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let � be a primitive element of a �nite �eld GF (2n) and C = fr1; � � � ; rsg; 0 < ri <2n � 1, be the null spectrum set of a Read-Solomon code. If we want to transmita message m = (m1; � � � ; ms); mi 2 GF (2n), over a noisy channel, then �rst weform a polynomial g(x) = Psi=0mixri and compute cj = g(�j). The codeword isc = (c0; c1; � � � ; c2n�2). Now we operate the trace function from GF (2n) to GF (2)to this codeword, i.e., we doai = Tr(ci) = Tr(g(�i)); i = 0; 1; � � � ; 2n � 2: (1)Then the resulting sequence A = faig is a binary sequence where period of A isa factor of 2n � 1. All periodic binary sequences can be reduced to this model.Note that if g(x) = x, then A is an m-sequence of period 2n � 1. So, a lot ofresearch has been looking for a clever way to choose the function g(x) such thatthe resulting sequence has a large linear span, a long period and good statisticalproperties. Examples include �lter function generators [22, 26, 41, 24, 25, 3, 27,44, 5, 47, 12, 46, 28, 19, 17, 18, 38, 32, 33], combinatorial function generators [22,48, 43, 52, 8], and clock controlled generators and shrinking generators[1, 13, 30, 6].Unfortunately, the trace function destroys the structure of Reed-Solomon code. It isdi�cult to get sequences satisfying cryptographic requirements from this approach.If one can �x the linear span, then there is no proper method to determine thestatistical properties of the resulting sequences. Examples include many conjecturedsequences with two-level autocorrelation or lower level cross correlation [39, 40, 49].If one can �x the parameters for good statistical properties, then all known sequenceshave low linear spans in the sense of that ratio of linear span over period is much lessthan 1/2. (See the references for �lter generators and [21].) There is only one knownexception: the so called de Bruijn sequences or modi�ed de Bruijn sequences, whichhave large linear spans and satisfy n�tuple uniform distribution property [2, 4, 15].But all algorithms for constructing de Bruijn sequences require a huge memoryspace. It is almost infeasible to construct a de Bruijn sequence with period 2n whenn > 30 [14, 9, 7, 10].In this paper, we introduce a new method for generating binary sequences. Wewill replace a Reed-Solomon codeword in (1) by the points on an elliptic curveover GF (2n). We will discuss the distribution of zeros and ones, the period andthe linear span of the resulting binary sequences, which will be called elliptic curvepseudorandom sequences, EC-sequences for short. This research has uncovered aclass of EC-sequences which are suitable for use as a key generator in stream ciphercryptosystems. For such a EC-sequence, its period is equal to 2n+1, the bias forunbalance is b2n=2c and a lower bound and an upper bound of linear span are 2nand 2n+1 � 2, respectively. Note that a de Bruijn sequence of period 2n+1 has2n + n + 1 and 2n+1 � 1 as its lower bound and upper bound on linear span. Incomparison to de Bruijn sequences, we can construct EC-sequences algebraicallyand can generate EC-sequences e�ciently in software or hardware by means usedfor implementation of elliptic curve public-key cryptosystems [36, 23, 51].In the rest of this section, we will introduce some notation, concepts and prelim-inary results that will be used throughout this paper.2



Let q = 2n, Fq be a �nite �eld GF (q) and Fq[x] be the ring of polynomials overFq .A. Trace Function from Fq to F2Tr(x) = x + x2 + � � �+ x2n�1 ; x 2 Fq:Property: Tr(x2k) = Tr(x) for any positive integer k.For x 2 GF (2n), this can be written asx = x0�+ x1�2 + � � �+ xn�1�2n�1 ; xi 2 f0; 1gwhere f�; �2; � � � ; �2n�1g is a normal basis of GF (2n). In this representation, Tr(x)can be computed as followsTr(x) = x0 + x1 + � � �+ xn�1:B. Periods, Characteristic Polynomials and Minimal Polynomials of Se-quencesLet A = faig be a binary sequence. If v is a positive integer such thatai = av+i; i = 0; 1; � � � ; (2)then v is called a length of A. We also write A = (a0; a1; � � � ; av�1), denote v =length(A). Note the index is reduced modulo v. If p is the smallest positive integersatisfying (2), then we say p is the period of A, denoted as per(A). It is easy to seethat pjv.Let f(x) = xl + cl�1xl�1 + � � �+ c1x + c0 2 F2[x]. If f(x) satis�es the followingrecursive relation:al+k = l�1Xi=0 ci+kai+k = cl�1al�1+k + � � �+ c1a1+k + c0ak; k = 0; 1; � � �then we say f(x) is a characteristic polynomial of A over F2.The left shift operator L is de�ned asL(A) = a1; a2; � � � ;For any i > 0, Li(A) = ai; ai+1; � � � ;We denote L0(A) = A for convention. If f(x) is a characteristic polynomial of Aover F2, then f(L)A = lXi=0 ciLi(A) = 03



where 0 represents a sequence consisting of all zeros. (Note 0 represents a number0 or a sequence consisting of all zeros depending on the context.) LetG(A) = ff(x) 2 F2[x]jf(L)A = 0g:The polynomial in G(A) with the smallest degree, say m(x), is called the minimalpolynomial of A over F2. Note that G(A) is a principle ideal of F2[x] and G(A) =<m(x) >. So, if f(x) is a characteristic polynomial of A over F2, then f(x) =m(x)h(x) where h(x) 2 F2[x]. The linear span of A over F2, denoted as LS(S), isde�ned as LS(A) = deg(m(x)).C. Interleaved SequencesWe can depict the elements of the sequence A into a t by s array as follows,0BBBBBB@ a0 at � � � a(s�1)ta1 at+1 � � � a(s�1)t+1a2 at+2 � � � a(s�1)t+2...at�1 at+t�1 � � � a(s�1)t+t�1 1CCCCCCALet Ai denote the ith row of the above array, then we also write sequence A =(A0; A1; � � � ; At�1)T where T is a transpose of a vector. In reference [20], A is calledan interleaved sequence if Ai, 0 � i � t � 1, has the same minimal polynomial overF2. Here we generalize this concept to any structures of Ais. We still refer to A asa (t; s) interleaved sequence. By using the same approach as used in [20], we canhave the following proposition.Proposition 1 Let v be a length of A and A be a (t; s) interleaved sequence wherev = ts. Let mi(x) 2 F2[x] be the minimal polynomial of Ai, 1 � i � t and m(x) 2F2[x] be the minimal polynomial of A, thenm(x)jgcdfm0(xt); m1(xt); � � � ; mt�1(xt)gD. Elliptic Curves over F2nAn elliptic curve E over GF (2n) can be written into the following standard form[35] y2 + y = x3 + c4x+ c6; ci 2 GF (2n) (3)if E is supersingular, ory2 + xy = x3 + c2x2 + c6; ci 2 GF (2n) (4)4



if E is non-supersingular. The points P = (x; y), x; y 2 GF (2n), that satisfy thisequation, together with a \point at in�nity" denoted O, form an Abelian group(E;+; O) whose identity element is O.Let P = (x1; y1) and Q = (x2; y2) be two di�erent points in E and both P andQ are not equal to the in�nity point.Addition Law for E supersingular: For 2P = P + P = (x3; y3),x3 = x41 + c24 (5)y3 = (x21 + c4)(x1 + x3) + y1 + 1 (6)For P +Q = (x3; y3), if x1 = x2, then P + Q = O . Otherwise,x3 = �2 + x1 + x2y3 = �(x1 + x3) + y1 + 1where � = (y1 + y2)=(x1 + x2).Addition Law for E non-supersingular: For 2P = P + P = (x3; y3),x3 = �2 + � + c2y3 = (x1 + x3)� + x3 + y1where � = x1+y1=x1. For P +Q = (x3; y3), if x1 = x2, then P +Q = O . Otherwise,x3 = �2 + �+ x1 + x2 + c2y3 = �(x1 + x3) + x3 + y1where � = (y1 + y2)=(x1 + x2).Remark 1 For a detailed treatment of sequence analysis and an introduction toelliptic curves, the reader is referred to [14, 31, 37, 50, 35, 29].2 Constructions of Pseudorandom Sequences from El-liptic Curves over FqIn this section, we give three types of constructions of binary sequences from anelliptic curve over Fq.Let E be an elliptic curve over Fq . Let P = (x1; y1) be a point of E with orderv+1j#E(Fq). Let � = (P; 2P; � � � ; vP ) where iP = (xi; yi), 1 � i � v. Note that v iseven if E is supersingular and v may be odd or even if E is non-supersingular. So, wecan write v = 2l if E is supersingular and v = 2l+e; e 2 F2 if E is non-supersingular.Construction I 5



Let ai = Tr(xi) and bi = Tr(yi); i = 1; 2; � � � ; v; (7)S0 = (a1; � � � ; av) and S1 = (b1; � � � ; bv): (8)Let S = (S0; S1)T be a (2; v) interleaved sequence, i.e., the elements of S = fsigi�1are given by s2i�1 = ai and s2i = bi; i = 1; � � � ; v (9)where length(S) = 2v. For a convenient discussion in the following sections, wewrite S starting from 1, we denote 0 as 2v when the index is computed modulo 2v.We call S a binary elliptic curve pseudorandom sequence generated by E(Fq) of typeI, an EC-sequence for short.Let A = (a1; a2; � � � ; al) and B = (b1; b2; � � � ; bl). If U = (u1; u2; � � � ; ut), then wedenote  U= (ut; ut�1; � � � ; u1), i.e., U written backwards.Theorem 1 With the above notation. Let v + 1j#E(Fq), and let S = (S0; S1)T bea EC-sequence generated by E(Fq) of length 2v whose elements are given by (9).(i) E is supersingular. Then S =  A  AB  B +1 ! (10)(ii) E is non-supersingular. ThenS =  A 0  AB 0  �A +  �B ! if v = 2l+ 1 (11)and S =  A  AB  �A +  �B ! if v = 2l (12)ProofCase 1 E is supersingular. Note that y and y + 1 are two roots of (3) in Fq underthe condition Tr(x3 + c4x+ c6) = 0. Since the order of P is v + 1, theniP + (2l+ 1� i)P = O =) xl+i = xl�i�1 =) yl+1+i = yl�i + 1; i = 1; � � � ; l:Thus we have S0 = (A; A) and S1 = (B; B +1).Case 2. E is non-supersingular. If v is odd, theniP + (2l+ 2� i)P = O =) (l+ 1)P = (0; 0); xl+1+i = xl�i+1; i = 1; � � � ; l:Note that x� and x�+ x are two roots of ( 4) in Fq under the condition Tr(�) = 0where � = x+ a6x�1 + a3 and � is a root of the quadratic equation z2 + z = �. So,xl+1+i = xl�i+1 =) yl+1+i = yl�i+1 + xl�i+1; i = 1; � � � ; l:6



Thus S0 = (A; 0; A) and S1 = (B; 0; �A +  �B ). If v is even, then (0; 0) =2 �, thenS0 = (A; A) and S1 = (B; �A +  �B ). 2Construction IILet f�; �2; � � � ; �2n�1g be a normal basis of GF (2n) over F2. Then its dual basisis also a normal basis of GF (2n) over F2 [31]. Let it be f�; �2; � � � ; �2n�1g. For eachpoint iP = (xi; yi) 2 �, the coordinates xi and yi can be represented asxi = n�1Xj=0 xij�2j ; i = 0; 1; � � � ; xij 2 F2yi = n�1Xj=0 yij�2j ; i = 0; 1; � � � ; yij 2 F2and the coe�cients xi;j and yi;j are determined byxi;j = Tr(�2jxi); 0 � j � n� 1; i = 0; 1; � � � ;yi;j = Tr(�2jyi); 0 � j � n � 1; i = 0; 1; � � � ;For a �xed j: 0 � j � n � 1, letS0 = (x1;j; x2;j; � � � ; xv;j) and S1 = (y1;j; y2;j ; � � � ; yv;j) (13)An EC-sequence S of type II, written into a form of a (2; v) interleaved sequence,will be de�ned as S = (S0; S1)T . Theorem 1 can be generalized to this type ofEC-sequences.Remark 2 The row sequences S0 and S1 of the EC-sequence constructed by (9) arejust the sum of n component sequences fxi;jgvi=1 ,0 � j � n � 1 and the sum of ncomponent sequences fyi;jgvi=1, 0 � j � n� 1, respectively.Theorem 2 Let S = (S0; S1)T be an EC-sequence de�ned by (13). LetAj = (x1;j; � � � ; xl;j) and Bj = (y1;j ; � � � ; yl;j):(i) E is supersingular. ThenS = 0@ A0  A0B0  B0 +1 1A if j = 0 or S = 0@ Aj  AjBj  Bj 1A if j > 0 (14)(ii) E is non-supersingular. In the following formula, 4 represents zero element ifv = 2l + 1 and no element occurs here if v = 2l.S = 0@ Aj 4  AjBj 4  �Aj +  �Bj 1A (15)7



Proof Note that the proof of Theorem 1 only depends on the property of the pointson the curve. Let � = Pn�1j=0 cj�2j ; cj 2 F2 and � = Pn�1j=0 dj�2j ; dj 2 F2 are twoelements in Fq . Then � = � if and only if cj = dj for each j : 0 � j � n � 1.Together with this result, the results follow by following the same proof as we didfor Theorem 1. 2Construction IIILet S = 0BBBBBBBBBBBBBB@ x1;0 x2;0 � � � xv;0x1;1 x2;1 � � � xv;1... ... ...x1;n�1 x2;n�1 � � � xv;n�1y1;0 y2;0 � � � yv;0y1;1 y2;1 � � � yv;1... ... ...y1;n�1 y2;n�1 � � � yv;n�1 1CCCCCCCCCCCCCCA (16)which is a (2n; v) interleaved sequence where the �rst n row sequences are fxi;jgvi=1,0 � j � n� 1 and the last n row sequences are fyi;jgvi=1, 0 � j � n� 1. S is calledan EC-sequence of type III. As a consequence of Theorem 2, we have the followingtheorem.Theorem 3 With the same S de�ned by (16).(i) E is supersingular. Then S = 0BBBBBBBBBBBBBBBBBB@ A0  A0A1  A1... ...An�1  An�1B0  B0 +1B1  B1... ...Bn�1  Bn�1
1CCCCCCCCCCCCCCCCCCA (17)(ii) E is non-supersingular. In the following formula, 4 represents zero element if8



v = 2l + 1 and no element occurs here if v = 2l.S = 0BBBBBBBBBBBBBBBBBB@ A0 4  A0A1 4  A1... ... ...An�1 4  An�1B0 4  A0 +  B0B1 4  A1 +  B1� � � ... ...Bn�1 4  An�1 +  Bn�1
1CCCCCCCCCCCCCCCCCCA (18)Remark 3 Construction III is the same method as used for constructing interleavedsequences in [20] and for mapping Reed-Solomon codes over GF (2n) to binary codesin [31].Starting with the next section, we restrict ourselves to discussing EC-sequencesof type I. We will refer to these simply as EC-sequences. We will investigate therandomness properties of the other two types of EC-sequences in a separate paper.3 Statistical Properties of Supersingular EC-SequencesIn this section, we discuss the statistical properties of EC-sequences generated bysupersingular curves over F2n where n is odd. LetA = (a0; � � � ; ap�1), w(A) representthe Hamming weight of sequence A. i.e.,w(A) = jfi j ai = 1; 0 � i < pgj:For convenience, we generalize the notation of Hamming weight of binary sequencesto functions from Fq to F2. Let g(x) be a function from Fq to F2, the weight of g isde�ned as w(g) = fx 2 Fqjg(x) = 1g. From [35], we have three di�erent isomorphicclasses for supersingular curves over Fq (q = 2n) for n odd. For two isomorphiccurves E(Fq) and T (Fq), we denote as E �= T .Fact 1 ([33]) Let n = 2m+ 1 and q = 2n.(i) Let E1 = fE(Fq)jE(Fq) �= y2 + y = x3g. Then jE1j = 22n�1 and for anyE(Fq) 2 E1, #E(Fq) = q + 1.(ii) Let E2 = fE(Fq)jE(Fq) �= y2 + y = x3 + xg. Then jE1j = 22n�2 and 8E(Fq) 2E2, #E(Fq) = ( 2n + 2m+1 + 1 if n � 1 or 7 mod 82n � 2m+1 + 1 if n � 3 or 5 mod 89



(iii) Let E3 = fE(Fq)jE(Fq) �= y2 + y = x3 + x + 1g. Then jE1j = 22n�2 and8E(Fq) 2 E3,#E(Fq) = ( 2n � 2m+1 + 1 if n � 1 or 7 mod 82n + 2m+1 + 1 if n � 3 or 5 mod 8From Fact 1, we have the following lemma.Lemma 1 Let q = 2n and n = 2m + 1. Let N = jfx 2 F2n jTr(x3 + x) = 0gj and� =Px2Fq(�1)Tr(x3+x). ThenN = ( 2n�1 + 2m if n � 1 or 7 mod 82n�1 � 2m if n � 3 or 5 mod 8and � = ( 2m+1 if n � 1 or 7 mod 8�2m+1 if n � 3 or 5 mod 8Proof Since #E2(Fq) = 2N + 1, according to Fact 1, the �rst result follows. Notethat 2n �N = 2n�1 ��=2 =) � = 2N � 2n:So, the second result follows from the values of N . 2Let�1 = fd 2 Fqj1 + d+ x2 + xn�1 = 0 ^ Tr(dx+ x3) = 0 for some x 2 Fq g(19)�2 = fd 2 Fqj1 + d+ x2 + xn�1 = 0 ^ Tr(dx+ x3) = 1 for some x 2 Fq g:(20)Theorem 4 Let n be odd. Let S =  A  AB  B +1 ! be an EC-sequence generated bya supersingular elliptic curve E(F2n) where length(S) = 2v and v = #E(F2n)� 1.Then w(S0) = 2w(A), w(S1) = v=2 and w(S) = 2w(A) + v=2, where w(A) isdetermined as follows. Let c = (�1)Tr(c6).(i) E 2 E1 =) Tr(c4) = 0. Thenw(A) = ( 2n�2 ��=4 () 1 + c4 2 �12n�2 + �=4 () 1 + c4 2 �2 (21)(ii) E 2 E2 =) Tr(c4) = 1. Thenw(A) = ( 2n�2 + c�=4 () c4 2 �12n�2 � c�=4 () c4 2 �2 (22)10



(iii) E 2 E3 =) Tr(c4) = 1. Thenw(A) = ( 2n�2 � c�=4 () c4 2 �12n�2 + c�=4 () c4 2 �2 (23)The proof of Theorem 4 uses the result on Gold pair sequences in [11]. Here welist this result with a slight modi�cation.Lemma 2 (Gold, 1968) With the same �, �i; i = 1; 2 as the above. Let�(d) = Xx2Fq(�1)Tr(x3+dx+e); d; e 2 Fqand let c = (�1)Tr(e). Thenw(Tr(x3+ dx+ e)) = 2n�1 � �(d)=2:and the following two formulae are equivalent.�(d) = 8><>: 0 () Tr(d) = 0c� () Tr(d) = 1 ^ d 2 �1�c� () Tr(d) = 1 ^ d 2 �2Or equivalently,w(Tr(x3+ dx+ e)) = 8><>: 2n�1 () Tr(d) = 02n�1 + c�=2 () Tr(d) = 1 ^ d 2 �12n�1 � c�=2 () Tr(d) = 1 ^ d 2 �2 2Proof of Theorem 4 Since length(S) = 2v, from Theorem 1, we have w(S0) =2w(A) and w(S1) = v=2. So, w(S) = 2w(A) + v=2. Let g(x) = Tr(x3 + c4x + c6),c4; c6 2 Fq. Let ni;j = jfx 2 FqjTr(x) = i ^ g(x) = jgj; i; j 2 F2:Then w(A) = n10. For the rest of part of the proof, we will show how to computen10. Let f(x) = Tr(x) + g(x). Thenw(f(x)) = w(Tr(x)) + w(g)� 2w(Tr(x)g): (24)Hence w(f(x)) = n10 + n01 = 2n�1 + w(g)� 2n11: (25)Let �(c4) =Px2Fq(�1)f(x). Recalling that c = (�1)Tr(c6). Then �(c4) = �(1+ c4).According to Lemma 2�(c4) = 8><>: 0 () Tr(c4) = 1c� () Tr(c4) = 0 ^ 1 + c4 2 �1�c� () Tr(c4) = 0 ^ 1 + c4 2 �2 (26)We also have �(c4) = n00 + n11 � (n10 + n01): (27)11



(i) E 2 E1 =) Tr(c4) = 0. According to Lemma 2 =) w(g) = 2n�1 =) n00 = n11and n10 = n01. Therefore n10 = 2n�1 � n11. Substituting it into (27), we getn10 = 2n�2 � �(c4)=4: (28)Substituting (26) into (28), the identity (21) follows.(ii) E 2 E2 =) Tr(c4) = 1. According to Lemma 2,w(f) = 2n�1: (29)Substituting (30) into (25), we haven11 = w(g)=2: (30)From w(Tr(x)) = 2n�1, we haven10 + n11 = 2n�1 =) n10 = 2n�1 � n11: (31)Again using Lemma 2, we havew(g) = ( 2n�1 � c�=2() c4 2 �12n�1 + c�=2() c4 2 �2 (32)Substituting (30), then (31), we get (22).(iii) E 2 E3 =) Tr(c4) = 1. According to the isomorphism between E andy2 + y = x3 + x+ 1, then n10 under the condition Tr(c6) = 0(or1) is equal ton10 for E 2 E2 under the condition Tr(c6) = 1(or0). So, (23) follows. 2Remark 4 According to Theorem 2 and substituting the values of � from Lemma1, we have the following distribution for 0's and 1's for the EC-sequence S generatedby the isomorphic representative elements.Table 1 n � 1 or 7 mod 8E(Fq) length(S) w(A) w(S)y2 + y = x3 2n+1 2n�2 � 2m�1 2n � 2my2 + y = x3 + x 2n+1 + 2m+2 2n�2 + 2m�1 2n + 2m+1y2 + y = x3 + x + 1 2n+1 � 2m+2 2n�2 � 2m�1 2n � 2m+1Table 2 n � 3 or 5 mod 8E(Fq) length(S) w(A) w(S)y2 + y = x3 2n+1 2n�2 + 2m�1 2n + 2my2 + y = x3 + x 2n+1 � 2m+2 2n�2 � 2m�1 2n � 2m+1y2 + y = x3 + x + 1 2n+1 + 2m+2 2n�2 + 2m�1 2n + 2m+112



4 Periods of Supersingular EC-SequencesIn this section, we discussion the periods of EC-sequences generated by supersingularcurves.Lemma 3 Let S = (S0; S1)T be a EC-sequence generated by a supersingular ellipticcurve E(Fq) where S0 = (a1; a2; � � � ; av) and v = #E(Fq)� 1 = 2l . Thena2i = ai + Tr(c4); i = 1; 2; � � � ; l:Proof Recall that ai = Tr(xi). From formula (5) in Section 1,x2i = x4i + c24; i = 1; � � � ; l: (33)=) a2i = Tr(x2i) = Tr(x4i + c24) = Tr(xi) + Tr(c4) = ai + Tr(c4). 2De�nition 1 Let U = (u1; u2; � � � ; u2k) be a binary sequence of length 2k. Then Uis called a coset �xed palindrome sequence of length 2k, CFP-sequence of length 2kfor short, if it satis�es the following two conditions.(i) Palindrome Condition (P)U = (U0;  U0) where U0 = (u1; u2; � � � ; uk).(ii) Coset Fixed Condition (CF)u2i = ui + c, for each 1 � i � k where c is a constant in F2.Lemma 4 Let U be a CF sequence of length 2d and 0 < w(U) < 2d. Then per(U) =2d.Proof We claim that per(U) 6= 2. Otherwise, from the coset �xed conditionu2i = ui, 1 � i � d, we get w(U) = 0 or w(U) = 2d, which is a contradiction withthe given condition. Therefore we can write per(U) = t where 2 < t and tj2d. Ift < 2d, let 2d = ts. Then ut+i = ui; i = 1; 2; � � � : (34)Since U is CFP sequence, from condition (i) in De�nition 1, we haveud�i = ud+1+i; 0 � i � d� 1: (35)From (34) and (35), we get ul�i = ul+1+i; 0 � i � l � 1 (36)where l = t=2 if t is even andul�i = ul+i; 1 � i � l� 1 (37)13



l = (t + 1)=2 if t is odd. From condition 2 in De�nition 1,u2i = ui + c; 1 � i � t: (38)In the following, we will prove that there exists k : 0 � k < l such that(ut+2k+1; ut+2k+2) = (1; 0): (39)If t is odd, since 0 < w(U) < 2d, from P condition of U , it is easy to see that.Assume that t is oven. If c = 1 in CF condition, then u1 = u2 + 1. So, thereat least exists one k = 0 such that (39) is true. If c = 0 in CF condition and(ut+2k+1; ut+2k+2) = (1; 1) or (0; 0) for all k : 0 � k < l, then for any 1 � i � t wecan construct the following sequence:j0 = i;j1 = (j0 + �1)=2j2 = (j1 + �2)=2...jr = (jr�1 + �r)=2...where �k = ( 0 if jk�1 even1 if jk�1 oddKeep doing this construction, till we reach js = 2 for some s. From the CF conditionand the assumption, we have uk = u2 = u1 for all k 2 fj0; j1; � � � ; jsg =) ui = u1for any 1 � i � t =) w(U) = 0 if u1 = 0 and w(U) = 2d if u1 = 1 which is acontratiction with 0 < w(U) < 2d. So, (39) is true.Case 1 t = 2l. Applying the above identities,ul+k+1 (38)= u2l+2k+2 + c = ut+2k+2 + c: (40)On the other hand,ul+k+1 (36)= ul�k (38)= u2l�2k + c = ut�2k + c (35)= ut+2k+1 + c (41)(40) and (41) =) ut+2k+1 = ut+2k+2 which contradicts with (39). Thus per(U) = 2d.Case 2 t = 2l � 1. ul+k+1 (38)= u2l+2k+2 + c = ut+2k+1 + c: (42)ul+k+1 (37)= ul�k�1 (38)= u2l�2k�2 + c = ut�2k�1 + c (35)= ut+2k+2 + c (43)(42) and (43) =) ut+2k+1 = ut+2k+2 which contradicts with (39). Thus per(U) = 2d.214



Lemma 5 Let S = (S0; S1)T be a EC-sequence of length 2v, generated by a su-persingular elliptic curve E(Fq), where vj(#E(Fq) � 1) and 0 < w(S0) < v. Thenper(S0) = v.Proof From Theorem 1, we have S0 = (A; A), where length(A) = v=2. Togetherwith Lemma 3, S0 is a CFP sequence of length v. Since 0 < w(S0) < v, applyingLemma 4, we get per(S0) = v. 2Lemma 6 Let S = (S0; S1)T be a EC-sequence of length 2v, generated by an ellipticcurve E(Fq), where vj(#E(Fq)� 1). Then per(S) is an even number.Proof Assume that per(S) = 2t+ 1. Then we have s1 = s2t+2 = bt+1 and bv�t+1 =s2v�2(t+1) = s1 =) bv�t+1 = bt+1. From Theorem 1, bv�t+1 = bt+1 + 1 which is acontradiction. So, per(S) is even. 2Theorem 5 Let S = (S0; S1)T be a EC-sequence of length 2v, generated by a su-persingular elliptic curve E(Fq), where vj(#E(Fq) � 1) and 0 < w(S0) < v. Thenper(S) = 2v.Proof Since length(S) = 2v, then per(S)j2v. According to Lemma 6, per(S) = 2twhere tjv. Assume that t < v. Thenat+j = s2(t+j)�1 = s2t+2j�1 = s2j�1 = aj ; j = 1; 2; � � � :Thus, t is a length of S0 =) per(S0)jt . According to Lemma 5, per(S0) = v. Thust = per(S0) = v =) per(S) = 2v. 2Corollary 1 Let n be odd. Let S = (S0; S1)T be a EC-sequence of length 2v,generated by a supersingular elliptic curve E(Fq), where vj(#E(Fq) � 1). Thenper(S) = 2v.Proof From Theorem 4, we have 0 < w(S0) < v. Applying Theorem 5, the resultfollows. 25 Linear Span of Supersingular EC-SequencesIn this section, we derive a lower bound and an upper bound for the EC-sequencesgenerated by supersingular elliptic curves in the isomorphic class E1. For conve-nience in using Proposition 1, from now on we will rewrite S, S0 and S1 withthe starting index at 0, i.e., S = (s0; s1; � � � ; s2n+1�1), S0 = (a0; a1; � � � ; a2n�1) andS1 = (b0; b1; � � � ; b2n�1) (v = 2n in this case). So,ai = s2i; i = 0; 1; � � � ;bi = s2i+1; i = 0; 1; � � � :15



Lemma 7 Let U = (u0; � � � ; u2k�1) where per(U) = 2k and w(U) � 0 mod 2. Then,the linear span of U , LS(U), is bounded as follows:2k�1 < LS(U) � 2k � 1Proof Let h(x) be the minimal polynomial of U over F2. Let f(x) = x2k +1, thenf(L)(S) = 0. Thus h(x)jf(x). Sincef(x) = x2k + 1 = (x+ 1)2k ;we have h(x) = (x+ 1)t where t is in the range of 1 � t � 2k. Since w(U) � 0 mod2, let p = 2k, we have up+j = p�1Xi=0 aj+i; j = 0; 1; � � � :=) g(x) = Pp�1i=0 xi is a characteristic polynomial of U over F2. So h(x)jg(x) =)LS(U) � 2k � 1.On the other hand, if r < 2k�1, then h(x)j(x+ 1)2k�1 = x2k�1 + 1 =) x2k�1 + 1is a characteristic polynomial of U over F2 =)(L2k�1 + 1)U = u2k�1+i + ui = 0; i = 0; 1; � � �=) per(U)j2k�1. This contradicts with per(U) = 2k. So, r = LS(U) > 2k�1. 2Theorem 6 Let n be odd. Let S be an EC-sequence of length 2v, generated froma supersingular elliptic curve E(Fq) which is isomorphic to y2 + y = x3, wherev = #E(Fq)� 1. Then 2n � LS(S) � 2(2n � 1):Proof From Corollary 1, we have per(S) = 2n+1. According to Theorem 4, w(S) �0 mod 2. So, S satis�es the conditions of Lemma 7. Applying Lemma 7,2n < LS(S)< 2n+1 � 1:Now, we only need to prove that LS(S) � 2(2n � 1). Let m(x) and m0(x) bethe minimal polynomials of S and S0 over F2, respectively, where S = (S0; S1)T .According to Proposition 1, we havem(x)jm0(x2) =) deg(m(x)) � 2deg(m0(x)):Since S0 also satis�es the condition of Lemma 7, we get deg(m0(x)) = LS(S0) �2n � 1. So, LS(S) = deg(m(x))� 2deg(m0(x)) � 2(2n � 1): 216



6 DiscussionNow we have constructed a class of EC-sequences, generated by supersingular ellipticcurves in E1, which has large linear span and small bias unbalance. Precisely, letn = 2m+ 1, and letG(E1) = fS = fsigjS generated by E(F2n) 2 E1and per(S) = 2vgwhere v = #E(F2n)� 1. We also denote G(E1) as an elliptic curve pseudorandomsequence generator of type I (ECPSG I). According to Theorems 1 and Theorems4-6, we have the following data for S 2 G(E1).� Structure:S =  A  AB  B +1 ! where A = (a1; � � � ; a2n�1) and B = (b1; � � � ; b2n�1)where ai = Tr(xi), bi = Tr(yi) and � = fP; 2P; � � � ; 2nPg where iP = (xi; yi)and P is a point on an elliptic curve E(F2n) : y2+y = x3+c4x+c6 isomorphicto y2 + y = x3, which has order #E(F2n) = 2n + 1.� Period: per((A; A)) = 2n and per(S) = 2n+1.� Distribution of 0's and 1's: w(A) = 2n�2 � 2m�1 and w(S) = 2n � 2m. Thebias of unbalance is equal to �2m for S.� Linear span: 2n�1 < LS(A) � 2n � 1 and 2n < LS(S) � 2(2n � 1).In the following table we compare the period, frequency range of 1 occurrence,unbalance range, and linear span (LS) of ECPSG I with other sequence generators,such as �lter function generators (FFG), combinatorial function generators (CFG),and clock controlled generators (CCG).We also include data for de Bruijn sequences.Since implementation of ECPSG relies only on implementation of elliptic curves overGF (2n), we can borrow software/hardware from elliptic curve public-key cryptosys-tems to implement ECPSG. We conclude that ECPSG I is suitable for use as a keygenerator in a stream cipher cryptosystem.Table 3 Comparison of ECPSG I with Other Sequence GeneratorsType of Period Frequency Range Unbalance LinearGenerator of 1 occurrence Range SpanFFG 2n � 1 [1; 2n�1] [1; 2n�1] unclearCFG � 2n � 1 [1; 2n�1] [1; 2n�1] unclearCCG (2n � 1)2 2n�1(2n � 1) 2n � 1 n(2n � 1)de Bruijn 2n+1 2n 0 � 2n + n + 1� 2n+1 � 1ECPSG I 2n+1 2n � 2(n�1)=2 �2(n�1)=2 � 2n� 2n+1 � 217
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