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Abstract

The automated generation of controllers for
real-world autonomous agents by means of evo-
lutionary methods has recently attracted a lot
of attention. Most of the pertinent research
has employed genetic algorithms or variations
thereof. We have applied a different evolutionary
method to the generation of a control architec-
ture for Braitenberg vehicles, namely “evolution-
ary strategies”. The application of the ES acceler-
ates the development of such controllers by more
than one order of magnitude (a few hours com-
pared to more than two days). This result is very
important, since the development process is to be
done in real systems. In addition to the dramatic
speedup, there is an important theoretical reason
for preferring evolutionary strategy over genetic
algorithms, namely epistatic interaction.

1 Introduction

Autonomous agents are self-sufficient, embodied systems
(robots) [5] that do some useful work. Autonomous
means that the agent operates without any human con-
trol. Self-sufficient means that the agent can maintain
its internal energy level over a long time; typically, the
agent gets some reward after doing useful work. Au-
tonomous agents are equipped with sensors and effec-
tors, such as motors or grippers. An agent perceives its
environment through sensors like infrared sensors and it
manipulates its environment by actively using the effec-
tors. One major goal of research in autonomous agents
is to study intelligence as the result of a system environ-
ment interaction, rather than understanding intelligence
on a computational level. Thus, autonomous agents are
very important in the field of new AI. For an overview of
special issues involved in autonomous agent design see,
for example, [16, 25].

The control structures of autonomous agents can be
developed either by the designer or by applying evolu-
tionary algorithms. Many research projects [6, 8, 9, 14,
18] have used genetic algorithms (GAs) to evolve neural
control structures for autonomous agents. As pointed
out in Harvey et al. [14], the automated evolution is

more appropriate, since it allows the development of
complex control structures that exhibit many interac-
tions between sub-systems. In this paper, we too ad-
vocate the use of evolutionary algorithms for adaptive
systems.

Even though GAs have been successfully applied to
rather small tasks, an increasing amount of research gives
strong evidence that GAs are very time consuming if the
parameters exhibit epistatis. Epistatis describes the in-
teraction of parameters with respect to the fitness of an
individual. Results of other research [22, 23] strongly in-
dicate that the independence of parameters is an essen-
tial prerequisite of the GA’s high global convergence per-
formance; the presence of epistatis drastically slows down
convergence. The problem in the context of autonomous
agents is that the parameters of control systems for real-
world applications are not independent. Consequently,
even the evolution of rather simple controllers, such as
Braitenberg vehicles, is very time consuming. To relieve
this problem, it is suggested [14] to divide the evolution
of more complex systems into different stages.

Until now, most research projects have focused on
GAs, which are only one option of evolutionary algo-
rithms. Surprisingly little attention has been devoted
to the evolution strategy (ES) as defined by Rechenberg
[20] and Schwefel [24]. The ES is especially designed for
applications that involve real-valued parameters. To this
end, Section 2 gives a brief comparison of these two algo-
rithms with respect to autonomous agents. One result of
this comparison is that the performance of the ES does
not degrade in the presence of epistatis; the ES behaves
invariant with respect to epistatis.

The theoretical analysis of Section 2 is supported by
a case study on the evolution of Braitenberg vehicles.
To this end, Section 3 describes the setup of the case
study. The case study consists of the Khepera™ robot,
which is an example of a small robot that is widely used
for research on autonomous agents. Subsection 3.1 de-
scribes Khepera in more detail. In order to achieve the
goal of operating autonomously, an agent has to per-
form different tasks, such as exploring the environment,
moving around, avoiding obstacles and so forth. The
agent’s behavior is controlled by a control system, which
is typically implemented as a neural network. Such a



control system uses the sensor readings and its internal
state to determine the agent’s next action. Subsection
3.2 describes a simple neural control architecture called
a Braitenberg vehicle [4], and Section 3 describes the
arena, in which the robots have to operate.

Section 4 demonstrates the benefits of the ES when
applied to the development of adaptive control architec-
tures. That section reports some experiments obtained
by applying a (3,6)-ES to the evolution of Braitenberg
vehicles. A (3,6)-ES evolves reasonable Braitenberg con-
trollers within 30 generations, which takes approximately
one and a half hours. Other research [8, 9, 18] uses
GAs for almost the same task. However, the GA-based
approach requires approximately two and a half days.
Thus, the ES speeds up the developmental process by
more than one order of magnitude. This speed up is of
great practical relevance, since the experiments are to be
done in real systems that dynamically interact with the
real world. Also, such a time reduction allows for the ap-
plication to more complex control structures, which are
currently intracktable.

One important feature of GAs is their ability to use
genomes with variable length. Section 5 briefly shows
how this important feature can be incorporated in the
ES. Finally, Section 6 concludes with a summary of the
work presented in this paper.

2 Evolutionary Algorithms

Evolutionary algorithms can be seen as a framework that
includes genetic algorithms, evolutionary strategies, evo-
lutionary programming, and genetic programming. All
these algorithms are heuristic population-based search
procedures based on natural selection and population
genetics. Typically, such population-based search pro-
cedures generate offspring in each generation. Then a
fitness value (defined by a fitness function) is assigned to
each offspring. Depending on the fitness, each popula-
tion member survives with a certain probability.

All evolutionary algorithms implement different
strategies, and therefore, each algorithm is best suited
for different application domains. To this end, the fol-
lowing subsections give a brief description of GAs and
ES. A good comparison of evolutionary algorithms can
be found in [2]. Section 2.3 compares both schemes in
more detail with respect to autonomous agents, adap-
tivity, and performance issues under epistatis. Further-
more, both algorithms are well grounded by an extensive
theory, which can be found in, for example, [3, 12, 17, 24].

2.1 Genetic Algorithm

The GA technique is based on Holland [13] and a good
introduction to GAs can be found in [12]. There does
not exist one GA, but rather a variety of variants, each
covering different applications and aspects. According

o [24], the canonical GA can be described as follows:

Step 0: Initialization of the population’s individuals
and evaluation of the individuals’ fitness

Step 1:  Selection of the parents according to a prese-
lected selection scheme (e.g., roulette wheel,
linear ranking, truncation selection)

Step 2: Recombination of selected parents by ex-
changing parts of their genes

Step 3: Mutation of some genes by a prespecified
probability

Step 4: Go to Step 1

Before using a GA in a particular application domain,
the designer is concerned with the coding of the parame-
ters, the implementation of the mutation and recombina-
tion/crossover operators, and the choice of the selection
scheme. Traditionally, a GA treats every parameter as a
bit string. Depending on the required precision, a coding
scheme can encode each parameter by a certain number
of bits and an attached mapping function. The mapping
function maps the bit representation to real-valued pa-
rameters. Another coding scheme is to directly use the
bit representation used by the programming language.
In such a case, no mapping function is needed. Other
algorithms like the BGA [17] treat each parameter as a
real-valued data type and implement mutation by adding
or subtracting small random numbers.

In each generation, a GA typically draws pairs of par-
ents and applies mutation and recombination with prob-
abilities p,, and p, respectively. After generating a spec-
ified number of offspring, the GA evaluates each off-
spring and selects the best population members as par-
ents for the next generation. Typical selection schemes
are roulette wheel selection, linear ranking, or trunca-
tion selection. Very often, GAs use an elitist selection
scheme, which preserves the best individual in order to
maintain gained success. The influence of different selec-
tion schemes on the resulting convergence can be found
in, for example, [26].

When using GAs, it is very important to find ap-
propriate parameter settings. Normally, the muta-
tion probability p,, is set to small values p, = 1/n
[2, 7, 12, 17, 19], where n denotes the number of param-
eters, e.g., the number of weights in a neural network
controller. Generally, GAs prefer rather high recombi-
nation rates [2, 12, 17]. If using one-point or two-point
crossover, the recombination probability p, is set to val-
ues between 0.5 and 0.9, and if using uniform recombi-
nation, the probability is set to p, = 0.5.

This GA framework has been successfully applied in
various domains, such as function optimization, VLSI
design, neural network learning, and autonomous agent
development. Applications of GAs in the field of au-
tonomous agents can be found, for example, in [6, 8, 9,



14, 18].

2.2  Fvolution Strategy

The ES has been introduced in [20] (see, also, [24]). The
ES is similar to GAs. A (¢ T A)-ES maintains a popula-
tion of 1 parents and generates A offspring in each gen-
eration. In a (u, A)-ES, the u parents are selected from
best A offspring, whereas in a (u + A)-ES, the p parents
are selected from the union of parents and offspring. For
further details see, for example, [2]. Currently [2], the
(1, A)-ES is recommended, especially in noisy environ-
ments.

In contrast to GAs, the ES encodes each parameter
as floating-point numbers, and it applies mutation to
all parameters simultaneously, i.e., p,, = 1. Mutations
are typically implemented by adding (0, o)-normal dis-
tributed random numbers. The key concept of the ES is
that it, in its simplest form, maintains one global step
size o for each individual. This step size is self-adapted
by the following mechanism: Each offspring inherits its
step size from its parent(s). This step size is modified by
log-normal random numbers prior to mutation. By this
means, the step size is self-adapted to nearly optimal val-
ues, since, in a statistical sense, those offspring survive
that have the best adapted step size. For further details
of different step size schemes see [2, 24]. In addition, the
ES can use the same recombination schemes as GAs [2].

The self-adaptation mechanism of the step size o has a
great advantage. It allows the ES to self-adapt to differ-
ent fitness landscapes. Therefore, besides the population
size, the ES does not have any parameters that have to
be tuned by the designer. Since the ES directly encodes
each parameters as floating-point numbers, the ES is bet-
ter suited for problems, such as neural networks, that are
specified by a set of parameters.

Evolutionary programming (EP) has been introduced
by Fogel [10]. EP is another evolutionary algorithm
and very similar to ES. Recent applications to general
function optimization can be found in [11]. Since both
schemes are very similar, it can be expected that EP
yields very similar results when applied to the evolution
of Braitenberg vehicles.

2.8 (enetic Algorithm vs. Evolution Strategy

Even though the differences between GAs and ES seem
rather small, they significantly influence the performance
of both algorithms and, consequently, they aim at differ-
ent problem domains. The remainder of this subsection
discusses some important aspects.

The main difference between both algorithms is that
GAs apply mutations to only a few parameters per off-
spring, whereas the ES applies mutation to «ll param-
eters, i.e., p,, — 1. Furthermore, the ES encodes each
parameter as floating-point number, whereas GAs have,

in the general case, to worry about the coding scheme.
Traditionally, GAs encode each parameters as bitstrings.
However many applications that involve real-valued pa-
rameters [17, 18] directly use floating-point numbers. In
addition, the ES features a self-adaptation mechanism,
which self-adapts the step size by itself so that no pa-
rameter settings have to be done by the user.

From the coding mechanisms it should become clear
that ES is rather suited for real-valued parameters,
whereas GAs with traditional bit coding schemes are
preferred for combinatorical tasks like the traveling-
salesman problem. Furthermore, the ES increases adap-
tation, since the algorithm is inherently adaptive.

Many applications [1, 2, 7, 17] report high performance
when applied to various optimization task, especially
the optimization of multimodal function that contain
millions of local optima but only one global optimum.
The high performance that was achieved in these appli-
cations suggest that GAs easily escape from local op-
tima and that they have very good global convergence.
However, recent results [22] show that the performance
of GAs drastically degrades if a rotation is applied to
the coordinate system. Furthermore, theoretical analy-
sis [23] shows that the computational complexity of GAs
can increas up to O(n™), when applied to multimodal
functions with n parameters that depend on each other.
Even when applied to simple unimodal functions, epis-
tatis drastically slows down the convergence of GAs [22].
Moreover, that analysis suggests that the independence
of the parameters is an essential prerequisite for high
performance of GAs.

A rotation of the coordinate system does not change
the fitness function (fitness landscape), but it induces
epistatis. Epistatis describes the interaction of differ-
ent parameters with respect to the fitness function. In
other words, if epistatis between parameters is present,
all parameters involved have to be adapted simultane-
ously in order to achieve any improvement of the fitness
function; adapting only one parameter leads to a worse
fitness. Thus, applying mutation to only one parameter
is not sufficient in such situations.

In a particular application, one important question is,
whether the parameters are independent or if they de-
pend on each other, i.e., whether epistatis is present.
When looking at the control structures of autonomous
agents, the controller’s parameters are not independent
in the general case. To this end, Section 4 investigates
the evolution of Braitenberg controllers. It turns out that
the weights of the Braitenberg network are not indepen-
dent. The results show that even a simple (3,6)-ES is
more that one order of magnitude faster than GA-based
approaches.

It could be argued that an acceleration of the devel-
opment of controllers by one order of magnitude is not
that important. However, such an improvement is of



Figure 1: The Khepera robot. The right part shows the approximate location of the infrared sensors IR; ... IRs.

great practical interest. First of all, control architectures
that allow the agent to adapt to the environment have
to be developed in real hardware. Thus, it is important
whether the developmental process consumes only a few
hours or if it take several days. Second, a moderate con-
vergence speed becomes more important as the complex-
ity of the control architectures increases. From a theoret-
ical point of view, any randomized algorithm eventually
finds a solution with a probability strictly greater than
zero. However, from a practical point of view, time mat-
ters. Thus, good convergence speed allows for the de-
velopment of more complex control architectures, which,
in turn, allows the agent to better adapt to its environ-
ment and the tasks, which are to be done by the agent.
In summary, the results presented in Section 4 strongly
suggest that the research community should devote more
attention to the evolution strategy or evolutionary pro-
gramming.

3 The Experimental Setup

This section describes the experimental setup for the evo-
lution and optimization of Braitenberg vehicles. First,
Subsection 3.1 describes the Khepera robot, which is
widely-used in research on autonomous agents. Then, a
Braitenberg architecture is described in Subsection 3.2,
and, finally, Subsection 3.3 describes the arena, in which
the robot has to operate.

3.1 The Khepera Robot

The Khepera robot (cf. Fig. 1) is 55 mm in diameter
and 32 mm high. The robot is equipped with eight in-
frared and eight ambient light sensors as well as two mo-
tors, which can be controlled independently. Khepera’s
sensors and motors are controlled by a Motorola 68331
micro controller. Khepera can operate in two modes.
In the first mode, a program is downloaded into the on-
board memory, which allows Khepera to operate without
any further hardware. In the second mode, Khepera is

connected with a workstation via a serial link. In the
experiments reported in this paper, the robot was con-
trolled from a workstation and the ambient light sensors
were not used. A detailed description of the robot and
its electrical parts can be found in [15].

The motors can be controlled independently of each
other by sending commands (i.e., function calls) to the
robot. Valid speed values are in the range [—40, 40]; in-
side the program, these values are normalized such that
they are in the range [—1,1]. To avoid problems caused
by the floating-point-to-integer conversion, [0,1]-equal-
distributed random numbers are added to the motor
speeds at each time step. By setting both motors to
the same speed but with different signs, for example, the
robot spins on the spot. The robot interprets the speed
settings as commands. Internal PID controllers take care
of the robot’s dynamics. However, rapidly changing mo-
tor commands induce additional dynamics, which can
cause problems for the fitness evaluation. By means of
attached wheel encoders, the robot measures the mo-
tor’s real speed, which differ from the command setting
in situations, where the robot cannot move. The real
speeds can be obtained by sending special commands to
the robot.

Khepera is equipped with eight infrared proximity sen-
The sensor readings are of type integer and the
values are in the range [0,1023]. Within the program,
the sensor readings are normalized such that the values
are in the range [0, 1]. The sensors give reasonable input
values for object distances between 10 mm and 60 mm.
A sensor value of 1023 indicates that the robot is very
close to the object, and a sensor value of 0 indicates that
the robot does not receive any reflection of the infrared
signal.

SOIS.

A major problem with Khepera is that the sensor read-
ings are very noisy, which causes several problems for the
fitness evaluation of a given controller, i.e., the weights
of the Braitenberg network. The effect of the noisy sen-
sors to the fitness evaluation can be seen in Fig. 2. Fig-
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Figure 2: The noisy sensor readings cause a dynamical
change of the individual fitness contributions f; even un-
der constant environmental conditions.

ure 2 shows how the fitness contributions f; are dynami-
cally changing under constant environmental conditions,
1.e., constant motor speeds, constant ambient light, and
constant position in the arena. Furthermore, the sensor
readings are subject to several environmental conditions,
such as the material the object is made of, the object’s
surface, and the ambient light. During a long series of
experiments, the environment cannot be kept constant.
In summary, the fitness evaluation is extremely noisy.

3.2 Braitenberg Vehicles

As outlined in the introduction, an autonomous agent
cannot sit somewhere while doing nothing, since it would
consume energy and would eventually die. Rather, the
agent has to operate in its environment. Thus, mov-
ing around while avoiding obstacles is a key issue in au-
tonomous agent research. Braitenberg [4] has proposed
a simple architectures for such tasks. Figure 3 shows
a control architecture inspired by a Braitenberg type-3c
vehicle. The main idea is that a sensor with a high prox-
imity activation accelerates the motor on the sensor’s
side whereas this sensor slows down the motor on the
opposite side. By this principle, the presence of an ob-
stacle leads to different motor speeds, which causes the
robot to turn. Depending on the activation of all prox-
imity sensors, the robot either turns, spins on the spot,
or even backs up.

Braitenberg type-3c architectures are simple and
straight forward, but finding appropriate weights is any-
thing but easy. The control architecture is typically im-
plemented as a neural network. The activation of the left
motor M’ is calculated by the following formula

8
M' =) IPwl+w, (1)

=1

Obstacle

Moving path

Figure 3: A control architecture inspired by a Braiten-
berg type-3C vehicle. The sensory information controls
the motors via inhibitory and excitatory connections.

where IP; denotes the activation of the proximity sen-
sor i and w! denotes the weight that connects proximity
sensor IP; with the left motor. The weight w} repre-
sents the idle activation of the left motor. This “bias”
weight is responsible for the robot’s forward motion in
the absence of any obstacle. The calculation of the right
motor’s activation is similarly given by

8
M™ =) "IPw] +w) . (2)

=1

The main problem is to determine the weights
wh, w?, wh, and wf, such that the robot is moving around
while it avoids obstacles. Mostly, this is done in a trial
and error process. Standard neural network training pro-
cedures cannot be used, since it is not reasonable to de-
termine a set of training patterns prior to training. Thus,
the evolution strategy is an ideal candidate for this op-

timization problem.

3.3 The Experimental Setup

The experimental setup has been chosen to be as close
as possible to setups proposed in other research [8, 9,
18]. Figure 4 shows the arena, in which the robot has
to move. The arena is of size 60x45 cm and the walls
are made from wood with a height of 3 cm. The width
of the corridors is chosen such that always at least one
proximity sensor has a less-than-maximum value.

As already discussed, the robot in such an arena has
to move forward quickly while it has to avoid obstacles.
In order to evolve good Braitenberg vehicles, the fitness
function has to incorporate the motor speeds and the dis-
tance to obstacles. However, using speed and distance
only is not sufficient. In such a case, a robot that is spin-
ning on the spot with a high speed far away from any ob-
stacle would have a high fitness. But such a robot would
not do anything useful. Therefore, the fitness function



Figure 4: The arena of approximate size 60x45 cm. The
indicated position (facing left) is the starting point for
fitness evaluation.

is to be enhanced by a third term that favors straight
movements by penalizing turns (see also [8, 9, 18]).

The fitness is measured as follows. At a particular
time step ¢, both motor speeds V; and V, as well as all
eight proximity sensors IR; are measured. Then, the
speed of the robot’s center V; = (Vi + V;.)/2, the penalty
term Av; = |V} — V,|, and the sensor with the highest
activation TP = max; I P; are calculated. The fitness
contribution f; for step ¢ is then

£ =Vi(1 = Av)(1-1IP) . (3)

Finally, the total fitness is the sum over ¢pnax (e.8., 240)
time steps

F:Z;ft:z_;v’t(l—\/Avt)(l—IR) . (a)

Khepera’s on-board controller allows for sending all
sensor values every each 100 milliseconds (ms). That
means, the robot moves for 100 ms with constant mo-
tor speeds. Then, the controller receives the new values
and calculates new motor speeds for the next time step.
Meanwhile, the individual fitness component f; is calcu-
lated and added to the total fitness.

4 Experiments

This section reports some typical results when evolving
Braitenberg vehicles by means of a (3, 6)-ES with self-
adaptation of the step size [24]. Some of the results are
discussed in Subsection 4.3. A (3, 6)-ES generates 6 new
offspring per generation and selects the 3 fittest individu-
als as parents for the next generation. A (3, 6)-selection
scheme implies that the strategy does not use any eli-
tist selection scheme. A non-elitist selection scheme was
chosen, since the fitness evaluation is extremely noisy (cf.
Fig. 2). In the experiments reported in this paper, the ES
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Figure 5: A typical run of the evolution of a constrained
Braitenberg vehicle. The upper graph represents the best
individual whereas the lower graph prepresents the aver-
age of the whole population.

generates two offspring without crossover, two with uni-
form recombination, and two with intermediate recom-
bination, and the initial standard deviation was set to
0.5. A further source of additional noise is that also the
individual’s starting conditions vary. Over a long time,
the environmental conditions cannot be held constant;
this phenomenon is intrinsic to real-world applications.

For each experiment, at least four runs have been per-
formed. Figures 5 and 6 present typical runs that resem-
ble average performance. Each figure shows the fitness
of the best individual as well as the average fitness of the
entire population. No average of several runs is shown,
since averaging eliminates interesting details. The other
runs are within a 20 percent interval of the presented
runs.

In the evolution of Braitenberg vehicles, a main prob-
lem is to find a first controller that exhibits an even tiny
reasonable behavior. Initializing all weights at random
leads to an agent that immediately crashes into the wall,
where it gets stuck. To help guide the evolution pro-
cess, all weights were initialized with very small nega-
tive random weights w! and w! (i.e., [-0.5,0]) and the
weights w), and w}, were set to very small positive val-
ues (i.e., [0,0.1]). Furthermore, the first series of experi-
ments exploit the morphology of the robots, i.e., the left
and right part of the controllers are constrained to be
equal w} = wf and w! = w(14_i)m0d8+1. This constraint
leads to a reduced search space of nine parameters. In all
experiments, fitness evaluation was done over 240 time
steps. Since one time step requires 100 ms, the evalua-
tion of each controller takes about 24 seconds.



4.1 Constrained Controllers

A typical run of the evolution of a constrained Braiten-
berg controller can be seen in Fig. 5. Figure 5 shows
the fitness of the population’s fittest agent and the av-
erage of the whole population. In the first few genera-
tions, most vehicles are sitting at the initial position or
crashing backwards into the wall, resulting in a negative
fitness. After a few more generations, some agents are
moving forward, but after some steps, got stuck at the
wall; at that time, the avoidance behavior was not suffi-
cient. However, such a short forward movement results
in a small positive fitness, which is a first step towards
a useful agent. After about eight to ten generations, the
fittest agents are moving slowly inside the corridor. But
sometimes, they are hitting the walls again. After hitting
a wall, good controllers set the motor speeds to negative
values, which causes the robots to back up from the wall,
and after turning, they continue moving inside the cor-
ridor. After 30 generations, the fittest agents perform
up to three complete laps in the arena. Even though
both controller sides are constrained to be equal, identi-
cal weights do not ensure total symmetric behavior. Tol-
erances in the electrical characteristics of the motors and
sensors impose an asymmetric behavior. Consequently,
such controllers have to find a good compromise. As a
result, Braitenberg vehicles with constrained controllers
move forward in an almost straight line and turn, if they
approach an obstacle. Overall, a Braitenberg vehicle
with a constrained controller moves with a high speed
but with a rather rough trajectory. But a Braitenberg
vehicle adapts its behavior to both the environment and
the unspecified or even changing characteristics of its
electrical components.

4.2  Unconstrained Controllers

Figure 6 shows a typical run of the evolution of an un-
constrained Braitenberg controller. Such a controller has
18 parameters and the ES has to evolve both sides of the
controller, i.e., the connections for the left motor activa-
tion M' as well as the right motor activation M". Thus,
as can be seen in Figs. 5 and 6, the evolution of an un-
constrained Braitenberg controller requires more time,
and also, the final performance is lower than the perfor-
mance of the constrained controller. The unconstrained
controller develops a different survival strategy. From
the very beginning, the first controllers have different
bias weights w} and w, which cause the robot to turn in
small circles. Circling around results in a small positive
fitness. During the next generations, this circling process
is preserved, but the radius becomes larger and larger.
After approximately 30 generations, one controller side
improves its object-avoidance behavior so that it pre-
vents the robot from crashing into the wall; the resulting
behavior can be interpreted as wall following. This wall-
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Figure 6: A typical run of the evolution of a uncon-
strained Braitenberg vehicle. The upper graph repre-
sents the best individual whereas the lower graph prep-
resents the average of the whole population.

following behavior is not encoded in the fitness function.
Rather, it is emerged from the evolution process. In the
ongoing evolution process, this wall-following behavior is
further improved, and after about 80 generations, most
robots perform two complete laps in the arena.

4.8 Discussion

The previous two subsections have investigated the de-
velopment of two different controller types, namely con-
strained and unconstrained controllers. The constrained
control architecture is inspired by the biological observa-
tion that most animals are of symmetric shape. A con-
strained controller has less parameters, which accelerates
the evolution process, but, at the same time, limits the
number of potential solutions. As a consequence, both
controllers develop different survival strategies.

The relationships between both controller types were
further investigated in a series of control experiments, in
which the weights of unconstrained controllers were ini-
tialized with weights taken from an evolved, constrained
controller. In the first five to ten generations, these con-
trollers were losing their behavior and the fitness dropped
to values around 10. Afterwards, these unconstrained
controllers started to develop the wall-following behav-
ior as already discussed. Thus, the developed controller
is adapted not only to the environment but also to the
control architecture itself.

Further investigations have shown that a controller
reacts very sensitively to parameter changes; the con-
troller’s parameters exhibit high epistatis. This epistatis
results from the sensor’s non-linearities and the 100 ms
time interval between two subsequent sensor readings. It
is not reasonable to change, for example, only the bias

weight w!). This would result in a too high speed and



the robot would crash into the next wall. Conversely,
changing only one “avoidance” weight w! would degrade
the fitness, since the robot would tend to wriggle. Con-
sequently, all parameters have to be adapted simultane-
ously. The ES obeys this requirement by using a mu-
tation probability p,, = 1.0, i.e., the ES applies muta-
tion to all parameters at the same time. It is suspected
that the observable epistatis is the main reason for the
inefficiency of GA-based approaches [8, 9, 18]. That re-
search reports that the GA needs about 50 to 100 gener-
ations with a population of 80 individuals. Such an op-
timization process takes approximately 66 hours, which
is approximately 40 times longer than that of the ES
approach. This coincides with the research discussed in
[22], which investigates the performance of GAs when
applied to artificial fitness functions. The main results
presented in [22] indicate that the independence of the
parameters to be optimized is an essential prerequisite
for GAs and that the GA’s performance significantly de-
grades under epistatis.

Even though this paper points to other GA-based re-
search, the main focus of this paper is the application of
the ES to the evolution and optimization of Braitenberg
vehicles. A comparison across remote research would be
very problematic, since not all parameters of such a real-
world application can be replicated. In addition, we did
a series of control experiments, in which we used a GA
instead of the ES. The control experiments yield roughly
the same performance as reported in [8, 9, 18]. The GA
needs approximately ten times more fitness evaluations
than the ES. The GA suffers from the high epistatis and
the need of a rather large population of about 80 indi-
viduals. In each generation, the GA generates ten times
more offspring than the ES. Thus, in this application, the
ES converges in a time period, in which the GA performs
only five to ten generations.

5 Enhancements

For the research on GAs, it is very important to consider
genomes with varying length. Several applications, e.g.,
[14], explicitly use this feature for the development of
more complex control structures. The main underlying
idea is that first, the GA develops a small solution with
the most important properties. In the ongoing evolution
process, the genome is allowed to grow in size, which
enables the system to add more beneficial features.

It is often argued that this dynamical growth of the
genome is proprietary for GAs and not reasonable for
the ES. However, as outlined above, both types of al-
gorithms are very similar. Both apply mutation as well
as recombination. For a mutation operator, the length
of the genome does not matter. If applying recombina-
tion/crossover, these operators have to ensure the cor-
rectness of a new genome anyway.

In [21] a hybrid method has been proposed that allows

for the development of neural networks with minimal
topology. Essentially, this hybrid method works as fol-
lows: Each offspring randomly adds and removes neurons
as well as connections from the network that is has in-
herited from its parents. Similar to the self-adaptation of
the step size, this hybrid method self-adapts the proba-
bilities for adding and removing of connections and units.
By these means, the network can dynamically grow and
shrink depending on the actual environment.

6 Conclusions

This paper has discussed the practical application of
the evolution strategy to the evolution and optimiza-
tion of Braitenberg vehicles. Braitenberg vehicles are
autonomous agents with a simple control architecture,
which is typically implemented as a neural network. Au-
tonomous agents are very important tools in New Ar-
tificial Intelligence, since they study intelligence as the
result of a system environment interaction, rather than
understanding intelligence on a computational level.

In the practical experiments, constrained as well as
unconstrained Braitenberg controllers have been investi-
gated. These two controllers typically develop different
survival strategies, which have also been discussed. A
comparison with other research that apply genetic al-
gorithms to very similar tasks shows that the ES-based
approach is much faster than the GA-based approach.
It is suspected that the high epistatis between the con-
troller’s parameters drastically slows down the GA-based
approach. The ES speeds up the development of Brait-
enberg controllers by more than one order of magnitude,
which is very important, since experimentation is to be
done with real systems. The ES converges in a few hours
compared to 66 hours required for the GA-based ap-
proach.

This paper has also argued that the evolution strategy
is more adaptive, since it self-adapts parameters, such as
the step size or mutation probability. This allows to bet-
ter embed the whole approach in more complex tasks. It
could be argued that the small mutation rate as is usually
used in GAs is biologically more plausible than a muta-
tion rate p,, = 1 as is used in the ES. However, we argue
that it is the other way around. If one looks at living
things, all individuals differ in almost all attributes. For
example, if comparing two arbitrary selected humans,
these two humans will differ in all perspectives. It seems
that nature applies mutation to only a few genes. How-
ever, most genomes do not encode all parameters of the
resulting individual. Rather, the genome encodes devel-
opmental processes. Thus, modifying one gene results in
different developmental programs, and consequently, the
resulting individual differs in (almost) all perspectives.
Since most evolutionary approaches do not involve real
developmental processes, such as growing, we argue that
the ES better reflect nature’s principles.



Furthermore, the experiments also indicate that the
evolution process can highly benefit from an exploitation
of physical matters.

Further research will be devoted to more complex
control architectures for object avoidance, navigation,
and manipulation as well as other neural controllers,
which are designated to enhance the robots capabili-
ties/competences
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