
Title DOA estimation and tracking of ULAs with mutual
coupling

Author(s) Liao, B; Zhang, ZG; Chan, SC

Citation IEEE Transactions on Aerospace and Electronic
Systems, 2012, v. 48 n. 1, p. 891-905

Issue Date 2012

URL http://hdl.handle.net/10722/137289

Rights

©2012 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.



DOA Estimation and Tracking

of ULAs with Mutual Coupling
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A class of subspace-based methods for direction-of-arrival

(DOA) estimation and tracking in the case of uniform linear

arrays (ULAs) with mutual coupling is proposed. By treating the

angularly-independent mutual coupling as angularly-dependent

complex array gains, the middle subarray is found to have

the same complex array gains. Using this property, a new

way for parameterizing the steering vector is proposed and

the corresponding method for joint estimation of DOAs and

mutual coupling matrix (MCM) using the whole array data is

derived based on subspace principle. Simulation results show

that the proposed algorithm has a better performance than the

conventional subarray-based method especially for weak signals.

Furthermore, to achieve low computational complexity for online

and time-varying DOA estimation, three subspace tracking

algorithms with different arithmetic complexities and tracking

abilities are developed. More precisely, by introducing a better

estimate of the subspace to the conventional tracking algorithms,

two modified methods, namely modified projection approximate

subspace tracking (PAST) (MPAST) and modified orthonormal

PAST (MOPAST), are developed for slowly changing subspace,

whereas a Kalman filter with a variable number of measurements

(KFVM) method for rapidly changing subspace is introduced.

Simulation results demonstrate that these algorithms offer high

flexibility and effectiveness for tracking DOAs in the presence of

mutual coupling.
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I. INTRODUCTION

Mutual coupling, which is caused by interactions

among array elements, may seriously degrade the

performance of high-resolution direction finding

techniques such as MUSIC [1], ESPRIT [2], and

position determination approaches [3]. In ideal

situations, the steering vector is assumed to be exactly

known which depends on the array geometry and the

signal location. However, such an assumption is often

far from reality, as the steering vector in real systems

may be distorted by impairments such as mutual

coupling, array gain/phase uncertainties [4], and

sensor position perturbation [5]. Since the presence

of mutual coupling would lead to considerable

deteriorations in direction finding of conventional

high-resolution direction-of-arrival (DOA) estimation

algorithms, mutual coupling calibration has received

extensive attention over the last decades [6—21].

The method of moments (MoM) [6] has been

widely used to evaluate mutual coupling and

compensation [7, 8]. However, the computation

requires a priori knowledge of the incoming

signals such as DOAs. Another kind of method

for mutual coupling calibration makes use of

exactly known source locations, namely, calibration

sources [9, 10]. By applying calibration sources, the

maximum-likelihood (ML)-based method proposed in

[9] can be used to compensate for mutual coupling,

array gain/phase uncertainties, as well as sensor

position errors. Also, the calibration matrix can be

estimated using a set of calibration sources with

known locations in [10]. Unfortunately, calibration

sources may be difficult or even impossible to

obtain in real systems. Alternatively, a kind of array

calibration method, the so-called auto-calibration or

online-calibration, is more preferable, since it does

not require calibration sources [11, 12]. The classical

mutual coupling auto-calibration method proposed

by Friedlander and Weiss [11] and a more recent

one proposed by Sellone and Serra [12] are able

to estimate DOAs and mutual coupling coefficients

using an iterative procedure. However, since a large

number of unknown parameters are involved in these

two methods, their high computational complexities

may be prohibitive for real-time applications and the

convergence may not be guaranteed [13, 14].

In order to overcome the drawbacks of mutual

coupling auto-calibration methods described above,

recent attention has been focusing on simplified

methods with lower complexities. In [15] and [16],

mutual coupling calibration methods for specific

geometry arrays, such as uniform linear array (ULA)

and uniform circular array (UCA), were presented.

These methods are based on the fact that the mutual

coupling coefficient between two sensor elements

is inversely related to their distance and can be

approximated as zero when they are separated by
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few wavelengths. Consequently, the number of

unknown parameters is significantly reduced. Another

class of methods using instrumental sensors for

array calibration has also been developed [17—19].

It exploits the fact that only part of the new array

has mutual coupling or other errors after adding

instrumental sensors into the original array. For

example, the mutual coupling calibration method

using instrumental sensors in [18] requires only

a one-dimensional search. For the case of three

instrumental sensors, the sources are required to

be time-disjoint, i.e., only one source impinges

on the array at each time interval, whereas more

instrumental sensors are required for time-joint

sources. More recently, another mutual coupling

calibration algorithm with instrumental sensors

was developed in [19]. The middle subarray

is first utilized for DOA estimation using the

MUSIC algorithm. Further refinement of DOA

estimates can then be performed using the whole

array.

In this paper, we present a new method for DOA

estimation for ULAs in the presence of mutual

coupling. The symmetric Toeplitz structure of mutual

coupling matrix (MCM) of a ULA as in [19] is

employed. However, we found that the DOAs of

incoming signals and mutual coupling coefficients can

be estimated jointly by taking advantage of the special

structure of MCM using a new parameterization

of the steering vector and the subspace principle

[20]. Simulation results show that the proposed

algorithm gives a better performance, especially for

signals with low signal-to-noise ratio (SNR), than

the method in [19], since the whole array rather

than a subarray in [19] can be used to estimate

DOAs and compensate for the mutual coupling

effect.

Most of the array calibration algorithms discussed

so far assume that DOAs are time invariant. However,

the DOAs may be time varying in real systems

[27—31]. When the subspace is computed from the

eigenvalue decomposition (EVD) of the covariance

matrix of the entire observations, the performance

of calibration algorithms will be deteriorated

significantly. Moreover, computing the EVD directly

online usually involves high arithmetic complexity. To

reduce the computational complexity of the subspace

using EVD for online and time-varying DOA

estimation, extended subspace tracking algorithms

with better performance are incorporated into the

proposed joint estimation procedure. A number of

algorithms have been proposed for tracking DOAs

[27—29] and subspace [30—33], but the effect of

mutual coupling has not been considered in these

methods. A classical algorithm is the projection

approximate subspace tracking (PAST) method

proposed by B. Yang [30]. Based on the assumption

that the subspace varies slowly, the PAST algorithm

employs the so-called “projection approximation”

to compute the signal subspace using the recursive

least squares (RLS) algorithm. When an orthonormal

basis of the subspace is required, an additional step

of reorthonormalization has to be performed. In

[33], an extension of the PAST algorithm called the

orthonormal PAST (OPAST) algorithm was proposed

to produce an orthonormal subspace directly with

reduced complexity. Since the above RLS-based PAST

algorithms require the subspace to be slow varying

and the estimate is solely based on the observations,

its performance will be degraded significantly when

the subspace changes rapidly. Moreover, when

mutual coupling exists, conventional DOA estimation

algorithms cannot be directly applied.

In this paper, three subspace tracking algorithms

with different arithmetic complexities and tracking

abilities are studied for estimating time-varying

DOAs in the presence of mutual coupling. The

first two are called the modified PAST (MPAST)

and modified OPAST (MOPAST) algorithms for

slowly changing subspace, and the last one is an

adaptive Kalman filter-based algorithm for fast

changing subspace. In the MPAST and MOPAST

algorithms, we find that a better tracking performance

can be obtained by repeating the respective PAST

and OPAST iteration one or more times, since the

“projection approximation” will be further improved

with the subspace estimates. In the adaptive Kalman

filter-based algorithm, the signal subspace is regarded

as the system state and an adaptive Kalman filter with

variable number of measurements (KFVM) [35, 36]

is employed for tracking the fast-varying subspace.

Hence, the fast-varying DOAs can be estimated using

the framework previously developed in the paper. The

KFVM differs from the conventional Kalman filter

in that the number of measurements used is chosen

adaptively, which leads to a better performance of

DOA tracking. Simulation results show that these

two algorithms provide effective tradeoff between

performance and the arithmetic complexities for

tracking DOAs in the presence of mutual coupling

in different testing conditions.

The rest of the paper is organized as follows.

The problem formulation is first introduced in

Section II. The proposed method for DOA estimation

in the presence of mutual coupling, using a new

parameterization based on the symmetric Toeplitz

structure of MCM of ULA in [19] and the subspace

principle, is given in Section III. Next, we consider

situations where DOAs are time varying. Three

subspace tracking approaches, namely the MPAST,

MOPAST, and KFVM, are presented to deal with

these situations in Section IV. Simulations are

conducted to demonstrate the effectiveness of

the proposed methods in Section V, and finally,

Section VI concludes the paper.
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II. PROBLEM FORMULATION

Consider a ULA with M sensors impinged by N

narrowband signals sn(t), n= 1,2, : : : ,N, where t is the

time variable. The N sources are assumed to be from

far field with unknown directions μn, n= 1,2, : : : ,N.

Assuming identical sensors and no other errors such

as location uncertainties, the ideal steering vector at an

angle μ can be obtained from the array geometry as

a(μ) = [1,¯(μ), : : : ,¯(μ)M¡1]T (1)

where ¯(μ) = exp(¡j2¼¸¡1d sinμ), d is the
inter-sensor spacing, ¸ is the signal carrier

wavelength, j =
p¡1 and (¢)T denotes matrix

transposition. The vector of observed array output can

be written as

x(t) =As(t)+n(t) (2)

where

A= [a(μ1),a(μ2), : : : ,a(μN)]

s(t) = [s1(t),s2(t), : : : ,sN(t)]
T

are the ideal steering matrix and vector of signal

waveforms, respectively, and n(t) is an independent

and identically distributed (IID) additive white

Gaussian noise (AWGN) vector with zero mean and

covariance matrix ¾2I, where I is an identity matrix.

In practice, interactions between the sensors will

result in mutual coupling, which distorts the ideal

steering vector significantly. In this situation, the true

steering vector should be modified as

am(μ) =Ca(μ) (3)

where C is the MCM, and it is a symmetric Toeplitz

matrix having the form [19]

C=

266666666666664

1 c1 ¢ ¢ ¢ cP¡1 ¢ ¢ ¢ cM¡1

c1 1 c1 ¢ ¢ ¢ . . .
...

... c1 1 c1 ¢ ¢ ¢ cP¡1

cP¡1 ¢ ¢ ¢ . . .
. . .

. . .
...

...
. . . ¢ ¢ ¢ c1 1 c1

cM¡1 ¢ ¢ ¢ cP¡1 ¢ ¢ ¢ c1 1

377777777777775
M£M

(4)

where ci = ½ie
jÁi (i= 1,2, : : : ,M ¡1) is the mutual

coupling coefficient, ½i and Ái denote, respectively,

the amplitude and phase of the mutual coupling

coefficient ci. With the MCM structure in (4), the

classical iterative approach in [11] can be employed

for DOA estimation. However, the complexity may

be high for some real-time applications. On the other

hand, it is known that the mutual coupling coefficient

between two sensors is inversely related to their

distance, and thus it is negligible for two sensors

which are separated by several sensors away. More

precisely, when the distance between two sensors

is more than P inter-sensor spacings, the mutual

coupling coefficient can be approximated to be

zero, i.e.,

ci = 0, P · i·M ¡ 1: (5)

As a result, the resultant MCM can be simplified

to a banded symmetric Toeplitz matrix as follows

[19]

C=

2666666666666666666664

1 c1 ¢ ¢ ¢ cP¡1

c1 1 c1 ¢ ¢ ¢ cP¡1
±0

...
. . .

. . .
. . .

...
. . .

cP¡1 ¢ ¢ ¢ c1 1 c1 ¢ ¢ ¢ cP¡1

. . .
...

. . .
. . .

. . .
. . .

cP¡1 ¢ ¢ ¢ c1 1 c1 ¢ ¢ ¢ cP¡1
. . .

...
. . .

. . .
. . .

...

0 cP¡1 ¢ ¢ ¢ c1 1 c1

cP¡1 ¢ ¢ ¢ c1 1

3777777777777777777775
M£M

:

(6)

Replacing a(μ) in (2) with am(μ), the array output can

then be represented by the following model

x(t) =CAs(t) +n(t): (7)

We next give a brief introduction to various

subspace quantities before we apply them to the

mutual coupling compensation. The array covariance

matrix of x(t) in (7) can be written as

RX = E[x(t)x
H(t)] =CARSA

HCH +¾2I (8)

where (¢)H denotes the Hermitian transpose operation,
and RS = E[s(t)s

H(t)] is the signal covariance matrix.

Assuming the N signals are uncorrelated, then the

rank of RS is N. Consequently, the EVD of RX can

be described as

RX =US§SU
H
S +UV§VU

H
V (9)

where US 2 CM£N and UV 2CM£(M¡N) are the signal
subspace and noise subspace, respectively; §S 2 RM£M
and §V 2R(M¡N)£(M¡N) are diagonal matrices related
to the signal and noise power, respectively. In real

systems, the covariance matrix RX can be estimated

from a finite set of sample snapshots as

R̂X =
1

T

TX
t=1

x(t)xH(t) (10)

where T is the total number of snapshots. Then the

estimated signal subspace ÛS and the estimated noise

subspace ÛV can be obtained from the corresponding

EVD of R̂X . For more details of the subspace method,

interested readers are referred to [1], [2].
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III. DOA ESTIMATION AND MUTUAL COUPLING
COMPENSATION

In this section a new parameterization of the

steering vector using the banded symmetric Toeplitz

structure of the MCM of ULAs in (6) is introduced.

It utilizes the whole array and the subspace

principle to estimate the DOAs and mutual coupling

coefficients. According to the MCM and signal

models above, the steering vector of the array can be

rewritten as

am(μ) =

"
1+

P¡1X
i=1

ci(¯(μ)
i+¯(μ)¡i)

#
¡ (μ)a(μ)

(11)
where

¡ (μ) = diag[¹1, : : : ,¹P¡1,1, : : : ,1,®1, : : : ,®P¡1]

(12)

is a diagonal matrix containing M ¡ 2P+2 ones
between the entry ¹P¡1 and ®1, and

¹k =
¯(μ)P¡1 +

Pk¡1
i=1 ci¯(μ)

P¡1¡i+
PP¡1
i=1 ci¯(μ)

P¡1+i

¯(μ)P¡1 +
PP¡1
i=1 ci¯(μ)

P¡1¡i+
PP¡1

i=1 ci¯(μ)
P¡1+i

(13a)
and

®k =
¯(μ)P¡1 +

PP¡1
i=1 ci¯(μ)

P¡1¡i+
PP¡1¡k
i=1 ci¯(μ)

P¡1+i

¯(μ)P¡1 +
PP¡1
i=1 ci¯(μ)

P¡1¡i+
PP¡1
i=1 ci¯(μ)

P¡1+i

(13b)

for k = 1,2, : : : ,P¡ 1. For notational simplicity,
we define

P0
i=1 ci¯(μ)

P¡1§i = 0 in (13). (The
detailed derivation of (11)—(13) is available at

http://www.eee.hku.hk/»liaobin/Mutual Coupling.pdf.)
From (12) it can be noted that angularly independent

mutual coupling can be viewed as angularly

dependent complex array gains. However, it is in

general difficult to calibrate the angularly dependent

array gains to account for the mutual coupling.

Interestingly, there is a string of ones in the diagonal

matrix ¡ (μ), indicating that the middle subarray can

be considered as an array with same (or say, without)

array gains. We now show that it is possible to jointly

estimate the DOAs and mutual coupling coefficients

based on this property.

Since ¡ (μ) is a diagonal matrix with M ¡2P+2
ones and a(μ) is a column vector, (11) can be

rewritten as the following parameterization for joint

estimation of MCM and DOAs:

am(μ) =

"
1+

P¡1X
i=1

ci(¯(μ)
i+¯(μ)¡i)

#
T(μ)® (14)

where

T(μ) =

2666666666666666664

1

¯(μ)

. . . 0

¯(μ)P¡1

...

¯(μ)M¡P

0
. . .

¯(μ)M¡1

3777777777777777775
M£(2P¡1)

(15)
is an M £ (2P¡ 1) matrix and

®= [¹1, : : : ,¹P¡1,1,®1, : : : ,®P¡1]
T (16)

is a (2P¡ 1)£ 1 vector with the Pth entry equal to 1.
Next, we employ the subspace principle to

determine the required parameters. As mentioned

in Section II, the signal subspace US and the noise
subspace UN can be obtained from the EVD of

covariance matrix RX in (9). From the principle of

subspace, the steering vector of the incoming signal

is orthogonal to the noise subspace. Hence, we have

the following equation for solving the mutual coupling

coefficients and DOAs:

aHmUVU
H
Vam = 0: (17)

Firstly, 1+
PP¡1
i=1 ci(¯(μ)

i+¯(μ)¡i) is assumed to be
non-zero; the case of zero is discussed later in this

section. Then, substituting (14) into (17), one gets

®HQ(μ)®= 0 (18)

where

Q(μ) = TH(μ)UVU
H
VT(μ) (19)

is a (2P¡ 1)£ (2P¡ 1) matrix.
We now show that it is possible to estimate the

DOAs based on the determinant or the smallest

eigenvalue of Q(μ). It can be found that the dimension

of UHVT(μ) is (M ¡N)£ (2P¡ 1) and if it satisfies
2P¡1·M ¡N, i.e.,

N ·M ¡2P+1 (20)

the matrix UHVT(μ), in general, is full column rank
and Q(μ) is full rank. However, when μ coincides

with any one of the N desired DOAs, i.e., μ = μn(n=

1,2, : : : ,N), the matrix Q(μ) will be rank deficiency,
and its determinant is equal to zero. Consequently,

the determinant of Q(μ) can be adopted for DOA

estimation. In the finite snapshots case, DOAs of

signals can be estimated from the following spatial

spectrum

PDET(μ) = fdet[Q̂(μ)]g¡1 (21)

where Q̂(μ) = TH(μ)ÛVÛ
H
VT(μ), det[¢] denotes

determinant of a matrix and the nth estimated DOA
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μ̂n is associated with the nth peak of the spectrum
PDET(μ). On the other hand, since the smallest
eigenvalue of Q(μ) is also equal to zero when μ = μn
(n= 1,2, : : : ,N), the DOAs can also be estimated from
the following spatial spectrum

PEV(μ) = ¸
¡1
min[Q̂(μ)] (22)

where ¸min[¢] denotes the smallest eigenvalue of a
matrix.
It is worth noting that (22) is a necessary condition

for determining the DOAs, though mathematically it is
very difficult to show that the rank deficiency of Q(μ)
is sufficient to indicate that the corresponding μ is one
of the desired DOAs. It was found in our simulations
that the peaks of the spectra (21) and (22) only occur
when μ coincides with the DOAs. This determinant-
and eigenvalue-based rank dropping criterion was also
observed in related work and has been successfully
applied to DOA estimation using partly calibrated
antenna arrays [22—26]. We also notice that a ULA
with mutual coupling can also be regarded as a partly
calibrated array since the middle subarray sensors
have the same complex array gains as shown in (12).
Actually, even if pseudopeaks of the spectra (21)

and (22) are encountered, one can also identify these
pseudopeaks by performing a rough estimation of the
DOAs using MUSIC without considering the mutual
coupling or using the conventional method in [19]
using the middle subarray. By comparing the two
results, such pseudopeaks can generally be identified.
We now proceed to estimate the mutual coupling

coefficients based on the estimated DOAs. It can be
seen that (17) is satisfied when ® is the eigenvector

corresponding to the smallest eigenvalue of Q(μ̂),
which is denoted by rmin here. Since the Pth entry of
® is equal to 1, ® can be estimated as

®̂= rmin with [rmin]P = 1 (23)

where [rmin]P denotes the Pth entry of vector rmin.
From (13b), (16), and (23), it can be seen that the
mutual coupling coefficients are embedded in ®.
We now proceed to estimate the mutual coupling
coefficient vector c

c= [c1,c2, : : : ,cP¡1]
T: (24)

First of all, define

v= [v1, : : : ,vk, : : : ,vP¡1]
T (25)

where vk = [rmin]k+P denotes the kth element of v
and is equal to the (k+P)th element of rmin. From
(13b), (23), and (25), we know that, for any k =
1,2, : : : ,P¡ 1, we have ®̂k = vk, then

(1¡ vk)
P¡1X
i=1

ci¯(μ̂)
P¡1¡i+

P¡1¡kX
i=1

ci¯(μ̂)
P¡1+i

¡ vk
P¡1X
i=1

ci¯(μ̂)
P¡1+i = (vk ¡ 1)¯(μ̂)P¡1: (26)

The equation above can also be written in vector

form as

[(1¡ vk)¯1(μ̂) +¯2,k(μ̂)¡ vk¯3(μ̂)]Tc= (vk ¡ 1)¯(μ̂)P¡1

(27)
where

¯1(μ̂) = [¯(μ̂)
P¡2 ¯(μ̂)P¡3 ¢ ¢ ¢1]T

¯2,k(μ̂) = [¯(μ̂)
P ¯(μ̂)P+1 ¢ ¢ ¢¯(μ̂)2(P¡1)¡k 0k]

T

¯3(μ̂) = [¯(μ̂)
P ¯(μ̂)P+1 ¢ ¢ ¢¯(μ̂)2(P¡1)]T

are (P¡1)£ 1 vectors, and 0k is the 1£ k zero vector.
It should be noted that when 2(P¡ 1)¡ k < P, i.e., k >
P¡2, ¯2,k(μ̂) = [0P¡1]T, and when 2(P¡ 1)¡ k = P,
i.e., k = P¡ 2, ¯2,k(μ̂) = [¯(μ̂)P 0k]T. Denote

fk = (1¡ vk)¯1(μ̂) +¯2,k(μ̂)¡ vk¯3(μ̂) (28)

gk = (vk ¡ 1)¯(μ̂)P¡1: (29)

Since 1· k · P¡ 1, (27) can be extended to form
[f1 ¢ ¢ ¢ fP¡1]Tc= [g1 ¢ ¢ ¢gP¡1]T: (30)

Therefore, the mutual coupling coefficient vector

c can be estimated by solving (30) with a general

estimated DOA μ̂ as

c= F¡1G (31)

where F= [f1 ¢ ¢ ¢ fP¡1]T is a (P¡1)£ (P¡ 1) matrix,
and G= [g1 ¢ ¢ ¢gP¡1]T is a (P¡1)£ 1 vector.
In order to get a better performance, all of the

estimated DOAs will be employed to calculate the

mutual coupling coefficients. Therefore, we extend

(30) with the N estimated DOAs as

F̄c= Ḡ (32)

where F̄= [FT1 ¢ ¢ ¢FTN]T, Ḡ= [GT1 ¢ ¢ ¢GTN]T, Fn and Gn
represent F and G evaluated, respectively, at the nth

estimated DOA μ̂n. Solving the linear system in (32),

one finally gets

c= (F̄HF̄)¡1F̄HḠ: (33)

The estimation performance of the DOAs and

mutual coupling coefficients above can be further

improved by iterations. More precisely, once the

estimate of c is obtained, the MUSIC algorithm with

the estimated mutual coupling can be applied, and a

more accurate estimate of DOAs can be obtained from

the MUSIC spatial spectrum as

PMUSIC(μ) = kÛHVĈa(μ)k¡2: (34)

Then, the mutual coupling coefficients c can be

recomputed using the new estimate of DOAs from

(34). This procedure can be repeated to further

enhance the performance. Simulation results in the

next section show that a satisfactory performance
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TABLE I

The Joint DOA and Mutual Coupling Estimation Algorithm

Step 1) Collect T snapshots and calculate the covariance

matrix R̂X as (10).

Step 2) Obtain the signal subspace ÛS and noise subspace

ÛV from the EVD of R̂X .

Step 3) Use the subspace ÛV and (21) or (22) to estimate

the N DOAs.

Step 4) For each estimated μ̂n, (n= 1, : : : ,N), calculate

Q(μ̂n) using (19), and obtain the eigenvector rmin
from the EVD of Q(μ̂n).

Step 5) For each k, (k = 1, : : : ,P¡ 1), calculate f (n)
k

and g
(n)
k
,

using (28) and (29), respectively, and obtain Fn
and Gn as Fn = [f

(n)
1
¢ ¢ ¢ f (n)

P¡1]
T and

Gn = [g
(n)
1
¢ ¢ ¢g(n)

P¡1]
T, respectively.

Step 6) Obtain F̄, Ḡ as F̄= [FT
1
¢ ¢ ¢FT

N
]T and

Ḡ= [GT
1
¢ ¢ ¢GT

N
]T, respectively. Calculate the mutual

coupling coefficient vector c and MCM using (33)

and (36), respectively.

Step 7) Improve the DOA estimation accuracy with the

estimated MCM and (34).

Step 8) Repeat Step 4 to Step 7 to further improve the

performance of DOA and mutual coupling

estimation.

can be obtained with an additional iteration. The

proposed algorithm mentioned above is summarized

in Table I.

It is worth noting that the above approach is

derived based on the assumption that 1+
PP¡1
i=1

¢ ci(¯(μ)i+¯(μ)¡i) is non-zero, whereas this function
may be zero for those peculiar angles (blind angles)

under some special mutual coupling coefficients ci,

i= 1, : : : ,P¡ 1. As discussed in [19, Sect. IV], the
middle subarray cannot receive any signals from

those blind angles which satisfy the condition 1+PP¡1
i=1 ci(¯(μ)

i+¯(μ)¡i) = 0, and hence they cannot be
detected. Similarly, a ULA without auxiliary sensor,

which is the case studied in this paper, have similar

problems. Consequently, when a signal impinges

on the array from any of the blind angles, the DOA

cannot be correctly estimated using (21) or (22). As

shown in Section V, the spectrum of the proposed

method will miss the signals coming from blind

angles. For more discussion of the problem, see [19].

Moreover, it should be noted that the proposed

method requires that N ·M ¡ 2P+1, which implies
that the performance may degrade for some small

size arrays, e.g., M · 6, since generally 2·M · 4.
In addition, the proposed method mainly focuses

on ULAs. Methods for some other array geometries

have also been studied [16, 21]. In [21] an algorithm

to jointly estimate the DOAs and mutual coupling

coefficients for UCAs has been proposed. The special

structure of the MCM of a UCA is utilized to develop

an algorithm for jointly estimating the DOA and

mutual coupling coefficients. Its effectiveness was

verified by computer simulation. Though both the

proposed method and this algorithm make use of the

whole array instead of the subarray used in [19] to

estimate the DOAs, different properties of the MCM

are exploited in the two methods due to the difference

in array geometry, which leads to different ways of

parameterizing the steering vectors involved and

estimating the mutual coupling coefficients. For the

more difficult case of highly coupled arrays, the MCM

in (4) may be required and the proposed method

can also be used as an efficient initial guess to the

classical method in [11]. We now consider the case

where the DOAs are time varying.

IV. DOA TRACKING IN THE PRESENCE OF MUTUAL
COUPLING

In most conventional subspace-based calibration

methods, the DOAs of all signals were assumed to

be time invariant. Consequently, the subspace would

also be invariant and obtained through EVD from

the entire samples. When the DOAs vary with time,

the performance of conventional algorithms will be

deteriorated significantly. To deal with this problem,

three subspace tracking methods are developed below

for tracking time-varying DOA in the presence of

mutual coupling.

A. Modified Projection Approximation Subspace
Tracking

First, we propose two effective variants of the

PAST algorithm, namely MPAST and MOPAST

algorithms which are, respectively, based on the

conventional PAST [30] and OPAST [33] algorithms.

According to PAST, the signal subspace can be

obtained by minimizing the following objective

function

J(W(t)) =

tX
i=1

´t¡ikx(i)¡W(t)WH(t)x(i)k2

= tr(−(t))¡2tr(WH(t)−(t)W(t))

+ tr(WH(t)−(t)W(t)WH(t)W(t))

(35)where

−(t) =

tX
i=1

´t¡ix(i)xH(i) = ´−(t¡1)+ x(t)xH(t)

and 0< ´ · 1 is the forgetting factor. As analyzed
in [30], the column span of W is equal to that of the

signal subspace US , i.e.,

spanfWg= spanfUSg: (36)

As can be seen from (35), J(W(t)) is a fourth-order

function of W(t), which is rather difficult and

expensive to minimize directly. Fortunately, a

projection approximation was introduced in [30] to

simplify this problem to the familiar RLS algorithm
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TABLE II

The MPAST Algorithm

Initialize P(0)(0) and W(0)(0)

For t= 1,2, : : : do

y(0)(t) =W
H
(0)
(t¡ 1)x(t)

h(0)(t) = P(0)(t¡ 1)y(0)(t)
For k = 1,2, : : : ,K do

g(k)(t) = h(k¡1)(t)=[´+ y
H
(k¡1)(t)h(k¡1)(t)]

P(k)(t) =
1

´
TrifP(k¡1)(t¡ 1)¡ g(k)(t)hH(k¡1)(t)g

e(k)(t) = x(t)¡W(k¡1)(t¡ 1)y(k¡1)(t)
if ke(k)(t)k> ke(k¡1)(t)k break; end
W(k)(t) =W(k¡1)(t¡ 1)+ e(k)(t)gH(k)(t)
P(k)(t¡ 1) = P(k)(t)
W(k)(t¡ 1) =W(k)(t)

y(k)(t) =W
H
(k)
(t¡ 1)x(t)

h(k)(t) = P(k)(t¡ 1)y(k)(t)
end k

P(0)(t) = P(K)(t)

W(0)(t) =W(K)(t)

end t

with considerably reduced arithmetic complexity.

More precisely, (35) can be rewritten as

J(W(t)) =

tX
i=1

´t¡ikx(i)¡W(t)y(i)k2 (37)

where

y(i) =WH(t)x(i): (38)

For slowly varying signals, (38) can be

approximated by

y(i)¼WH(i¡ 1)x(i): (39)

Let J 0(W(t)) denote the corresponding approximation
J(W(t)) with y(i) approximated by (39). Next, we

can approximate the signal subspace by minimizing

J 0(W(t)) with the RLS algorithm, since J 0(W(t)) is
now linear in the variable W(t) to be estimated. This

leads to the conventional PAST algorithm.

Since (39) is an approximation of W(t) by

W(t¡1), it can be further improved if a better
estimate of W(t) is available. Such an estimate can be

obtained from the current PAST output. Therefore,

it makes sense to repeat the PAST iteration with

W(t¡1) replaced by the current PAST iteration,
and so on. We find that the performance of the

PAST algorithm can be further improved by this

iterative scheme and thus call this new algorithm

modified PAST (MPAST) algorithm. The RLS-based

MPAST algorithm for signal subspace tracking is

summarized in Table II, where the operator Trif¢g
indicates that only the upper (or lower) triangular part

of the matrix argument is calculated and its Hermitian

transposed version is copied to the lower (or upper)

triangular part, K is the number of iterations, and

TABLE III

The MOPAST Algorithm

Initialize P(0)(0) and W(0)(0)

For t = 1,2, : : : do

y(0)(t) =W
H
(0)
(t¡ 1)x(t)

h(0)(t) = P(0)(t¡ 1)y(0)(t)
For k = 1,2, : : : ,K do

g(k)(t) = h(k¡1)(t)=[´+ y
H
(k¡1)(t)h(k¡1)(t)]

P(k)(t) =
1

´
TrifP(k¡1)(t¡ 1)¡ g(k)(t)hH(k¡1)(t)g

e(k)(t) = x(t)¡W(k¡1)(t¡ 1)y(k¡1)(t)
if ke(k)(t)k> ke(k¡1)(t)k break; end
¿(k)(t) = kg(k)(t)k¡2((1+ ke(k)(t)k2kg(k)(t)k2)¡2 ¡ 1)
ẽ(k)(t) = ¿(k)(t)W(k¡1)(t¡ 1)g(k)(t) + (1+ ¿(k)(t)kg(k)(t)k2)e(k)(t)
W(k)(t) =W(k¡1)(t¡ 1)+ ẽ(k)(t)gH(k)(t)
P(k)(t¡ 1) = P(k)(t)
W(k)(t¡ 1) =W(k)(t)

y(k)(t) =W
H
(k)
(t¡ 1)x(t)

h(k)(t) = P(k)(t¡ 1)y(k)(t)
end k

P(0)(t) = P(K)(t)

W(0)(t) =W(K)(t)

end t

the subscript (k) denotes the kth iteration. When

K = 1, the proposed MPAST will reduce to the

conventional PAST. At each time instant, the PAST

algorithm requires O(N2)+3MN operations.

Hence, the complexity of the MPAST algorithm is

K[O(N2)+3MN] which is comparable to the PAST

algorithm. As K increases, it is expected that the

estimation accuracy will be improved in exchange

for increased computational complexity. Fortunately,

we found that a small K, say, K = 2, can achieve a

satisfactory performance and complexity tradeoff,

which is demonstrated by computer simulation results

presented in Section V.

Since the proposed subspace-based method

in Table I requires the estimated subspace

to be orthonormal, an additional step of

reorthonormalization of W(t) in Table II has

to be performed. The arithmetic complexity is

however increased to K[O(N2 +MN2)+3MN].

In order to reduce the arithmetic complexity

due to reorthonormalization, an orthonormal

version of the MPAST algorithm, called MOPAST

algorithm, is proposed in Table III. It is an

extension of the OPAST algorithm in [33], which

produces an orthonormal subspace directly. The

corresponding complexity is K[O(N2)+4MN], which

is lower than that of the MPAST algorithm with

reorthonormalization.

It is worth mentioning that the tracking error of

the PAST and OPAST may be large at the initial

stage due to a limited number of samples. In order
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to avoid error propagation in the iterations of the

MPAST and MOPAST algorithms, the number of

iterations K is made adaptive by monitoring the norm

of the tracking error e(t). Once the norm of e(t) at

the kth iteration, i.e., ke(k)(t)k, is larger than that of
the previous iteration, i.e., ke(k)(t)k> ke(k¡1)(t)k, the
iteration will be terminated, and W(k¡1)(t) will be used
as the estimated subspace. Significant improvement in

tracking accuracy, especially during initial tracking,

was observed in our simulations.

B. Kalman Filter-Based Subspace Tracking with
Variable Number of Measurements

Since the RLS-based MPAST and MOPAST

assume that the subspace is slowly time varying, its

performance will be degraded when the subspace

changes considerably. To overcome this problem,

we develop a Kalman filter-based subspace tracking

method, named the KFVM algorithm, for DOA

tracking. More precisely, the following two equations

are introduced to construct a linear state-space model

for subspace tracking

WT(t) = ¤(t)WT(t¡ 1)+¥(t) (40)

xT(t) =H(t)WT(t) +ª(t) (41)

where W(t) is the subspace to be tracked, x(t) is the

observation, ¤(t) is the state transition matrix and it is

chosen as an identity matrix in this paper to impose

smoothness in the state estimates, ¥(t) and ª (t) are

innovation matrix and residual error, respectively.

Similar to the PAST method, the observation matrix

H(t) can be approximated as xT(t)Ŵ¤(t¡ 1), where
the superscript ¤ denotes the complex conjugate
operation. However, using similar ideas of MPAST,

in our Kalman filter-based algorithm, a better estimate

of H(t) can be given by

H(t) = xT(t)Ŵ¤(t=t¡ 1): (42)

We now proceed to derive the KFVM algorithm

which can be employed for subspace tracking based

on the above state-space model. For the sake of

simplicity, we adopt the following state-space model

for derivation

z(t) = ¤(t)z(t¡ 1)+w(t) (43)

u(t) =H(t)z(t)+ ±(t) (44)

where z(t) and u(t) are the state vector and

observation vector respectively. ¤(t) and H(t) are the

state transition matrix and observation matrix; w(t)and

±(t) are zero mean Gaussian noise with covariance

matrix Qw(t) and R±(t), respectively. We know that the

optimal mean square error (MSE) estimator can be

obtained by the standard Kalman filter recursions as

follows

ẑ(t=t¡ 1) = ¤(t)ẑ(t¡ 1=t¡ 1)
P(t=t¡ 1) = ¤(t)P(t¡ 1=t¡ 1)¤T(t) +Qw(t)

e(t) = u(t)¡H(t)ẑ(t=t¡ 1)
K(t) = P(t=t¡ 1)HT(t)[H(t)P(t=t¡ 1)HT(t) +R±(t)]¡1

ẑ(t=t) = ẑ(t=t¡ 1)+K(t)e(t)
P(t=t) = [I¡K(t)H(t)]P(t=t¡ 1)

where e(t) denotes the prediction error of the
observation vector, ẑ(t=¿), (¿ = t¡ 1, t) represents
the estimate of z(t) given the measurements up to
time instant ¿ , i.e., fu(i), i· ¿g and P(t=¿) is the
corresponding covariance matrix of ẑ(t=¿).
The Kalman filter algorithm above can be regarded

as a least squares (LS) regression problem [34]. It

can also be seen in (44) that a single measurement

is used to update the state vector. Though the bias

error in using a single measurement will be low

when the system is fast time varying, the estimation

variance will rise correspondingly. Actually, when the

system is time invariant or slowly time varying, more

measurements in the past should be used to reduce

the estimation variance, which leads to the proposed

KFVM with better bias-variance tradeoff.

Suppose the measurements for tracking the

state estimate at the time instant t are u(t¡L(t) +
1), : : : ,u(t¡ 1),u(t), where L(t) is the number of
measurements used to update the state estimate. With

this set of measurements, the linear state-space model

of (40) and (41) can be extended as266666664

I

H(t¡L(t) +1)
...

H(t¡ 1)
H(t)

377777775
z(t) =

266666664

¤(t)ẑ(t¡ 1=t¡ 1)
u(t¡L(t)+1)

...

u(t¡ 1)
u(t)

377777775
+¢(t)

(45)

where

¢(t) =

266664
¤(t)[z(t¡ 1)¡ ẑ(t¡1=t¡ 1)]+w(t)

¡±(t¡L(t)+1)
...

¡±(t)

377775
and

E[¢(t)¢T(t)]

=

·
P(t=t¡ 1) 0

0 diagfR±(t¡L(t)+ 1), : : : ,R±(t¡ 1),R±(t)g

¸
= S(t)ST(t)

where E[¢] denotes mathematical expectation and S(t)
can be computed from the Cholesky decomposition

of E[¢(t)¢T(t)]. Multiplying both sides of (45) by
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S¡1(t)will lead to a linear regression as follows

X(t) = H̄(t)z(t) + »(t) (46)

where

X(t) = S¡1(t)

266666664

¤(t)ẑ(t¡ 1=t¡ 1)
u(t¡L(t) +1)

...

u(t¡ 1)
u(t)

377777775
H̄(t) = S¡1(t)[I HT(t¡L(t)+1) ¢ ¢ ¢HT(t¡ 1) HT(t)]T

»(t) =¡S¡1(t)¢(t):
It can be seen that (46) is a LS regression problem

with solution

ẑ(t) = (H̄T(t)H̄(t))¡1H̄T(t)X(t) (47)

and the covariance of estimating z(t) is

E[(z(t)¡ ẑ(t))(z(t)¡ ẑ(t))T] = P̄(t=t) = (H̄T(t)H̄(t))¡1:
(48)

As can be seen above, the number of

measurements L is assumed to be time dependent.

Particularly, if L is unchanged for all the time instants,

a Kalman filter with multi-measurements (KFMM)

results. Choosing L adaptively in KFVM has the

advantage of achieving a better bias-variance tradeoff

at each time instant. The scheme previously proposed

in [35], [36] can be utilized here to select L at each

time t. First, we define

ê(t) = ẑ(t¡1)¡ z̃(t¡1) (49)

z̃(t) = ´z̃(t¡1)+ (1¡ ´)ẑ(t¡ 1) (50)

where ẑ(t) is the state estimate and ê(t) is its

approximated time derivative. ´ is the forgetting factor

(0< ´ · 1) for calculating the smoothed tap weight
z̃(t). When the algorithm is about to converge to the

signal subspace in a static environment, the l1 or l2
norms of ê(t) will decrease and converge gradually
from its initial value to a very small value. Therefore,

they serve as a measure of the variation of the signal

subspace. To determine the number of measurements

L(t), the variable forgetting factor control scheme

developed in [37] is utilized here. The absolute

value of the approximate derivative of kê(t)k is first
computed as

Ge(t) = jkê(t)k¡kê(t¡ 1)kj: (51)

Then it is smoothed to obtain Ḡe(t) by averaging it

over a time window of length Ts. The initial value of

Ḡe(t), denoted by Ḡe0, is obtained by averaging the

first Ts data. From simulation, we found that Ts = 100

gives satisfactory results. By normalizing Ḡe(t) with

Ḡe0, we get ḠN(t), which is a more stable measure

of the subspace variation. From this, we propose to

update L(t) at each snapshot as

L(t) = LL+[1¡g(ḠN(t))](LU¡LL) (52)

where LL and LU are, respectively, the lower and

upper bounds of L(t) and

g(x) =

8><>:
1, x¸ 1
x, 0< x < 1

0, x· 0
is a clipping function which keeps the range of

ḠN(t) to the interval [0,1]. We can see that more

measurements will be used if the subspace variation

measure ḠN(t) is small and vice versa.

To further stabilize the adaptive number of

measurements, time-recursive forward smoothing

similar to the conventional forgetting-factor-based

method can be employed. More precisely L(t) can be

recursively estimated as

L(t) = ¸LLL+(1¡¸L)fLL+[1¡g(ḠN(t))](LU¡LL)g
(53)

where 0< ¸L · 1 is a forgetting factor. Hence, the
new KFVM algorithm can be obtained by using L(t)

number of measurements to estimate the system state.

Consequently, the above derived KFVM algorithm

can be directly applied to the state-space model

in (40) and (41) by adaptively employing L(t)

measurements, i.e., x(t¡L(t) +1), : : : ,x(t¡ 1),x(t),
for updating the subspace W(t). It can be seen
that different from conventional Kalman filter or

RLS-based tracking algorithms, the main advantage

of the proposed method is that the number of

observations is adaptively chosen. In other words,

when the system is fast time varying, a small number

of measurements are chosen to reduce the bias

error. When the system is slowly time varying, more

measurements are used to reduce the estimation

variance. Hence, the proposed KFVM can achieve

a better bias-variance trade off. It should be noted

that since W(t) is not exactly orthonormal, an
additional reorthonormalization step is needed when

orthonormality is required. The detailed procedure

of this KFVM-based subspace tracking algorithm is

summarized in Table IV.

The resultant KFVM algorithm requires O(L3 +

MN2)+ (L+1)MN +2LN2 +L2N operations in each

update when L measurements and orthonormalization

are used. If LÀM and LÀN, the complexity of

KFVM is around O(L3), which will be higher than the

PAST-based algorithms. If L is small, the complexity

is comparable to PAST-based algorithms.

C. Subspace-Based DOA Tracking

Once the orthonormal signal subspace is obtained

from the MPAST, MOPAST, or KFVM-based

subspace tracking algorithms presented above,

the DOAs can be tracked as follows. Since the
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TABLE IV

The KFVM Algorithm

Initialize P(0), W(0), and L(0)

For t= 1,2, : : : ,Ts, do

i) Calculate ê(t) as (49) and (50).

ii) Calculate Ge(t) as (51).

iii) Estimate W(t) using the standard Kalman filter.

end t

At time t= Ts, obtain Ḡe0 by averaging first Ts estimates Ge(t).

For t= Ts+1,Ts +2, : : : do

i) Calculate ê(t) as (49) and (50).

ii) Calculate Ge(t) as (51) and obtain ḠN (t) by normalizing

Ḡe(t) with Ḡe0.

iii) Update L(t) as (51)—(53).

iv) Estimate W(t) using the KFVM with L(t) measurements

as (45)—(47).

end t

orthonormalized signal subspace US(t) and the noise
subspace UV(t) satisfy

US(t)U
H
S (t)+UV(t)U

H
V(t) = I (54)

then UV(t)U
H
V(t) in (20) can be computed as

UV(t)U
H
V(t) = I¡US(t)UHS (t): (55)

The DOAs at each time instant t can then be estimated

from the angles associated with the peaks of the

determinant-based spectrum

PDET(μ, t) = fdet[Q(μ, t)]g¡1 (56)

or the eigenvalue-based spectrum

PEV(μ, t) = ¸
¡1
min[Q(μ, t)] (57)

where
Q(μ, t) = TH(μ)UV(t)U

H
V(t)T(μ): (58)

V. SIMULATION RESULTS

A. DOA and Mutual Coupling Estimation in Stationary
Environments

Consider a ULA with M = 10 sensors, each

separated by half wavelength, i.e., d = 0:5¸. The

mutual coupling is assumed to be negligible at a

distance larger than 1:5¸ and hence P = 3. The

corresponding two mutual coupling coefficients

are assumed to be c1 = 0:65exp(¡j¼=7) and c2 =
0:25exp(¡j¼=10). Two uncorrelated narrowband
signals with equal power impinge on the array from

the far-field with directions μ1 = 10
± and μ2 = 30

±,
and 500 snapshots are obtained. In this simulation,

the DOAs and mutual coupling are assumed to be

stationary, so that mutual coupling coefficients and

signal DOAs are constant. First, the background

observation noise is assumed to be an AWGN with

an SNR of 10 dB. The spatial spectra of our proposed

method (21) and that proposed by Ye and Liu [19] are

illustrated in Fig. 1, where the MUSIC algorithm with

known mutual coupling is also shown for comparison.

Fig. 1. Comparison of spectra of different methods (500

snapshots, SNR= 10 dB).

It can be seen that both of the methods work well at

an SNR of 10 dB.

Next, the performance of the proposed method at

different SNRs is evaluated. A hundred Monte-Carlo

simulations are run at a set of different SNR levels

from ¡5 dB to 20 dB and 500 snapshots are obtained
for each experiment. The root mean squared error

(RMSE) criterion is employed to assess and compare

the DOA estimation results of different algorithms in a

quantitative manner, and it is calculated as

RMSE=

vuut KTX
i=1

NX
n=1

(μn¡ μ̂i,n)
2=(KTN)

where KT is the number of Monte-Carlo experiments,

N is the number of signals, μn is the nth DOA,

and μ̂i,n denotes the nth estimated DOA in the ith

Monte-Carlo experiment. The RMSE versus SNR

curves are illustrated in Fig. 2. It is shown that the

proposed method, which uses the whole array to

estimate DOAs, outperforms the method in [19] at low

SNR levels. The superiority of the proposed method

gradually diminishes with the increase of SNR. When

the SNR is larger than 5 dB, the proposed method

has a comparable performance to the method in

[19]. The estimated mutual coupling coefficients

under different SNRs are listed in Tables V—VIII.

The above results show that the proposed method can

achieve satisfactory estimation accuracy, especially

for small SNRs. One possible explanation is that

comparing with the middle subarray, using the

whole array has potential advantages such as a lower

Cramér-Rao bound for DOA estimation as studied in

[22]—[26]. Hence, the proposed method is able to give

a better performance for DOA estimation and array

calibration.

900 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 48, NO. 1 JANUARY 2012



TABLE V

Estimated Amplitude of c1 Against SNR (True Value ½1 = 0:65)

Ye’s Method [19] Proposed Method

SNR ½̂1 j½1¡ ½̂1j ½̂1 j½1¡ ½̂1j
¡5 dB 0.5082 0.1418 0.6261 0.0239

¡3 dB 0.5912 0.0588 0.6318 0.0182

¡1 dB 0.6204 0.0296 0.6473 0.0027

1 dB 0.6241 0.0259 0.6407 0.0093

3 dB 0.6456 0.0044 0.6511 0.0011

5 dB 0.6481 0.0019 0.6473 0.0027

TABLE VI

Estimated Amplitude of c2 Against SNR (True Value ½2=0.25)

Ye’s Method [19] Proposed Method

SNR ½̂2 j½2¡ ½̂2j ½̂2 j½2¡ ½̂2j
¡5 dB 0.2805 0.0305 0.2573 0.0073

¡3 dB 0.2671 0.0171 0.2586 0.0086

¡1 dB 0.2600 0.0100 0.2523 0.0023

1 dB 0.2567 0.0067 0.2535 0.0035

3 dB 0.2518 0.0018 0.2521 0.0021

5 dB 0.2509 0.0009 0.2521 0.0021

TABLE VII

Estimated Phase of c1 Against SNR

(True Value '1 =¡0:4488 rad)

Ye’s Method [19] Proposed Method

SNR Á̂1 jÁ1¡ Á̂1j Á̂1 jÁ1¡ Á̂1j
¡5 dB ¡0:5127 0.0639 ¡0:4755 0.0267

¡3 dB ¡0:4620 0.0132 ¡0:4728 0.0240

¡1 dB ¡0:4588 0.0100 ¡0:4399 0.0089

1 dB ¡0:4610 0.0122 ¡0:4733 0.0245

3 dB ¡0:4468 0.0020 ¡0:4539 0.0051

5 dB ¡0:4475 0.0013 ¡0:4480 0.0008

TABLE VIII

Estimated Phase of c2 Against SNR

(True Value '2 =¡0:3142 rad)

Ye’s Method [19] Proposed Method

SNR Á̂2 jÁ2¡ Á̂2j Á̂2 jÁ2¡ Á̂2j
¡5 dB ¡0:2516 0.0626 ¡0:2645 0.0497

¡3 dB ¡0:2803 0.0339 ¡0:2800 0.0342

¡1 dB ¡0:2951 0.0191 ¡0:3113 0.0029

1 dB ¡0:3025 0.0017 ¡0:3109 0.0033

3 dB ¡0:3069 0.0073 ¡0:3204 0.0062

5 dB ¡0:3129 0.0013 ¡0:3124 0.0018

Thirdly, the iterative refinement in Step 8 of the

proposed algorithm in Table I is applied to both of

the methods. It is shown in Figs. 2 and 3 that the

performances of both methods improve with the

number of iterations. The proposed method converges

considerably faster than the Ye’s method, and its

performance is close to that of known mutual coupling

with only one additional iteration.

Fig. 2. Comparison of RMSEs of DOA using different methods

(1 iteration) under different SNR values in stationary environment.

Fig. 3. Comparison of RMSEs of DOA using different methods

(2 iterations) under different SNR values in stationary

environment.

Finally, we illustrate the influence of blind angles

on the proposed method. Following the settings of

the first experiment in this section, we only change

the mutual coupling coefficients to be c1 = 0:9081+

0:0256j and c2 =¡0:1880¡ 0:0582j, which have
been utilized in the first simulation of [19]. Hence,

there will be two blind angles, i.e., ¡45± and 45±.
Fig. 4 shows the spectra of the proposed method

(21), the method of [19], and the MUSIC algorithm

with known mutual coupling. Comparing with the

results in the first experiment, we notice that when

there are no signals coming from the blind angles, the

proposed method and the method of [19] performs

quite well and there are no pseudopeaks of these two

methods. However, the MUSIC algorithm with known

mutual coupling coefficients has two pseudopeaks

at the blind angles, and they generally do not affect
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Fig. 4. Spectra of different methods under some special mutual

coupling coefficients (500 snapshots, SNR= 10 dB).

much the DOA estimation since the peak values are

comparatively small in the tested case. Next, based on

the above settings, we change μ2 to be 45
±, i.e., the

second signal comes from a blind angle. The resultant

spectra are illustrated in Fig. 5. It can be seen from

the spectra of the proposed method and the method

of [19] that the second signal from 45± is missed,
whereas the MUSIC algorithm with known mutual

coupling can give satisfactory performance though

there is a small pseudopeak at another blind angle.

B. DOA Tracking in Dynamic Environments

In this experiment, the tracking performances of

the proposed MPAST and MOPAST algorithms in a

dynamic DOA environment are tested. μ1 is assumed

to be invariant while μ2 is assumed to be changing

linearly and slowly according to the following model

μ2(t) = 30¡ 1:5£ 10¡2t, 0· t· 800: (59)

Here and in the following simulations, the unit for

μ1 and μ2 is degree. The mutual coupling coefficients

are assumed to be invariant and the SNR is 20 dB.

The forgetting factors of the various PAST-based

algorithms are set to ´ = 0:98, and hence the window

length is approximately equal to 50. P(0)(0) and
W(0)(0) of the proposed MPAST and MOPAST are

initialized to identity matrices.

As a comparison, EVD [30], PAST, and OPAST

algorithms are also implemented. However, the

following simulation results and those in Section VC

show that the performance of the OPAST algorithm is

nearly identical to that of EVD and PAST algorithms

after reorthonormalization, whereas the performance

of the MOPAST algorithm is nearly identical to that

of the MPAST algorithm after reorthonormalization.

Therefore, we only focus on the results obtained using

OPAST and MOPAST algorithms for clarity.

Fig. 5. Spectra of different methods when there exists a signal

coming from blind angle 45± (500 snapshots, SNR= 10 dB).

Fig. 6. Comparison of DOA tracking results using OPAST and

MOPAST (MOPAST-1 and MOPAST-2 denote the MOPAST

algorithm with one and two additional iterations, respectively) for

time-varying DOA and invariant mutual coupling.

Fig. 6 shows the tracking results of different

methods using a single experimental run. It can be

seen that the MOPAST algorithm with one iteration

(MOPAST-1) can achieve a better performance

than the OPAST algorithm, and the performance of

MOPAST for DOA tracking can be further improved

with an increasing number of iterations, at the expense

of higher computational complexity. Fortunately,

simulation results show that MOPAST can generally

achieve a satisfactory result with only one iteration.

We next compare the tracking performances of the

OPAST, MOPAST, KFMM, and KFVM algorithms in

a rapidly changing DOA environment. For illustration,

μ2 is assumed to undergo a sharp change in the

time interval [600,620] according to the following
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Fig. 7. Comparison of DOA tracking results using OPAST,

MOPAST-1, KFMM (L= 50), and KFVM for time-varying DOA

with sudden change and invariant mutual coupling.

model

μ2(t) =

8><>:
30¡ 1:5£ 10¡2t, 0· t < 600
21¡ 1:5£ 10¡1(t¡ 600), 600· t· 620
18¡ 7:9£ 10¡3(t¡ 620), 620< t· 800

:

(60)

In the KFMM and KFVM algorithms, the state

transition matrix ¤(t) is chosen as an identity matrix

to impose smoothness in the state estimates. In

the KFVM algorithm, Ts = 100, LL = 1, LU = 50,

and ¸L = 0:9. P(0) and W(0) of the algorithm are

initialized to identity matrices, and L(0) = 1. Fig. 7

depicts the results of OPAST, MOPAST-1, KFMM

with L= 50 and KFVM using a single experimental

run. It can be seen that the proposed adaptive

Kalman filter-based subspace tracking algorithm

achieves a good performance in both fast-varying and

slow-varying DOA environments. When the subspace

changes quickly, the KFVM method has a better

tracking performance than the OPAST, MOPAST and

KFMM algorithms.

VI. CONCLUSION

A class of subspace-based methods for DOA

estimation and tracking in the case of ULAs

with mutual coupling are presented. Using a new

parameterization of the steering vector based on the

banded symmetric Toeplitz MCM model and the

subspace principle, the DOAs and mutual coupling

coefficients can be estimated simultaneously using the

data from the whole array. Simulation results show

that the proposed method has better performance

than the method recently proposed by Ye and Liu,

especially at low SNR. The proposed algorithm is

further extended to estimate time-varying DOAs

in the presence of mutual coupling by means

of subspace tracking. Three effective subspace

tracking algorithms, called MPAST, MOPAST, and

KFVM, with different arithmetic complexities and

tracking abilities are presented. The MPAST and

MOPAST algorithm have relatively lower arithmetic

complexities and are suitable for slowly changing

subspace. The KFVM algorithm is more suitable for

rapidly changing subspace, at the expense of higher

arithmetic complexity. Simulation results demonstrate

that these three algorithms offer high flexibility and

effectiveness for tracking both DOAs and mutual

coupling coefficients in various conditions.
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