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Abstract— There are various applications in wireless sensor
networks which require knowing the relative or actual position of
the sensor nodes. Recently, there have been different localization
algorithms proposed in the literature. The algorithms based on
classical Multidimensional Scaling (MDS) [1][2] only require 3 or
4 anchor nodes and can provide higher accuracy than some other
schemes. In this paper, we propose and analyze another type
of MDS (called ordinal MDS) for localization in wireless sensor
networks. Ordinal MDS differs from classical MDS by that it
only requires a monotonicity constraint between the shortest path
distance and the Euclidean distance for each pair of nodes. We
conduct simulation studies under square and C-shaped topologies
with different connectivity levels and number of anchors. Results
show that ordinal MDS provides a lower position estimation error
than classical MDS.

I. INTRODUCTION

The miniaturization of small devices capable of sensing and
communicating with each other has made the possibility of de-
ploying large-scale wireless sensor networks a reality. Sensor
networks can be deployed in different scenarios, ranging from
military applications to wildlife and environment monitoring.
For applications such as event discovery and target tracking,
the geographic location of the sensor nodes need to be known.
Consider the example where a sensor network is used to detect
a fire event in a forest. Once a sensor node has detected that
the temperature is higher than a certain threshold, it sends
a message to the central authority by relaying through other
nodes in a multi-hop manner. The message needs to indicate
the location of the node which detected the event. Thus,
localization of sensor nodes is important in some applications.

Recently, various localization schemes have been proposed
in the literature. These algorithms can be divided into two
groups: centralized [1][4] and distributed [6]-[8]. It is generally
true that distributed algorithms are more robust and energy
efficient than centralized algorithms. In each group, some
algorithms assume simple connectivity information between
neighboring nodes [1][2] while some others need to gather
the ranging information (e.g., estimated distance between
two neighboring nodes) [10][11][12] and angle information
[13][14]. In order to determine the actual or absolute position
of each sensor node, a small fraction of special nodes (called
anchor nodes) with known positions is necessary.

Localization algorithms based on classical Multidimen-
sional Scaling (MDS) [1][2][10] have proven to be robust with
respect to both hop-based and range-based implementations.

Only 3 or 4 anchor nodes are necessary to determine the
absolute locations, in two or three dimensions, respectively.
These MDS algorithms achieve a higher accuracy than some
other schemes. By using the similar terminology in [1], we
use the term MDS-MAP(C) for the classical MDS localiza-
tion algorithm. The original MDS-MAP(C) is a centralized
algorithm. In [2], a distributed MDS algorithm called MDS-
MAP(P, C) was proposed where P denotes the use of patching
of local maps and C denotes the use of classical MDS. As
mentioned in [1][2], further work is required to study the
application of other MDS techniques (e.g., probabilistic MDS,
ordinal MDS) on localization in sensor networks.

In this paper, we propose the implementation of ordinal
MDS for localization in sensor networks and compare the per-
formance with classical MDS. We call our proposed scheme
MDS-MAP(P, O) where P again denotes the use of patching
of local maps and O denotes the use of ordinal MDS. MDS-
MAP(P, O) is also a distributed algorithm. The main difference
between classical MDS and ordinal MDS is that the former
assumes there is a linear equation which relates the shortest
path distance and the Euclidean distance between each pair
of nodes, the latter simply assumes a monotonicity constraint.
That is, for ordinal MDS, given two pairs of nodes (i, j) and
(k, l), if the shortest path distance of (i, j) is greater than that
of (k, l), then the Euclidean distance of (i, j) is also greater
than that of (k, l), and vice versa.

The contributions of this paper are as follows [15]:

1) We present the implementation details of ordinal MDS
algorithm for localization in wireless sensor networks.

2) We conduct simulations to study the performance be-
tween classical and ordinal MDS by varying the connec-
tivity levels and number of anchors. Under square and
C-shaped topologies, results show that MDS-MAP(P, O)
has a lower position estimation error than MDS-MAP(P,
C).

Our proposed MDS-MAP(P, O) algorithm is essential for
future sensor applications which require a high accuracy of
nodes’ position by using a small number of anchor nodes.

The rest of this paper is organized as follows. The related
work is summarized in Section II. The MDS-MAP(P, O)
algorithm is described in Section III. Performance comparisons
between classical MDS and ordinal MDS algorithms are given
in Section IV. Conclusions are given in Section V.



II. RELATED WORK

In this section, we first summarize several recent papers on
localization on sensor networks. Survey paper in this area can
also be found in [3]. We then review the MDS-MAP(C) and
MDS-MAP(P, C) algorithms [2].

In the APIT scheme [8], each node first identifies if it is
within a particular triangle formed by a set of anchors within
radio range. The position is estimated to be the center of the
intersection of all triangles in which the node has identified
to be within. In the convex optimization scheme [4], anchors
have to be placed near the corners and edges of the network
for optimal sufficient performance.

Anchor information propagation methods [6][7][11] require
each anchor to broadcast its position to the network. Nodes
use this information as well as the distance or hop counts
from the anchors to laterate or bound their positions. In a
slightly different approach, iterative localization [12] can be
used. Nodes with sufficient neighboring anchors can compute
their positions. As more nodes obtain their positions, these
nodes can also be acted as anchors.

Several direction or angle-based schemes have been pro-
posed. In [13], the original APS scheme [11] is modified
to propagate bearings to anchors. Nodes that have at least
three bearings to anchors can triangulate their positions. In
[14], both range and angle information is used to determine
the node’s position. The advantage is that only one anchor is
needed to obtain an estimate for a node.

In [16], a single mobile anchor is used to localize the
system. The mobile anchor node traverses within the network
and allows all nodes to compute the location estimate based on
at least three neighboring nodes’ locations. In [17], multiple
mobile anchors are used. A monte carlo localization algorithm
for mobile sensor networks was proposed in [18]. In [19],
mobile robots and robust extended Kalman filter-based state
estimator are used for localization.

The advantage of MDS localization algorithms is the rela-
tive low percentage of estimation error while using a small
number of anchor nodes. The MDS-MAP(C) scheme is a
centralized algorithm. The major steps are as follows [1]:
Given the network hop-count or distance information, Dijk-
stra’s algorithm is used to determine the shortest path between
each pair of nodes. The results are stored in a distance matrix.
The classical MDS algorithm is then applied on the distance
matrix to create the global relative map. By using the anchor
nodes’ positions, the global relative map is transformed into
the global absolute map.

The classical (or metric) MDS algorithm assumes that there
exists a linear transformation which relates the shortest path
distance and the Euclidean distance between each pair of
nodes. For each pair of nodes (i, j), if the shortest path distance
is denoted by pij and the Euclidean distance is denoted by dij ,
then dij = mpij + c for some constants m and c. Classical
MDS uses singular value decomposition to determine the
relative coordinates of the sensor nodes. Simulation results
show that in a topology where the nodes are uniformly placed,

MDS-MAP(C) has a lower location estimation error when
compared with [4] and [6].

The MDS-MAP(P, C) is a distributed localization algorithm
[2]. Each node first creates a local map within its two-hop
neighbors by using the classical MDS algorithm. Each local
map is then refined by using the least-squares minimization.
The local maps are then patched or merged to create a global
relative map. Finally, by using the anchor nodes’ positions,
the global relative map is transformed into the global absolute
map. Simulation results from [2] show that MDS-MAP(P, C)
has a better performance than MDS-MAP(C). In addition,
as stated in [2], performance may further be improved if
other MDS algorithms (e.g., weighted MDS, probabilistic
MDS, ordinal MDS) are used. In the next section, we study
the performance of using the ordinal (or non-metric) MDS
algorithm for localization.

III. MDS-MAP(P, O) LOCALIZATION ALGORITHM

In this section, we describe our proposed MDS-MAP(P,
O) localization algorithm. MDS-MAP(P, O) is distributed and
can be considered as an extension of MDS-MAP(P, C). The
modification is the use of the ordinal MDS (instead of classical
MDS) during the estimation phase. The major steps of the
MDS-MAP(P, O) algorithm are as follows:

1) Each node first gathers either the distance (for range-
based) or hop count (for hop-based) information within
its two-hop neighborhood.

2) In each node, the Dijkstra’s algorithm is invoked to
determine the shortest path between each pair of nodes
within the two-hop neighborhood. We use the notation
pij to denote the shortest path distance between nodes
i and j.

3) The ordinal MDS algorithm is applied to create the
relative local map for each node.

4) Each local map is refined by using the least-squares
minimization between the calculated Euclidean distance
and the measured distance (or hop) between each pair
of neighboring nodes.

5) The local maps are then patched (or merged) into a
global map by using a predetermined initial starting
node’s local map and sequentially adding each neighbor
that has the largest number of common nodes to the
starting node. This map then grows until all nodes have
been included.

6) The global absolute map is created by using the anchors’
positions and the global relative map.

Assume that the average number of sensor nodes in each
two-hop neighborhood is M , the average number of neighbors
is K, the total number of sensor nodes is N , and total number
of anchors is A. In the above MDS-MAP(P, O) algorithm,
steps (2) and (4) have a complexity of O(M

3
). Step (3) has

a complexity of O(M
4
). Steps (5) and (6) have a complexity

of O(K
3
N) and O(A3 + N), respectively.

We now describe the ordinal MDS algorithm (step (3)
above) in detail. The major steps of the ordinal MDS algorithm
are as follows [20]:



1) Assign arbitrary initial location estimation (x0
i , y0

i ) for
i ∈ M , where M includes all the nodes within the two-
hop neighborhood. Specify ε > 0 and set n = 0.

2) For each i, j ∈ M , compute the Euclidean distance by

dn
ij =

√(
xn

i − xn
j

)2 +
(
yn

i − yn
j

)2
(1)

3) By using the matrices [pij ] and [dn
ij ], apply monotone

regression by using the pool-adjacent violators (PAV)
algorithm [20] to determine [d̂n

ij ]. For example, once
the pij’s are ordered from the smallest to the largest,
if (pij < pkl) and (dn

ij > dn
kl), then

d̂n
ij = d̂n

kl =
(
dn

ij + dn
kl

)
/2.

Otherwise, d̂n
ij = dn

ij and d̂n
kl = dn

kl.
4) Increment n by 1. For i ∈ M , compute the new relative

coordinate (xn
i , yn

i ) for node i by

xn
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α
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∑
j∈M,j �=i

(
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ij

)(
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)(
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)

where |M | denotes the number of sensor nodes within
the two-hop neighborhood.

5) For each i, j ∈ M , update the Euclidean distance dn
ij by

using equation (1).
6) Use Kruskal’s Stress1 test to determine the goodness fit

[21][22]:

Stress1 =

√√√√√∑i<j

(
dn

ij − d̂n−1
ij

)2

∑
i<j

(
dn

ij

)2 (2)

7) If Stress1 < ε, stop. Otherwise, go to Step (3).

In the above algorithm, the first two steps calculate the
Euclidean distance from an arbitrary initial configuration. Step
(3) determines the disparities d̂n

ij by constructing a monotone
regression relationship [23] between pij’s and dn

ij’s. Step (4)
updates the relative positions. The parameter α is the step
width. We use α = 0.2 as suggested by Kruskal [24]. Step (5)
updates the Euclidean distance. The Stress1 measure in step
(6) determines whether or not the updated values dn

ij fit the
given dissimilarities d̂n−1

ij . Note that other goodness fit tests
(e.g., Kruskal’s Stress2, normalized raw stress, S-Stress) can
also be used; however we choose the Stress1 measure since
it is the most common measure used for ordinal MDS. Step
(7) determines if the derived configuration’s goodness fits are
close enough such that the procedure can be terminated.

The MDS-MAP(P, O) algorithm assumes that there is a
monotonic relationship between the shortest path distances
and the actual Euclidean distances. This assumption may
not be valid if the network being considered is sparse and
large. However, most of the applications in wireless sensor

networks require the networks to be dense (i.e., with a high
connectivity or average node degree) in order to provide
redundancy and robustness in case of a node’s failure. In
addition, in our distributed approach, only the nodes within
the 2-hop neighborhood are being considered. In this case, the
assumption of the monotonic relationship between the shortest
path distances and the actual Euclidean distances is valid.

By the iterative nature of the ordinal MDS algorithm in
minimizing stress in equation (2), the final solution may not
guarantee to be the global minimum [25]. In fact, the ordinal
MDS algorithm can have several local minima. However,
the use of the anchors in our application of the ordinal
MDS algorithm increases the likelihood of reaching the global
minimum. This is due to the imposed transformation required
to obtain the absolute coordinates for all of the nodes. Another
way to further increase the chance of reaching the global
minimum is by using the multiple starting configurations
approach and retaining the configuration which results in the
lowest stress value. However, this approach is inefficient due
to the additional computation effort required.

IV. PERFORMANCE EVALUATION AND COMPARISON

The algorithm was simulated in Matlab 7.0 on a 3.06
GHz Pentium IV processor. To implement MDS-MAP(P, O)
algorithm, we modified the source codes for MDS-MAP(P,
C) [2]. Two different topologies are considered as the sensor
network’s coverage area. The first one is a uniformly distrib-
uted square region. The second one is an irregular C-shaped
topology. In both topologies, we vary the average connectivity
levels (i.e., average number of neighboring sensors) and the
number of anchors in the area. The average connectivity level
is varied between 9 and 21 by modifying the radio range
R, within the fixed coverage area. The number of anchors is
between four and ten. In each set of simulation run, 50 trials
were performed and 95% confidence intervals were plotted. In
the ordinal MDS algorithm, we set ε to be 10−4. We conducted
simulations for both hop-based and range-based scenarios.
Due to space limitation, we only present the results for the
hop-based scenario in this paper. Results for the range-based
scenarios can be found in [15]. In the hop-based scenarios, hop
count is used as the distance metric between a pair of nodes.
For each node to have a unique position in MDS-MAP(P, O),
the hop count values are blurred with noise so that nodes with
identical hop count values to neighbors are not co-located.

A. Random Uniform Network Topology

For evaluation of the random uniform deployment, a 10r by
10r square topology was used, where r represents the reference
unit length. Anchor nodes are placed randomly within the
coverage area, and have the same communication range (i.e.,
radio range denoted by R) as other nodes.

Figure 1 shows the position estimation errors as a function
of the average connectivity level by hop-based MDS-MAP(P,
C) and MDS-MAP(P, O), respectively, with different numbers
of anchors deployed. Results show that MDS-MAP(P, O) out-
performs MDS-MAP(P, C) by a 5% lower position estimation
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Fig. 1. Hop-based performance between MDS-MAP(P, C) and MDS-MAP(P,
O) in a 10r × 10r square topology with 200 nodes.

error. The performance improvement confirms the conjecture
that in sensors’ localization problem, the use of the monotonic
constraints in ordinal MDS is more appropriate than the use
of linear constraints in classical MDS.

As the average connectivity level increases, the confidence
intervals reduce in size. This shows that dense networks can
provide more consistent average error values. This is due to
the fact that dense networks have smaller two-hop regions,
which in turn lead to more accurate shortest path distances.
These distances therefore improve the classical MDS results as
well as the ordinal MDS results, since more accurate distances
translate into more accurate proximities in the ordinal case.

The accuracy of the MDS-MAP(P, O) localization algorithm
can further be improved by using an optional global relative
map refinement [2]. This optional step is invoked after the
patching of the local maps. The least-squares minimization
is used for the measured and calculated distances between
neighboring nodes. This optional refinement step has a com-
plexity of O(N3) where N is the total number of sensor
nodes. We use the notation MDS-MAP(P, O, R) to denote
the original MDS-MAP(P, O) algorithm with global relative
map refinement.

Figure 2 shows the performance comparisons between
MDS-MAP(P, O) and MDS-MAP(P, O, R) in hop-based
scenarios. The number of anchors deployed is varied from 4 to
10. In the hop-based case, there is significant reduction on the
position estimation error when the average node connectivity
level is above 9. The difference between the results is greater
than 30% for high average connectivity levels. Note that the
global relative map refinement comes at a cost. A sensor node
must process the global map and then propagate the results to
all the sensors in the network (e.g., via flooding). This may
cause a higher signaling overhead.
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Fig. 2. Hop-based performance between MDS-MAP(P, O) and MDS-MAP(P,
O, R) in a 10r × 10r square network topology with 200 nodes.
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Fig. 3. Nodes’ location estimated by hop-based (a) MDS-MAP(P, C) and
(b) MDS-MAP(P, O) in a 10r × 10r irregular (C-shaped) network region
employing uniform random placement of 160 nodes with connectivity level
of 12 and four anchors. Anchors are denoted by shaded circles. Estimation
error is represented by lines.

B. Random Irregular Network Topology

Whereas most papers presented have only considered uni-
form sensor network deployments, the method in which these
networks are meant to be deployed may not guarantee uniform
coverage. Wireless sensor networks may exhibit regions of
sparseness once deployed. Therefore, localization algorithms
must be able to perform well under different conditions. In this
section, we evaluate the performance of MDS-MAP(P, O) by
using the same topology in [2], (i.e., a C-shaped topology). In
our simulations, we notice that the position estimation errors
are changed when the anchors are placed at different positions.
For good performance, we recommend to have at least one
anchor on each wing of a C-shaped topology.

Figure 3 shows the topologies estimated by hop-based
MDS-MAP(P, C) and MDS-MAP(P, O). The position esti-
mation errors by MDS-MAP(P, C) and MDS-MAP(P, O) are
74% and 65% of the radio range, respectively. The position
estimation error of each individual sensor node varies. There
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Fig. 4. Hop-based performance between MDS-MAP(P, C) and MDS-MAP(P,
O) in a 10r × 10r irregular (C-shaped) network topology with 160 nodes.

is no correlation for sensors that are closer to the anchors to
have better position estimation.

Figure 4 shows the position estimation errors as a func-
tion of the average connectivity level by hop-based MDS-
MAP(P, C) and MDS-MAP(P, O), in a C-shaped network
topology. Results show that MDS-MAP(P, O) outperforms
MDS-MAP(P, C) by a 9% lower position estimation error
when the connectivity is 12. This difference is greater than
the square topology case; however, the confidence intervals
among the two algorithms show considerable overlap. This is
to be expected since the estimated shortest path distances are
more prone to errors arising from the geometry of nodes that
are within the inside corners of the network.

V. CONCLUSIONS

In this paper, we proposed and analyzed the MDS-MAP(P,
O) localization algorithm for wireless sensor networks. The
MDS-MAP(P, O) algorithm is an extension of the MDS-
MAP(P, C) algorithm originally proposed in [1][2]. We extend
their work by using the ordinal MDS algorithm instead of
the classical MDS algorithm. Our proposed MDS-MAP(P, O)
algorithm is essential for future sensor applications which
require a high accuracy of nodes’ position by using a small
number of anchor nodes. The algorithm can be applied not
only to the case where nodes are equipped with distance-
estimation hardware (range-based), but also to the case where
only connectivity information (hop-based) is available. We
conducted simulation studies under both regular (square) and
irregular (C-shaped) topologies. Simulation results show that
MDS-MAP(P, O) provides a lower position estimation error
than MDS-MAP(P, C) in both hop-based and range-based sce-
narios [15]. Further work includes investigating the overhead
for control packet exchange and the energy involved in each
sensor node for computation.
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