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Abstract
Trust prediction, which explores the unobserved
relationships between online community users, is
an emerging and important research topic in social
network analysis and many web applications. Sim-
ilar to other social-based recommender systems,
trust relationships between users can be also mod-
eled in the form of matrices. Recent study shows
users generally establish friendship due to a few la-
tent factors, it is therefore reasonable to assume the
trust matrices are of low-rank. As a result, many
recommendation system strategies can be applied
here. In particular, trace norm minimization, which
uses matrix’s trace norm to approximate its rank, is
especially appealing. However, recent articles cast
doubts on the validity of trace norm approxima-
tion. In this paper, instead of using trace norm min-
imization, we propose a new robust rank-k matrix
completion method, which explicitly seeks a matrix
with exact rank. Moreover, our method is robust
to noise or corrupted observations. We optimize
the new objective function in an alternative manner,
based on a combination of ancillary variables and
Augmented Lagrangian Multiplier (ALM) Method.
We perform the experiments on three real-world
data sets and all empirical results demonstrate the
effectiveness of our method.

1 Introduction
The number of registered users on social network web sites
has dramatically increased in recent years. Together with
the enrollment increases, more frequent activities happen be-
tween users. Users daily receive numerous pieces of con-
tent generated by other users, and many of these messages
need to be evaluated for trustworthiness, thus the question of
whom and what to trust has become an even more impor-
tant challenge on the web. As a result, users resort to trust
information to filter and extract external messages and build
connections with other users within the community. One of
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the key features in these social web sites is to allow users to
explicitly express their trust or distrust towards other users in
some forms, such as accept others’ connection request, block
malicious users they dislike. These tags (directed edges), to-
gether with these users (nodes), can be represented as a trust
graph. Here trust graph is a matrix, if user i trusts user j, then
the corresponding matrix entry is 1, otherwise 0. Trust pre-
diction is to predict the missing values in the trust graph and
can be viewed as a special case of the general link prediction
in social networks. The most important differences between
trust graphs and general social network graphs are two struc-
ture properties, trust graphs could have symmetry property
between certain users and the trust links tend to propagate
along users. The symmetry comes from the mutual status of
the trust relationship, one user tends to trust the other if the
other party grants him/her trust. The trust propagation is also
easy to see, two users are easier to become friends and cast
trust towards each other given they have a common trusted
peer.

Due to the lack of diligence from users’ side and privacy
concern, missing values in the trust graphs are inevitable. On-
line users seldom have the time and energy to explicitly tag
their friends, the online privacy security meanwhile is becom-
ing a serious issue. Users therefore have very limited number
of explicit tags for their online friends. On the other hand,
users have the desire to expand their networks and meanwhile
maintain their online information and profile security, know
whom to trust and whom not to. As a result, it is desirable
and often necessary to predict these missing values first to fa-
cilitate subsequent mining tasks. There are many algorithms
available for general prediction in graphs. In [Liben-Nowell
and Kleinberg, 2003], Kleinberg et al. surveyed an array of
trust prediction methods and classify them into three cate-
gories. The first category is based on node neighborhoods,
such as Common Neighbors [Newman, 2001] and Jaccard’s
coefficient [Salton and McGill, 1983]. The second cate-
gory is based on the ensemble of all paths, well known meth-
ods are Katz [Katz, 1953] and SimRank [Jeh and Widom,
2002]. Low-rank approximations by SVD [Billsus and Paz-
zani, 1998] or by trace norm minimization [Cai et al., 2008]
belong to the last category.

Realistic trust graphs carry less than 1% non-zeros. For
instance, most Facebook users have less than 1,000 friends,
which is far less than 1% considering facebook hundreds of
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Figure 1: A demonstration for scenarios that users make trust
decision in various forms, such as accepting others’ adding
requests from facebook, believing news from other twitter
users, reading emails sent by others. Green arrow repre-
sents the sources user should trust and red arrow represents
the sources user should distrust.

millions of users. This makes the first two categories difficult
in practice as we will show in the experiment section. The fo-
cus of this paper is the low rank approximation method. The
low rank assumption reflects the fact that social network user
can be grouped into a small number of clusters based on their
background or interest. Trace norm minimization [Cai et al.,
2008], different from classic SVD method, uses convex ma-
trix trace norm to approximate its rank. However, there are
two potential issues with this method. First, the incoherence
conditions of the data matrix is often too restrictive, there is
no prediction accuracy guarantee when the assumption is not
satisfied. The theoretical results in [Candès and Recht, 2009;
Candès and Tao, 2010] assume that the observed entries are
sampled uniformly at random. Unfortunately, many real-
world data sets exhibit power-law distributed samples instead
[Meka et al., 2009]. Furthermore, Shi et al. [Shi and Yu,
2010] pointed out that the yielded solution via trace norm
minimization is often not low-rank or unique for practice ap-
plications. Second, the sparse entries are prone to the influ-
ence of outlying or corrupted observations. There are some
work trying to alleviate this issue in literature [Wright et al.,
2009].

Users who trust each other are often in the same social
circle. It has been discovered in [McPherson et al., 2001],
people who are in the same social circle often share similar
behavior and tastes due to social influence and behavior adop-
tion. Therefore, individual user’s interests and attributes can
be inferred from his or her social neighbors [Bedi et al., 2007;
Wen and Lin, 2010]. Furthermore, Huang et al. [Huang et al.,
2012] discovered it is possible to make accurate personalized
recommendation based on trust information. These applica-
tions demonstrate the application of trust prediction.

In this paper, we introduce a novel view on robust matrix

completion based on low-rank approximation and propose a
Robust Rank-k Matrix Completion (RRMC) method. The
main contribution of our paper can be summarized as follows.
• Instead of minimizing the trace norm, we recover the

data matrix with exact rank-k (k is a low-rank number
selected by user). It limits the parameter tuning within a
set of integers instead of infinite possible values, which
is crucial for real applications.
• Our method explicitly guarantees the low-rank of the re-

covery matrix and also minimizes the influence of noisy
observations.
• We optimize the new objective function in an alternative,

iterative way with the adoption of ancillary variables and
ALM. Our algorithm has reasonable efficiency and the-
oretical convergence guarantee.
• Our method is robust to parameter choices and has stable

performance.
The rest of the paper is organized as follows: Section 2

presents a brief review on related work and introduces our
objective function. Section 3 derives the optimization method
and summarizes the algorithm. Empirical experiments on dif-
ferent real data sets are demonstrated in Section 4, and Sec-
tion 5 concludes the paper.

2 Robust Rank-k Matrix Completion
Given a sufficient number of uniform measurements from the
data matrix M ∈ Rn×m, it is natural to recover the low-rank
matrix X by solving the following equation:

min
X

rank(X)

s.t. Xij = Mij , (i, j) ∈ Ω,
(1)

where Ω is the set holding all indices of observed entries in
matrix M . Eq. (1) seeks the simplest explantation to fit the
observed data. However, there are two fundamental draw-
backs for this approach: (1) This optimization problem is
NP-hard; (2) Practical data set rarely satisfy the uniqueness
of X.

If a matrix has rank r, then clearly it has exactly r nonzero
singular values. As a result, the rank function in Eq. (1) is the
number of nonzero singular values. In recent years, Candès
et al. proposed to use trace norm ‖X‖∗ (the sum of the sin-
gular values) to seek a low-rank matrix recovery [Candès and
Recht, 2009; Candès and Tao, 2010]. It is obvious that the
trace norm of a matrix is a convex approximation to its rank.
The heuristic optimization is as the following

min
X
‖X‖∗

s.t. Xij = Mij , (i, j) ∈ Ω .
(2)

Candès et al. proposed Singular Value Thresholding (SVT)
algorithm [Cai et al., 2008] to solve Eq. (2). Meanwhile,
Candès et al. further provided the assumption for a perfect
recovery with high probability [Candès and Recht, 2009].

Other researchers relaxed the constraints [Fazel, 2002;
Ji and Ye, 2009] to allow the recovery errors and make the
matrix completion more flexible by solving:

min
X
‖XΩ −MΩ‖2F + λ ‖X‖∗ , (3)
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where λ > 0 is the regularity parameter. Regularization by
trace norm has been shown to lead to low-rank solution with
certain assumptions [Fazel et al., 2001]. However, Shi et al.
[Shi and Yu, 2010] pointed out in many cases, such yielded
solution is not really low-rank and there might be multiple
unstable solutions. In addition to this deficiency, tuning λ in
Eq. (3) for trace norm approach is often expensive and diffi-
cult.

In this paper, we tackle the rank minimization problem by a
new approximation formulation. Instead of minimizing trace
norm to get an approximation matrix, we explicitly require its
low-rank. Different from conventional rank minimization ap-
proaches, we set exact rank as a parameter and provide users
freedom to choose an appropriate value. We seek a matrix
that fits the observed values appropriately, meanwhile explic-
itly require the approximation matrix to be low-rank. The
proposed objective function is as follows:

min
X
‖XΩ −MΩ‖1

s.t. rank(X) ≤ k ,
(4)

where k is a user-specified value. When k is not very large,
our method is a good approximation to Eq. (1). The range
of the parameter k can be easily decided during the practical
applications. Conventional methods generally use `2 norm as
discrepancy measure on observed subset, which leads to ana-
lytical convenience but often suffers from noise disturbance.
Here we use `1 norm to make our method less prone to out-
lier influence. We call the proposed method as Robust Rank-k
Matrix Completion (RRMC) approach.

3 Optimization Algorithm
As mentioned in the above section, the trace norm mini-
mization of a matrix is a convex approximation of its rank
minimization problem, therefore there is no guarantee such
yielded solution is indeed low-rank when theoretical assump-
tions are not satisfied. This is a key difference between trace
norm minimization approaches and exact rank matrix recov-
ery methods. On the other hand, the low-rank minimiza-
tion methods for Eq. (1) often involve expensive computation
costs.

Our new RRMC objective function in Eq. (4) uses `1 norm
to alleviate the outlier influence, meanwhile the rank con-
straint guarantees the low-rank of the approximation ma-
trix. In the literature of machine learning and its closely
related areas, `1 norm has been used for feature selection
[Nie et al., 2010; Cai et al., 2011], graph based learn-
ing [Nie et al., 2011], and model selection [Shao, 1996;
Tibshirani, 1996]. The key advantage of using `1 norm over
`2 is that each data point no longer enters the objective func-
tion as squared residual error. Optimizing objective function
in Eq. (4) is difficult due to `1 norm and the exact rank con-
straint.

To solve our new objective function, we will derive the
optimization algorithm using ancillary variables and Aug-
mented Lagrangian Multiplier (ALM)Methods. ALM [Bert-
sekas, 2003] were originally proposed for convex problems
and recently extended to non-separable, non-convex prob-
lems. The main idea is to eliminate equality constraints and

instead add a penalty term to the cost function that assigns a
very high cost to infeasible points. ALM differs from other
penalty-based approaches by simultaneously estimating the
optimal solution and Lagrange multipliers in an iterative fash-
ion.

We introduce the ancillary variable Y that approximates X
and re-write Eq. (4) into the following one:

min
X,Y
‖XΩ −MΩ‖1 + µ

2

∥∥∥X−Y + 1
µΛ

∥∥∥2

F

s.t. rank(Y) ≤ k ,
(5)

where µ is the regularity coefficient that balances the first
term and second term in Eq. (5). Λ is used to adjust the dis-
crepancy between X and Y. They are parameters of ALM
and their update rules will be provided shortly.

Since Eq. (5) involves two variables X and Y, we solve it
in an alternative manner and repeat the following steps until
convergence.

When Y is fixed, we get XΩ and XΩc separately. It is easy
to get the XΩc formula

XΩc = YΩc − 1

µ
ΛΩc (6)

as the first term in Eq. (5) is a constant with respect to XΩc .
Optimizing Eq. (5) with respect to XΩ is equivalent to op-

timizing

min
XΩ

1

2

∥∥∥∥XΩ − (YΩ −
1

µ
ΛΩ)

∥∥∥∥2

F

+
1

µ
‖XΩ −MΩ‖1 (7)

We can let ZΩ = XΩ −MΩ and write the above equation
into the following one

min
ZΩ

1

2

∥∥∥∥ZΩ − (YΩ −
1

µ
ΛΩ −MΩ)

∥∥∥∥2

F

+
1

µ
‖ZΩ‖1 (8)

According to [Liu and Ye, 2009], there is a closed form
solution to the following one:

min
x

1

2
‖x− v‖22 + λ‖x‖1, (9)

where vectors x,v ∈ Rn, scalar λ > 0. The solution is

xi = sign(vi) max(abs(vi)− λ, 0) (10)

where sign(t) is the signum function: if t > 0, sign(t) = 1;
if t < 0,sign(t) = −1; and if t = 0, sign(t) = 0.

Now according to the solution Eq. (10) to Eq. (9), we solve
Eq. (8) in a decouple way. The solution to Eq. (8) is

ZΩ = sign(YΩ −
1

µ
ΛΩ −MΩ)N, (11)

where N = max(abs(YΩ − 1
µΛΩ −MΩ)i − 1

µ , 0).
Then it is straightforward to get the formula

XΩ = ZΩ + MΩ (12)

When X is fixed, optimizing Eq. (5) is equivalent to

min
Y

∥∥∥Y − (X + 1
µΛ)

∥∥∥2

F
s.t. rank(Y) ≤ k

(13)
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Algorithm 1 Robust Rank k Matrix Completion
Input: Available entries MΩ, user specified rank value k.
Output: Prediction matrix X
Initialize Y, µ, ρ and Λ
repeat

Update X according to Eq. (6) and Eq. (12)
Update Y according to Eq. (14)
Update µ and Λ according to Eq. (15).

until converged

Assuming the SVD decomposition of X+ 1
µΛ is FSGT , then

the solution of Y is

Y = FkSkG
T
k , (14)

where Sk contains top k largest values and Fk, Gk are the
singular vector matrices corresponding to Sk.

Finally, we update Λ and µ:

Λ = Λ + µ(X−Y)
µ = ρµ,

(15)

where ρ > 1 is an ALM method parameter.
The whole algorithm is summarized in Algorithm 1. We

use the relative change of objective function value becomes
less than 10−4 as the convergence criterion. Readers interest
in the detailed convergence proof of algorithm 1 may refer
to [Bertsekas, 2003]. Here we provide an intuitive verifica-
tion due to space constraint. As µ goes infinity, to minimize
Eq. (5), we can ignore the first term and get Y = X, which
implies the convergence of the algorithm. Note that our al-
gorithm guarantees an asymptotic convergence, i.e., the algo-
rithms converges after certain number of iteration. The exact
number of iterations t required clearly depends on both the
data attributes and tolerance, nevertheless, it is always below
25 for all of our experiments in this paper. The computation
cost for XΩC and XΩ are both of order O(nm) and Y is of
order O(nm2), therefore the total computational cost is of
order O(tnm2).

Now we want to discuss the influences of the ALM param-
eters µ, Λ and ρ to the algorithm convergence. It is easy to
see the algorithm converges when the regularity penalty µ is
sufficiently large. From Eq. (15), we can see µ grows ex-
ponentially, therefore the initial value of µ has little impact
given sufficient number of iterations. Similar reasoning ap-
plies to Λ, when µ is large enough, Λ in the second term
can be ignored. On the other hand, ρ has a significant impact
on the convergence speed and objective function value accu-
racy. A larger ρ value would reduce the computational time
but meanwhile compromise the objective function accuracy.
Suggested ρ value is between 1.01 and 1.1 [Bertsekas, 2003].

4 Experiments
In this section, we empirically evaluate our method RRMC
for the matrix completion effects on a few real data sets. As
mentioned in the introduction, matrix completion problem
has applications in different disciplines. The remainder part
of this section consists of several subsections. In each sub-
section, we present the necessary background information for

each experiment data set and then the corresponding result.
To better demonstrate the impressive effect of our method,
we also include a few classical competitive methods: SVD,
singular value projection 1(SVP) [Jain et al., 2010], robust
PCA 2(RPCA) [Wright et al., 2009], singular value thresh-
olding 3(SVT) [Cai et al., 2008], OPTSpace 4 [Keshavan and
Montanari, 2010].

Unless specified otherwise, we select the ground truth
rank of the recovery matrix from 5 to 20, with increment
of 5. Regularity parameter for SVT are tuned from the list
{0.001, 0.01, 0.1, 1}. Since the default step size for SVT and
SVP would result in divergence for some our data sets, we
set them at conservative values. Assuming p is the ratio be-
tween observations and number of elements, for SVT, we
set τ = 5√

mn
, δ = 1

20p ,tol= 10−4, while for SVP, we set
tol= 10−4, vtol= 10−3,verbosity= 1, δ = 1

20p . For SVD,
we always initialize the missing entries with 0s, set Y the ini-
tialized M for RRMC. Note that RRMC converges within 20
iterations on all of the following data sets. We report results
below the average of 20 runs.

4.1 Experiment on Synthetic Data Set
We first evaluate our method against other methods for ran-
dom low-rank matrices and uniform samples. We generate
a random rank 2 matrix M ∈ Rn×n and generate random
Bernoulli samples with probability 0.1.

we introduce two evaluation metrics to measure the predic-
tion error, mean average error (MAE) and root mean square
error (RMSE), where sd represents the standard deviation.
These two metrics are commonly used for matrix completion
evaluation.

MAE =mean |Xij −Mij|
RMSE =

√
mean(Xij−Mij)2

sd(Mij)
, (i, j) /∈ Ω

We add approximately 10% Gaussian noise and conduct
matrix completion experiment as n increases from 1000 to
5000. In Fig. 2(a), it can be observed that SVD is very sensi-
tive to the moderate noise while all other competitive methods
are relatively robust. RRMC shows significant improvement
in RMSE when n is larger than 2000 nevertheless.

Next we fix the matrix size at 2000 × 2000 but vary the
noise level from 5% to 25%. With the increased noise, all
methods are more prone to outlier influence. In Fig. 2(b),
we can observe RRMC method shows best RMSE at noise
level 15% and thereafter. With the increased level noise, the
matrix has violated the structure assumptions many methods
assumed. In contrast, since RRMC has no requirement on the
matrix structure, it shows the most robust performance.

So far, we have completed all experiments on the synthetic
data. These experiments show that RRMC is empirically
more robust to noise against other methods, also its perfor-
mance is stable. We will now shift focus on 3 real-world data
sets.

1www.cs.utexas.edu/ pjain/svp/
2perception.csl.uiuc.edu/matrix-rank/samplecode.html
3www-stat.stanford.edu/ candes/software.html
4www.stanford.edu/ raghuram/optspace/code.html
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(a) Matrix Completion with Moderate Noise (b) Matrix Completion with Large Noise

Figure 2: Matrix completion on synthetic data set with various matrix sizes and noise levels. (a) RMSE by various methods
for matrix completion with p=0.1, k=2 and around 10% known entries are corrupted. (b) RMSE with increased levels of noise
from 5% to 25%.

Table 1: Description of 3 Data Sets

Data set Epinions Wikipedia Slashdot
# of Nodes 2000 2000 2000

# of Trust Links 149,146 81,232 74,561
% among All Links 3.73 2.03 1.86

4.2 Experiment on Real Data Sets
The trust graph data sets we use are Epinions [Massa and
Avesani, 2006], Wikipedia [Leskovec et al., 2010] and Slash-
dot [Leskovec et al., 2009]. All above data sets contain di-
rected edges with two edges labels, described as trust link (1)
and distrust link (0). One thing needs to point out is that the
original data sets only record trust links, therefore most of the
distrust links are indeed un-tagged ones. Epinions is a data
set that users tag trust/distrust votes based on their opinions
on others’ reviews on items. Wikipedia records a series of
elections that contributors from Wikipedia vote on each other
to become administrators. Slashdot carries the users’ tag on
each other as friends or foes based on their submitted technol-
ogy news. In summary, Epinions contains about 50,000 users
and 490,000 trust links, Wikipedia contains about 7,000 users
and 103,000 trust links, Slashdot contains about 80,000 users
and 900,000 trust links.

It can be observed that the distributions of links in these
data sets are very skewed due to the domination of distrust
links. To alleviate the data skewness for fair comparison and
keep the computation manageable, we select top 2,000 high-
est degree users from each data set. Table 1 gives a summary
description about the subsets used in our experiment. Note
that the subsets still carry a skewed distribution in trust and
distrust links.

4.3 Matrix Completion Result on Trust Graphs
To evaluate the matrix completion result for all methods, we
have to mask a portion of ground truth values in each trust
graph for test purpose. We randomly hide 90% of the true
value of links and make prediction based on 10% available

entries. We choose 90% missing here to simulate the severe
data sparsity real social graphs generally suffer from. The
reason is that most users from the online community only ex-
plicitly express trust and distrust to a very small fraction of
peer users considering total number of users. For each run, af-
ter we mask these values, we initiate these positions with ran-
dom values between 0 and 1, then all methods predict these
values with the specified parameters above.

From Table 2, we can observe that RRMC outperforms all
other methods in terms of MAE and RMSE on three data
sets. There are a few additional discoveries. First, we can
see most competitive methods get quite close result except
SVD. This is not so surprising since these methods all try to
get a low-rank solution. The relatively poor performance for
SVD could be due to its vulnerability to extreme sparse ob-
servations and the noise. Second, we can see RPCA also gets
a relatively better performance due to its adoption of `1 norm.

4.4 Experiment on Method Parameters
In this part, we show the performance of our method regard-
ing to the parameters in Fig. (3). Specifically, we show pre-
diction error is robust to the choice of λ, the relationship be-
tween ρ and number of iterations needed for convergence. It
can be concluded that our method is not so sensitive to the
choice of parameters. In addition to the above two figures,
we also include the performance of RRMC with respect to
rank k. RRMC gets optimal performance when k=5 for Epin-
ions, and k=10 for Wikipedia and Slashdot. This confirms
our assumption that the trust graph between users could be
dominated by a few latent factors.

5 Conclusion
Trust and distrust prediction plays a key role in privacy pro-
tection for online users. Such prediction can be modeled as
predicting missing elements in the trust matrices. Such ma-
trices are sparse and could have local region symmetric and
transitive properties. Conventional matrix completion meth-
ods don’t work very well on those special link prediction
problem.
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(a) Prediction Error vs λ (b) Number of Iterations vs ρ

(c) Prediction Error vs k

Figure 3: Method Parameters Test. (a) shows the relation between prediction error and λ. (b) demonstrates how ρ affects
number of iterations. (c) displays the prediction error change with respect to rank.

(a) Epinions

methods MAE(%) RMSE
RRMC 1.74± 0.13 0.93± 0.11
SVD 2.14± 0.34 1.02± 0.14

OPTspace 1.86± 0.18 0.98± 0.13
SVP 1.89± 0.21 1.01± 0.17
SVT 1.92± 0.19 1.03± 0.15

RPCA 1.78± 0.12 0.96± 0.14

(b) Wikipedia

methods MAE(%) RMSE
RRMC 1.56± 0.14 0.81± 0.05
SVD 1.87± 0.18 0.92± 0.11

OPTspace 1.81± 0.15 0.87± 0.09
SVP 1.74± 0.18 0.89± 0.11
SVT 1.73± 0.16 0.88± 0.12

RPCA 1.61± 0.15 0.83± 0.07

(c) Slashdot

methods MAE(%) RMSE
RRMC 1.05± 0.09 0.69± 0.04
SVD 1.27± 0.17 0.83± 0.09

OPTspace 1.18± 0.13 0.78± 0.07
SVP 1.13± 0.12 0.76± 0.08
SVT 1.11± 0.11 0.74± 0.07

RPCA 1.09± 0.10 0.71± 0.05

Table 2: Matrix Completion Result on Different Data Sets

In this paper, we propose a robust rank-k matrix comple-
tion (RRMC) prediction method that yields prediction ma-
trix with exact rank. Our framework seeks a low-rank ma-

trix and is robust to data noise and potential outliers. Dif-
ferent from trace norm minimization, our method explicitly
seeks a low-rank stable matrix. We solve the difficult integer
programming problem via introducing an ancillary variable
and decomposing the difficult problem into two manageable
pieces. The empirical experiments on three trust social graph
data sets demonstrate the effectiveness and robustness of our
method.

In the future, we will look into pursuing trust prediction
from a different perspective. In this paper, we generate trust
prediction in the continuous domain. However, for many user,
providing explicit instruction whether to trust or not is prefer-
able. In other words, we may seek low-rank matrix comple-
tion in the discrete domain.
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