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Abstract—Heterogeneous wireless networks provide varying
degrees of network coverage in a multi-tier configuration in
which low-powered small cells are used to enhance performance.
Due to the ad-hoc deployment of small cells, optimal resource
allocation is important to provision fairness and enhance energy
efficiency. We first study the worst outage probability problem in
Rayleigh-fading channels, and solve this nonconvex stochastic pro-
gram using mathematical tools from nonlinear Perron-Frobenius
theory. As a by-product, we solve an open problem of convergence
for a previously proposed algorithm in the interference-limited
case. We then address a total power minimization problem with
outage specification constraints and its feasibility issue. We pro-
pose a dynamic algorithm that adapts the outage probability
specification in a heterogeneous wireless network to minimize the
total energy consumption and to simultaneously provide fairness
guarantees in terms of the worst outage probability. Finally,
we provide numerical evaluation on the performance of the
algorithms and the effectiveness of deploying closed-access small
cells in heterogeneous wireless networks to address the tradeoff
between energy saving and feasibility of users satisfying their
outage probability specifications.
Index Terms—Energy efficiency, optimization, outage prob-

ability, Perron-Frobenius theorem, power control, small cell
networks.

I. INTRODUCTION

T HE NEXT-GENERATION heterogeneous wireless net-
works have to support many users with diverse quality

of service requirements and to improve the overall system per-
formance by using a mix of higher-tier macrocells and lower-
tier small cells to enhance performance and network coverage
[2]–[7]. As small cells utilize spectrum currently employed by
macro-cellular networks and due to the broadcast nature of the
wireless medium, interference is a major source of performance
impairment. Also, small cells are deployed in an ad hoc manner,
and this can lead to undesirable interference between cells. For
example, a macrocell with a small cell or a small cell with an-
other small cell. Wireless resources thus need to be shared fairly
in a collaborative and distributed manner.
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Wireless resource sharing under interference is however
far from perfect. Maintaining a balanced operation in the
macro-small cell heterogeneous wireless network is difficult,
because interference rises rapidly with increasing small cell
density [2]–[5]. Without appropriate resource control, the
network can become unstable or operate in a highly inefficient
and unfair manner [8], [9]. In addition, wireless transmission
depends on other factors such as statistical channel fading that
is typically modeled by a Rayleigh, a Ricean or a Nakagami
distribution depending on the wireless environment [10], [11].
In this paper, we focus on optimal power control for wireless
resource sharing under Rayleigh fading that is relevant to
in-building coverage model and urban environments (where
small cells are mostly deployed). Optimal wireless resource
sharing requires that the performance gain is not outweighed
by interference and unfairness [2], [3].
Power control is important to resource allocation as it de-

termines the appropriate Signal-to-Interference-Noise Ratio
(SINR) at the receiver to meet the performance requirements
[10], [12]. The SINR, as a nonlinear function of powers (neither
convex nor concave), couples the transmit powers of all the
users together. Now, a transmission outage is declared when the
received SINR falls below a given threshold. Due to statistical
channel fading, the SINR fluctuates over time, thus leading
to a positive outage probability that increases with multi-user
interference. Consequently, an optimal power allocation that
incorporates these statistics of the SINR is important to provide
some form of fairness guarantees in heterogeneous wireless
network performance. Our objectives in this paper are to
guarantee egalitarian fairness (commonly known as max-min
fairness) and to minimize the power consumption in the con-
text of outage probabilities. In general, finding the power to
optimize the outage probabilities is mathematically challenging
(a nonconvex stochastic program). Furthermore, the tight cou-
pling of powers in the SINR complicates the design of power
control algorithms with good convergence performance and
low complexity.

II. RELATED WORK

Existing work on power control with Rayleigh fading mainly
fall into two categories. The first category assumes that trans-
mitters have perfect knowledge of the channel state information
and can track the Rayleigh fading states over time in order to
allocate power for each state realization. For example, in [13],
the authors proposed tracking Rayleigh-fading fluctuation to re-
duce outage in a macrocell network. The second category as-
sumes that transmitters have only channel distribution informa-
tion since instantaneous state informationmay not be practically
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available. Once optimized using the distribution information,
powers are fixed regardless of the fading states. In the seminal
work in [14], the authors studied power control problems tomin-
imize the worst-case outage probability and the total power con-
sumption in an interference-limited system (i.e., without back-
ground noise) using geometric programming. There are exten-
sions to other power control problems with outage constraints,
see e.g., [15], [16], but the geometric programming approach
may not be scalable in practice as it requires a centralized solver
to solve the geometric programs [14], [17]. The authors in [18]
studied a total power minimization problem under a more gen-
eral setting (with background noise and individual power con-
straints), but the feasibility issue of this problem is left open.
Our work here belongs to the second category. In particular,

we address the general solution and resolve several open is-
sues in [14], [18] using mathematical tools from the nonlinear
Perron-Frobenius theory in [19]–[21] and nonnegative matrix
theory [22], [23]. This leads to simple algorithms that converge
to the global optimal solution. More generally, we show that
these mathematical tools are sufficiently sharp enough to ana-
lytically solve these seemingly nonconvex problems and to link
seemingly unrelated problems, e.g., the worst-case outage prob-
ability problem and the max-min weighted SINR problem (also
known as the certainty-equivalent margin (CEM) in [14]), and
characterize them as nonlinear eigenvalue problems, whose op-
timal value and solution are associated with a nonlinear Perron-
Frobenius eigenvalue and eigenvector, respectively. This sheds
important insights to solving a useful class of nonconvex power
control problems.
There are also several implications for heterogeneous

wireless network design. First, the developed theories and
algorithms can be used to guarantee fairness among users [6].
Second, since it is imperative that small cell users adapt the
power allocation to be energy efficient even when the system
is infeasible [2], [3], [7], we also address the feasibility issue
in the total power minimization problem of [14], [18]. In
particular, we propose a distributed power control algorithm
that adapts the outage probability specification to minimize
the total energy consumption and to simultaneously guarantee
fairness in terms of the worst-case outage probability. This
leads to a decentralized dynamic algorithm without the need of
a centralized admission controller (a desirable fact due to the
ad-hoc architecture of small cell networks).
Overall, the contributions of the paper are as follows:
1) We solve analytically for the general solution of the worst

outage probability minimization problem with power con-
straints, and propose an iterative algorithm to compute this
solution. As a by-product, we resolve an open issue of
convergence for a previously proposed algorithm and its
fixed-point existence in [14] for the interference-limited
special case.

2) We establish a tight relationship between the worst outage
probability problem and its certainty-equivalent margin
counterpart, and utilize the connection to find useful
bounds and insights. A by-product of this analysis resolves
an open issue of convergence for a previously proposed
algorithm in [6] for a max-min weighted SINR problem
without fading.

Fig. 1. An overview connecting the different optimization problems in this
paper. The optimization problems contained in the dotted box are solved by
the nonlinear Perron-Frobenius theory. Central to this paper is the worst outage
probability problem. It can be connected to a non-fading max-min weighted
SINR problem to deduce useful performance bounds. The solution to the worst
outage probability problem is then leveraged to address the infeasibility issue
of a total power minimization problem with outage specification constraints and
to design an adaptable power control algorithm.

3) We characterize analytically the feasibility condition of
the total power minimization problem with both outage
specification and individual power constraints, and provide
useful feasibility bounds.

4) Based on the established feasibility conditions, we pro-
pose a dynamic algorithm for the graceful handling of
infeasibility in the network. In particular, the algorithm
optimizes the overall energy consumption by adapting the
outage probability specification based on our proposed
worst outage probability algorithm. Numerical simula-
tions demonstrate that the dynamic algorithm enables
more users to meet their outage probability specification
in comparison to a baseline non-adaptive algorithm when
there is infeasibility.

Fig. 1 gives an overview of the connection between the var-
ious optimization problems and topics studied in this paper.
This paper is organized as follows. We introduce the system

model in Section III. In Section IV, we study the problem of
minimizing the worst outage probability analytically and pro-
pose a fast algorithm. In Section V, we study the feasibility
condition of a total power minimization problem, and propose a
dynamic power control algorithm that adapts the outage proba-
bility specification to minimize the total energy. In Section V-D,
we discuss practical implementation issues related to our pro-
posed algorithms and further extensions. In Section VI, we il-
lustrate the numerical performance of our algorithms. We con-
clude the paper in Section VII.
The following notation is used. Boldface uppercase letters

denote matrices, boldface lowercase letters denote column
vectors, italics denote scalars, and denotes componen-
twise inequality between vectors and . We also let
denote the th element of . Let denote the vector

. We write if for all
. The Perron-Frobenius eigenvalue of a nonnegative matrix
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is denoted as , and the right and left eigenvector of
associated with are denoted by and
(or, simply and , when the context is clear) respectively. Re-
call that the Perron-Frobenius eigenvalue of is the eigenvalue
with the largest absolute value. Assume that is an irreducible
nonnegative matrix.1 Then is simple and positive, and

[24]. The super-script denotes transpose.
We denote as the th unit coordinate vector and as the
identity matrix. For any vector , let

.

III. SYSTEM MODEL

Consider a multiuser communication system with users
(logical transmitter and receiver pairs) sharing a common fre-
quency. This system can be modeled by a Gaussian interfer-
ence channel with an additive white Gaussian noise power
at the th receiver that employs singe-user decoding. The th
transmitter has a power . Under Rayleigh fading, the power
received from the th transmitter at th receiver is given by

where represents the nonnegative path gain be-
tween the th transmitter and the th receiver (it may model
the path-loss and longer timescale shadow fading). In partic-
ular, models Rayleigh fading and is independent and ex-
ponentially distributed with unit mean. The distribution of the
received power from the th transmitter at the receiver is then
exponential with mean value .
Next, let us define a nonnegative matrix with the entries:

if
if (1)

and

(2)

Moreover, we assume that is irreducible. This assumption can
be easily satisfied by a sufficient condition that for all

, i.e., all the users interfere with one another.
Using the above notations, the Signal-to-Interference-Noise

Ratio (SINR) at the th receiver (e.g., a linear matched filter)
can be expressed as [12], [14]:

(3)

Now, (3) is a random variable that depends on Rayleigh
fading. The transmission from the th transmitter to its receiver
is successful if (no outage), where is a given
threshold for reliable communication. An outage occurs at the
th receiver whenever . We express this outage
probability of the th user by

(4)
The transmit powers in wireless networks are typically

constrained, e.g., by a power constraint set , due to resource
budget consideration [10]. For example, in a cellular uplink
system, we often have individual power constraints, i.e.,

(5)

1A nonnegative matrix is said to be irreducible if there exists a positive
integer such that the matrix has all entries positive.

Power constraints can also be used to model interference
management. For example, a basic premise in small cells is that
the following two conditions are satisfied [6]:
1) A small cell user receives adequate levels of transmission

quality within the small cell.
2) The small cell users do not cause unacceptable levels of

interference to the macrocell users.
To satisfy the second condition above, a possibility is to ex-

plicitly impose power constraints on the small cell users. Let
us illustrate using an example of a single macrocell user and
multiple small cells in [6]. Assume that there is no fading be-
tween this single macrocell receiver and all the small cell users.
This assumption holds only in this paragraph for illustration pur-
pose. Let us denote this macrocell user by the index 0 and the
small cell users by indices . The macrocell user trans-
mits with a fixed power , where , i.e., the macro-
cell user can satisfy the SINR threshold even when there is
no interference from the small cells. In the presence of small
cells' interference, the SINR of this macrocell user has to sat-
isfy which can be rewritten as a single

power constraint to yield

(6)

that must be satisfied by the transmit powers of all the small cell
users. Note that (6) is feasible when . In general, a
feasible power constraint of the form for some posi-
tive constant vector can be used to model interference man-
agement requirements.
To satisfy the first condition above on adequate levels of

transmission quality, we focus on the worst outage probability
that reflects the minimum adequate level of fairness experi-
enced by all the users, i.e., minimizing the maximum outage
probability given in (4) among users. The transmit power
vector is the optimization variable of interest.

IV. WORST OUTAGE PROBABILITY MINIMIZATION

The problem of minimizing the worst outage probability can
be formulated as

(7)
Let us denote the optimal worst outage probability, i.e., the

optimal value of (7), by .
Assuming independent Rayleigh fading at all the signals, the

outage probability of the th user can be given analytically by
[14]:2

(8)

Observe that the probability of successful transmission, i.e.,
the complement of (8), is simply the product of two factors,
namely, and , which are

2A closed form expression was first derived in [25], but we use another equiv-
alent form derived in [14].
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the probability of successful transmission in a noise-limited
Rayleigh-fading channel (i.e., no interference) and an interfer-
ence-limited Rayleigh-fading channel (i.e., no additive white
Gaussian noise) respectively.
By using (8) and defining a deterministic function:

(9)

then the stochastic program in (7) simplifies to a deterministic
problem:

(10)
Note that (10) is always feasible as long as the given power

budget constraints in (5) and (6) are feasible, and its optimal so-
lution is strictly positive. Previous work in the literature, e.g.,
[14], only considered (10) for the interference-limited case, i.e.,

and without any power constraint. In this special case,
[14] showed that (10) can be reformulated as a geometric pro-
gram (a special class of convex optimization), and then solved
numerically by the interior point method [17].
In the following, we give a reformulation of (10) as a

convex optimization problem (not a geometric program but
reduces to one in the interference-limited special case). By
exploiting the nonlinear Perron-Frobenius theory, we propose
a fast algorithm3 (no parameter tuning whatsoever and orders
of magnitude faster than standard convex optimization algo-
rithms, e.g., interior point method) to solve (10) optimally. As a
by-product, it resolves an open problem on the convergence of
a previously proposed heuristic algorithm in [14]. Furthermore,
we characterize analytically the optimal value and solution of
(10) in terms of a Perron-Frobenius eigenvalue and eigenvector
of a specially constructed nonnegative matrix respectively.
Let us introduce an auxiliary variable and write (10) in the

epigraph form (augmenting the constraint set with additional
constraints):

(11)
Let us introduce a new variable

(12)
and then, by rewriting the augmented constraints in (11), (11)
is equivalent to the following problem:

(13)

3Some key computational considerations are the extremely fast signal pro-
cessing requirement at the transceiver chip and the decentralized environment.

We call the first constraints of (13) the outage constraints,
and denote the optimal solution to (13) by . Note that

is also the optimal solution to (10).
Now, (13) is nonconvex in . However, by making a

logarithmic change of variable in , i.e., for all ,
(13) can be converted into the following convex optimization
problem in :4

(14)

Though solving the nonconvex problem in (13) is equivalent
to solving the convex problem5 in (14), we shall use a non-
linear Perron-Frobenius theory-based approach to solve (13) op-
timally. Using nonnegative matrix theory, we then connect (13)
to the Lagrange duality of (14) (cf. Lemma 2 later) to shed fur-
ther insights to the solution.
Lemma 1: At optimality of (13), the outage constraints in (13)

are tight:

(15)

Furthermore, if , we have ,
and if , we have for some .

Proof: First, we note that it has been pointed out in
[14] that all the outage constraints are tight for the interfer-
ence-limited case, i.e., . We prove the first part of
Lemma 1 for the general case here. Clearly, the function on
the lefthand side of the th outage constraint in (13) is mono-
tone increasing in , , and monotone decreasing in
. Suppose the th constraint is not tight at optimality, i.e.,

. Then, we choose
a feasible power such that the evaluated value of

is still less than . Now,

for all
. This implies that the value of can be further decreased,

i.e., , which contradicts the assumption. Hence, the th
constraint must be tight at optimality for all .
We next prove the second part for .

Suppose at optimality for all . Let a positive scalar
, and choose a feasible power ,

which evaluates the outage constraints as

4Note that (13) cannot be rewritten as a geometric programming formulation,
as has been done in [14]. Nevertheless, after a logarithmic change of variables,
a convex form can still be obtained as shown here.

5The optimization problem in (14) is convex, because the objective func-
tion is linear and the constraint set is convex. In particular, the function

is convex because the log-sum-exp function is
convex [17]. Thus, the constraint set in (14) that consists of exponentials and
log-sum-exp functions is a convex one.
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TABLE I
CHARACTERIZATION OF MAX-MIN OPTIMIZATION PROBLEMS IN THIS AND PREVIOUS WORK USING THE NONLINEAR PERRON-FROBENIUS THEORY

for all . This implies that can be further decreased, i.e.,
, which contradicts the assumption. Hence, for

some . A similar proof can be givenwhen
and is omitted.
Hence, by using Lemma 1, we have the optimal worst outage

probability

(16)

and also .
Remark 1: Now, finding the fixed-point solution in (15) in

Lemma 1 may seem nontrivial. However, by exploiting a con-
nection between the nonlinear Perron-Frobenius theory in [19],
[20] (that includes unveiling a hidden convexity in (15)), we
can give an analytical solution to (15) and, equivalently, the op-
timal value and the optimal solution of (10) in Section IV-D (see
Table I later). Interestingly, in (13) (equivalently the op-
timal value of (10)) and the optimal solution can be viewed
as a nonlinear Perron-Frobenius eigenvalue and its nonlinear
eigenvector.6
We propose the following algorithm (with geometric conver-

gence rate and no parameter tuning whatsoever) that computes
the optimal solution of (13). We let index discrete time slots.

6In summary, the intuition of using the nonlinear Perron-Frobenius theory to
solve nonconvex optimization problem such as that in (10) lies in examining the
fixed-point equations corresponding to the set of primal constraints that are tight
at optimality. In particular, the fixed-point equations exhibit special properties
such as nonnegativity, monotonicity and convexity. We refer the readers to [26]
for an overview of this Perron-Frobenius theory approach to solving other sim-
ilar nonconvex optimization problems in wireless network.

7Let be an arbitrary vector norm. A sequence is said to converge
geometrically fast to a fixed point if and only if converges to
zero geometrically fast, i.e., there exists constants and such
that for all [27].

Algorithm 1 (Worst Outage Probability Minimization):

1) Update power :

(17)

2) Normalize :

(18)

(19)

Theorem 1: Starting from any initial point , in Al-
gorithm 1 converges geometrically fast7 to the optimal solution
of (10).

Proof: Let us write the left-hand side of the th outage con-
straint in (13) as , where

(20)

In the following, we show that

(21)

is a positive concave self-mapping on the standard cone
. The definition of a concave self-mapping is given in [20]

as follows.
Definition 1 (Concave Self-Mapping [20]): Amapping

is concave if

and monotone if implies .
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Let be a norm on that is monotone, i.e., . A
concave self-mapping of is monotone on and continuous
on the interior of with respect to [20].
We first show that is

a cone mapping8with respect to the interior of . Taking the
derivative of with respect to , the th entry of the first
derivative is given by:

if

if .
(22)

Since for , . Thus,
for all , i.e., increases monotonically in

. Now, we state the following result [28].
Theorem 2 (Proposition 3.2 in [28]): Let be the set of cone

mappings with respect to the interior of the positive standard
cone. Suppose is differentiable and the following
inequalities hold for the component mappings:
for all : . Then .
Now, we have

(23)

Hence, by Theorem 2, is a strictly positive and monotone
cone mapping on .
We next show that is a

concave self-mapping. Taking the second derivative, we obtain
the Hessian with entries given by:

if

if , either or

if

otherwise.
(24)

8A self-mapping of a cone is called a cone mapping if for every
and from , it follows that ,
that is a cone mapping maps any interval into .

Now, the Hessian is indeed negative definite: for all
real vectors , we have

(25)

Another proof is to observe that is strictly con-
cave in for strictly positive , as it is the perspective func-
tion of the strictly concave function [17]. Hence,

is a sum of strictly concave perspective function, and
therefore is strictly concave in .
We note that any concave self-mapping of is in and it

is monotone and continuous [28]. Indeed, is monotone
increasing in as has been shown earlier.
We first state the following key theorem in [20].
Theorem 3 (Krause's Theorem [20]): Let be a mono-

tone norm on . For a concave mapping with
for , the following statements hold. The condi-

tional eigenvalue problem , , ,
has a unique solution , where , . Fur-
thermore, converges geometrically fast to ,
where .
The weighted sum and individual power constraints in (5) are

the monotone weighted norm constraint
and the norm constraint respectively. By The-
orem 3, the convergence of the iteration

(26)

to the unique fixed point is geometrically
fast, regardless of the initial point.
Remark 2: We remark that Algorithm 1 is a purely deter-

ministic algorithm, and, upon convergence, all the users will
transmit at the optimal power solution keeping the power fixed
regardless of the Rayleigh-fading random realization over time.
This means that no channel realization, e.g., the random vari-
able for all , is required in the update at each iteration
(what is needed is only the additive white Gaussian noise power
and the channel gains for all which is assumed to be
fairly static and does not vary at the Rayleigh fading timescale).
The update in (17) is obtained by applying the nonlinear Perron-
Frobenius theory to (15) of Lemma 1, which is then rewritten
using the notation given in (9). To compute in (17),
the th user measures separately the received interfering power

. The normalization at Step IV-A.0.a can
be made distributed using gossip algorithms to compute either

or [29].
In the following, we first derive useful bounds to given

in terms of the problem parameters of (10). Then, we solve (10)
analytically in the interference-limited special case without any
power constraint, and then extend the analysis to the general
case with power constraints.

A. Worst Outage Probability Bounds

We now develop lower and upper bounds for the worst
outage probability using a certainty-equivalent margin
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(CEM) problem9 as proxy. In particular, the CEM problem
replaces the statistical variation in the desired signal and the
interference of (3) by their respective mean values, i.e., replace
the random variables in (3) by the unit mean. This yields a
purely deterministic function of powers that can suitably be
interpreted as the SINR when there is no fading. As such, let us
consider the following problem:10

(27)
Now, the optimal value and solution of (27) can be obtained

analytically [21], [30], and this allows us to deduce the fol-
lowing bounds using the CEM analytical optimal value (also
in terms of the constant problem parameters of (13)).
Corollary 1: If , the worst outage

probability satisfies

(28)
(29)

and is the optimal value to (13).
Proof: Using the inequalities

for nonnegative (cf. [14]), a lower and upper
bound on can be given by ,
where is the optimal value of (27) and is analytically given
by , where is given by (29) [21].
The bounds on can thus be obtained, hence
proving Corollary 1.
Remark 3: Note that the lower bound in Corollary 1 is not

necessarily the tightest, but the bounds in Corollary 1 illustrate
that the CEM problem, i.e., the spectral information of a con-
cave self-mapping (cf. [21]) can pro-
vide useful quick bounds to the worst outage probability. Corol-
lary 1 reduces to a result in [14] in the interference-limited case.
Results similar to Corollary 1 can also be obtained for the case
when , but is omitted here.
Remark 4: A special case of (27) is when and when
in (27) is given by (6), which corresponds to a non-fading

max-min SINR problem for a macro-small cell network studied
in [6]. In particular, (6), written in a general form as for
some positive , can be associated with a weighted -1 mono-
tone norm ( ), and this permits the use of Theorem
3 (cf. [21], [30] and also Table I). Its analytical closed-form so-

9The certainty-equivalent margin (CEM) problem, in its simplified case
where for all and without power constraint, was first used in the
seminal work [14] to relate to the worst outage probability problem in the
interference-limited special case (i.e., assuming no additive white Gaussian
noise and no power constraint). We retain the CEM terminology here to be
consistent with [14].

10Interestingly, (27) can be viewed as a max-min SINR problem when there
is no fading, and this nonconvex problem can also be solved optimally by the
nonlinear Perron-Frobenius theory [21], [30]. In addition, see Remark 4 later.

11The geometric programming approach in [14] to this interference-limited
special case is to first rewrite (11) as a standard geometric program and then
solve it numerically using the interior point method [17].

Fig. 2. The worst outage probability versus the SINR threshold for a system
with 20 small cell users, where each user has a common SINR threshold . The
corresponding lower and upper bounds in Corollary 1 are also illustrated.

lution is given by (up to a scaling constant).
In addition, the fixed-point iteration given by

(30)

converges geometrically fast to the optimal solution of the
macro-small cell problem in [6], thereby resolving an open
problem in [6].
1) Example 1: Fig. 2 plots the worst outage probability and

the bounds for a system with 20 small cell users with individual
power constraints using parameters in [2], where each user has
a common SINR threshold . We make several observations.
First, the worst outage probability value and its bounds are con-
cave in . Second, the worst outage probability is very close to
its upper bound. In fact, our numerical observations indicate that
the optimal power is also close in value to the optimal solu-
tion of (27), i.e., , where is given by
(29) (cf. [21]). Further, for small , the upper and lower bounds
are very close to each other. This suggests that, in low-powered
networks, the CEM solution can give sufficiently good approx-
imation to the worst outage probability.

B. Interference-Limited Case
We now turn to solve (10) analytically for the interference-

limited case, i.e., .11 In this case, (20) is in addition a
primitive positive homogeneous function of degree one. Next,
we define the nonnegative matrix with the entries (that are
functions of ):

if
if . (31)

Note that is irreducible whenever is. Using (31), as
shown in [14], we can write the optimal value and optimal
solution of (13) in the interference-limited special case as

(32)

(33)
respectively. Thus, is a fixed point of

(34)
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Further, it is interesting to note the following result of .
Corollary 2: In the interference-limited case, the optimal

power of (13), , satisfies

(35)

Proof: Using (31), we can rewrite the outage constraints in
(13) in matrix form as

(36)

Next, we need the following result from [24].
Theorem 4 (Theorem 1.6, [24] (Subinvariance Theorem)):

Let be an irreducible nonnegative matrix, a positive
number, and , a vector satisfying . Then, (i)

; (ii) . Moreover, if and only if
.

Applying Theorem 4 to (36) (let , be
a feasible and ), we have for
any feasible and . But . Hence,

. This proves Corollary
2.
The following method was first proposed in [14] to compute

the optimal solution for the interference-limited case without
any power constraint:

(37)

The authors in [14] observed that this iteration converges nu-
merically to an acceptable accuracy with a fixed initial vector

(optimal solution of (27) without power
constraints and noise power). The issues of convergence and ex-
istence of a fixed point were however left open in [14].
Our Algorithm 1 in fact reduces to an update similar to (37)

when , and computes a solution that is equal to the fixed
point of (34) up to a scaling constant. The scaling factor in (37)
tends to with increasing . From Theorem 1,
this means that (37) converges from any initial point to the fixed
point in (34) geometrically fast, thus resolving the open issues
of convergence and fixed-point existence in [14].

C. Duality by Lagrange and Perron-Frobenius

We now show that the optimal value and optimal solu-
tion of (13) can be derived analytically from the spectral in-
formation of a specially constructed rank-one perturbation of

, where is given in (31). The following result is ob-
tained based on the nonlinear Perron-Frobenius theory in [19]
and the Friedland-Karlin inequality12 in [22], [23].
Lemma 2: The optimal solution of (13) satisfies

12The Friedland-Karlin inequalities are important fundamental results in non-
negative matrix theory related to the linear Perron-Frobenius theorem [22], [31].
A Friedland-Karlin inequality result (cf. Theorem 3.1 in [22]) states that for any
irreducible nonnegative matrix , for all strictly
positive , where and are the Perron-Frobenius right and left eigenvectors
of respectively. Equality holds if and only if for some positive .
Also, see [23] for its generalization and applications to inverse problems in non-
negative matrix theory.

(38)

(39)

where the optimal in (38) and (39) are both given by
(which is equal to up to a scaling

constant), and the optimal in (38) and (39) are both given
by the Hadamard product of and

.
Furthermore, is the dual of
with respect to .13
Proof: The proof outline of Lemma 2 is to first consider the

Lagrange duality of (14) and then apply the nonnegative matrix
theory result in [19], [22]. We first state the following lemma
that extends a result in [30]:
Lemma 3: Let be an irreducible nonnegative matrix, a

nonnegative vector and a norm on with a corresponding
dual norm . Then,

(40)

(41)

where the optimal in (40) and (41) are both given by
, and the optimal in (40) and (41) are both given by

.
Furthermore, is the dual of with respect

to .
First, we express the outage constraints in (14) using the ma-

trix and rewrite (14) as the following equivalent problem (let
):

(42)

Next, by augmenting only the outage constraints, the partial
Lagrangian function of (42) is given by

(43)

13A pair of vectors of is said to be a dual pair with respect to
if .
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Now, the Lagrange dual function of (42) is finite only if
for all feasible . Hence, the Lagrange dual

function is given by

(44)
where is the optimal solution to (42).
Now, we are ready to apply Lemma 3 to (44). In particular, we

can compute explicitly depending on the choice of . For the
case when , let ,

and in Lemma 3. For the case when
, let , and

, where
in Lemma 3.

Note that the optimal dual variable in (14) is equal to the
optimal in (38) and (39). Using Lemma 2, we can now give
analytically the optimal value and solution of (13) when

.
Corollary 3: The optimal value and solution of (13) are given

respectively by

(45)

and

(46)

(47)
Furthermore, for the (not necessarily unique) in (47).
Remark 5: In general, the optimal index in (47) differs from

(29). Our simulations show that both are empirically the same
when the CEM solution is close to , especially so in the low-
powered regime (cf. Fig. 2). Unlike (47), (29) can be computed
a priori from the problem parameters.
Table I summarizes the connection between the Perron-

Frobenius spectrum (of the respectively different con-
cave self-mappings) and the optimal value and solution of
the optimization problems under the CEM model and the
Rayleigh-fading model subject to the different power con-
straints (individual and total power constraints). The second
and third row of Table I tabulate the CEM case for individual
and total power constraints respectively. The fourth and fifth
row of Table I tabulate the worst outage probability case for
individual and total power constraints respectively. The sixth
row of Table I tabulates the results for the max-min SINR
problem with a weighted power constraint for small cell users
in a single macrocell.

V. TOTAL POWER MINIMIZATION AND ADAPTIVE OUTAGE
POWER CONTROL

In this section, we first study the total power minimization
problem subject to both outage specification and individual
power constraints, and address its feasibility conditions using
the results in the previous sections. An adaptive algorithm is
then proposed to minimize the total power consumption and

simultaneously guarantee a min-max fairness in terms of worst
outage probability.
The problem of minimizing the total power subject to given

outage specification under Rayleigh fading and individual
power constraints can be formulated as

(48)
where is a given outage probability bound for
the th user. Depending on the given parameters for all ,
(48) may or may not be feasible. This is unlike the worst outage
probability problem in (7), which is always feasible.
Next, using (20), (48) can be rewritten as

(49)
where we have

(50)
If (48) is feasible, it can be shown that all the outage con-

straints in (48) are tight at optimality [18]. We deduce the fea-
sibility condition of (48) from (49) in the following result.
Lemma 4: There is a unique optimal in (48) if and only if

(51)

Furthermore, if
, i.e., for all .

Proof: To show the feasibility condition, we examine the
condition under which there is a fixed point to

(52)
which can be rewritten in matrix form as

(53)

We first state the following result from [24].
Theorem 5: A necessary and sufficient condition for a solu-

tion to the equations to exist for any
is that . In this case there is only one so-

lution , which is strictly positive and given by .
Since is an irreducible nonnegative matrix,

it follows from Theorem 5 (letting ,
) that in (53) is unique and strictly

positive if and only if for all
. This is equivalent to stating

(54)

thus proving the first part.
To show the second part, we note that
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Thus, a sufficient condition that im-
plies that .

A. Feasibility Bounds
From (51) in Lemma 4, we see that verifying the feasi-

bility of (48) requires solving a Perron-Frobenius eigenvalue
maximization problem (a nonconvex problem). We next pro-
vide useful (tight) bounds on this nonconvex optimal value

in (51) that exploit the optimal value and
solution of the worst outage probability problem in Section IV.
Theorem 6: Let and be given in (32) and (33), respec-

tively. Then, we have

(55)

Further, equality is achieved in the lower and upper bounds
when 's are equal for all .

Proof: By applying the Friedland-Karlin inequalities in
[22], [23], the function can be bounded by

(56)

for any feasible . Now, from the lower
bound in (56), we have

(57)

where is given by (33). Using
given in (32), we thus establish (55). The condition under which
equalities in (56) are achieved follows from the application of
the Friedland-Karlin inequalities in [22], [23].
These bounds can be easily computed in the two-user case.14
1) Example 2: In the two-user case, we have

(58)

Combining Theorem 6 with Corollary 1, simplified bounds
in terms of the CEM solution (and more directly in terms of the
problem parameters) can be obtained:

14The Schur product of the Perron-Frobenius right and left eigenvectors of a
zero-diagonal 2 2 positive matrix equals , simplifying the compu-
tation in (55).

(59)

where is given by (29) and we have made use of the fact that

in the last inequality.
We now state the following algorithm proposed in [18].

Algorithm 2 (Total Power Minimization):

(60)

We now establish the necessary and sufficient condition under
which Algorithm 2 converges. This condition is also necessary
and sufficient for (48) to be feasible.
Corollary 4: Starting from any initial point , in

Algorithm 2 converges geometrically fast to the optimal so-
lution of (48) if and only if for all

.
Proof: The necessary and sufficient condition under which

(48) is feasible is given in Lemma 4. If (48) is feasible, the
convergence proof for Algorithm 2 can be found in [18]. Hence,
Corollary 4 is proved.

B. Adaptive Outage-Based Power Control

Heterogeneous wireless networks have to be adaptive in order
to be spectral and energy efficient. When the system is infea-
sible, resource allocation has to be adapted to resolve the infea-
sibility issue. By leveraging the results in the previous sections,
we propose the following Adaptive Outage-based Power Con-
trol (AOPC) algorithm for total energy minimization.

Algorithm 3 (Adaptive Outage-based Power Control):

1) Update the auxiliary variable :

(61)

2) Normalize :

(62)

3) Update the transmit power :

(63)

Corollary 5: Starting from any initial point and ,
in Algorithm 3 converges geometrically fast to the op-
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timal solution of (49), where the righthand side of the outage
constraints in (49) are replaced by

where and are given by (46) and (47) respectively, for all .
Proof: Theorem 1 proves the convergence of in Step

1 and 2 of Algorithm 3, and also
. From Corollary 4, con-

verges to a point that satisfies

which always satisfies . This proves
Corollary 5.
Remark 6: If for all

, then in Algorithm 3.
Remark 7: We remark that, whenever the total power min-

imization problem in (48) is infeasible, the output from Algo-
rithm 2 or AOPC only satisfies the power budget constraints,
e.g., in (5) and (6), but they do not satisfy the outage probability
specification constraint set in (48). We will numerically eval-
uate the performance of Algorithm 2 and AOPC in terms of the
total power consumption obtained by the algorithm output and
the number of users that do not satisfy the outage probability
specification constraint in Section VI.

C. Practical Implementation Issues and Extensions
In this section, we discuss practical implementation issues

related to Algorithm 1 and Algorithm AOPC. Algorithm 1
solves the worst outage probability problem in the general
setting. From an algorithm complexity viewpoint, this has
improved the state-of-art in [14], in which the algorithm de-
sign methodology is based on the interior point method to
solve convex optimization problems (particularly geometric
programs in convex form). From a practical perspective, Algo-
rithm 1 is more attractive than interior point methods in terms
of computational complexity and ease of decentralized imple-
mentation. This means that Algorithm 1 can handle large-scale
problem setting, which is a key feature of next-generation
heterogeneous wireless networks. It is interesting to study how
to obtain a fully-distributed Algorithm 1 and Algorithm AOPC,
i.e., without requiring message passing and normalization of
the iterates (in Step 2 of Algorithm 1 and Algorithm AOPC),
as future work.

VI. NUMERICAL EVALUATION
In this section, we evaluate the performance of Algorithms 1,

2 and AOPC. Fig. 3 illustrates the basic macro-small cell inter-
ference network model used in [2] for our simulations. A small
cell user is a link between the home access terminal and access
point (box of Fig. 3), and interference comes from the macrocell
base station/access terminals and other small cell users. We con-
sider a single macrocell base station with 50 access terminals
that consist of both macrocell and small cell users (closed-ac-
cessmodewith one user in each small cell). Each user communi-
cates with its respective base station over independent Rayleigh

Fig. 3. Amacro-small cell model. The parameter dB, dB and dB denote
path gain between MAP and HAP, between HAP and HAT and between HAP
and MAT respectively (cf. [2, Table 2] for values of ).

Fig. 4. Experiment 1. Convergence of power (in Watts and illustrated above
in logarithmic scale) from different initial points for five small cell users using
Algorithm 1.

fading channels, and experience interference between macro
and small cells. We use the dense-urban propagation parame-
ters in [2, Table 2]. Typical values of the channel coupling ( )
between the macro access point and the other network entities,
e.g., home access terminal and macro access terminal, ranges
from 100 dB to 140 dB, the channel coupling between the home
access point and the home access terminal ( ) or the coupling
between the home access point and the macro access terminal
( ) are typically 80 dB.

A. Experiment 1 (Convergence of Algorithm 1)
Fig. 4 shows the convergence of Algorithm 1 for five small

cell users from ten different initial points. To verify the opti-
mality correctness of the converged solution of Algorithm 1,
we have also solved (14) using an interior point method algo-
rithm for comparison purpose. Simulations show that conver-
gence happens in less than ten iterations even for thousands of
users and a large power range, e.g., 125 mW to 2 W (max-
imum output of UMTS/3G Power Class 4 to Class 1 mobile
phone, respectively).
From Theorem 3, Algorithm 1 can be viewed as a nonlinear

power method in linear algebra. It is well known that the con-
vergence rate of the power method is determined by the ratio of
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Fig. 5. Experiment 2. We plot the evolution of the total power consumption for two networks with 100 and 200 small cell users as we vary . A time slot on the
-axis of each graph refers to a power update iteration. Ten and fifty percent of the users are removed at time slot 30 and 70 respectively. The top left graph, top

right graph, bottom left graph and bottom right graph show the case for , , and respectively. The power consumption
difference between Algorithms 2 and AOPC, and the fraction of the number of users meeting the given threshold are in text form.

the second dominant eigenvalue to the Perron-Frobenius eigen-
value [24]. The method converges slowly if this ratio is close
to one. Now, this ratio for (cf. fourth and fifth row of
Table I) determines only the local convergence rate of Algo-
rithm 1 near the fixed point . Since the CEM solution is nu-
merically observed to give good approximation to (espe-
cially in the regime of low power and small , cf. Fig. 2), this
ratio is conceivably close to those computed using the CEM so-
lution (cf. second and third row of Table I), which on the other
hand determines a global convergence rate for the CEM case.
We empirically determine this ratio to be in the range of 0.2 –
0.4 using the parameters in [2]. The worst outage probability
bounds in Corollary 1 are thus useful for numerically analyzing
the overall convergence rate of Algorithm 1.

B. Experiment 2 (Comparison Between Algorithms 2 and
AOPC)
We next provide numerical examples to compare the total

power consumption using Algorithms 2 and AOPC to find a
power solution when (48) is infeasible. Fig. 5 shows the total

power evolution in a network with initially 100 and 200 small
cell users. Then, ten and fifty percent of the users are removed
at time slot 30 and 70 respectively. On each graph, the differ-
ence in total power and the fraction of users that satisfy their
outage probability threshold are recorded. As illustrated, in
comparison to AOPC, Algorithm 2 can lead to an increased
total power consumption of 50% or more in all cases at the ex-
pense of a smaller number of users meeting . On the other
hand, the infeasibility of (48) leads to the phenomenon that
some users who run Algorithm 2 are not able to achieve
and thus have to transmit at . By enforcing a worst outage
probability fairness across all users, AlgorithmAOPC computes
power that are typically smaller than , thus leading to a smaller
total power consumption.

C. Experiment 3 (Performance Comparison Between
Macrocell and Small Cell Users)
In this experiment, we evaluate the performance of Algo-

rithms 2 and AOPC in a macrocell network with a cell radius
of 1.4 km and with fifteen randomly located small cell users.
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Fig. 6. Performance comparison of the three scenarios in terms of the average
percentage of macrocell users meeting the outage constraints over 5000
simulations.

Each user in the small cell and macrocell network communi-
cates with its base station over channels with pass loss of

and ,
where is the distance in kilometers, respectively. Each user has
a maximum power constraint of 500 mW (27 dBm), and each
user is served one independent data stream from its base sta-
tion. The noise power spectral density is set to .
We assign an outage probability specification of 2% and SINR
thresholds of 5 dB to all the macrocell and small cell users.
We analyze the performance of three scenarios, namely Sce-

nario 1: when all the small cell basestations are switched off,
i.e., all the access terminals are macrocell users and use Al-
gorithm 2, Scenario 2: when all the small cell basestations are
switched on and all the users use Algorithm 2 and Scenario 3:
all macrocell users use Algorithm 2 and all small cell users use
Algorithm AOPC15. The normalization of at Step 2 of Al-
gorithm AOPC can be performed by the small cell users in a dis-
tributed manner assuming that there is perfect exchange of coor-
dination between the small cell base stations and the macrocel-
lular network. The three scenarios are run over 5000 numerical
simulations with the fifteen small cell users randomly placed in
the cell at each simulation run.
We compare the average percentage of macrocell users that

meet the given outage constraints among the three scenarios in
Fig. 6. Fig. 7 compares the total power consumption for the
three scenarios. By comparing Scenarios 1 and 2 as shown in
Figs. 6 and 7, the deployment of small cell improves the per-
centage of users meeting the given outage constraints, but the
total power consumption may not be appreciable. By comparing
the performance of Scenarios 2 and 3, we observe that, by al-
lowing small cell users to have a min-max outage probability

15By letting macrocell users and small cell users to run Algorithm 2 and Al-
gorithm AOPC respectively essentially places a higher priority on macrocell
users as compared to small cell users since the outage probability of macrocell
users should not deviate from given specification whereas that of the small cell
users can be higher than the given specification.

Fig. 7. Performance comparison of the three scenarios in terms of the average
total power consumption of all the users over 5000 simulations.

fairness, the power consumption difference between Algorithm
2 and AOPC can be as much as 50%. This saving of energy con-
sumption comes at the expense of a larger number of small cell
users not meeting their outage constraints as compared to that
of Algorithm 2.

VII. CONCLUSION
We studied the worst outage probability problem that have

power constraints in a multiuser Rayleigh-faded network using
tools from the nonlinear Perron-Frobenius theory and nonnega-
tive matrix theory. The optimal value and solution can be char-
acterized by the spectral property of matrices induced by a par-
ticular positive mapping. We then proposed a geometrically fast
convergent algorithm, free of parameter tuning, to solve it op-
timally in a distributed manner. As a by-product, we solved
an open problem of convergence for a previously proposed al-
gorithm in the interference-limited case. We also established a
tight relationship between the worst outage probability problem
and its certainty-equivalent margin counterpart, and utilized the
connection to find useful bounds and to evaluate the fairness
of resource allocation. We then addressed a total power mini-
mization problem with outage specification constraints and its
feasibility condition. We proposed a dynamic algorithm that
adapted its outage probability specification to minimize the total
power in a heterogeneous wireless network. Numerical results
showed that the dynamic algorithm can be effective for de-
ploying closed-access small cells in a macrocell in terms of total
power consumption and the percentage of users satisfying their
outage probability specification.
As future work, it is interesting to generalize our analysis and

algorithm design methodologies based on the nonlinear Perron-
Frobenius theory to solve the worst outage probability problem
for other practical fading channel models such as the Ricean,
Weibull and Nakagami distributions. It is also interesting to
solve this problem for more general nonlinear power constraints
or to extend it for other wireless utility objectives (see, e.g., re-
cent efforts in [32] on extending the nonlinear Perron-Frobe-
nius theory for this purpose). For the total power minimization
problem, the infeasibility issue can possibly be tackled using
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a joint admission control and power control scheme, i.e., re-
moving some constraints in (48) adaptively (see, e.g., [33]). In
other words, the AOPC algorithm can also be combined with
admission control protocols to overcome the barrier of infeasi-
bility in a system.
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