking of
025QL queries as well as of the evaluation of O;SQL iterators (select-from-where, exists,
etc). We first explain the typing mechanism.

055QL imposes typing restrictions. For instance, when constructing a collection, we check
that its elements have a common supertype (e.g., sets containing integers and characters are
forbidden). Since we introduce union types in the model, we have to specify their subtyping
rules. We briefly present the two main rules here.

1. There is no common supertype between a union type and a non union type. Note that
this forbids, for instance, to perform an intersection between a set of integers and a set of
(a:integer + b:char)’s.

2. Two union types have a common supertype if they do not have an attribute (marker)
conflict (i.e., types with the same attribute ¢ whose domains do not have a common
supertype). When it exists, the (least) common supertype of two union types is the
union of the two types. For instance, (a:integer + b:char + c:string) is the least common
supertype of (a:integer + b:char) and (b:char + c:string). Note that this second typing
rule may result into a combinatorial explosion of types. However, (i) this should rarely
happen and (ii) some semantic rules can be added to the O;SQL typing mechanism in
order to control this inflation.

The following example shows how the O;SQL evaluation of iterators is modified to take into
account union types.

Q2: Find the subsections of articles containing the sentence “complex object”.

select ss
from a in Articles, s in a.sections,
ss in s.subsectns
where text(ss) contains (“complex object”)

Compared to Q1, the contains operation in query Q2 is evaluated not over individual data
objects but over complex logical objects (e.g., subsectns). For that we use a system supplied
operator text performing an inverse mapping from a logical object (e.g., a subsectn) to the
corresponding portion of text [5].

Recall now that, in the schema of Figure 3, sections have a union type: a section marked with a4
corresponds to a tuple with attributes title and bodies and a section marked with a9, to a tuple
with attributes title, bodies and subsectns. In query Q2, the variable ss ranges over subsectns
of sections marked with as. Two remarks are noteworthy. First, in the definition of variable ss
in the from clause, the a; marker is omitted. This syntactic sugaring is required because users
are not always aware of markers in union types. Second, we do not want the evaluation to fail
on sections whose instance type does not correspond to the az marker (e.g., sections that do not
have subsectns).

To deal with this problem, we introduce the notion of implicit selectors. Any operation on a
variable ranging over a domain with union type implies an implicit selection. In the above query,
the implicit selection is that s.as should be defined. It must be noted that this mechanism stands
only for variables and not for named instances. For example, suppose the existence of the name
my_section which has been instantiated with a section marked with ay. In this case, the query
my_section.subsectns will return a type error detected at execution time.

Let us now come back to the syntactic sugaring with a more complex example. Suppose that,
instead of the subsections, we are now interested by the bodies of articles. The from clause of
the query becomes:
from a in Articles, s in a.sections, b in s.bodies.

Variable b will range over the union of s.a;.bodies and s.ay.bodies and two implicit selectors will
be used to avoid failure at evaluation. In this example, both attributes bodies have the same
type. However, this cannot be guaranteed in all cases. When this is not the case, a marked
union type is generated by the system.

4.3 Querying Paths

In order to query data without exact knowledge of its structure we introduce two new sorts:
PATH and ATT. A value of the former denotes a path through complex objects/values (crossing
objects, tuples, unions, lists, etc.) and a value of the latter represents an attribute name (of a
tuple or a marked union). For instance, .sections[0].subsectns[0]is a path selecting the attribute
sections of type list, then the first section, the attribute subsectns of this section and finally the
first subsection. Paths can be queried like standard data. The following queries illustrate the use
of path querying.

Like all types manipulated in O2;SQL, PATH and ATT come with their variables and basic
queries. To distinguish variables according to their sort (standard data, PATH or ATT), PATH
variables are prefixed by “PAT H " and ATT variables by “ATT_”. In the next query, my_article
is a root of persistence representing an article. Consider the query:

Q3: Find all titles in my_article.

select t
from my-article PATH p.title(t)

The result is a set of titles reached by following various paths in the article structure (general
title, title of each section, subsection, etc.).

In query Q3, the subquery my_article PATH p.title(t) illustrates a new basic query. It is a
path expression with variables (here PAT H _p and t), whose semantics is different from that
traditionally used in path expressions without variables. These queries return a set of tuples
with one attribute per variable. In the example, it returns a set of tuples with two attributes:
t, PATH p. The attribute PAT H _p ranges over all the path values that start from the root
of my_article and that end with an attribute named title. The value of attribute ¢ in tuple

(t, PATH_p) corresponds to the title that can be reached from my_article following the path
PATH _p. Several points need further comments.

1. We may allow the syntactical sugared form
from my_article .. title(t)
if we are not interested in the actual values of path variables.

2. Note that the presence of path variables will often imply that the corresponding data
variable is of a union type. Indeed, following different paths, one should expect reaching
different types. This is particularly true if we query data from different sources, e.g.,
various authors may structure sections differently.

3. Path variables may be used outside a from clause without being defined in such a clause.
For instance, the expression
my_article PATH_p.title
is a query that returns the set of paths to a title field.

4. Paths is a data type that comes equipped with functions. In particular, list functions can
be used on paths. For instance, suppose that P is a path of value .sections[0].subsectns[0]
we can compute the length of P: length(P) = 4 and project P on its first two elements:
P[0 : 1] = .sections[0].

5. When path variables are used in a path expression, there is always the possibility of cycles
(in the schema and in the data). Our interpretation avoids cycles as will be shown in the
next section.

To see another example of the use of paths for querying data with incomplete knowledge of their
structure, let us assume the existence of a name my_old_article representing an old version of
my_article. Consider the query:

Q4: Find the structural differences between two versions of my_article.
my_article PATH_p — my_old_article PATH_p

The left (resp. right) argument of the difference operation returns the set of paths starting from
my_article (resp. my-old_article). Thus, the difference operation will return the paths that are
in the new version of my_article and not in the old one. Supplementary conditions on data
would allow the detection of possible updates or moves of individual textual objects within the
document logical structure.

In a last example, we also use attribute variables:

Q5: Find the attributes defined in my_article whose value contains the string “final”.

select name(ATT.a)
from my-article PATH p. AT T _a(val)

where val contains (“final”)

In this example, the data variable val ranges over data that can be accessed from my_article
following a path denoted by PATH_p (which possibly is the empty path) and ending with the
attribute denoted by the variable ATT_a. Accordingly, the initial type of valis the union of all
the types found in the structure of my_article. The subquery val contains (“final”) uses the
implicit selector val.a where a : string represents an attribute of type string in the corresponding
union type. As a result O3SQL restricts val to type string. The returned attributes are those
whose value contains “final”. We believe that this is an important feature of the extension
of 025QL allowing the user to perform search operations like Unix grep inside an OODBMS.
Finally, the function name returns a string, the name of an attribute.

4.4 Querying Attributes on their Position

In this last section, we consider the problem of ordered tuples. We have seen that the tuples
used in the representation of documents are ordered. This implies that there is another way of
viewing a tuple: as an heterogeneous list. For instance, we suppose that our database contains
letters with a preamble including, the recipient (attribute to) and the sender (attribute from)
addresses, in permutable order (i.e., introduced by the SGML “&” connector, see Section 2).
Consider the query:

Q6: Find the letters where the sender precedes the recipient in the preamble.

select letter

from letter in Letters, letter.preamblefi].to,
letter.preamblefj].from

where 1< j

In this query, we consider the tuple [to: string, from: string, ...] representing the preamble
of a letter as a list of elements belonging to a union type [(to: string 4+ from: string + ...)],
each of the types being marked by the attributes name of the original tuple. Thus, the from
clause of the query defines three data variables: letter that ranges over the letters, ¢ and j that
range respectively over the positions of markers from and to in the corresponding letters. The
where clause is used to select the correct triples (letter,i,j) and the select clause returns the
corresponding letters.

5 The Formal Model

In this section, we reexamine the issues found in previous sections by formalizing the data model.

5.1 Preliminaries

For the data structure, we use the formalism of IQL [6] and O [23] with two notable distinctions:
(i) marked union is introduced; and (ii) tuples are ordered. The new material is highlighted with
boxes.

To start, we need a number of atomic types and their pairwise disjoint corresponding domains:
integer, string, boolean, float. The set dom of atomic values is the union of these domains.
We also need an infinite set att of attributes names (a1, as,...); an infinite set obj of object
identifiers also called oids (01, 02,...); and a set class of class names (c1, ¢3,...). A special name
nil represents the undefined value. Given a set O of oids, a value over O is defined by: (i) nil,

and each element of dom or O, are values over O; (ii) if vq,...,v, are values, and aq,...,a,
distinct attributes, the tuple [ay : vy,...,a, : v,], the set {vy,...,v,} and the list [vy,...,v,]
are values.

The set of all values over O is denoted val(O). An object is a pair (o, v) where o is an oid and v a
value. Observe that since we consider ordered tuples, for each permutation ¢y,...,2, of 1,....n,

[a1: V1, 0 v F @i 0 vy, a, vzn]‘

which is not the identity,

Typing is an essential component in our framework. Typing is defined with respect to a given
set (' of classes?. The types over C, denoted types(C'), are defined as follows:

2We follow here the IQL or O, tradition. A class is a typing notion that should not be confused with the
class extension, the set of objects of that class. So, the class hierarchy is a hierarchy of types that is not the class
extension hierarchy.

10

1. integer, string, boolean, float, are types;

2. the class names in C are types; any (the top of the class hierarchy) is a type;

3. if 7 is a type, [7] and {7} are types (resp. list and set types);

4. ifmy,..., 7, are types and aq, ..., a, attribute names, [ay : 71,...,a, : 7,] is a (tuple) type;

5. if 7,...,7, are types and aq,...,a, attribute names,

(a1 :71+...4a,:7,)is a (union) type.

Note that we allow marked union a feature not found in the standard O, data model. A tuple of
the form [a; : v] (for ¢ in [1..n]) where v is of type 7; is a value of the type (a1 : T +...4+a, : 7).
Another extension of the Oy data model is that the ordering of tuple attributes is meaningful.
This is to capture the use of such ordering in, for instance, SGML. It can be easily ignored for
applications where this ordering makes no sense.

Inheritance is important in the OODB context (and perhaps less so in the SGML context). We
describe it next insisting only on the non-standard portion.

A class hierarchy is a triple (C, 0, <) where C' is a finite set of class names, ¢ a mapping from C
to types((C'), and < a partial order on C. The sub-typing relationship (<) is defined as in O,
except that we add two rules. The first one deals with union:

[a;) < (...ta:m+...).
Observe that as a consequence of the sub-typing rules, we now have that:
(a1 Tyt i) <o) <(ar:T1 4 ... 4 ay 7).

Furthermore, we introduce a second new rule to view a tuple as a special case of heterogeneous
list:

‘[al:ﬁ,...,anzrn]g[(al:ﬁ—l—...—l—anzrn)].‘

This allows us to blur the distinction between a tuple (e.g., [A : 5, B : 6]) and the corresponding
heterogeneous list (e.g., [[A : 5],[B : 6]]). We only consider well-formed class hierarchies, i.e.,
hierarchies (C, 0, <) such that for each ¢,c, if ¢ < ¢/, then o(c¢) < o(¢’). We give now the
semantics of classes and types.

Definition Let (C,0,<) be a class hierarchy. A disjoint oid assignment is a function 7y
mapping each name in C'to a disjoint finite set of oids. The oid assignment 7 (inherited from
Tq) is given by: for each ¢, w(¢) = U{mq(c') | ¢ < ¢}. O

The syntax and semantics of types are now defined for a given class hierarchy and an oid
assignment w. Given an oid assignment w, the interpretation of a type 7, denoted dom(t), is
given by:

o for each atomic type, take its corresponding domain;

o dom(any) is U{m(c)|c € C};

o for each ¢ € C, dom(c) = n(c) U {nul}.

dom({7}) = {{v1,...,v;} |7 >0, and v; € dom(7),i=1,...,7},

dom([r]) =
{lv1,...,9;] 17 >0, and v; € dom(7),i=1,...,7},

11

o dom(lay: T,...,a5: T]) =
{lar: vi,oooan s vg, oo apyr s vrp] [0 € dom(7y), i =1, k1> 0}

o ‘dom(al: T4 .otag: 1) = U{dom([a; : vi])|1§i§k}.‘

By abuse of notation, we denote by dom the mapping which associates to each type 7 the set
of (=) equivalence classes of the elements in dom(7). Then one can show that for each 7,7’
in types(C), if 7 < 7/, dom(t) C dom(t'). For instance, to blur the distinction between a
tuple and the corresponding heterogeneous list, consider the equivalence relation obtained with:
[ay: vy ap: vp] = [[ar: vi],...,[ag : vi]] for each tuple [ay : v;,...,ar : vg]. It must be
stressed that the typing mechanism of the extended O2;SQL (see Section 4.2) relies on the above
subtyping rules.

To conclude these preliminaries, we present schemas and instances and comment on their def-
initions. Qur schema does include methods in the style of Oy but we do not discuss methods
here and introduce them just for the sake of completeness.

Definition A schema S is a 5-tuple (C,0,<,M,G) where (C,0,<) is a well-formed class
hierarchy; M is a set of method signatures; and G is a set of names (the roots of persistence)
with a type type(g) associated with each name ¢ in G. O

Definition An instance I of schema (C,0,<,M,G) is a 4-tuple (7,v, u,7), where (i) 7 is an
oid assignment and O = U{7(¢) | ¢ € C'}; (ii) v maps each object to a value in val(O) of correct
type (i.e., for each ¢, and o € 7(c), v(o) € dom(o(c))); (iii) p assigns a semantics to method
names in agreement with the types of methods given in M; and (iv) v associates to each name
in G of type 7, a value in dom(7). O

5.2 The Calculus

We define a many sorted calculus in the spirit of [3]. The sort issue is quite intricate and we
will come back to this in Subsection 5.3. For the time being, we only distinguish between three
sorts: val, att and path. All variables have one of these sorts. The main additions are the
introduction of attribute and path variables to provide more flexibility in querying data without
precisely knowing its structure. Therefore most of our presentation is devoted to presenting and
discussing path expressions.

As we have seen in Section 4 paths allow to navigate within database objects/values. Within a
data value, if we are located at a tuple or a marked union, we may follow an attribute selector®
(-a below); if we are at a list, we may choose an element of the list ([¢] below); if we are at a
set, we may choose an element of the set ({v} below). Finally, if we are at an object (and so
reached the frontier of a value), we may use dereferencing (— below). Formally, a path variable
will be interpreted using concrete paths which are sequences of:

1. “-a” where a is an attribute name;
2. [{] where i is an integer;

3. — (dereferencing);

e

. {v} where v is a value.

Several examples of concrete paths can be found in Subsection 4.3.

? Although not done here it is also possible to consider paths that goes though method calls.

12

The set of all concrete paths is denoted path. Observe that as defined here a path is allowed to
cross the boundary of the value of an object; as a consequence, it may be the case that the number
of concrete paths in a database is infinite because of the existence of cycles. OQur semantics will
enforce that only a finite number of concrete paths will be considered when navigating from a
given value.

We denote variables with capital letters. We use three disjoint alphabets of variables: (i) data
variables (X,Y, 7 possibly with subscripts); path variables (P,Q, R possibly with subscripts);
attribute variables (A, B,C possibly with subscripts). We next define attribute terms, path
terms and data terms.

An attribute term is either an attribute name or an attribute variable. Now, path terms are

given by:

1. each path variable is a path term;

2. € (the empty string) and — are path terms;

3. if A is an attribute term, then -A is a path term;
4. if 1 is an integer term®, then [7] is a path term;

5. if P,Q are path terms and X is a data variable, then PQ, P(X), P{X} are path terms.
Finally, we define the data terms which are given by:

1. each name in G, each atomic value (nil, elements of dom or O), and each data variable
are data terms;

2. ifty,...,t, are datatermsand Ay,..., A, attribute terms, then [t{,...,t,], [A1 : t1,..., Ay :
t,] and {ty,...,t,} are data terms;

3. if t1,...,t, are data terms and m a method in M, then m(ty,...,%,) is a data term;

4. if t is a data term and P a path term, then tP is a data term.

To illustrate these definitions, suppose that we are interested in the third chapter of second
volume of Knuth, and suppose that we have Knuth_Books as a root of persistence. Then this
information can be reached by: Knuth_Books P - volumes[2] Q - chapters[3](X).

This assumes that a tuple with an attribute volumes (the list of volumes) can be reached from
the persistent root Knuth_Books and from a volume, one can reach a tuple (or a marked union)
with an attribute chapters (the list of chapters). Here, for instance, P-volumes[2] Q - chapters[3]
is a path term and Knuth_Books P - volumes[2]Q - chapters[3] a data term. The data variable
X will denote the relevant chapter.

The core calculus

The atoms are first formed from the data terms using equality, containment, and membership.
If t,1" are data terms, then ¢t = ¢/,¢ € t',¢t C t' are atoms. Since we are particularly interested in
the specification of paths, we introduce a second kind of atoms, namely path predicates. If v P is
a term with v a data term and P a path term, then (vP) is an atom. The interpretation of path
predicates is as follows. A ground path predicate (v P) holds if an instance of P is a concrete path

*Strictly speaking, we do not have integer types at this stage. We can just assume that only valuations to
integers will be defined when indexing lists. This issue will disappear when we introduce typing in the next section

13

from the root of v. An example of path predicate is given by: (Knuth_Books P - status(X))
which should be interpreted as P is a path from the root of Knuth_Books to a tuple (or a
marked union) with an attribute status whose value is denoted by X.

The literals are obtained from atoms using conjunction (A), disjunction (V), negation ()
and quantification over data, path and attribute variables (3,V). A query is an expression
{x1,...,2, | ¢} were 21, ...,x, are the only free variables in ¢.

The semantics is then (almost) standard. The semantics of data terms will be within the set
val of values; the semantics of path terms within path, and that of attribute terms within att.

Range-Restriction

We impose range-restrictions in the style of [3]. All variables in a formula must be range
restricted. The reader will find in [3], the range-restrictions coming for instance from the use
of equality, membership or containment. We insist here only on the novel aspect, the range-
restriction obtained from path expressions.

Consider path predicates. The role of such predicates is twofold: (i) state the existence of paths,
and (ii) range restrict the variables specified on the path. More precisely, a path variable or an
attribute variable are range-restricted if they occur in a path from a root of persistence or from
a range-restricted variable. For instance, in

(Knuth_Books P -volumes[2] Q - chapters[J](X) - A(Y)) A Y = “Introduction”

the variables P,Q,J, X A,Y inherit their range-restriction from Knuth_Books.

A subtlety is the interpretation of path variables. Consider a database of persons with spouses
and the data term Alice P name. For path —, the data term denotes Alice’s name, for path
— husband —, it denotes Alice’s husband’s name, etc. There are alternatives for interpreting
such path variables:

The semantic we choose: Paths variables are interpreted by concrete paths with no two
®. For instance, the path — husband — will
not be considered since it would involve two dereferencings of Person. This guarantees
safety and indeed as we will see the resulting language can be implemented with efficient
algebraic techniques. Observe also that queries going more in depth in the search can still
be specified using paths of the form P — P’, etc.

dereferencing of objects in the same class

A more liberal semantics: One can alternatively allow paths that are not visiting twice
the same object (vs. the same class). This forces to consider paths of unbounded length,
i.e., length determined by the data and not the schema and to introduce a loop detection
mechanism.

In hypertext applications, navigation is crucial and the liberal semantics should be used. In this
paper, we use the restricted path semantics. We believe that such form of recursive navigation
within the data structure is not necessary for structured documents. (Recursion can always be
simulated with method calls.)

Observe that the language allows to query paths and attributes. We consider examples of queries
involving path expressions:
In which attribute, can “Jo” be found?

{A | IP((Knuth_Books P-A(X))\NX = “Jo")}

®This is a forward pointer since we didn’t mention typing yet.

14

Which paths lead to “Jo”?
{P | (Knuth_Books P(X))ANX = “Jo"}
What are the new paths in Doc?
{P | (Doc Py N=(Old_Doc P)}
What are the new titles in Doc?.

{X | 3P((Doc P -title(X))) AN ~3P'({Old_Doc P’ - title(X)))

Finally it must be stressed that any O2SQL query of the form Doc PATH _p[i]. ATT a(z)...
can be translated into a calculus expression of the form:

([P, I, A, X,..] | (Doc P[I]- A(X)..)}

Interpreted Predicates and Functions

Our calculus also uses interpreted functions and predicates in the style of [3]. We assume
that a set of interpreted functions and a set of interpreted predicates are given. For instance,
for information retrieval, pattern matching is essential. This can be captured by appropriate
interpreted functions and predicates. For instance, we assume that we have an interpreted
predicate contains that we can use with patterns.

Interpreted predicates and functions may be useful also for the path and attribute domains. For
instance, the functions length and name of the previous section can be used as follows:

{X | IP({Knuth_Books P(X) - title) A length(P) < 3)}
{X | 3P, A((Knuth_Books P - A) N name(A)contains “(¢|T)itle” A length(P) < 3)}.
Finally, observe that the result of a query is always a set®. To obtain lists, interpreted functions
such as set_to_list or sort_by could be introduced in the language. Consider a persistent root

MylList of type [(a : string + b : string)], i.e., a list of ¢ or b-strings. A list of the b-strings
occurring after an a-string is given by:

{Y|Y =set_tolist({X |3, J((MyList[I]-a) N (MyList[J]-b(X))AI < J)})}.

This query also illustrates the nesting of queries in a calculus a la [3].

5.3 Typing
Typing is a fundamental programming discipline. We focus here on only one of its aspects crucial
in databases, namely, its role for the algebraization of programs and therefore their optimization.

For us, typing is essentially a consequence of range restriction. Given a formula ¢ over a schema
S, one infers the precise types of each data variable basically by following the testing for range-
restriction: once the range of a variable is known, it determines its type. Let us consider query:

{X | IP((Knuth_Books P - sections{X})) A X -title =Y AY contains “type”}.

Then X obtains its range-restriction from Knuth_Books and has the type Tseetion; and Y obtains
its range-restriction from X and has the type string. However, the polymorphism obtained

6This is also a limitation of standard relational calculus.

15

from using attribute and path variables complicates the issue. For instance, consider variable
X in the formula IP({Knuth_Books P(X) - title)).

Suppose that X may a volume, chapter, section or subsection. The type of X is a union:

(al D Twolume T Q2 ¢ Tchapter + Q31 Tsection + Q4 Tsubsectn)

where a; are system supplied attribute names. Observe that (as usual when considering union
types) this may result in a combinatorial explosion and resulting types which are unions of many
types. Observe also that the “interesting” valuations may also be restricted by the types as in:

JP((Knuth_Books P(X) - title) A “D. Scott” € X - review).

If only chapters have reviewers, then only valuations of X with chapters may occur in the result.
We now have to make two comments. Firstly, strictly speaking, the type of X is a marked union,
so we should be using X - a; - review for some 7 (see below Important Omissions). Secondly,
what is the meaning of X - review when X is of type, say Toupsectn. We will assume that each
atom where this occurs is false. It is important to see that this is not a way of turning off the
type checking: if no alternative of the type union has an attribute review, this leads to a type
error.

To conclude this section, let us reconsider the example of letters with to and from fields to
illustrate the subtlety of marked union and its interaction with ordered tuples in the formal
setting.

Example Consider a root of persistence Letters which is of type
[(aq : [from : string, to : string, content : stringl+aq : [to : string, from : string, content : string])]

i.e. a list of tuples where the attribute to comes before or after the attribute from. If we know
the exact structure, it suffices to query:

{Y | 3I{Letters[I]-a1(Y))}

to obtain the letters starting with the attribute from. Else, a more involved equivalent query
uses the ordering of the tuple:

(DY | A, 1, J, K((Letters[I]- A(Y)[J] - to) A (Letters[I]- A[K]- from) NJ < K)}.

We are using here the fact that a tuple is also an heterogeneous list. In the formula, Letters[/]
denotes the I-th letter, A is an attribute (aq or az), Y is the desired letter, .J is the rank of the
attribute to, and K that of the attribute from.

In (}), there is still some inelegance in the use of a variable (A) to denote an attribute (a; or
az) not present in the original view of the document. To solve the problem we use the following
syntactic sugaring.

Important Omissions

Marking attributes (attributes used as markers in the marked union) can be omitted in queries.
In 025QL (see Section 4.2) this was referred as implicit selectors. This is clearly at the cost of
some little extra work for the type checker but is imposed by the fact that the user ignores these
attributes. This allows to directly “project” on the attribute to as in:

{X | AI{Letters[I]-to(X))}
to obtain the set of letter recipients. This also allows to slightly simplify query (}):
{Y | 3, J, K({Letters[I|(Y)[J] - to) N (Letters[I][K]- from) A J < K)}.O

16

5.4 Algebraization (sketch)

First consider the restriction of the calculus obtained by disallowing attribute and path variables.
An algebra can be obtained in the spirit of the algebras for complex objects (e.g., [3, 12]). To
handle union of types, a variant-based selection (using implicit selectors) over heterogeneous sets
(or lists) has in particular to be introduced. Next, consider the subset of the calculus obtained
by allowing formulas of the form

(*) ElPl,...,Pn,Al,...,Am(QO)

where ¢ contains no quantification over path or attribute variables. By analysis of the query
using schema information, one can find candidate valuations for the P; and A;. Therefore, one
can transform the query into a union of queries with no attribute or path variables. This may
result in introducing new variables to quantify over the elements of a set or a list. Also, we may
have to introduce marking before being able to do the union.

In general, one can show that an arbitrary calculus query can be translated into a boolean
combination of queries of the form (x). This provides an algebraization of the calculus.

Remark: Although not done here, it is possible to extend the equivalence between relational
calculus and algebra to this extended calculus and algebra. The mapping between O,5QL and
calculus/algebra can also be demonstrated. O

To conclude, observe that this technique would not work if we choose the liberal semantics for
path expressions. Indeed, if we want to compile queries to algebra expressions in this larger
setting, our algebra should include some form of transitive closure/fixpoint operator.

6 Summary

In this paper a mapping from SGML documents to an OODB was defined. This required
the extension of the Oy data model [23] to union types (in the spirit of IQL [6]) and ordered
tuples. We then extended the Oy query language to deal with these new features and with
the requirements of documents retrieval such as querying data with incomplete knowledge of
their structure. The formal bases for these new features uses an extension of the calculus of
[3]. Although motivated by structured documents, the new query facilities should be useful to
a variety of other OODB applications. Among other facilities the introduction of paths as first
class citizens allows users to query data (and to some extent schema) without exact knowledge
of the schema in a simple and homogeneous fashion.

The work described here is currently being implemented on top of the O DBMS. In particular,
an extension of the Euroclid SGML parser [16] has been developed to translate SGML documents
into Oy schemas and instances. This extension requires the annotation of the BNF grammar
generated by the parser, with appropriate semantic actions. The extension of O;5QL is also
being designed. Optimization is crucial in this context. We mentioned already on-going studies
for the integration of full-text indexing facilities. Query optimization techniques were already
presented in [4]. An other key aspect is that of providing the means to update the document
from the database. The update semantics for this context is the topic of [5].

Acknowledgments: We are grateful to Oy Technology, Euroclid and AIS Berger-Levrault for
their technical support during this project. We also thank J. Stein, B. Amann, C. Lecluse,
A. Rizk and A. M .Vercoustre.

17

References

[1] ISO/IEC 10744. Information Technology- Hypermedia/ Time- based Structuring Language
(HyTime), 1992.

[2] ISO 8879. Information Processing-Text and Office Systems-Standard Generalized Markup
Language (SGML), 1986.

[3] S. Abiteboul and C. Beeri. On the Power of Languages for the Manipulation of Complex
Objects. Rapports de Recherche 846, VERSO, INRIA, BP. 105, 78153 Le Chesnay, France,
1988.

[4] S. Abiteboul, S. Cluet, and T. Milo. Querying and Updating the File. In VLDB’93, pages
73-84, Dublin, Ireland, August 1993.

[5] S. Abiteboul, S. Cluet, and T. Milo. More on Updating the File. Rapports de recherche,
VERSO, INRIA, BP. 105, 78153 Le Chesnay, France, 1994.

[6] S. Abiteboul and P. Kanellakis. Object Identity as a Query Language Primitive. In SIG-
MOD’89, pages 159-173, Portland Oregon, June 1989. ACM.

[7] B. Amann and M. Scholl. GRAM: A Graph Model and Query Language. In ECHT’92,
pages 201-211. ACM, December 1992.

[8] F. Bancilhon, S. Cluet, and C. Delobel. A Query Language for the Oy Object-Oriented
Database System. In DBPL’89, pages 122-138, Salishan Lodge, Oregon, June 1989. Morgan
Kaufmann.

[9] AIS Berger-Levrault. SGML/Search, Description du Langage. Internal Document, 34
Avenue du Roule 92200 Neuilly sur Seine, 1993.

[10] E. Bertino, F. Rabitti, and S. Gibbs. Query Processing in a Multimedia Document System.
ACM Transactions on Office Information Systems, 6(1):1-41, January 1988.

[11] F. J. Burkowski. An Algebra for Hierarchically Organized Text-Dominated Databases.
Information Processing & Management, 28(3):333-348, 1992.

[12] S. Cluet and C. Delobel. A General Framework for the Optimization of Object-Oriented
Queries. In SIGMOD 92, pages 383-392, San Diego, California, June 1992. ACM.

[13] M. P. Consens and A. O. Mendelzon. GraphLog: A Visual Formalism for Real Life Recur-
sion. In PODS 90, pages 404-416, Nashville Tennesee, April 1990.

[14] P. Dadam and V. Linnemann. Advanced Information Management (AIM): Advanced
database technology for integrated applications. IBM Systems Journal, 28(4):661-681,
1989.

[15] O. Deux et. al. The Story of Oy. IEEFE Transactions on Knowledge and Data Engineering,
2(1):91-108, Mars 1989.

[16] Euroclid. Le Parseur SGML d’Euroclid. Internal Document, 12, Avenue des Prés 78180
Montigny le Bretonneux, 1991.

[17] C. F. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1990.

[18] G. H. Gonnet and F. W. Tompa. Mind Your Grammar: a New Approach to Modeling
Text. In VLDB’87, pages 339-346, Brighton, 1987.

18

[19]

[20]

[21]

[22]

[23]

[25]

[26]

[27]

[28]

R. H. Giiting, R. Zicari, and D. M. Choy. An Algebra for Structured Office Documents.
ACM Transactions on Office Information Systems, 7(4):123-157, April 1989.

M. Gyssens and J. Paredaens. A Grammar-Based Approach towards Unifying Hierarchical
Data Models. In SIGMOD’89, pages 263-272, Portland Oregon, 1989. ACM.

N. Ide, J. Le Maitre, and J. Véronis. Outline of a Model for Lexical Database. Information
Processing & Management, 29(2):159-186, 1993.

I. Jacobs and L. Rideau-Gallot. A CENTAUR tutorial. Rapports Techniques 140, INRIA,
BP. 105, 78153 Le Chesnay, France, July 1992.

P. Kanellakis, C. Lecluse, and P. Richard. Introduction to the Data Model. In F. Bancilhon,
C. Delobel, and P. Kanellakis, editors, Building an Object-Oriented Database System: The
Story of O, chapter 3, pages 61-76. Morgan Kaufmann Publishers, San Mateo, California,
1992.

M. Kifer, W. Kim, and Y. Sagiv. Querying Object-Oriented Databases. In SIGMOD’92,
pages 393-402, San Diego, California, June 1992. ACM.

W. L. Lee and D. Woelk. Integration of Text Search with ORION. Data Engineering,
13(1):56-62, March 1990.

I. A. Macleod. Storage and Retrieval of Structured Documents. Information Processing &
Management, 26(2):197-208, 1990.

R. Sacks-Davis, W. Wen, A. Kent, and K. Ramamohanarao. Complex Object Support for a
Document Database System. In Thirteenth Australian Computer Science Conference, pages
322-333, Victoria, Australia, 1990. Monash University.

J.D. Ullman. The Interface between Language Theory and Database Theory. In Theoritical
Studies in Computer Science, pages 133-151. Academic Press, 1992.

19

