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Abstract
Visualizations leverage the human visual system to support the process of
sensemaking, in which information is collected, organized, and analyzed
to generate knowledge and inform action. Although most research to date
assumes a single-user focus on perceptual and cognitive processes, in prac-
tice, sensemaking is often a social process involving parallelization of effort,
discussion, and consensus building. Thus, to fully support sensemaking,
interactive visualization should also support social interaction. However, the
most appropriate collaboration mechanisms for supporting this interaction
are not immediately clear. In this article, we present design considerations
for asynchronous collaboration in visual analysis environments, highlighting
issues of work parallelization, communication, and social organization. These
considerations provide a guide for the design and evaluation of collaborative
visualization systems.
Information Visualization (2008) 7, 49--62. doi:10.1057/palgrave.ivs.9500167
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Introduction
Visualizations leverage the human visual system to support the analysis
of large amounts of information. Although most visualization research
to date focuses on the interaction between a single user and an interac-
tive display, visual analysis is rarely a solitary activity. Analysts must share
and communicate their findings. They may disagree on how to interpret
data and contribute contextual knowledge that deepens understanding.
As participants build consensus or make decisions, they learn from their
peers. Furthermore, some data sets are so large that thorough exploration
by a single person is unlikely. Such scenarios regularly arise in busi-
ness intelligence,1 intelligence analysis,2,3 and public data consumption.4

Consequently, the design of visual analysis technologies could benefit
by considering social interaction in addition to perceptual and cognitive
processes. In this spirit, a recent report3 names the design of collaborative
visualization tools as a grand challenge for visualization research.
The social aspects of visualization have taken on new importance
with the rise of the Internet, enabling collaboration between partici-
pants acting in different geographic locations and at different times.
This distributed, asynchronous style of collaboration introduces new
challenges for visualization research. Most existing research on collab-
orative visualization has focused on synchronous scenarios: users
working together at the same time to analyze scientific results or
discuss the state of a battlefield. Collocated collaboration usually
involves shared displays, including large wall-sized screens and table-top

 at PENNSYLVANIA STATE UNIV on May 11, 2016ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


Design for collaborative visual analytics Jeffrey Heer and Maneesh Agrawala
50

Figure 1 Asynchronous collaborative visualization systems. Clockwise from top-left, Spotfire Decision Site Posters,16 Wikimapia,19

Swivel,17 Sense.us,15 and Many Eyes.18 These systems support varied levels of sharing, discussion, and annotation of visualized
data.

devices.5,6 Systems supporting remote collaboration have
primarily focused on synchronous interaction,7–9 such
as shared virtual workspaces10 and augmented reality
systems that enable multiple users to interact concur-
rently with visualized data.11,12

In contrast, relatively little research attention has
focused on asynchronous collaboration around visuali-
zations.13 Yet, by partitioning work across both time and
space, asynchronous collaboration may provide greater
scalability for group-oriented analysis. There is evidence
that, due in part to a greater division of labor, asyn-
chronous decision making can result in higher-quality
outcomes – broader discussions, more complete reports,
and longer solutions – than face-to-face collaboration.14

One challenge to achieving the benefits of asyn-
chronous collaborative analysis is determining the

appropriate design decisions and technical mechanisms
to enable effective collaboration around visual media.
Creating effective collaborative visual analysis environ-
ments raises a number of design questions. How should
collaboration be structured, and what shared artifacts can
be used to coordinate contributions? What are the most
effective communication mechanisms?

One source of design guidance comes from exam-
ining existing systems. A handful of recent web-based
collaborative visualization systems15–19 provide features
for sharing and discussing visualized data (Figure 1).
Geographic visualization systems such as Wikimapia19

support end-user annotation of satellite imagery to
identify landmarks and points of interest. Commercial
visualization tools such as Spotfire Decision Site Posters16

allow visualizations created in desktop applications to
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be posted to web pages and discussed through text
comments. The public web sites Many-Eyes.com18 and
Swivel.com17 allow users to upload data sets and visualize
them using a palette of supported visualizations. Collab-
oration is supported through application bookmarks
(in the form of URLs) into specific visualization states,
blog-style text comments, and posting linked screen-
shots to external blogs. The research prototype sense.us15

provides new techniques for linking commentary with
visualization states and supports graphical annotation
and the construction of tours through multiple visual-
ization states. Observing usage of these systems provides
numerous examples of group sensemaking in action15

cycles of observation, question, and hypothesis; social
navigation to interesting or controversial data; and iden-
tification of problematic or incorrect data values.

Still, these systems represent only the first steps in a
larger design space; many challenges remain for providing
effective, scalable forms of collaborative analysis. We
wish to better support the observed user behaviors of
these existing systems by grounding design decisions in
both practical and theoretical knowledge of social inter-
action. A theoretically grounded design framework can
be applied to contrast the existing offerings and guide
the future research and development of social visual
analysis systems. Towards this aim, we review research
in analytics, social psychology, sociology, organizational
studies, and computer-supported cooperative work to
identify a set of design considerations to inform the
development of asynchronous collaborative information
visualization systems.

The goal of this article is to identify key issues to guide
work in collaborative visual analytics. We have grouped
our design considerations into seven inter-related areas:
division and allocation of work; common ground and
awareness; reference and deixis; incentives and engage-
ment; identity, trust, and reputation; group dynamics;
and consensus and decision making. In each of these
areas, we discuss the aspect underlying effective collab-
oration and suggest specific mechanisms by which they
could be achieved. We conclude by summarizing the
various design considerations presented and suggesting
avenues for future research and development in collabo-
rative visual analytics.

Division and allocation of work
A fundamental aspect of successful collaboration is an
effective division of labor among participants. This
involves both the segmentation of effort into proper
units of work and the allocation of individuals to tasks in
a manner that best matches their skills and disposition.
Primary concerns are how to split work among multiple
participants and meaningfully aggregate the results.

Benkler20 describes the role of modularity, granularity,
and cost of integration in the peer production of informa-
tion goods, drawing on examples such as online discus-
sions, open source software, and Wikipedia. Modularity

refers to how work is segmented into atomic units, paral-
lelizing work into independent tasks. The granularity of
a module is a measure of the cost or effort involved in
performing the task. The optimal granularity ofmodules is
closely tied to the incentives for performing the work. For
example, in online scenarios where the incentives tend
to be small and non-monetary, a small granularity helps
facilitate participation, encouraging people to participate
in part due to the ease of contributing. A variety of granu-
larities enables different classes of contribution to emerge.

The third aspect of Benkler’s model is the cost of inte-
gration: what effort is required to usefully synthesize the
contributions of each individual module? Collaborative
work will only be effective if the cost of integration is
low enough to warrant the overhead of modularization
while enforcing adequate quality control. There are a
number of mutually inclusive approaches to handling
integration: automation (automatically integrating work
through technological means), peer production (casting
integration as an additional collaborative task given to
trusted participants), social norms (using social pressures
to reduce vandalistic behavior), and hierarchical control
(exercising explicit moderation).

Collaborative visual analytics can similarly be viewed
as a process of peer production of information goods.
Such goods may include the observations, questions, and
hypotheses generated in the analysis process as well as
tours or presentations of analysis results. Questions for
collaborative visualization include how to facilitate the
modularization of work. The first step is determining the
units (modules) of contribution and their granularity.
Existing frameworks for aiding this task include struc-
tural models of visualization design and sensemaking
processes. Once modules have been identified, one can
then attempt designs that reduce the cost structure for
these tasks. Another important concern is the proscrip-
tion of particular task types or roles – what aspects should
be formally inscribed in the system and what should be
left open to negotiation and definition by work groups
themselves?

The information visualization reference model
One model for identifying modules of contribution is
the information visualization reference model,21,22 a general
pattern for describing visualization applications (Figure 2).
The model decomposes the visualization process into
data acquisition and representation, visual encoding of
data, and display and interaction. Each phase of this
model provides an entry point for collaborative activity.
Contributions involving data include uploading data sets,
cleaning or reformatting data, moderating contributed
data (e.g., to safeguard copyright or privacy concerns), and
affixing metadata (e.g., providing keyword tags). Addi-
tional contributions of varying granularity lie in the appli-
cation of visual encodings. Examples include matching
data sets with existing visualization components, editing
visual mappings to form more effective visualizations,
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Figure 2 The information visualization reference model.
Source data is mapped into tables that are visually encoded and
presented in interactive views.21,22 Collaboration may occur at
the level of data management, visualization, or analysis.

Figure 3 The sensemaking cycle. The diagram depicts the
various phases and loops of the sensemaking process, anno-
tated with common tasks. The image is taken from Card et al.21

and authoring visualization software components. Both
Many Eyes18 and Swivel17 enable contribution of data
sets and visual mappings. Important issues for future work
include the accuracy and provenance of contributed data
sets. The primary focus of this article, however, is at the
level of interaction, where we consider how collaborative
visual analysis and exploration can be conducted most
effectively.

The sensemaking model
To better understand analytic contributions, we consult
the sensemaking model,21,23 which grounds the use of
information visualization in a theory of howpeople search
for, organize, and create new knowledge from source infor-
mation. Social issues accrue at each phase of the model:
how do people communicate, how do they judge the
contributions of others, how are groups formed, and what
motivates contributions?We touch on each of these issues
in subsequent sections. As indicated by the numerous
interconnections in Figure 3, the sensemaking process has

a much higher degree of coupling than the information
visualization reference model, carrying implications for
the granularity, and integration of contributions.

Intelligence analysis provides examples of both co-
operative and competitive models of work.3 In cooper-
ative scenarios, modules may be of fine granularity and
pooled such that collaborators can immediately make use
of others’ work. Examples include finding relevant infor-
mation sources, identifying connections between sources,
and positing hypotheses. Such work may involve tightly
coupled collaboration, requiring awareness and commu-
nication among participants. In competitive scenarios,
work is not integrated until a later stage of sensemaking,
such as detailed, evidence-backed hypotheses or recom-
mended actions. While lacking the benefits of resource
pooling, this approach encourages individual assessment
and can reduce groupthink bias. Accordingly, it may
benefit collaborative visualization systems to support
both fine-grained and coarse-grained work parallelization.

If adopting a competitive model, the main concern
is with integrating the end results of the sensemaking
process. How can analytic conclusions or suggested
actions be presented, compared, and evaluated? If co-
operative models are used, either across all collaborators
or within teams, we should consider social issues affecting
each phase of sensemaking.

Information foraging The first phase of sensemaking is
information foraging.1 Given the underlying metaphor
of foraging for food, an activity often performed by
social packs of animals, social information foraging24

seems a natural extension. Technologies for collaborative
foraging could help pool findings, such as discovery of
relevant information, and support notification updates.
Design challenges include how to structure and catego-
rize shared findings, such as identified trends or outliers,
and provide task-sensitive retrieval mechanisms by which
others can access them. Furthermore, systems could make
the foraging behaviors of others visible by analyzing and
displaying activity traces, facilitating social navigation25

of data sets. Visualizing aggregate foraging behaviors is
metaphorically similar to the scent trails left by ants
foraging for food. In this form, general usage can be
treated as an implicit collaborative contribution, a possi-
bility discussed further in the section Awareness and
social navigation.

Information schematization The next phases of sense-
making concern the construction and population of
information schemata, in which findings from the
foraging process are organized. Schematization could be
conducted in a collaborative fashion by enabling infor-
mation organization and discussion among collaborators.
One challenge is to synthesize the contributions of various
collaborators in a manner that reduces the cost of inte-
gration, resulting in accessible forms such as summaries
of arguments and evidence. To this aim, asynchronous
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collaboration can be structured through shared external
representations26 for manipulating the information.
For example, discussion forums aggregate contributions
through the accretion of comments and replies in a
sequential fashion, where as wikis (e.g., Wikipedia) and
open source software rely on human editing backed by a
revision management system to integrate and moderate
contributions. Alternatively, systems with highly struc-
tured input such as NASA ClickWorkers20 or von Ahn’s
‘games with a purpose’27 rely on statistical aggregation.
Clearly, the form of the collaborative artifact strongly
affects the cost of integration; it may be more costly to
find relevant information in a sprawling discussion forum
than in a group-edited document or statistical summary.
As the number of collaborators or the complexity of
contributions increases, the need for mechanisms facili-
tating aggregation becomes more acute. Future research
is needed to devise and evaluate new external representa-
tions for structuring collaborative visual analytics.

Some existing research suggests mechanisms for repre-
senting and integrating analytic contributions. The
analyst’s sandbox28 provides a visual environment for
spatially organizing hypotheses and positive and nega-
tive evidence. Coupled with revision management tools,
the analyst’s sandbox might also serve as a shared editing
environment for collaborative analysis. Brennan et al.29

introduce a tool for comparing and integrating thework of
independent analysts. Their system uses a logic program-
ming approach to merge network diagrams of collected
evidence. Billman et al. CACHE30 system supports the
analysis of competing hypotheses; each analyst main-
tains a matrix of hypotheses and evidence and provides
numerical measures of the reliability of evidence and
assessments of the degree to which evidence confirms or
disconfirms the hypotheses. The CACHE system statis-
tically aggregates these ratings to form a group assess-
ment. Argumentation systems such as Zeno31 allow
users to graphically structure an argument into claims,
constraints, and evidence. Similar to CACHE, Zeno can
then automatically evaluate the current level of support
for the provided claims. While each of these systems
suggest possible approaches to structuring the creation
of information schemata, further investigation is needed
to compare (and potentially hybridize) these approaches.
Usability and expertise are also important concerns; tech-
niques that work well for professional analysts may not
be appropriate for supporting collaborative visualization
for a general audience on the Web.

Problem solving, decision making, and action The final
phases of sensemaking involve problem solving and
action. These phases may or may not take place within
the collaborative analysis environment. Furthermore, the
analysts themselves may not be decision makers, thus
mechanisms for presenting and disseminating analytic
findings to others are often crucial components of collab-
orative work. Findings gained from the analysis may serve

as input to collaboration in other media, suggesting the
need to both facilitate external access to the contents of
the visual analysis environment and extracting content
for use in other systems. If collaborators conduct problem
solving and decision making within the system, afore-
mentioned issues regarding communication, discussion,
and consensus must be addressed.

Common ground and awareness
Inspired by linguistics, social psychologists have investi-
gated fundamental prerequisites for successful commu-
nication. Clark and Brennan32 describe the concept
of common ground, the shared understanding between
conversational participants enabling communication.
Through shared experience and discussion, people
constantly monitor their mutual understanding. For
example, facial expressions, body language, and back-
channel utterances such as ‘uh-huh’ and ‘hmm?’ provide
grounding cues of a participant’s current level of under-
standing. Both positive evidence of convergence of under-
standing and negative evidence of misunderstanding are
used to establish common ground.

Surprisingly, an imperfect shared understanding is often
sufficient. The principle of least collaborative effort states
that conversational participants will exert just enough
effort to achieve successful communication.33 Collabora-
tive effort may be applied during both a planning stage,
in which a participant formulates their next utterance,
and an acceptance stage, in which a participant ascertains
if partners have understood the utterance. This principle
serves as an evaluation guide for collaboration mecha-
nisms, as different mechanisms may affect the amount
of effort needed for collaborators to effectively commu-
nicate. For example, multiple studies have shown that
the media of communication affects the cost structure of
collaborative effort.34,35 views of a shared visual environ-
ment minimize the need to verbally confirm actions that
can be assessed visually. However, media effects such as
latency can hamper the efficiency benefits of such cues.35

At both general and detailed levels, grounding theory
provides a useful guide for design decisions. When collab-
orating around visualizations, participants must be able
to see the same visual environment in order to ground
each others’ actions and comments, suggesting the need
for mechanisms for bookmarking or sharing specific states
of the visualization. Collaborators must be able to share
views to specific visualization states both within the visu-
alization environment itself and across other media. For
example, the results of visual analysis might be shared
more effectively as part of aweb page or blog, where a dedi-
cated readership and familiarity with collaborators better
establishes the necessary common ground with respect to
the subject matter. At minimum, the ability to easily pass
around pointers (e.g., URLs) to specific views is indispens-
able, and therefore collaborative visualizations must be
able to explicitly represent and export their internal state
space.15,18,36
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Figure 4 Visual social navigation cues. Left: Grayed-out regions of the visualization indicate data regions that have previously been
visited.36 Right: Bar charts embedded within navigation components indicate the relative visitation rates for visualization views
reachable from the current state.41

Discussion models
Given the ability to access a shared viewpoint, one must
still determine the forms of discussion and annotation
around that view. For example, one could use visualiza-
tion bookmarks within a standard discussion forum, is
form of independent discussion is unidirectional, linking
from text to the visualization. Most existing systems,
including Decision Site Posters,16 Many Eyes,18 and
Swivel,17 provide support for independent, unthreaded
comments. Another approach is embedded discussion,
placing conversational markers directly within the visu-
alization, such as comments over annotated geographic
regions in Wikimapia.19 This approach provides unidi-
rectional links that point from the visualization to text.

Grounding might be further facilitated by more deeply
tying discussion to the visualization state space. Doubly
linked commentary15 allows comments to link to specific
views as in independent discussion, while also enabling
all such discussions to be retrieved in situ as visualization
views are visited. Our hypothesis is that directly associ-
ating commentary with specific states of the visualization
will facilitate grounding by disambiguating the context of
discussion, while also enabling serendipitous discovery of
relevant discussion during exploration. Evidence for this
hypothesis could take the form of simplified referential
utterances or facilitation of reader comprehension. Future
research might consider more complicated linking struc-
tures, such as tying discussion to multiple views, as well
as conducting formal evaluations of the effects of varied
discussion models.

Awareness and social navigation
Another important source of grounding comes from
awareness of others’ activities, allowing collaborators to
gauge what work has been done and where to allo-
cate effort next.37,38 Within asynchronous contexts,

participants require awareness of the timing and content
of past actions. The need for coordination suggests
that designs should include both history and notification
mechanisms (e.g.,39) for following actions performed
on a given artifact or by specific individuals or groups.
Browseable histories of past action are one viable mech-
anism, as are subscription and notification technologies
such as Really Simple Syndication and Atom (Figure 4).

User activity can also be aggregated and abstracted
to provide additional forms of awareness. Social navi-
gation25,40 involves the use of activity traces to provide
navigation cues based on the behavior of others, allowing
users to purposefully navigate to past states of high
interest or explore less-visited regions (termed ‘anti-social
navigation’ by Wattenberg and Kriss.36) Navigation cues
may be added to links to views with low visitation rates
or to action items such as unanswered questions and
unassessed hypotheses. One approach is to add visual
cues to user interface widgets indicating aggregated social
activity, such as the number of visitations to a particular
visualization state or the number of comments linked to
that state. For example, Willet et al.41 embed small bar
charts indicating either visitation or comment counts
into dynamic query widgets. In a controlled experi-
ment, they found that both comment and visitation
cues increase revisitation to states visited by other users.
They also found that visitation cues also led to signifi-
cantly more unique discoveries when the data was unfa-
miliar to users, but that discovery rates equalized over
subsequent trials.

Reference and deixis
A vital aspect of grounding is successfully referring to
artifacts, people, places, or other items. As both Clark42

and Brennan34 explain, reference can take on many
different forms. We focus on reference in spatial contexts.
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When collaborating around visual media, it is common
to refer to specific objects, groups, or regions visible to
participants. Such references may be general (‘north by
northwest’), definite (named entities), detailed (described
by attributes, such as the ‘blue ball’), or deictic (pointing
to an object and saying ‘that one’, also referred to as index-
ical reference). Once the referent has been successfully
established and grounding has been achieved between
participants, collaboration can move forward.

Clark42 surveys various forms of spatial indexical refer-
ence, grouping them into the categories of pointing and
placing. Pointing behaviors use some form of vectorial
reference to direct attention to an object, group, or region
of interest, such as pointing a finger or directing one’s
gaze. Placing behaviors involve moving an object to a
region of space that has a shared, conventional meaning.
Examples include placing groceries on a counter to indi-
cate items for purchase and standing across from the teller
to indicate that you will be the purchaser. In addition to
directing attention, indexical reference allows patterns of
speech and text to change. Participants can use deictic
terms like ‘that’ and ‘there’ to invoke indexical referents,
simplifying the production of utterances along the prin-
ciple of least collaborative effort.

Hill and Hollan43 further discuss the various roles that
deictic pointing gestures can play, often communicating
intents more complicated than simply ‘look here.’ They
describe how different hand gestures can communi-
cate angle (oriented flat hand), height (horizontal flat
hand), intervals (thumb and index finger in ‘C’ shape),
groupings (lasso’ing a region), and forces (accelerating
fist). While other forms of reference are often achieved
through speech or written text, deictic reference in
particular offers important interface design challenges
for collaborative visualization. Our hypothesis is that
methods for performing nuanced pointing behaviors can
improve collaboration by favorably altering its cost struc-
ture. Hill and Hollan make this claim explicitly, arguing
for ‘generally applicable techniques that realize complex
pointing intentions’ by engaging ‘pre-attentive vision in
the service of cognitive tasks.’

Brushing and dynamic queries
A standard way to point in a visualization is through
brushing44,45 and dynamic queries46 selecting and high-
lighting a subset of the data through direct manipulation
of the display or auxiliary query controls. Naturally,
these selections should be sharable as part of the state of
the visualization. In addition, a palette of visual effects
richer than simple filtering and highlighting can let
users communicate different intents. For example, a user
selecting a range of values in a chart might have one of
any number of intents. If the user is interested in the
specific points selected, those points should be promi-
nently highlighted. However, if the user is primarily
interested in the range of the contained values, the range
interval should be given visual prominence.

Brushing-based forms of pointing have the advan-
tage that the pointing action is tied directly to the data,
whether modeled as a vector of selected tuples, a declar-
ative query, or both. ‘Data-aware’ representations allow
a pointing intention to be reapplied in different views
of the same data, enabling reuse of references across
different choices of visual encodings. Data-aware annota-
tions could also enable users to search for all commentary
or visualizations that reference a particular data item.
As data-aware annotations are machine-readable, they
might also be used to export subsets of data and help
steer automated data mining (e.g.,47). Finally, machine-
readable selections might be used as input for achieving
more generalized forms of reference. For example, one
might deictically refer to a particular object, but formu-
late a broader selection by abstracting from the properties
of that object (e.g., ‘select all items blue like this one’). In
this way, other forms of reference might be achieved in
both human and machine readable form.

Graphical annotation
Freeform graphical annotations15 can provide an expres-
sive form of pointing. Drawing a circle around a cluster of
items or pointing an arrow at a peak in a graph can direct
the attention of remote viewers. The angle of the arrow
or shape of the hand-drawn circle may communicate
emotional cues or add emphasis. Although such drawing
and vector graphic annotations allow a high degree of
expression, without any explicit tie to the underlying
data they only apply to a single view in the visualiza-
tion. Freeform annotations can persist over purely visual
transformations such as panning and zooming, but if
they are not data-aware they may become meaningless
in the face of data-oriented operations such as filtering
or drill-down. One future research direction is to develop
hybrid approaches that combine aspects of both brushing
and graphical annotation. The resulting techniques could
create graphical annotations that are tied to data points
so that they can be displayed in other views of the data
and remain meaningful (Figure 5).

Ambiguity of reference
An additional concern is ambiguity of reference. Clark
et al.48 demonstrate how people’s common ground can
affect ambiguity resolution: two people with greater famil-
iarity might successfully communicate using ambiguous
references, while a third participant remains confused.
Asynchronous collaboration may be more susceptible
to ambiguities than synchronous collaboration because
participants do not receive immediate feedback or
grounding cues from other collaborators. As a result,
designers of pointing interactions must also consider
the ease with which pointing actions can be interpreted
unambiguously. The implicit interplay between gesture
and text, often fluidly performed and subconsciously
interpreted in synchronous interactions, may need to
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Figure 5 Annotation and selection in visualizations. Left: Brushing and dynamic query techniques enable forms of pointing and
selection tied to the underlying data. Right: Freeform graphical annotation enables a greater range of expressiveness.15

be linked more concretely in asynchronous settings.
For example, a text comment involving multiple deictic
terms may need to link those terms explicitly to visual
annotations, as the gestural cues used in face-to-face
communication are not available for disambiguation.

Incentives and engagement
If collaborators are professionals working within a partic-
ular context (e.g., financial analysts or research scien-
tists) there may be existing incentives, both financial
and professional, for conducting collaborative work. In a
public goods scenario, incentives such as social visibility
or sense of contribution may be motivating factors. Incor-
porating incentives into the design process may increase
the level of contribution, and could provide additional
motivation in those situations that already have estab-
lished incentive systems.

Benkler20 posits an incentive structure for collabora-
tive work consisting of monetary incentives, hedonic
incentives, and social-psychological incentives. Monetary
incentives refer to material compensation such as a salary
or cash reward. Hedonic incentives refer to well-being or
engagement experienced intrinsically in the work. Social-
psychological incentives involve perceived benefits such
as increased status or social capital.

Personal relevance
A number of observations of social use of visualization
have noted that visualization users are attracted to data
that they find personally relevant.49,13,36 For example,
in collaborative visual analysis of the occupations of
American workers,15 people often start by searching for
their own profession and those of their friends and family,
similar to the way people search for names in the popular
NameVoyager visualization.36 The hypothesis is that by

selecting data sets or designing the presentation such that
the data is personally relevant, usage rates will rise due
to increased hedonic incentive. For example, geographic
visualizations may facilitate navigation to personally rele-
vant locations through typing in zip codes or city names,
while a visualization of the United States’ budget might
communicate how a specific user’s taxes were allocated
rather than only listing total dollar amounts.

Social-psychological incentives
In the case of social-psychological incentives, the visi-
bility of contributions can be manipulated for social
effects. Ling et al.50 found that users contributed more
if reminded of the uniqueness of their contribution or
if given specific challenges. In one experiment, Ling
et al. also found that participants contributed more when
given group goals than when given individual goals, a
finding at odds with existing social-psychological theory.
Cheshire51 ran a controlled experiment finding that,
even in small doses, positive social feedback on a contri-
bution greatly increases contributions. He also found
that visibility of high levels of cooperative behavior
across the community increases contributions in the
short term, but has only moderate impact in the long
term. These studies suggest that social-psychological
incentives can improve contribution rates, but that the
improvements depend on the forms of social visibility.
One incentive for visual analysis may be to prominently
display new discoveries or successful responses to open
questions. Mechanisms for positive feedback, such as
voting for interesting comments, might also foster more
contributions.

Game play
Finally, it is worth considering game play as an addi-
tional framework for increasing incentives. For example,
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von Ahn’s ‘games with a purpose’27 reframe otherwise
tedious data entry tasks as actions within online games,
successfully leveraging game dynamics to engage users in
the construction of information goods. Heer49 discusses
various examples in which playful activity contributes
to visual analysis, applying insights from an existing
theory of playful behavior52 that analyzes the compet-
itive, visceral, and teamwork building aspects of play.
For example, scoring mechanisms create competitive
social-psychological incentives. Game design might also
be used to allocate attention. For example, creating
a team-oriented ‘scavenger hunt’ analysis game could
focus participants on a particular subject matter. Salen
and Zimmerman53 provide a thorough resource for the
further study of game design concepts.

Identity, trust, and reputation
Aspects of identity, reputation, and trust all influence
the way people interact with each other. Within a sense-
making context, interpersonal assessments affect how
people value, consider, and respond to the individual
contributions of others. Other things being equal, a
hypothesis suggested by a more trusted or reputable
person will have a higher probability of being accepted
as part of the group consensus.54 For social sensemaking
in a computer-mediated environment, design challenges
accrue around the various markers of identity and past
action that might be transmitted through the system. For
example, Donath55 describes how even a cue as simple as
one’s e-mail address can lead to a number of inferences
about identity and status.

Identity presentation
Many theorists try to understand interpersonal percep-
tion via the signals available for interpretation by others.
Goffman56 distinguishes between expressions given and
expressions given off to indicate those parts of our presen-
tation of self that are consciously planned (e.g., the
content of our speech) or unconsciously generated (e.g., a
wavering of voice indicating nervousness), each of which
is interpreted to form opinions of a person. Donath55

classifies such signals into conventional signals – low-cost
signals that are easy to fake (e.g., talking about going
to the gym) – and assessment signals – more reliable
signals that are difficult to fabricate (e.g., having large
muscles).

Other researchers have focused on the way media with
different capacities for transmitting such signals affect
interpersonal assessment. For example, most computer-
mediated communication filters out non-verbal cues,
stripping many of the signals ‘given off’ by participants.
Despite these missing cues, Walther57 argues that online
relationships can be as deep and meaningful as face-to-
face interactions through explicit sharing of personal
information. However, due to diminished cues and asyn-
chronous interaction, such online relationships can

require longer time spans to develop. These diminished
cues allow for a greater role of imagination and specula-
tion when assessing another person. Furthermore, many
researchers find that such diminished cues give rise to
‘deindividuation’ effects that have both desirable and
undesirable consequences. For example, people who are
shy in face-to-face interactions often show greater rates
of participation, but anti-social ‘flaming’ is also more
prevalent online.57,58

When considering the implications of identity assess-
ment for collaborative visualization systems, designers
should also take the context of deployment into account.
If collaborators are already familiar to each other, they
may require little additional support to make assessments
of identity and reputation, instead of relying on existing
channels through which assessments can be made. It may
be enough to simply identify collaborators’ individual
contributions with recognizable names. Still, it may prove
valuable for visual analysis environments to interface
with external communication channels, both for sharing
and interpersonal assessment. Many organizations main-
tain online personnel directories to aid awareness and
collaboration; visual analysis systems should be able to
leverage such existing artifacts.

On the other hand, if collaborators begin as strangers,
mechanisms for self-presentation and reputation forma-
tion need to be included in the system design. Possible
mechanisms include identity markers, such as screen
names, demographic profiles, social networks, and group
memberships. Considerations include the type of personal
information germane to the context of visual analysis;
for example, is a playful or professional environment
desired? Attributes such as age, geographic location, inter-
ests, and skills might help assess a collaborator’s back-
ground knowledge, affecting the confidence one places
in hypotheses. Of course, this picture is complicated if
such measures are self-reported, because such self-reports
may be subject to fabrication.

Reputation formation
Considering how interpersonal assessment develops over
time gives rise to questions of reputation and trust forma-
tion. In the case where participants only interact through
the system itself, means of gauging a user’s past actions
or contributions are needed not only to aid awareness
(c.f. section on common ground and awareness) but also
to facilitate reputation formation. Observations of past
actions provide implicit means of reputation formation,
allowing collaborators to make inter-personal judgments
grounded in past activity. One challenge for design is to
consider what pieces of information are most informative
for reputation formation.

Some systems instead provide explicit reputation mech-
anisms, such as seller ratings in online markets such as
eBay.59 In a visual analysis environment, collaborators
might rate each other’s contributions according to their
interestingness or accuracy. Such ratings may help surface
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contributions with higher relevance, provide a reputa-
tion metric for contributors, and additionally consti-
tute a social-psychological incentive for high quality
contributions.

Group dynamics
The makeup of collaborative groups is another aspect
important to social sensemaking. Many scenarios, such
as business and research, may involve work groups
that are already well established. In such cases, stan-
dard group management and communication features
common to many collaborative applications may be
sufficient. However, when organizing effort in public
goods scenarios, explicit mechanisms for assisting group
formation may aid collaborative visualization efforts.

Group management
At a basic level, formal group management mechanisms
must presentmeans for addressing issues of scalability and
privacy. Groupmanagement mechanisms can support the
coordination of a work group on a specific task within a
larger collaborative environment, providing notification
and awareness features at the group level. Groups also
provide a means of filtering contributions, improving
tractability and reducing information overload for partic-
ipants who may not be interested in the contributions
of strangers. Finally, groups provide a means of limiting
contribution visibility, providing one mechanism for
individual privacy within large-scale online scenarios.

An alternative approach to explicit group management
is to support groups already formed in other mediated
environments. Such support requires a decentralization of
the analysis process, enabling collaborative visual analysis
technologies to be embedded in external media. Exam-
ples include embedding an interactive visualization into
a blog entry or introducing visual analysis applications
into existing social environments such as Facebook. This
strategy is common with existing social data analysis sites
like Swivel17 and Many-Eyes18 the longest and deepest
discussions tend to occur around visualization screenshots
posted to an external blog.

Group size
One challenge for group management is the choice of
group size. Larger groups may be able to achieve more
through a larger labor pool, but can incur social and orga-
nizational costs.60 For example, larger groups are more
likely to suffer from the free rider problem61 or social
loafing50 due to diluted accountability. Pirolli24 describes
a mathematical model of social information foraging
that measures the benefit of including additional collab-
orators in information gathering tasks. His analysis finds
that beyond certain sizes, additional foragers provide
decreasing benefits, suggesting that an optimal group size
exists, dependent on the parameters of the foraging task.
An important future experiment would be to evaluate

Pirolli’s model through application to real visual analysis
teams.

Group diversity
Another issue facing group formation is the diversity
of group members. In this case diversity can include
the distribution of domain-specific knowledge among
potential participants and differences in attributes such
as geographical location, culture, and gender. Organiza-
tional studies62,63 find that increased group diversity can
lead to greater coverage of information and improved
decision making. However, diversity can also lead to
increased discord and longer decision times.

Various measurements of diversity may be applied to
suggest a set of group members that will provide adequate
coverage for an analysis task. Such measurements might
come from analyzing differences between user profiles
and structural features of the social networks of the
participants.64 Such networks may be explicitly artic-
ulated or inferred from communication patterns, such
as the co-occurrence of commenters across discussion
threads. Wu et al.65 study of organizational information
flow found that information spreads efficiently among
homophilous (similar) group members but not across
community boundaries, further suggesting the value
of identifying structural holes and directing bridging
individuals in the social network towards particular find-
ings. By constructing user profiles based on demographic
data, social connectivity, and prior usage, automated
systems may be able to help suggest relevant tasks to
appropriate community members.

Consensus and decision making
The need to establish group consensus arises in many
phases of the sensemaking cycle. Examples include agree-
ment about the data to collect, how to organize and inter-
pret data, and making decisions based upon the data.
Collaborators may reach consensus through discussion or
through the aggregation of individual decisions.

Consensus and discussion
Mohammed54 combines various contributions in social
psychology and organizational studies to posit a model
for cognitive consensus in group-decision making.
Mohammed’s model takes into account the assumptions,
category labels, content domains, and causal models
possessed by each participant, and how they might evolve
through discussion. One tangible recommendation that
comes from this work is to clearly identify the points of
dissent, creating focal points for further discussion and
negotiation. From a design perspective, collaborators need
communication mechanisms that allow points of dissent
to be labeled and addressed. Collaborative tagging66 is
one potential candidate. Formalizing contributions in
structured argumentation systems30,31 may be another
avenue. For example, a content analysis of contributions
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to the sense.us system15 found that users primarily used
free-text comments to post observations, questions, and
hypotheses. These categories could be formally repre-
sented to help structure discussion and voting.

Scheff67 notes that consensus requires more than
participants simply sharing a belief; participants must
think that their beliefs are the same, and achieve realiza-
tion that others understand one’s position. Users need
feedback loops to gauge mutual understanding. Along
these lines, it may be useful to consider the effects of
multiple communication channels on decision processes.
Collaborative visualization environments that provide
messaging, in either synchronous or asynchronous
forms, might provide backchannels for negotiation
and non-public discussion. The integration of instant
messaging into the GMail e-mail service is an example of
weaving different communication channels into a single
system.

The value of different forms of consensus can vary based
on the task at hand. Hastie68 found that group discussion
improved accuracy when decision tasks had demonstrably
correct solutions because groups could evaluate their
output. When task outcomes are open-ended, consensus
through discussion is harder to evaluate. In a simulated
graduate admissions task, Gigone and Hastie69 found
little value in discussion, as group decisions were well-
matched by simply averaging prior individual decisions.

One design implication that again arises is to use voting
or ranking systems. Mechanisms for expressing support
or disdain for hypotheses could aid data interpretation
and further identify controversial points. For example,
Wikimapia19 users can vote on the accuracy of labeled
geographic regions and Swivel17 supports ratings of inter-
estingness. A game-like variation on this approach is the
creation of prediction markets70 individuals can be given
a limited amount of ‘points’ or ‘currency’ that they can
use to vote for hypotheses they find most promising.
Hypotheses that are later validated could reap payback
rewards for their supporters.

Information distribution
An important dimension of group consensus is the
distribution of information across group members. Both
Stasser71 and Gigone and Hastie69 find that it is difficult
for groups to pool information effectively, and therefore,
decision-making is biased in the direction of the initial
information distribution. They hypothesize that the lack
of effective pooling may be due to the persistence of
individual decisions made prior to discussion or to infor-
mation shared prior to the group meeting. The prior
decisions and information set a common ground for
discussion and bias conversation against the unshared
information. Thus, improving collective information
foraging may help inform group decision-making by
changing the information distribution. Collaborative
analysis environments may facilitate better informa-
tion pooling by providing a record of findings and

opinions that can be surveyed prior to decision-making
and discussion.

Presentation and story-telling
Common forms of information exchange in group
sensemaking are reports and presentations. Narrative
presentation of analysis ‘stories’ is a natural and often
effective way to communicate analytic findings, and is a
primary use of Spotfire Decision Site Posters.16 Further-
more, users of Swivel,17 sense.us,15 and Many Eyes,18

all use external media such as blogs and social book-
marking services as external communication channels
in which to share and discuss findings from visualiza-
tions. The challenge to collaborative visualization is to
provide mechanisms to aid the creation and distribution
of presentations. For example, sense.us15 allows users to
construct and share trails of saved views and can thus
provide tours spanning multiple visualizations. GeoTime
Stories72 supports textual story-telling with hyperlinks
to visualization states and annotations. However, neither
system yet allows these stories to be exported outside
the respective applications. In future work, such mecha-
nisms could be improved with support to build presen-
tations semi-automatically from interaction histories,
apply pointing and annotation techniques, and embed
the resulting presentations in external media. Viewers of
analysis stories may also find value in conducting follow-
up analysis and verification on parts of the story, enabling
presentations to serve as a catalyst for additional analysis.

Conclusion and future directions
This article presents design considerations for collabora-
tive visual analytics, attempting to identify the aspects
underlying successful collaboration and suggest mech-
anisms for achieving them. Highlights include a list of
collaborative visualization tasks, techniques to improve
shared context and awareness, and suggestions for
increasing engagement and allocating effort. Many of
these considerations are summarized in Table 1. The
overarching goal is to design socio-technical systems
that improve our analytic capabilities by promoting an
effective division of labor among participants, facilitating
mutual understanding, and reducing the costs associated
with collaborative tasks.

Visiting these considerations also provides an agenda
for future research in collaborative visual analytics,
surfacing hypotheses in need of study and suggesting
new technical mechanisms. For example:

• What is the effect of different discussion models (e.g.,
independent, embedded, and doubly linked) on partic-
ipation and the establishment of common ground?

• Beyond textual discussion, what external representa-
tions will effectively support collaborative analysis?
How do such artifacts affect grounding and the cost of
integration?
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Table 1 Selected design considerations for collaborative visual analytics. The table lists many of the individual design
considerations visited in this article, providing a brief description and noting the relevant sections that discuss the

issue in detail

Design consideration Description Section headings

Modularity and granularity Identify appropriately-scoped units of work
that form basic analytic contributions.

Division and allocation of work

Cost of integration Synthesize work while attempting to lower
integration costs and maintain quality.

Division and allocation of work

Shared artifacts Structure collaboration through shared,
editable representations.

Division and allocation of work, Common ground
and awareness

Artifact histories Provide histories of actions performed on
artifacts.

Common ground and awareness

View sharing / bookmarking Enable lightweight sharing of views across
media with bookmarks (e.g., URLs)

Common ground and awareness

Content export Support embedding of annotated views
in external media (e.g., email, blogs, and
reports)

Common ground and awareness

Discussion Support commentary; consider implica-
tions of discussion model on common
ground.

Common ground and awareness, Consensus and
decision making

Notification Support notification subscriptions for views,
artifacts, people, and groups.

Common ground and awareness

Action flags Mark needed future actions: unanswered
questions, need for evidence, etc.

Common ground and awareness, Consensus and
decision making

Social navigation Make activity patterns visible, determine
popular, and neglected data regions.

Division and allocation of work, Common ground
and awareness

Recommendation Suggest related views, comments, and data
to current points of interest.

Common ground and awareness

Pointing techniques Support nuanced pointing through
selection techniques and visual effects.

Reference and deixis

Personal relevance Increase engagement by increasing
personal relevance of data sets.

Incentives and engagement

Social-psychological incentives Increase engagement by surfacing unique
individual contributions.

Incentives and engagement

Game play Game design elements can provide
incentives and be used to direct effort.

Division and allocation of work, Incentives and
engagement

Identity markers Enable identification of collaborators in a
contextually-appropriate manner.

Identity, trust, and reputation

User profiles Support awareness of others' backgrounds
and skills.

Identity, trust, and reputation

Activity histories Personal action histories allow past contri-
butions to be assessed.

Common ground and awareness, Identity, trust,
and reputation

Activity summaries Activity indicators or summaries aid
reputation and visibility of contributions.

Common ground and awareness, Incentives and
engagement, Identity, trust, and reputation

Group management Group creation and management
mechanisms address issues of scale and
privacy.

Group dynamics

Group size Optimal group size determination can
improve efficiency of analysis.

Division and allocation of work, Group dynamics

Group diversity Appropriate within-group diversity can
result in more complete results.

Division and allocation of work, Group dynamics

Voting and ranking Quantitative measures can be used for
consensus and to lower integration costs.

Division and allocation of work, Identity, trust, and
reputation, Consensus and decision making

Presentation Support creation and export of presenta-
tions for telling analysis stories.

Common ground and awareness, Reference and
deixis, Consensus and decision making
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• How can the synthesis of individual contributions be
improved? Can (semi-)automatic summarization or
merging of separately developed data views (e.g.,29) be
used to form aggregated contributions?

• How should selection and visual emphasis techniques
be designed to provide nuanced pointing behaviors?
Can referenced objects be unambiguously recognized by
both human and machine collaborators?

• How can pointing and graphical annotation gracefully
handle dynamic visualizations and changing data sets?

• How should social navigation cues be effectively added
to visual analysis tools to unobtrusively improve aware-
ness?

• Can automated techniques be used to help allocate
effort? For example, mining past contributions, user
profiles, and inferred social networks may enable
systems to direct collaborators to tasks in need of atten-
tion.

• How can the fruits of collaborative visual analysis be
more effectively exported, shared, and embedded in
external media such as web pages, e-mail, and presen-
tations?

To answer these questions, we envision future research
projects of varying scopes. Researchers may focus on new
visualization and interaction techniques for supporting
collaboration. Such research should propose novel mech-
anisms and ideally evaluate them through comparative
study with other approaches. As listed above, novel
discussion models, pointing techniques, and story-telling
interfaces are all candidates. Research into targeted tech-
niques needs to be balanced with the design, deployment,
and evaluation of holistic collaborative visual analysis
environments. Such systems should enable real-world
groups to conduct collaborative visual analysis. Studies
of system usage can then measure the benefits of collab-
orative visual analytics in ecologically valid settings and
inform best practices for combining collaboration mecha-
nisms. A number of important experiments, such as those
involving group management and incentives, may be
best conducted in real-world settings (e.g., Ling et al.,50

Resnick et al.59 and Wu et al.65) and interfacing with
the Internet is critical to understanding how findings are
disseminated and how collaborative visual analytics can
be more deeply weaved into the Web. These and other
challenges present exciting opportunities for advancing
visual analytics research.
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