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Abstract In this paper, we introduce a new approach to the genera-
tion of binary sequences by applying trace functions to elliptic curves
over GF(2™). We call these sequences elliptic curve pseudorandom se-
quences (EC-sequence). We will show their periods, distribution of zeros
and ones, and linear spans. This research has uncovered a class of EC-
sequences, generated by super-singular curves, which has half period as
a lower bound for their linear spans. In comparison to de Bruijn se-
quences with the same parameters, EC-sequences can be constructed
algebraically and can be generated efficiently in software or hardware
by means used for implementation of elliptic curve public-key cryptosys-
tems.
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1 Introduction and Preliminaries

In 1969, Massey[34] found that if a binary sequence of length p has linear span n,
then the entire sequence can be reconstructed from 2n consecutive known bits by
using the Berlekamp-Massey algorithm. Since then, stream cipher researchers have
been working on how to construct binary sequences with large linear spans. It is
a known result that any periodic binary sequence can be decomposed as a sum of
linear feedback shift register (LFSR) sequences, which is a resulting sequence by
operating a trace function on a Reed-Solomon codeword [42, 45]. More precisely,



let & be a primitive element of a finite field GF(2") and C = {ry,---,7:},0 < r; <
2™ — 1, be the null spectrum set of a Read-Solomon code. If we want to transmit
a message m = (mq,---,my),m; € GF(2"), over a noisy channel, then first we
form a polynomial g(z) = Y¢_,m;z" and compute ¢; = g(a?). The codeword is
¢ = (co, €1, +,c2m_2). Now we operate the trace function from GF(2") to GF(2)
to this codeword, i.e., we do

a; = Tr(c;) = Tr(g(a’)),i=0,1,---,2" — 2. (1)

Then the resulting sequence A = {a;} is a binary sequence where period of A is
a factor of 2™ — 1. All periodic binary sequences can be reduced to this model.
Note that if g(z) = 2, then A is an m-sequence of period 2" — 1. So, a lot of
research has been looking for a clever way to choose the function g(z) such that
the resulting sequence has a large linear span, a long period and good statistical
properties. Examples include filter function generators [22, 26, 41, 24, 25, 3, 27,
44, 5, 47, 12, 46, 28, 19, 17, 18, 38, 32, 33], combinatorial function generators [22,
48, 43, 52, 8], and clock controlled generators and shrinking generators[1, 13, 30, 6].
Unfortunately, the trace function destroys the structure of Reed-Solomon code. It is
difficult to get sequences satisfying cryptographic requirements from this approach.
If one can fix the linear span, then there is no proper method to determine the
statistical properties of the resulting sequences. Examples include many conjectured
sequences with two-level autocorrelation or lower level cross correlation [39, 40, 49].
If one can fix the parameters for good statistical properties, then all known sequences
have low linear spans in the sense of that ratio of linear span over period is much less
than 1/2. (See the references for filter generators and [21].) There is only one known
exception: the so called de Bruijn sequences or modified de Bruijn sequences, which
have large linear spans and satisfy n—tuple uniform distribution property [2, 4, 15].
But all algorithms for constructing de Bruijn sequences require a huge memory
space. It is almost infeasible to construct a de Bruijn sequence with period 2™ when
n > 30 [14, 9, 7, 10].

In this paper, we introduce a new method for generating binary sequences. We
will replace a Reed-Solomon codeword in (1) by the points on an elliptic curve
over GF'(2™). We will discuss the distribution of zeros and ones, the period and
the linear span of the resulting binary sequences, which will be called elliptic curve
pseudorandom sequences, KC-sequences for short. This research has uncovered a
class of EC-sequences which are suitable for use as a key generator in stream cipher
cryptosystems. For such a EC-sequence, its period is equal to 2"t the bias for
unbalance is L2”/ %] and a lower bound and an upper bound of linear span are 2"
and 2"t! — 2. respectively. Note that a de Bruijn sequence of period 2"*! has
2" + n+ 1 and 2"t — 1 as its lower bound and upper bound on linear span. In
comparison to de Bruijn sequences, we can construct EC-sequences algebraically
and can generate EC-sequences efficiently in software or hardware by means used
for implementation of elliptic curve public-key cryptosystems [36, 23, 51].

In the rest of this section, we will introduce some notation, concepts and prelim-
inary results that will be used throughout this paper.



Let ¢ = 2", F}, be a finite field GF(q) and Fj[z] be the ring of polynomials over
F,.

A. Trace Function from F; to F,

Tr(z)=z+2’+---+2* ,z€F,

Property: Tr(z2") = Tr(z) for any positive integer k.

For € GF(2"), this can be written as

z=zoa+z0?+ -+ J:n_lazn_l,azi € {0,1}

where {a, a?, - -,a2n_1} is a normal basis of GF(2"). In this representation, T'r(z)
can be computed as follows

Tr(z) =20+ 21+ + Tp_1.

B. Periods, Characteristic Polynomials and Minimal Polynomials of Se-
quences

Let A = {a;} be a binary sequence. If v is a positive integer such that
ai:av-l—iai:()a]-a"'a (2)

then v is called a length of A. We also write A = (ag, a1, -+, ay—1), denote v =
length(A). Note the index is reduced modulo v. If p is the smallest positive integer
satisfying (2), then we say p is the period of A, denoted as per(A). It is easy to see
that p|v.
Let f(z) = el 412 e+ oo € Folz]. If f(z) satisfies the following
recursive relation:
-1
= Zci+kai+k =c_1aq_14k + -+ c1a14k + coar, k=0,1,---
=0

then we say f(z) is a characteristic polynomial of A over Fj.
The left shift operator L is defined as

L(A) = ay,0qz,- -,

For any ¢ > 0, .
Ll(A) = Q3 Aj41,"

We denote L°(A) = A for convention. If f(z) is a characteristic polynomial of A
over F5, then

l
f(L)A = Z LY (A) =0



where 0 represents a sequence consisting of all zeros. (Note 0 represents a number
0 or a sequence consisting of all zeros depending on the context.) Let

G(A4) = {f(z) € Fy[z][f(L)A = 0}.

The polynomial in G(A) with the smallest degree, say m(z), is called the minimal
polynomial of A over F;. Note that G(A) is a principle ideal of F3[z] and G(A) =<
m(z) >. So, if f(z) is a characteristic polynomial of A over Fs, then f(z) =
m(z)h(z) where h(z) € Fy[z]. The linear span of A over F,, denoted as LS(S), is
defined as LS(A) = deg(m(z)).

C. Interleaved Sequences

We can depict the elements of the sequence A into a t by s array as follows,

ag ay T Qle—1)t

a at+1  G(s—1)t41
az At+2 0 G(s—1)42
At—1 Gtyt—1 " As—1)t4-1

Let A; denote the ith row of the above array, then we also write sequence A =
(Ao, Ay, -+, A;_1)T where T is a transpose of a vector. In reference [20], A is called
an interleaved sequence if A;, 0 < i <t — 1, has the same minimal polynomial over
F5. Here we generalize this concept to any structures of A;s. We still refer to A4 as
a (¢, s) interleaved sequence. By using the same approach as used in [20], we can
have the following proposition.

Proposition 1 Let v be a length of A and A be a (t, s) interleaved sequence where
v =ts. Let m;(z) € Fs[z] be the minimal polynomial of A;, 1 < i <t and m(z) €
Fy[z] be the minimal polynomial of A, then

m(z)|ged{mo(a’), my ("), -, my_1(2")}

D. Elliptic Curves over Fsn

An elliptic curve E over GF(2") can be written into the following standard form
[35]
y> +y =2+ cyz +c,c; € GF(27) (3)

if F is supersingular, or

y? + 2y = 2° + cye® + o, ¢; € GF(2") (4)



if F is non-supersingular. The points P = (z,y), ¢,y € GF(2"), that satisfy this
equation, together with a “point at infinity” denoted O, form an Abelian group
(E, 4+, O) whose identity element is O.

Let P = (21,y1) and Q = (22, y2) be two different points in E and both P and
@ are not equal to the infinity point.

Addition Law for E supersingular: For 2P = P 4+ P = (z3,ys),

T3 = J:‘ll—l—c;‘:1 (5)

ys = (ef+ea)(zr @)ty +1 (6)
For P+ Q = (#3,ys3), if 21 = @4, then P+ Q = O . Otherwise,

2z = XNzt e,
ys = AMeitzs)+yi+1

where A = (y1 + y2) /(21 + z2).
Addition Law for E non-supersingular: For 2P = P + P = (23, y3),

3 = 8 +d6+c
ys = (z1+23)d+23+y

where § = 21 +y;1 /1. For P4+Q = (23,y3), if 21 = 22, then P4+Q = O . Otherwise,

23 = M4 Atz tzytoe
ys = Meit+zs)t+es+yn

where A = (y1 + y2) /(21 + z2).

Remark 1 For a detailed treatment of sequence analysis and an introduction to
elliptic curves, the reader is referred to [14, 81, 87, 50, 85, 29].

2 Constructions of Pseudorandom Sequences from El-
liptic Curves over F,

In this section, we give three types of constructions of binary sequences from an
elliptic curve over F,.

Let E be an elliptic curve over F,. Let P = (21,y:1) be a point of E with order
v+1|#E(F,). LetI' = (P,2P,---,vP) where iP = (z;,¥;), 1 <7 < v. Note that v is
even if F is supersingular and v may be odd or even if F is non-supersingular. So, we
can write v = 2l if F' is supersingular and v = 2l+e¢, e € F5 if F is non-supersingular.

Construction I



Let
a; = Tr(z;) and b; = Tr(y;),i=1,2, -, v, (7)
Soz(al,---,av) and Slz(bl,"',bv). (8)
Let S = (S0, S1)T be a (2,v) interleaved sequence, i.e., the elements of S = {si}ti>1

are given by
S9;_1=a; and s9; = b;, 1 =1, v 9)

where length(S) = 2v. For a convenient discussion in the following sections, we
write S starting from 1, we denote 0 as 2v when the index is computed modulo 2v.
We call S a binary elliptic curve pseudorandom sequence generated by E(Fy) of type
I, an EC-sequence for short.

Let A = (a1,as2,---,a;) and B = (b1, be,---,b;). If U = (ug,us, -, u), then we

F
denote U= (us, ut—1,- -+, u1), i.e., U written backwards.

Theorem 1 With the above notation. Let v + 1|#E(F,), and let S = (So, S1)T be
a EC-sequence generated by E(Fy) of length 2v whose elements are given by (9).

S:(A A ) (10)

F
B B+1

(i) E is supersingular. Then

(ii) E is non-supersingular. Then
s-( 4

B

S = A

B

Case 1 E is supersingular. Note that y and y 4+ 1 are two roots of (3) in Fj, under
the condition Tr(:z:3 + caz + ¢g) = 0. Since the order of P is v + 1, then

) fo=2+1 (11)

;,;TCBT

H
+ B

o O

and

H) if v =2 (12)
+ B

;,;TCBT

Proof

iP+QR+1-9OP=0= 2j4i=@j—i-1 = Yip1+i =Y—i + 1,i=1,---, L
Thus we have Sy = (4, Z) and S1 = (B,E +1).
Case 2. F is non-supersingular. If v is odd, then

iP+2l+2-49)P=0= (I+1)P=(0,0), 1414i = T1—it1,5=1,---, 1.

Note that za and za + 2 are two roots of ( 4) in Fj, under the condition T'r(8) =0
where 8 = z + agz~! + a3 and a is a root of the quadratic equation 2% + z = 3. So,

Tip14i = Tl—ip1 = Yi+1+i = Yi—it1 T T—iq1,0=1,---, 1.



—

Thus Sy = (A,O,Z) and S; = (B,O,Z + B). If v is even, then (0,0) ¢ T, then

So=(A,4) and S, = (B, 4 + B).
O

Construction II

Let {a,a?, - -,a2n_1} be a normal basis of GF(2") over F,. Then its dual basis
is also a normal basis of GF(2") over F, [31]. Let it be {n,n?% - .,n¥" '}, For each
point ¢P = (2;,y;) € I', the coordinates z; and y; can be represented as

n—1 .
— 29 .
z, = Zzzzija ,1=0,1,---,2;; € Fy
i=0
n—1 .
20 .
¥ = Zyl]a aZZOala"'ayij€F2
i=0

and the coefficients z; ; and y; ; are determined by
r;; = Tr(nzj:vi),o <j<n-1,i=0,1, -,
vij = Tr(n”9:),0<j<n—1i=0,1,--,
For a fixed j: 0 <j<n-—1,let
So = (21,4, 22,5, +» @oj) and S1= (Y15, Y2, Yo.) (13)

An EC-sequence S of type II, written into a form of a (2,v) interleaved sequence,
will be defined as S = (Sp,S;)7. Theorem 1 can be generalized to this type of
EC-sequences.

Remark 2 The row sequences Sy and S1 of the EC-sequence constructed by (9) are
just the sum of n component sequences {z; ;}?_, ,0 < j < n —1 and the sum of n
component sequences {y; j}i—_y, 0 < j < n — 1, respectively.

Theorem 2 Let S = (So, S1)T be an EC-sequence defined by (13). Let
Aj = (21, eg) and By = (91, 0,5)-
(i) E is supersingular. Then

— —
_ [ Ao 4o ifi=oors=| % 4 ) ijs0 (14
By By +1 Bj Bj

(ii) FE is non-supersingular. In the following formula, /\ represents zero element if
v=2l+1 and no element occurs here if v = 2l.

F
s=( 4 & ﬁ - (15)



Proof Note that the proof of Theorem 1 only depends on the property of the points
on the curve. Let 8 = Zg‘:—(} c;a¥ ¢; € Fy and ¢ = Z?:_(} d;a® | d; € Fy are two
elements in F;. Then # = ( if and only if ¢; = d; foreach j : 0 < j < n — 1.
Together with this result, the results follow by following the same proof as we did
for Theorem 1. a

Construction III

Let
T1,.0 2.0 IR 27X
T11 T2 A TR |
S — Lin—1 L2pn-1 " ZLTyn—1 (16)
Y10 Y20 Yo
Y11 Y21 o Yo
Yin—1 Y2n—-1 " Yun-1

which is a (2n, v) interleaved sequence where the first n row sequences are {z; ;}7_,
0 < j <n—1 and the last n row sequences are {y; ;};_;, 0 < j <n—1. S is called
an F(C-sequence of type IIl. As a consequence of Theorem 2, we have the following
theorem.

Theorem 3 With the same S defined by (16).

(i) E is supersingular. Then

F

Ao Ao
F

A A

Ani A

S — n—1 <_n—l (17)

By By +1
F

B, B,
e

Bn—l Bn—l

(ii) FE is non-supersingular. In the following formula, /\ represents zero element if



v=2l+1 and no element occurs here if v = 2l.

F
Ag A A
F
Ay A A
F
An—l A An—l
— +—
BO A A0—|—BO
— +—
Bl A A1—|—Bl

. . . .

Remark 3 Construction I is the same method as used for constructing interleaved
sequences in [20] and for mapping Reed-Solomon codes over GF(2"™) to binary codes

in [31].

Starting with the next section, we restrict ourselves to discussing EC-sequences
of type 1. We will refer to these simply as EFC-sequences. We will investigate the
randomness properties of the other two types of EC-sequences in a separate paper.

3 Statistical Properties of Supersingular EC-Sequences

In this section, we discuss the statistical properties of EC-sequences generated by
supersingular curves over Fy» where nis odd. Let A = (ag, - - -, ap—1), w(A) represent
the Hamming weight of sequence A. i.e.,

w(A)=Hila;=1,0<i<p}.

For convenience, we generalize the notation of Hamming weight of binary sequences
to functions from F, to F5. Let g(z) be a function from F, to Fy, the weight of g is
defined as w(g) = {z € Fy|g(z) = 1}. From [35], we have three different isomorphic
classes for supersingular curves over F, (¢ = 2") for n odd. For two isomorphic
curves E(F,) and T(F,), we denote as £ = T'.

Fact 1 (/33]) Let n =2m+ 1 and ¢ = 2".

(i) Let E; = {E(F)|E(F) = y* +y = 23}. Then |E1| = 227! and for any
E(F,) € Er, #E(Fy)) = ¢+ 1.

(ii) Let Eo = {E(F)|E(F) 2 y*>+y==2%+z}. Then |Ei|=2""% and VE(F,) €
E2;
J2r+ 2t 41 ifn=1o0r 7mod 8
#E(Fy) _{ 2n —2mtl 11 ifn= 8 or 5 mod 8



(iii) Let B3 = {E(F)|E(Fy) 2 y> +y = «®> + ¢ +1}. Then |Ei| = 2°*7? and
VE(FQ) € E3;

on—2mtl L1 ifn

1 or 7 mod 8

8 or 5 mod 8

From Fact 1, we have the following lemma.

Lemmal Letq=2" andn =2m+ 1. Let N = [{z € Fyu|Tr(z® + z) = 0}| and
A=Y ,cp (~1)Tr@+2). Then

N — gn—l 4 om ifn=1o0r7mod8
Tl 2t —-2™ dfn=8or5modS8

and
A om+l ifn=1or7mod8
] 2™t ifn= 8 or 5mod §

Proof Since #E3(F,) = 2N + 1, according to Fact 1, the first result follows. Note
that
2" —N=2""1_A/2—= A=2N -2

So, the second result follows from the values of N.

Let

I, = {deFli+d+2>+2" =0ATr(dz+2%) =0 for some z € Fy }(19)
M, = {de Fll+d+e+e" " = 0ATr(de +2%) = 1 for some & € F, }(20)

-
A A

pi
B B-+1
a supersingular elliptic curve E(Fan) where length(S) = 2v and v = #E(Fyn) — 1.
Then w(So) = 2w(4), w(S1) = v/2 and w(S) = 2w(A4) + v/2, where w(A) is

determined as follows. Let ¢ = (—1)T7(¢s),

Theorem 4 Let n be odd. Let S = ( ) be an EC-sequence generated by

(i) E€ By = Tr(cy) =0. Then

_J 2o A/A =1t el
w(A4) = { 22 L A/4 =14yl (21)
(il) F € E; = Tr(cs) =1. Then
i eA/d = cqe I
w(A4) = { 22 —cA/4 = cycly (22)

10



(iii) F € E3 = Tr(cy) =1. Then

n—2 _
w(A):{2 cA/4 = cyelly

22 L cA/4 = cycly (23)

The proof of Theorem 4 uses the result on Gold pair sequences in [11]. Here we
list this result with a slight modification.

Lemma 2 (Gold, 1968) With the same A, II;, = 1,2 as the above. Let

O'(d) — Z (_1)Tr(m3+dm+e),d,e € Fq
z€F,

and let ¢ = (=1)T7(¢), Then
w(Tr(e® 4 de +e)) = 2" — a(d)/2.

and the following two formulae are equivalent.

0 <~ Tr(d)=0

od)=¢ cA <= Tr(d)=1Adell

—cA <= Tr(d)=1Adell,

Or equivalently,
on—1 <~ Tr(d)=0

w(Tr(:L'3 +dz+te)) = on—1 4 A2 = Tr(d)=1ndell;
21— cA/2 <= Tr(d)=1Ade1l,

Proof of Theorem 4 Since length(S) = 2v, from Theorem 1, we have w(Sy) =
2w(A) and w(S1) = v/2. So, w(S) = 2w(A) +v/2. Let g(z) = Tr(z> + caz + cg),
c4,c6 € Fy. Let
nij =z € Fo|Tr(e) =ing(2) = j}l, i, € Fy.

Then w(A) = nig. For the rest of part of the proof, we will show how to compute
nig. Let f(z) = Tr(z) + g(z). Then

w(f(z)) = w(Tr(z)) + wlg) - 2w(Tr(z)g)- (24)
Hence

w(f(z)) = nio +no1 = 2" + w(g) — 2n1;. (25)
Let A(cq) = Zmqu(—l)f(m). Recalling that ¢ = (—=1)77(%). Then A(cq) = o(1 4+ c4).

According to Lemma 2

0 < Tr(ca) =1
Ale))=¢ cA < Tr(ca)=0A14cs eIl (26)
—cA < Tr(cs) =0AN14c4ely
We also have
A(cs) = ngo + n11 — (10 + no1). (27)

11



(i) E € E; = Tr(cq4) = 0. According to Lemma 2 — w(g) = 2”71 = ngo = n11
and nyg = no;. Therefore nig = 2”71 — ny;. Substituting it into (27), we get

190 = 2n—2 — A(C4)/4
Substituting (26) into (28), the identity (21) follows.

(ii) F € E; = Tr(cs4) = 1. According to Lemma 2,

w(f) =2""1.
Substituting (30) into (25), we have
ni1 = w(g)/2.

From w(Tr(z)) = 2!, we have

n—1 n—1
ny+ni =2 = njg = 2 — n11.

Again using Lemma 2, we have

w(g) = {

Substituting (30), then (31), we get (22).

2l —cA/2 = cy € 1N}
2L L cA/2 = ¢y € 11,

(28)

(ili) F € B35 = Tr(cs) = 1. According to the isomorphism between E and
y> +y =23+ z + 1, then nyo under the condition T'r(cg) = 0(orl) is equal to

nyo for E € E5 under the condition T'r(cg) = 1(or0). So, (23) follows.

a

Remark 4 According to Theorem 2 and substituting the values of A from Lemma
1, we have the following distribution for 0’s and 1’s for the EC-sequence S generated
by the isomorphic representative elements.

Tablel n=1or 7 mod 8

| B(F,) | length(S) [ w(4) | w(S) |
y2 + y = 233 2n—|—1 2n—2 _ 2m—1 on _ gm
y2 _I_ y = 233 _I_ z 2n—|—1 _I_ 2m—|—2 2n—2 _I_ 2m—1 on _I_ 2m—|—1
y2 + y = 233 + o+ 1 2n—|—1 _ 2m—|—2 2n—2 _ 2m—1 on _ 2m—|—1

Table 2 n=3 or 5 mod §
H E(F,) ‘ length(S) ‘ w(A) ‘ w(S) H
y2 + y = 233 2n—|—1 2n—2 + 2m—1 on + gm
y2 + y = 233 + 2n—|—1 _ 2m—|—2 2n—2 _ 2m—1 on _ 2m—|—1
y2 _I_ y = 233 _I_ z _I_ 1 2n—|—1 _I_ 2m—|—2 2n—2 _I_ 2m—1 on _I_ 2m—|—1

12



4 Periods of Supersingular EC-Sequences

In this section, we discussion the periods of EC-sequences generated by supersingular
curves.

Lemma 3 Let S = (So, S1)T be a EC-sequence generated by a supersingular elliptic
curve E(F,) where Sy = (a1,as, -+, a,) and v=#E(F,) —1 =2l . Then

az; = a; + T'r(ca),i=1,2,---,1.
Proof Recall that a; = T'r(z;). From formula (5) in Section 1,
2o =af +cai=1,---,1 (33)

= ag; = Tr(ee) = Tr(z} + c§) = Tr(2i) + Tr(cs) = a; + Tr(ca).

Definition 1 Let U = (uy, us, - - -, us) be a binary sequence of length 2k. Then U
is called a coset fized palindrome sequence of length 2k, CFP-sequence of length 2k
for short, if it satisfies the following two conditions.

(i) Palindrome Condition (P)
F
U = (Uy, Upy) where Uy = (ug, ua, -+, ug).
(ii) Coset Fized Condition (CF)

u9; = u; + ¢, for each 1 < ¢ < k where ¢ is a constant in Fs.

Lemma 4 Let U be a CF sequence of length 2d and 0 < w(U) < 2d. Then per(U) =
2d.

Proof We claim that per(U) # 2. Otherwise, from the coset fixed condition
ug; = u;, 1 < i < d, we get w(U) =0 or w(U) = 2d, which is a contradiction with
the given condition. Therefore we can write per(U) = ¢ where 2 < ¢ and ¢|2d. If

t < 2d, let 2d = ts. Then
ut+iZUi,i:1,2,"'. (34)

Since U is CFP sequence, from condition (i) in Definition 1, we have
Ug—; = Ugr14i,0< i< d—1. (35)
From (34) and (35), we get
w; = uy144,0 <3<l —1 (36)
where [ = ¢/2 if ¢ is even and

w_; =y, 1 <i<l—1 (37)

13



I=(t+1)/2iftis odd. From condition 2 in Definition 1,
Uy = u; +c¢, 1 <7< ¢ (38)
In the following, we will prove that there exists k : 0 < k < [ such that

(wetokt1, Uet2kt2) = (1,0). (39)

If t is odd, since 0 < w(U) < 2d, from P condition of U, it is easy to see that.
Assume that t is oven. If ¢ = 1 in CF condition, then u; = us + 1. So, there
at least exists one k = 0 such that (39) is true. If ¢ = 0 in CF condition and
(Utg2k41, Utt2r42) = (1,1) or (0,0) for all k: 0 < k < I, then for any 1 < ¢ < ¢ we
can construct the following sequence:

Jo = %
J1 (jo+61)/2
j2 = (j1+62)/2

jr — (jr—1‘|’51')/2

where
e — 0 if jp_1 even
=11 ifjr_q odd

Keep doing this construction, till we reach j, = 2 for some s. From the CF condition
and the assumption, we have up = us = uy for all k € {jo,71, ", Js} =— w; = wy
forany 1 < i<t = w(U) =0if uy = 0 and w(U) = 2d if u; = 1 which is a
contratiction with 0 < w(U) < 2d. So, (39) is true.

Case 1 t = 2l. Applying the above identities,

(38)
Ulpht1l = U2lj2kt2 T €= Ugpopi2 +C. (40)

On the other hand,

36 38 35
U4 fet1 () Uik g Usgj ok + €=U 2t ¢ () Uty2k4+1 T C (41)

(40) and (41) = ust2k+1 = Ust+2k+2 Which contradicts with (39). Thus per(U) = 2d.

Case 2 t=2] —1.

38
U4 fet1 g Usjt2kt2 + € = Uprokt1 + C. (42)
37 38 35
U4 fet1 0 Ul f—1 g Ul 2k—2+C=Up 2k 1+ C () Uty2k42 + C (43)
(42) and (43) = Ust2k+1 = Utt2k+2 Which contradicts with (39). Thus per(U) = 2d.
a
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Lemma 5 Let S = (S, S1)T be a EC-sequence of length 2v, generated by a su-
persingular elliptic curve E(F,), where v|(#E(F,) — 1) and 0 < w(Sy) < v. Then
per(Sp) = v.

Proof From Theorem 1, we have Sy = (4, Z), where length(A) = v/2. Together
with Lemma 3, Sy is a CFP sequence of length v. Since 0 < w(Sp) < v, applying
Lemma 4, we get per(Sy) = v.

a

Lemma 6 Let S = (So, Sl)T be a EC-sequence of length 2v, generated by an elliptic
curve E(F,), where v|(#E(F,) —1). Then per(S) is an even number.

Proof Assume that per(S) = 2t + 1. Then we have 51 = sot42 = bey1 and by_t41 =
Spu_2(t41) = S1 —> by—t+1 = by11. From Theorem 1, b,_;11 = byy1 + 1 which is a
contradiction. So, per(S) is even.

O

Theorem 5 Let S = (S, S1)T be a EC-sequence of length 2v, generated by a su-
persingular elliptic curve E(F,), where v|(#E(F,) — 1) and 0 < w(Sy) < v. Then
per(S) = 2v.

Proof Since length(S) = 2v, then per(S)|2v. According to Lemma 6, per(S) = 2¢
where t|v. Assume that ¢ < v. Then

Attj = Sa(t+5)—1 = S2t42j-1 = 825-1 = aj,j=1,2,---.

Thus, ¢ is a length of Sy = per(Sp)|t . According to Lemma 5, per(Sy) = v. Thus
t = per(So) = v = per(S) = 2v.
a

Corollary 1 Let n be odd. Let S = (So,S51)T be a EC-sequence of length 2w,
generated by a supersingular elliptic curve E(Fy), where v|(#E(F,;) — 1). Then
per(S) = 2v.

Proof From Theorem 4, we have 0 < w(Sp) < v. Applying Theorem 5, the result
follows. a

5 Linear Span of Supersingular EC-Sequences

In this section, we derive a lower bound and an upper bound for the EC-sequences
generated by supersingular elliptic curves in the isomorphic class E;. For conve-
nience in using Proposition 1, from now on we will rewrite S, Sy and S; with
the starting index at 0, i.e., S = (so, $1, "+, Sant1_1), So = (a0, a1, -, a2n_1) and
S1 = (bg, b1, - +,ban_1) (v =2" in this case). So,

a; = 521',2:0’1’"',

bi — 32i+1ai:0a1a""

15



Lemma 7 Let U = (ug, -, ust_1) where per(U) = 2% and w(U) = 0 mod 2. Then,
the linear span of U, LS(U), is bounded as follows:

k-l < LS(U) <2k -1

Proof Let h(z) be the minimal polynomial of U over Fy. Let f(z) = 22" +1, then
F(L)(S)=0. Thus h(z)|f(z). Since

f)=e® +1= (e +1)%,

we have h(z) = (2 + 1)t where ¢ is in the range of 1 < ¢t < 2*. Since w(U) = 0 mod
2, let p = 2*, we have

p—1
Up+j — Zaj-l-iaj =0,1,---.
=0

— g(z) = Y.27) ' is a characteristic polynomial of U over Fy. So h(z)|g(z) =
LS(U) <2k -1,
On the other hand, if r < 2871, then A(z)|(z + 1) =2 + 1= 227" +1

is a characteristic polynomial of U over Fy —

2k—1

(L —|—1)U:u2k_1_|_i—|—ui:0,2':0,1,---

= per(U)|2%~1. This contradicts with per(U) = 2*. So, r = LS(U) > 2F1.
a

Theorem 6 Let n be odd. Let S be an EC-sequence of length 2v, generated from
a supersingular elliptic curve E(F,) which is isomorphic to y> +y = a3, where
v=H#E(F,) — 1. Then

2" < LS(S) <2(2" —1).

Proof From Corollary 1, we have per(S) = 2"*!. According to Theorem 4, w(S) =
0 mod 2. So, S satisfies the conditions of Lemma 7. Applying Lemma 7,

2" < LS(S) < 2"t —1.

Now, we only need to prove that LS(S) < 2(2" — 1). Let m(z) and mo(z) be
the minimal polynomials of S and Sy over F,, respectively, where S = (Sp, Sl)T.
According to Proposition 1, we have

m(@)lmo(2?) = deg(m(z)) < 2deg(mo(=)).

Since Sy also satisfies the condition of Lemma 7, we get deg(mo(z)) = LS(Sp) <
2™ — 1. So,
LS(S) = deg(m(z)) < 2deg(mo(z)) < 2(2" —1).

16



6 Discussion

Now we have constructed a class of EC-sequences, generated by supersingular elliptic
curves in F;, which has large linear span and small bias unbalance. Precisely, let
n=2m+ 1, and let

G(By) = {S = {s;}|S generated by E(Fy) € Eyand per(S) = 2v}

where v = #E(Fyn) — 1. We also denote G(E4) as an elliptic curve pseudorandom
sequence generator of type I (ECPSG I). According to Theorems 1 and Theorems
4-6, we have the following data for S € G(E}).

e Structure:

F

S = A é where A= (a1, -, ayn—1) and B = (by,- -, byn—1)
B B+1

where a; = Tr(z;), b; = Tr(y;) and T' = {P,2P,---,2"P} where iP = (2;,y;)

and P is a point on an elliptic curve E(Fn) : y? +y = 2>+ c4z + cg isomorphic

to y? + y = 2, which has order #FE(Fyn) = 2" + 1.

e Period: per((4, Z)) = 2" and per(S) = 2"+

e Distribution of 0’s and 1’s: w(4) = 2724 2™~! and w(S) = 2" £ 2™. The
bias of unbalance is equal to £2™ for S.

e Linear span: 27! < LS(A) < 2" — 1 and 2" < LS(S) < 2(2" — 1).

In the following table we compare the period, frequency range of 1 occurrence,
unbalance range, and linear span (LS) of ECPSG I with other sequence generators,
such as filter function generators (FFG), combinatorial function generators (CFG),
and clock controlled generators (CCG). We also include data for de Bruijn sequences.
Since implementation of ECPSG relies only on implementation of elliptic curves over
GF(2"), we can borrow software/hardware from elliptic curve public-key cryptosys-
tems to implement ECPSG. We conclude that ECPSG 1 is suitable for use as a key
generator in a stream cipher cryptosystem.

Table 3 Comparison of ECPSG I with Other Sequence Generators

Type of Period | Frequency Range | Unbalance Linear
Generator of 1 occurrence Range Span
FFG 2n -1 (1,271 (1,277 unclear
CFG <2m—1 (1,271 (1,277 unclear
CCG (2™ - 1)* 2n=H(2m — 1) 2" —1 n(2" — 1)
de Bruijn on+l 2" 0 >2"+n+1
<ontl 1
ECPSG I ol on 4 2(n-1)/2 +o(n=1/2 [ > on
< ontl 9
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