
In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, and S.W. Wilson, (Eds.), From Animals to Animats 4: Proceedings of the FourthInternational Conference on Simulation of Adaptive Behavior , pp. 411-420, Cambridge, MA: The MIT Press/Bradford Books.Increasing Adaptivity through Evolution StrategiesRalf SalomonAI Lab, Department of Computer Science, University of ZurichWinterthurerstrasse 190, 8057 Zurich, SwitzerlandFAX: +41-1-363 00 35; Email: salomon@i�.unizh.chAbstractThe automated generation of controllers forreal-world autonomous agents by means of evo-lutionary methods has recently attracted a lotof attention. Most of the pertinent researchhas employed genetic algorithms or variationsthereof. We have applied a di�erent evolutionarymethod to the generation of a control architec-ture for Braitenberg vehicles, namely \evolution-ary strategies". The application of the ES acceler-ates the development of such controllers by morethan one order of magnitude (a few hours com-pared to more than two days). This result is veryimportant, since the development process is to bedone in real systems. In addition to the dramaticspeedup, there is an important theoretical reasonfor preferring evolutionary strategy over geneticalgorithms, namely epistatic interaction.1 IntroductionAutonomous agents are self-su�cient, embodied systems(robots) [5] that do some useful work. Autonomousmeans that the agent operates without any human con-trol. Self-su�cient means that the agent can maintainits internal energy level over a long time; typically, theagent gets some reward after doing useful work. Au-tonomous agents are equipped with sensors and e�ec-tors, such as motors or grippers. An agent perceives itsenvironment through sensors like infrared sensors and itmanipulates its environment by actively using the e�ec-tors. One major goal of research in autonomous agentsis to study intelligence as the result of a system environ-ment interaction, rather than understanding intelligenceon a computational level. Thus, autonomous agents arevery important in the �eld of new AI. For an overview ofspecial issues involved in autonomous agent design see,for example, [16, 25].The control structures of autonomous agents can bedeveloped either by the designer or by applying evolu-tionary algorithms. Many research projects [6, 8, 9, 14,18] have used genetic algorithms (GAs) to evolve neuralcontrol structures for autonomous agents. As pointedout in Harvey et al. [14], the automated evolution is

more appropriate, since it allows the development ofcomplex control structures that exhibit many interac-tions between sub-systems. In this paper, we too ad-vocate the use of evolutionary algorithms for adaptivesystems.Even though GAs have been successfully applied torather small tasks, an increasing amount of research givesstrong evidence that GAs are very time consuming if theparameters exhibit epistatis. Epistatis describes the in-teraction of parameters with respect to the �tness of anindividual. Results of other research [22, 23] strongly in-dicate that the independence of parameters is an essen-tial prerequisite of the GA's high global convergence per-formance; the presence of epistatis drastically slows downconvergence. The problem in the context of autonomousagents is that the parameters of control systems for real-world applications are not independent. Consequently,even the evolution of rather simple controllers, such asBraitenberg vehicles, is very time consuming. To relievethis problem, it is suggested [14] to divide the evolutionof more complex systems into di�erent stages.Until now, most research projects have focused onGAs, which are only one option of evolutionary algo-rithms. Surprisingly little attention has been devotedto the evolution strategy (ES) as de�ned by Rechenberg[20] and Schwefel [24]. The ES is especially designed forapplications that involve real-valued parameters. To thisend, Section 2 gives a brief comparison of these two algo-rithms with respect to autonomous agents. One result ofthis comparison is that the performance of the ES doesnot degrade in the presence of epistatis; the ES behavesinvariant with respect to epistatis.The theoretical analysis of Section 2 is supported bya case study on the evolution of Braitenberg vehicles.To this end, Section 3 describes the setup of the casestudy. The case study consists of the KheperaTM robot,which is an example of a small robot that is widely usedfor research on autonomous agents. Subsection 3.1 de-scribes Khepera in more detail. In order to achieve thegoal of operating autonomously, an agent has to per-form di�erent tasks, such as exploring the environment,moving around, avoiding obstacles and so forth. Theagent's behavior is controlled by a control system, whichis typically implemented as a neural network. Such a1



control system uses the sensor readings and its internalstate to determine the agent's next action. Subsection3.2 describes a simple neural control architecture calleda Braitenberg vehicle [4], and Section 3 describes thearena, in which the robots have to operate.Section 4 demonstrates the bene�ts of the ES whenapplied to the development of adaptive control architec-tures. That section reports some experiments obtainedby applying a (3,6)-ES to the evolution of Braitenbergvehicles. A (3,6)-ES evolves reasonable Braitenberg con-trollers within 30 generations, which takes approximatelyone and a half hours. Other research [8, 9, 18] usesGAs for almost the same task. However, the GA-basedapproach requires approximately two and a half days.Thus, the ES speeds up the developmental process bymore than one order of magnitude. This speed up is ofgreat practical relevance, since the experiments are to bedone in real systems that dynamically interact with thereal world. Also, such a time reduction allows for the ap-plication to more complex control structures, which arecurrently intracktable.One important feature of GAs is their ability to usegenomes with variable length. Section 5 brie
y showshow this important feature can be incorporated in theES. Finally, Section 6 concludes with a summary of thework presented in this paper.2 Evolutionary AlgorithmsEvolutionary algorithms can be seen as a framework thatincludes genetic algorithms, evolutionary strategies, evo-lutionary programming, and genetic programming. Allthese algorithms are heuristic population-based searchprocedures based on natural selection and populationgenetics. Typically, such population-based search pro-cedures generate o�spring in each generation. Then a�tness value (de�ned by a �tness function) is assigned toeach o�spring. Depending on the �tness, each popula-tion member survives with a certain probability.All evolutionary algorithms implement di�erentstrategies, and therefore, each algorithm is best suitedfor di�erent application domains. To this end, the fol-lowing subsections give a brief description of GAs andES. A good comparison of evolutionary algorithms canbe found in [2]. Section 2.3 compares both schemes inmore detail with respect to autonomous agents, adap-tivity, and performance issues under epistatis. Further-more, both algorithms are well grounded by an extensivetheory, which can be found in, for example, [3, 12, 17, 24].2.1 Genetic AlgorithmThe GA technique is based on Holland [13] and a goodintroduction to GAs can be found in [12]. There doesnot exist one GA, but rather a variety of variants, eachcovering di�erent applications and aspects. According

to [24], the canonical GA can be described as follows:Step 0: Initialization of the population's individualsand evaluation of the individuals' �tnessStep 1: Selection of the parents according to a prese-lected selection scheme (e.g., roulette wheel,linear ranking, truncation selection)Step 2: Recombination of selected parents by ex-changing parts of their genesStep 3: Mutation of some genes by a prespeci�edprobabilityStep 4: Go to Step 1Before using a GA in a particular application domain,the designer is concerned with the coding of the parame-ters, the implementation of the mutation and recombina-tion/crossover operators, and the choice of the selectionscheme. Traditionally, a GA treats every parameter as abit string. Depending on the required precision, a codingscheme can encode each parameter by a certain numberof bits and an attached mapping function. The mappingfunction maps the bit representation to real-valued pa-rameters. Another coding scheme is to directly use thebit representation used by the programming language.In such a case, no mapping function is needed. Otheralgorithms like the BGA [17] treat each parameter as areal-valued data type and implement mutation by addingor subtracting small random numbers.In each generation, a GA typically draws pairs of par-ents and applies mutation and recombination with prob-abilities pm and pr respectively. After generating a spec-i�ed number of o�spring, the GA evaluates each o�-spring and selects the best population members as par-ents for the next generation. Typical selection schemesare roulette wheel selection, linear ranking, or trunca-tion selection. Very often, GAs use an elitist selectionscheme, which preserves the best individual in order tomaintain gained success. The in
uence of di�erent selec-tion schemes on the resulting convergence can be foundin, for example, [26].When using GAs, it is very important to �nd ap-propriate parameter settings. Normally, the muta-tion probability pm is set to small values pm � 1=n[2, 7, 12, 17, 19], where n denotes the number of param-eters, e.g., the number of weights in a neural networkcontroller. Generally, GAs prefer rather high recombi-nation rates [2, 12, 17]. If using one-point or two-pointcrossover, the recombination probability pr is set to val-ues between 0.5 and 0.9, and if using uniform recombi-nation, the probability is set to pr = 0:5.This GA framework has been successfully applied invarious domains, such as function optimization, VLSIdesign, neural network learning, and autonomous agentdevelopment. Applications of GAs in the �eld of au-tonomous agents can be found, for example, in [6, 8, 9,2



14, 18].2.2 Evolution StrategyThe ES has been introduced in [20] (see, also, [24]). TheES is similar to GAs. A (� +; �)-ES maintains a popula-tion of � parents and generates � o�spring in each gen-eration. In a (�; �)-ES, the � parents are selected frombest � o�spring, whereas in a (� + �)-ES, the � parentsare selected from the union of parents and o�spring. Forfurther details see, for example, [2]. Currently [2], the(�; �)-ES is recommended, especially in noisy environ-ments.In contrast to GAs, the ES encodes each parameteras 
oating-point numbers, and it applies mutation toall parameters simultaneously, i.e., pm = 1. Mutationsare typically implemented by adding (0; �)-normal dis-tributed random numbers. The key concept of the ES isthat it, in its simplest form, maintains one global stepsize � for each individual. This step size is self-adaptedby the following mechanism: Each o�spring inherits itsstep size from its parent(s). This step size is modi�ed bylog-normal random numbers prior to mutation. By thismeans, the step size is self-adapted to nearly optimal val-ues, since, in a statistical sense, those o�spring survivethat have the best adapted step size. For further detailsof di�erent step size schemes see [2, 24]. In addition, theES can use the same recombination schemes as GAs [2].The self-adaptation mechanism of the step size � has agreat advantage. It allows the ES to self-adapt to di�er-ent �tness landscapes. Therefore, besides the populationsize, the ES does not have any parameters that have tobe tuned by the designer. Since the ES directly encodeseach parameters as 
oating-point numbers, the ES is bet-ter suited for problems, such as neural networks, that arespeci�ed by a set of parameters.Evolutionary programming (EP) has been introducedby Fogel [10]. EP is another evolutionary algorithmand very similar to ES. Recent applications to generalfunction optimization can be found in [11]. Since bothschemes are very similar, it can be expected that EPyields very similar results when applied to the evolutionof Braitenberg vehicles.2.3 Genetic Algorithm vs. Evolution StrategyEven though the di�erences between GAs and ES seemrather small, they signi�cantly in
uence the performanceof both algorithms and, consequently, they aim at di�er-ent problem domains. The remainder of this subsectiondiscusses some important aspects.The main di�erence between both algorithms is thatGAs apply mutations to only a few parameters per o�-spring, whereas the ES applies mutation to all param-eters, i.e., pm = 1. Furthermore, the ES encodes eachparameter as 
oating-point number, whereas GAs have,

in the general case, to worry about the coding scheme.Traditionally, GAs encode each parameters as bitstrings.However many applications that involve real-valued pa-rameters [17, 18] directly use 
oating-point numbers. Inaddition, the ES features a self-adaptation mechanism,which self-adapts the step size by itself so that no pa-rameter settings have to be done by the user.From the coding mechanisms it should become clearthat ES is rather suited for real-valued parameters,whereas GAs with traditional bit coding schemes arepreferred for combinatorical tasks like the traveling-salesman problem. Furthermore, the ES increases adap-tation, since the algorithm is inherently adaptive.Many applications [1, 2, 7, 17] report high performancewhen applied to various optimization task, especiallythe optimization of multimodal function that containmillions of local optima but only one global optimum.The high performance that was achieved in these appli-cations suggest that GAs easily escape from local op-tima and that they have very good global convergence.However, recent results [22] show that the performanceof GAs drastically degrades if a rotation is applied tothe coordinate system. Furthermore, theoretical analy-sis [23] shows that the computational complexity of GAscan increas up to O(nn), when applied to multimodalfunctions with n parameters that depend on each other.Even when applied to simple unimodal functions, epis-tatis drastically slows down the convergence of GAs [22].Moreover, that analysis suggests that the independenceof the parameters is an essential prerequisite for highperformance of GAs.A rotation of the coordinate system does not changethe �tness function (�tness landscape), but it inducesepistatis. Epistatis describes the interaction of di�er-ent parameters with respect to the �tness function. Inother words, if epistatis between parameters is present,all parameters involved have to be adapted simultane-ously in order to achieve any improvement of the �tnessfunction; adapting only one parameter leads to a worse�tness. Thus, applying mutation to only one parameteris not su�cient in such situations.In a particular application, one important question is,whether the parameters are independent or if they de-pend on each other, i.e., whether epistatis is present.When looking at the control structures of autonomousagents, the controller's parameters are not independentin the general case. To this end, Section 4 investigatesthe evolution of Braitenberg controllers. It turns out thatthe weights of the Braitenberg network are not indepen-dent. The results show that even a simple (3,6)-ES ismore that one order of magnitude faster than GA-basedapproaches.It could be argued that an acceleration of the devel-opment of controllers by one order of magnitude is notthat important. However, such an improvement is of3
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8 7Figure 1: The Khepera robot. The right part shows the approximate location of the infrared sensors IR1 . . . IR8.great practical interest. First of all, control architecturesthat allow the agent to adapt to the environment haveto be developed in real hardware. Thus, it is importantwhether the developmental process consumes only a fewhours or if it take several days. Second, a moderate con-vergence speed becomes more important as the complex-ity of the control architectures increases. From a theoret-ical point of view, any randomized algorithm eventually�nds a solution with a probability strictly greater thanzero. However, from a practical point of view, time mat-ters. Thus, good convergence speed allows for the de-velopment of more complex control architectures, which,in turn, allows the agent to better adapt to its environ-ment and the tasks, which are to be done by the agent.In summary, the results presented in Section 4 stronglysuggest that the research community should devote moreattention to the evolution strategy or evolutionary pro-gramming.3 The Experimental SetupThis section describes the experimental setup for the evo-lution and optimization of Braitenberg vehicles. First,Subsection 3.1 describes the Khepera robot, which iswidely-used in research on autonomous agents. Then, aBraitenberg architecture is described in Subsection 3.2,and, �nally, Subsection 3.3 describes the arena, in whichthe robot has to operate.3.1 The Khepera RobotThe Khepera robot (cf. Fig. 1) is 55 mm in diameterand 32 mm high. The robot is equipped with eight in-frared and eight ambient light sensors as well as two mo-tors, which can be controlled independently. Khepera'ssensors and motors are controlled by a Motorola 68331micro controller. Khepera can operate in two modes.In the �rst mode, a program is downloaded into the on-board memory, which allows Khepera to operate withoutany further hardware. In the second mode, Khepera is

connected with a workstation via a serial link. In theexperiments reported in this paper, the robot was con-trolled from a workstation and the ambient light sensorswere not used. A detailed description of the robot andits electrical parts can be found in [15].The motors can be controlled independently of eachother by sending commands (i.e., function calls) to therobot. Valid speed values are in the range [�40; 40]; in-side the program, these values are normalized such thatthey are in the range [�1; 1]. To avoid problems causedby the 
oating-point-to-integer conversion, [0,1]-equal-distributed random numbers are added to the motorspeeds at each time step. By setting both motors tothe same speed but with di�erent signs, for example, therobot spins on the spot. The robot interprets the speedsettings as commands. Internal PID controllers take careof the robot's dynamics. However, rapidly changing mo-tor commands induce additional dynamics, which cancause problems for the �tness evaluation. By means ofattached wheel encoders, the robot measures the mo-tor's real speed, which di�er from the command settingin situations, where the robot cannot move. The realspeeds can be obtained by sending special commands tothe robot.Khepera is equipped with eight infrared proximity sen-sors. The sensor readings are of type integer and thevalues are in the range [0; 1023]. Within the program,the sensor readings are normalized such that the valuesare in the range [0; 1]. The sensors give reasonable inputvalues for object distances between 10 mm and 60 mm.A sensor value of 1023 indicates that the robot is veryclose to the object, and a sensor value of 0 indicates thatthe robot does not receive any re
ection of the infraredsignal.A major problem with Khepera is that the sensor read-ings are very noisy, which causes several problems for the�tness evaluation of a given controller, i.e., the weightsof the Braitenberg network. The e�ect of the noisy sen-sors to the �tness evaluation can be seen in Fig. 2. Fig-4
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Figure 2: The noisy sensor readings cause a dynamicalchange of the individual �tness contributions ft even un-der constant environmental conditions.ure 2 shows how the �tness contributions ft are dynami-cally changing under constant environmental conditions,i.e., constant motor speeds, constant ambient light, andconstant position in the arena. Furthermore, the sensorreadings are subject to several environmental conditions,such as the material the object is made of, the object'ssurface, and the ambient light. During a long series ofexperiments, the environment cannot be kept constant.In summary, the �tness evaluation is extremely noisy.3.2 Braitenberg VehiclesAs outlined in the introduction, an autonomous agentcannot sit somewhere while doing nothing, since it wouldconsume energy and would eventually die. Rather, theagent has to operate in its environment. Thus, mov-ing around while avoiding obstacles is a key issue in au-tonomous agent research. Braitenberg [4] has proposeda simple architectures for such tasks. Figure 3 showsa control architecture inspired by a Braitenberg type-3cvehicle. The main idea is that a sensor with a high prox-imity activation accelerates the motor on the sensor'sside whereas this sensor slows down the motor on theopposite side. By this principle, the presence of an ob-stacle leads to di�erent motor speeds, which causes therobot to turn. Depending on the activation of all prox-imity sensors, the robot either turns, spins on the spot,or even backs up.Braitenberg type-3c architectures are simple andstraight forward, but �nding appropriate weights is any-thing but easy. The control architecture is typically im-plemented as a neural network. The activation of the leftmotor M l is calculated by the following formulaM l = 8Xi=1 IPiwli +wl0 ; (1)
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Moving pathFigure 3: A control architecture inspired by a Braiten-berg type-3C vehicle. The sensory information controlsthe motors via inhibitory and excitatory connections.where IPi denotes the activation of the proximity sen-sor i and wli denotes the weight that connects proximitysensor IPi with the left motor. The weight wl0 repre-sents the idle activation of the left motor. This \bias"weight is responsible for the robot's forward motion inthe absence of any obstacle. The calculation of the rightmotor's activation is similarly given byM r = 8Xi=1 IPiwri +wr0 : (2)The main problem is to determine the weightswli; wri ; wl0; and wr0 such that the robot is moving aroundwhile it avoids obstacles. Mostly, this is done in a trialand error process. Standard neural network training pro-cedures cannot be used, since it is not reasonable to de-termine a set of training patterns prior to training. Thus,the evolution strategy is an ideal candidate for this op-timization problem.3.3 The Experimental SetupThe experimental setup has been chosen to be as closeas possible to setups proposed in other research [8, 9,18]. Figure 4 shows the arena, in which the robot hasto move. The arena is of size 60x45 cm and the wallsare made from wood with a height of 3 cm. The widthof the corridors is chosen such that always at least oneproximity sensor has a less-than-maximum value.As already discussed, the robot in such an arena hasto move forward quickly while it has to avoid obstacles.In order to evolve good Braitenberg vehicles, the �tnessfunction has to incorporate the motor speeds and the dis-tance to obstacles. However, using speed and distanceonly is not su�cient. In such a case, a robot that is spin-ning on the spot with a high speed far away from any ob-stacle would have a high �tness. But such a robot wouldnot do anything useful. Therefore, the �tness function5



Figure 4: The arena of approximate size 60x45 cm. Theindicated position (facing left) is the starting point for�tness evaluation.is to be enhanced by a third term that favors straightmovements by penalizing turns (see also [8, 9, 18]).The �tness is measured as follows. At a particulartime step t, both motor speeds Vl and Vr as well as alleight proximity sensors IRi are measured. Then, thespeed of the robot's center Vt = (Vl + Vr)=2, the penaltyterm �vt = jVl � Vr j, and the sensor with the highestactivation ^IP = maxi IPi are calculated. The �tnesscontribution ft for step t is thenft = Vt(1 �p�vt)(1� ^IPt) : (3)Finally, the total �tness is the sum over tmax (e.g., 240)time stepsF = tmaxXt=1 ft = tmaxXt=1 Vt(1�p�vt)(1� ^IPt) : (4)Khepera's on-board controller allows for sending allsensor values every each 100 milliseconds (ms). Thatmeans, the robot moves for 100 ms with constant mo-tor speeds. Then, the controller receives the new valuesand calculates new motor speeds for the next time step.Meanwhile, the individual �tness component ft is calcu-lated and added to the total �tness.4 ExperimentsThis section reports some typical results when evolvingBraitenberg vehicles by means of a (3; 6)-ES with self-adaptation of the step size [24]. Some of the results arediscussed in Subsection 4.3. A (3; 6)-ES generates 6 newo�spring per generation and selects the 3 �ttest individu-als as parents for the next generation. A (3; 6)-selectionscheme implies that the strategy does not use any eli-tist selection scheme. A non-elitist selection scheme waschosen, since the �tness evaluation is extremely noisy (cf.Fig. 2). In the experiments reported in this paper, the ES
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4.1 Constrained ControllersA typical run of the evolution of a constrained Braiten-berg controller can be seen in Fig. 5. Figure 5 showsthe �tness of the population's �ttest agent and the av-erage of the whole population. In the �rst few genera-tions, most vehicles are sitting at the initial position orcrashing backwards into the wall, resulting in a negative�tness. After a few more generations, some agents aremoving forward, but after some steps, got stuck at thewall; at that time, the avoidance behavior was not su�-cient. However, such a short forward movement resultsin a small positive �tness, which is a �rst step towardsa useful agent. After about eight to ten generations, the�ttest agents are moving slowly inside the corridor. Butsometimes, they are hitting the walls again. After hittinga wall, good controllers set the motor speeds to negativevalues, which causes the robots to back up from the wall,and after turning, they continue moving inside the cor-ridor. After 30 generations, the �ttest agents performup to three complete laps in the arena. Even thoughboth controller sides are constrained to be equal, identi-cal weights do not ensure total symmetric behavior. Tol-erances in the electrical characteristics of the motors andsensors impose an asymmetric behavior. Consequently,such controllers have to �nd a good compromise. As aresult, Braitenberg vehicles with constrained controllersmove forward in an almost straight line and turn, if theyapproach an obstacle. Overall, a Braitenberg vehiclewith a constrained controller moves with a high speedbut with a rather rough trajectory. But a Braitenbergvehicle adapts its behavior to both the environment andthe unspeci�ed or even changing characteristics of itselectrical components.4.2 Unconstrained ControllersFigure 6 shows a typical run of the evolution of an un-constrained Braitenberg controller. Such a controller has18 parameters and the ES has to evolve both sides of thecontroller, i.e., the connections for the left motor activa-tion M l as well as the right motor activation M r. Thus,as can be seen in Figs. 5 and 6, the evolution of an un-constrained Braitenberg controller requires more time,and also, the �nal performance is lower than the perfor-mance of the constrained controller. The unconstrainedcontroller develops a di�erent survival strategy. Fromthe very beginning, the �rst controllers have di�erentbias weights wl0 and wr0, which cause the robot to turn insmall circles. Circling around results in a small positive�tness. During the next generations, this circling processis preserved, but the radius becomes larger and larger.After approximately 30 generations, one controller sideimproves its object-avoidance behavior so that it pre-vents the robot from crashing into the wall; the resultingbehavior can be interpreted as wall following. This wall-
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the robot would crash into the next wall. Conversely,changing only one \avoidance" weight wli would degradethe �tness, since the robot would tend to wriggle. Con-sequently, all parameters have to be adapted simultane-ously. The ES obeys this requirement by using a mu-tation probability pm = 1:0, i.e., the ES applies muta-tion to all parameters at the same time. It is suspectedthat the observable epistatis is the main reason for theine�ciency of GA-based approaches [8, 9, 18]. That re-search reports that the GA needs about 50 to 100 gener-ations with a population of 80 individuals. Such an op-timization process takes approximately 66 hours, whichis approximately 40 times longer than that of the ESapproach. This coincides with the research discussed in[22], which investigates the performance of GAs whenapplied to arti�cial �tness functions. The main resultspresented in [22] indicate that the independence of theparameters to be optimized is an essential prerequisitefor GAs and that the GA's performance signi�cantly de-grades under epistatis.Even though this paper points to other GA-based re-search, the main focus of this paper is the application ofthe ES to the evolution and optimization of Braitenbergvehicles. A comparison across remote research would bevery problematic, since not all parameters of such a real-world application can be replicated. In addition, we dida series of control experiments, in which we used a GAinstead of the ES. The control experiments yield roughlythe same performance as reported in [8, 9, 18]. The GAneeds approximately ten times more �tness evaluationsthan the ES. The GA su�ers from the high epistatis andthe need of a rather large population of about 80 indi-viduals. In each generation, the GA generates ten timesmore o�spring than the ES. Thus, in this application, theES converges in a time period, in which the GA performsonly �ve to ten generations.5 EnhancementsFor the research on GAs, it is very important to considergenomes with varying length. Several applications, e.g.,[14], explicitly use this feature for the development ofmore complex control structures. The main underlyingidea is that �rst, the GA develops a small solution withthe most important properties. In the ongoing evolutionprocess, the genome is allowed to grow in size, whichenables the system to add more bene�cial features.It is often argued that this dynamical growth of thegenome is proprietary for GAs and not reasonable forthe ES. However, as outlined above, both types of al-gorithms are very similar. Both apply mutation as wellas recombination. For a mutation operator, the lengthof the genome does not matter. If applying recombina-tion/crossover, these operators have to ensure the cor-rectness of a new genome anyway.In [21] a hybrid method has been proposed that allows

for the development of neural networks with minimaltopology. Essentially, this hybrid method works as fol-lows: Each o�spring randomly adds and removes neuronsas well as connections from the network that is has in-herited from its parents. Similar to the self-adaptation ofthe step size, this hybrid method self-adapts the proba-bilities for adding and removing of connections and units.By these means, the network can dynamically grow andshrink depending on the actual environment.6 ConclusionsThis paper has discussed the practical application ofthe evolution strategy to the evolution and optimiza-tion of Braitenberg vehicles. Braitenberg vehicles areautonomous agents with a simple control architecture,which is typically implemented as a neural network. Au-tonomous agents are very important tools in New Ar-ti�cial Intelligence, since they study intelligence as theresult of a system environment interaction, rather thanunderstanding intelligence on a computational level.In the practical experiments, constrained as well asunconstrained Braitenberg controllers have been investi-gated. These two controllers typically develop di�erentsurvival strategies, which have also been discussed. Acomparison with other research that apply genetic al-gorithms to very similar tasks shows that the ES-basedapproach is much faster than the GA-based approach.It is suspected that the high epistatis between the con-troller's parameters drastically slows down the GA-basedapproach. The ES speeds up the development of Brait-enberg controllers by more than one order of magnitude,which is very important, since experimentation is to bedone with real systems. The ES converges in a few hourscompared to 66 hours required for the GA-based ap-proach.This paper has also argued that the evolution strategyis more adaptive, since it self-adapts parameters, such asthe step size or mutation probability. This allows to bet-ter embed the whole approach in more complex tasks. Itcould be argued that the small mutation rate as is usuallyused in GAs is biologically more plausible than a muta-tion rate pm = 1 as is used in the ES. However, we arguethat it is the other way around. If one looks at livingthings, all individuals di�er in almost all attributes. Forexample, if comparing two arbitrary selected humans,these two humans will di�er in all perspectives. It seemsthat nature applies mutation to only a few genes. How-ever, most genomes do not encode all parameters of theresulting individual. Rather, the genome encodes devel-opmental processes. Thus, modifying one gene results indi�erent developmental programs, and consequently, theresulting individual di�ers in (almost) all perspectives.Since most evolutionary approaches do not involve realdevelopmental processes, such as growing, we argue thatthe ES better re
ect nature's principles.8
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