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In microarray data analysis, clustering is a method that groups thousands of genes by their sim-
ilarities of expression levels, helping to analyze gene expression profiles. This method has been
used for identifying unknown functions of genes. The fuzzy clustering method assigns one sample
to multiple groups according to their degrees of membership. This method is more appropriate for
analyzing gene expression profiles, because a single gene might be involved in multiple functions.
General clustering methods, however, have problems in that they are sensitive to initialization and
can be trapped into local optima. To overcome these problems, we propose an evolutionary fuzzy
clustering method with knowledge-based evaluation. The proposed method uses a genetic algo-
rithm for clustering and prior knowledge of experimental data for evaluation. We have performed
experiments to show the usefulness of the proposed method with yeast cell-cycle and SRBCT
datasets.

Keywords: Evolutionary Fuzzy Clustering, Knowledge-Based Evaluation, Gene Expression
Profiles, Microarray Data Analysis.

1. INTRODUCTION

Nanotechnology is the creation of functional materials,
devices and systems through control of matter on the
nanometer length scale, and DNA microarray technology
is one of the related technologies.1 A great amount of
gene-level information can be obtained by a single exper-
iment with this technology.

Clustering is a method that groups thousands of genes
by their similarities of expression levels, helping to ana-
lyze gene expression profiles. This method has been used
for identifying functionally related families of genes.2 It is
often difficult to group the data in the real world clearly,
since often there are no clear boundaries of clusters.3 Clus-
tering genes which contain multiple functions and belong
to multiple clusters is a representative example. Since
fuzzy clustering method assigns one sample to multiple
clusters according to their degrees of membership, it is
more appropriate for analyzing gene expression profiles.4

General clustering algorithms have common problems
in that they are very sensitive to initial values and they
can be trapped by local optima because their processes are
supposed to minimize an objective function.5�6 Besides, it

∗Author to whom correspondence should be addressed.

is difficult to analyze the data correctly without previous
knowledge since the number of clusters often needs to be
fixed before analyses are performed. It takes much time
and cost to cluster the data, if there is no prior informa-
tion of the number of clusters. There is also a problem of
validating cluster results. Because gene expression profiles
are variable depending on experiments and environments
from which they were collected, it is not proper to validate
them by a single criterion.

In this paper, we propose an evolutionary fuzzy cluster-
ing and knowledge-based evaluation method. The genetic
algorithm is used for the evolutionary fuzzy clustering
method, because it is an efficient method to solve opti-
mization problems.7 Using this method, clustering gets to
be less subject to initial values and closer to the optimal
solution.8 There are many publications that are related to
evolutionary computation for clustering. Maulik tried to
minimize the distances between the data in the same clus-
ter and between cluster centers,6 and there was a study of a
genetic algorithm to minimize objective function value of
hard and fuzzy c-means algorithms.5 However, the num-
ber of clusters was fixed and genetic algorithm was used
only for the minimization of the objective function, and
the authors did not compare several cluster partitions at
the same time. The proposed method in this paper encodes
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one cluster partition as one chromosome and forms various
cluster partitions, and finds out the optimal cluster parti-
tion with a genetic algorithm. The fuzzy c-means algo-
rithm with GA is used for clustering, and the Bayesian
validation method, which is a fuzzy cluster validity mea-
sure, is used to evaluate the fitness for every individual.
Bayesian validation method requires �-cut value, and it is
obtained using prior knowledge of the datasets. We have
performed experiments using SRBCT (small round blue
cell tumours) and yeast cell-cycle datasets from microarray
experiments and compared the results with conventional
methods. Finally, we have analyzed the optimal cluster
partition to investigate the biological significance of our
findings.

2. BACKGROUND

2.1. DNA Microarrays

We can measure expression levels of thousands of genes
by a single experiment using the microarray technology. It
consists of spatially ordered probes of cDNA or oligonu-
cleotides on a chip. In this paper, two cDNA microar-
rays, yeast cell-cycle and SRBCT datasets, are used for
experiments.

The first step for cDNA microarray experiment is RNA
extraction from a tissue sample and RNA amplification.
The RNA is reversely transcribed to cDNA labels using
different fluorescent dyes mixed (red-fluorescent dye Cy5
and green-fluorescent dye Cy3). Due to the complemen-
tarity of base-pairing, the cDNA binds to specific oligonu-
cleotides on the array, and the dye is excited by a laser so
that the amount of cDNA can be quantified by measuring
the fluorescence intensities.9�10 The log ratio of two inten-
sities of each dye is used for the gene expression profiles.

gene_expression = log2

Int�Cy5�
Int�Cy3�

(1)

Here, Int(Cy5) and Int(Cy3) are the intensities of red and
green colors.

These measurements are repeated for every sample.
After all experiments are finished, the data are incorpo-
rated into one table of the gene expression matrix.

2.2. Fuzzy c-Means Algorithm

Fuzzy c-means algorithm proposed by Bezdek is the most
widely used fuzzy clustering method. Given dataset, X =
�x1� x2� � � � � xn
, and the central vector of fuzzy clustering,
V = �v1� v2� � � � � vc
, an objective function is defined with
the membership degree between each data xj and cluster
center vi.

Jm�X�U �V �=
n∑

j=1

c∑

i=1

��ij�
md2�xj� vi� (2)

Here, �ij is the membership degree of xj and the ith
cluster, an element of the membership matrix U = [�ij ].
d2(,) is the square of the Euclidean distance, and m is the
fuzziness parameter, which indicates the degree of fuzzi-
ness of each datum’s membership degree; it should be big-
ger than 1.04. In case it is 1.0, the algorithm becomes the
same as the hard c-means algorithm.

The process below is one implementation of the fuzzy
c-means algorithm.

• Step 1: Set c, the number of clusters, and m, the
fuzziness parameter.
• Step 2: Initialize �ij as satisfying Eq. (3).

c∑

i=1

�ij = 1�1 ≤ j ≤ n (3)

• Step 3: Compute vi, each center of all clusters. (i =
1�2� � � � � c)

vi =
∑n

j=1 �
m
ij xj∑n

j=1 �
m
ij

(4)

• Step 4: Compute the membership matrix U .

�ij =
�1/d2�xj� vi��

1/m−1

∑c
k=1 �1/d2�xj� vk��

1/m−1 (5)

• Step 5: Repeat step 3 and 4 until Eq. (5) is satisfied.
l is the iteration step.

��J �l�
m − J �l−1�

m 
� ≤ � (6)

3. PROPOSED METHODS

Here, we propose an evolutionary clustering method to
search the optimal cluster partition and knowledge-based
evaluation with Bayesian validation and prior knowledge
of data. Figure 1 shows the flow chart of the proposed
method.

The proposed methods are divided in two parts: evo-
lutionary clustering part, which searches optimal cluster
partition using fuzzy clustering and a genetic algorithm,
and knowledge-based evaluation part, which obtains the
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Fig. 1. The flow chart of the proposed method.
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optimal �-cuts from data, required by Bayesian validation
method and evaluates the clustering result. Evaluating
datasets with the same criteria may lead to a wrong result,
since each dataset has its own characteristics. Therefore,
information for evaluation is extracted from datasets, and
it is used for fitness evaluation of chromosomes.

3.1. Knowledge-Based Evaluation of Fuzzy
Clustering Result

This section describes a Bayesian validation method which
is used for fitness evaluation and for finding optimal �-cut
values with the rules obtained by decision tree.

3.1.1. Bayesian Validation Method

This is a method based on probability. Given a dataset,
it evaluates clustering results using posterior probability
of cluster partition for that dataset. As mentioned before,
this method decides an optimal cluster partition when the
posterior probability of each cluster for the given data is
maximized.13

maxP�Cluster�Dataset� (7)

Applying Bayes’ theorem, we can calculate the posterior
probability as follows.

P�Cluster�Dataset�= P�Cluster�P�Dataset�Cluster�
P�Dataset�

(8)
When dataset D satisfies the condition D =

�d1�d2� � � � � dN 
, Eq. (8) is represented as Eq. (9) by
multiplication rule and independence rule if each di is
independent on one another.14

P�Cluster�Dataset� = P�Cluster�d1�d2� � � � � dN �

= P�Cluster�d1�×P�Cluster�d2�

×· · ·×P�Cluster�dN � (9)

Bayesian score (BS) is defined as the sum of all P (Clus-
ter|Dataset) like Eq. (10) using the previous processes.
The higher the Bayesian score is, the better the cluster
partition is, because it means higher posterior probability.

BS =
∑c

i=1 P�Ci�Di�

c
=

∑c
i=1 P�Ci�di1�di2� � � � � diN �

c

=
∑c

i=1 P�Ci�di1�P�Ci�di2� · · ·P�Ci�diN �
c

=
∑c

i=1

∏Ni

j=1 P�Ci�P�dij �Ci�/P�dij�

c
�

Di = �dij ��ij > ��1 ≤ j ≤ n
�Ni = n�Di�

(10)

In Eq. (10), n(Di) is the number of Di, and we choose
the samples that have higher degree of membership values
than a certain probability, because the computation process
of Bayesian score includes multiplication and it produces

a wrong value if one of those degrees of membership is
zero. Besides, data of higher membership degree are more
correct and informative. �-cut plays a role of this thresh-
old. Eq. (11) shows the computation of each probability.

P�Ci� =
∑n

j=1� uij>�
uij

∑c
i=1

∑n
j=1 uij

P�dij� =
c∑

i=1

P�Ci�P�dij�=
c∑

i=1

P�Ci�uij

(11)

When the membership matrix is produced as a fuzzy
cluster result, each degree of membership means the prob-
ability that each sample belongs to each cluster. Therefore,
the membership degree of each sample, Uij , can be repre-
sented as P�dij �Ci�. Figure 2 illustrates the overall process
of the Bayesian validation method.

First, specific samples that have higher membership
degrees than threshold (Uik > �) are selected based on
membership degrees, which become the clustering result.
Uik means the belongingness of the ith sample to the kth
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Fig. 2. The overall process of the Bayesian validation method.
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Fig. 3. Decision of �-cut by decision tree rule.

cluster, and it should be between 0 and 1. If it is close to
1, it means high belongingness to its cluster. After sam-
ples are selected, P�Dk�Ck� of each cluster is calculated,
leading to a Bayesian score.

3.1.2. Finding Optimal �-Cut by a Decision Tree

Generally a decision tree (DT) is used to solve classifica-
tion and prediction problems. In this paper, C4.5 algorithm
that is a representative one for decision trees is used to find
an optimal �-cut value for each dataset.15 Setting �-cut
value affects Bayesian score that is the fitness evaluation
result. Equation (12) is a definition of �-cut.16

A� = �x ∈ X�u�x�≥ �
� 0 < �< 1 (12)

A� is a set of elements that have higher belongingness
than �, and x means each element. According to the value
of �, A� can be a variety of sets. If the membership func-
tion is linear, the setting of �-cut is simple such as �= 0�5
or �= 1�0, but if it is not linear, various �-cut values are
needed. Dk in Figure 3 can change by �, the proper setting
of �-cut for specific datasets is an important problem.

As the original Bayesian validation method used an
uniform �-cut value for all datasets,13 it cannot evaluate
correctly, because each dataset has a different sample
distribution. This paper obtains an �-cut value for each
dataset using the rule of DT. Figure 3 shows the �-cut
setting process from fuzzy clustering result.

First, N gene expression profiles are clustered using
the fuzzy c-means algorithm, and these clustering results
are evaluated by the Bayesian validation method. Subse-
quently, the optimal �-cut for each dataset is decided, and
they are used for the labels of DT training data. Rule pro-
duction process trains DT, and produces rules.

As Figure 4 indicates, the attributes of DT training data
are produced using membership matrices that are the fuzzy
cluster results of each dataset. Incrementing the member-
ship degree-2.4 value from 0.0 to 1.0 with the differ-

•   •   •

•   •   •

0.4

0.1

Label (α-cut)

Train data

# of samples with membership
values: 0.0*(N–1) ~ 0.1*N # of samplesAN

AL1 AL2

AM3AM1

AL3 AL10

AM2 AM10

Fig. 4. The training data production process of a decision tree.
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Fig. 5. Representation of variable length chromosome.

ence of 0.1, attributes are divided into 10 sections. Each
section counts the frequency of samples and calculates the
attribute by dividing the frequency by the total number of
samples. These attributes are A1 ∼ A10.

The training made by the process in Figure 5 sets �-cut
value when experimental dataset is inputted. Using these
�-cut values, Bayesian validation method calculates the
final Bayesian score of fitness evaluation result.

3.2. Evolutionary Fuzzy Clustering

This section describes the evolutionary fuzzy clustering
method, which is the fuzzy clustering method using a
genetic algorithm, to search the optimal cluster partition.

3.2.1. Representation

Generally, binary representation is used as a chromosome
representation since it is easy to implement and apply. This
paper, however, has used floating point representation to
represent a set of cluster centers of cluster partition infor-
mation. One cluster partition consists of K clusters, and a
chromosome is represented in a space of N ×K in case
that the dimension of each center is N .

This paper evaluates cluster partition with various num-
bers of clusters, so variable length chromosome has been
used. As Figure 5 illustrates, several chromosomes are in
one cluster partition, and each chromosome has different
number of clusters and different value of cluster centers.

3.2.2. Population Initialization and Fitness Evaluation

Population is initialized at random. For a chromosome that
contains K clusters, K random samples are extracted from
data, and they are used for cluster centers. This is repeated
as the number of chromosomes. When clustering a specific
dataset, numbers less than the square value of the number
of samples are used.17 The minimum number of clusters
is set as 2.

4 J. Comput. Theor. Nanosci. 2, 1–10, 2005
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Fitness evaluation is divided into two parts. First, all
samples are clustered with cluster centers in chromosomes
using the fuzzy c-means algorithm. For the construction of
a membership matrix using distances among all samples
and clusters, we have updated cluster centers as Eq. (13)
and Eq. (14). The information of cluster centers in chro-
mosomes is changed through updating these cluster centers

uij =
�1/d2�xj� $i��

1/m−1

∑c
k=1 �1/d2�xj� $i��

1/m−1 (13)

$i =
∑n

j=1 u
m
ij xj∑n

j=1 u
m
ij

(14)

Second part evaluates the changed chromosomes by
Bayesian validation method. Various evaluation values are
calculated since each chromosome has different informa-
tion of cluster partition. Selection is done by these values.
For selection, we have used a roulette wheel strategy that
tries to select many copies of individuals corresponding to
its fitness.18

3.2.3. Crossover and Mutation

This paper cannot use general crossover operation, because
the length of chromosome is variable, so crossover opera-
tion is performed as in Figure 6. After deciding the cross-
over point, the length of one part is fixed for crossover,
and the other part of the chromosomes is crossed over.

In case of the chromosome of length l, crossover point is
decided randomly in [1, l−1] with the fixed crossover rate.

Mutation is set to occur by a fixed mutation rate. Since
this paper adopts the floating point representation, muta-
tion is set to occur by Eq. (15) and Eq. (16). When % is a
variable of uniform distribution in [0, 1] and $ is a value of
mutation point, a value of new $ is decided as in Eq. (15)
and Eq. (16).6

$±2×%×$� $ 
= 0 (15)

$±2×%� $ = 0 (16)

Equation (15) is used when $ is not zero, and Eq. (16) is
used when $ is zero. The probabilities of sign ‘+’ and ‘−’
are the same.

Crossover

Crossover point

Chromosome1

Chromosome 2

Chromosome 1

Chromosome 2

Fig. 6. An example of crossover.

4. EXPERIMENTS

4.1. Experimental Environment

4.1.1. Experimental Data

Lymphoma, leukemia, and serum datasets are used for
experiments of optimal �-cut decision by a decision tree,
and for most comparisons and analyses, SRBCT and Yeast
cell-cycle datasets are used. The information of SRBCT
and Yeast cell-cycle datasets are as follows.

• SRBCT dataset: This has 63 samples with 6567
genes and consists of 4 classes, NB (neuroblastoma), RMS
(rhabdomyosarcoma), NHL (non-Hodgkin lymphoma) and
EWS (Ewing family of tumours). They are all different
kinds of cancer, each with different characteristics. This
paper used 96 genes that are known as informative ones20

to apply the proposed method to 63 samples.
• Yeast cell-cycle dataset: This is a dataset that has

expression levels of 6000 genes expressed during 2 cell-
cycles.21 Expression levels are measured on 17 different
time points every 10 minutes. This dataset is frequently
used for genetic analysis since many genes classified by
their biological function have different expression levels
according to the cell cycle. A total of 421 genes that show
significant change of expression levels are used in this
paper.21

4.1.2. Parameters and Settings

In our experiments, the maximum generation number is
1000, and population sizes of 100 and 200 are used for
SRBCT and yeast cell-cycle datasets. The size of SRBCT
dataset is smaller than yeast cell-cycle dataset. Maximum
numbers of clusters are 8 and 20 for SRBCT and yeast
cell-cycle datasets, respectively. Crossover rate of 0.8 and
mutation rate of 0.01 are used. The fuzziness parameter of
the fuzzy c-means algorithm set as 1.2.

4.2. Experimental Results

4.2.1. Decision of Optimal �-Cut

We have produced training data of decision trees using
five gene expression profiles: lymphoma,22 leukemia,23

SRBCT, serum24 and yeast cell-cycle datasets. A rule pro-
duced by decision tree using these datasets is shown in
Figure 7. The first �-cut, 0.8, is decided by the first
attribute (A1) which is defined in Figure 4, and 0.2 is
decided by the third attribute (A3), and by the last attribute
(A10), 0.1, and 0.4 are decided. These are �-cut values for
several different training datasets.

By a decision tree, �-cuts of SRBCT and yeast cell-
cycle datasets are decided to be 0.2 and 0.4, respectively.
Two datasets go to the same direction through A1, but they
are distinguished by A3. Training data of two datasets are
shown in Table I. SRBCT dataset has smaller values of

J. Comput. Theor. Nanosci. 2, 1–10, 2005 5
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>0.5558 <=0.5558

Fig. 7. A rule produced by decision tree.

A2 and A9 but has larger value of A10. It means that sam-
ples of SRBCT dataset have clearer boundaries and higher
membership degrees. This example shows that different
gene expression profiles have different distributions, there-
fore they should be evaluated differently considering their
characteristics.

4.2.2. Result of Optimal Cluster Partition Search

Figure 8 illustrates average fitness transition of SRBCT
dataset as the generation grows. Experiments have been
repeated 10 times, and red line shows the average. It
evolves rapidly until the generation number is close to
20 and converges thereafter. The convergence value of
SRBCT dataset is about 0.6. Figure 9 illustrates the same
graph of yeast cell-cycle dataset. It converges more slowly
than SRBCT dataset and average fitness changes slowly
until the generation number is around 80. It converges to
0.12 with large oscillations.

Figures 8 and 9 show different transition patterns, and
this can be thought to be due to different characteristics of
two datasets influencing the evolution process. Observing
the fuzzy cluster result, most genes of SRBCT dataset have
membership degrees that are larger than 0.9 or smaller
than 0.1. On the other hand, yeast cell-cycle dataset has
various ranges of membership degrees.

4.2.3. Comparison with the Original Fuzzy
c-Means Algorithm

In the previous section, we confirmed that the result of
the FCM with GA evolves well. Here, we compare it with
the original FCM by means of Bayesian score (BS) and the
objective function value (OF value) of the FCM to show
the usefulness of the Bayesian validation method. Table II

Table I. Training data of decision tree.

Attributes of training data

Dataset name A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Yeast 1.000 0.231 0.114 0.086 0.071 0.064 0.059 0.069 0.162 0.546
SRBCT 1.000 0.016 0.000 0.016 0.000 0.016 0.000 0.000 0.048 0.937
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0.9

Number of generations

A
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s

Fig. 8. Average fitness transition of SRBCT dataset (P = 100).

shows 10 experimental results of SRBCT dataset. If BS
is high and the objective function value is low, it means
that clustering performed well since the objective function
value is based on the distances between cluster centers and
samples as mentioned in Eq. (2). The proposed method
shows better results than original FCM in both BS and
OF value.

Table III represents 10 experimental results of yeast cell-
cycle dataset. In case of SRBCT dataset, though the result
of the proposed method was slightly better, its difference
was not significant. The result of yeast cell-cycle dataset,
however, shows a relatively significant difference.
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Fig. 9. Average fitness transition of yeast cell-cycle dataset (P = 200).
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Table II. Comparison experiment (SRBCT).

Original FCM GA+FCM

Count BS OF value BS OF value

1 0.58028 156.9920 0.58042 156.9918
2 0.58034 156.9925 0.58036 156.9920
3 0.58031 156.9921 0.58041 156.9919
4 0.58029 156.9922 0.58036 156.9920
5 0.58041 156.9926 0.58036 156.9920
6 0.58034 156.9921 0.58041 156.9919
7 0.58031 156.9920 0.58042 156.9918
8 0.58028 156.9922 0.58042 156.9918
9 0.58033 156.9922 0.58041 156.9919
10 0.58036 156.9920 0.58042 156.9918

Average 0.58033 156.9922 0.58040 156.9919

Comparing the proposed method with the original FCM,
we have confirmed that the result of the proposed method
is closer to the optimal solution than the original FCM.

4.3. Analyses of Results

4.3.1. Analysis of SRBCT Dataset

We have compared and analyzed the result of SRBCT
dataset with Khan’s work.20 Figure 10 shows the 4 clusters
that the proposed method has searched and actual clusters.
All 63 samples are clustered to their class correctly. The

Table III. Comparison experiment (Yeast cell-cycle).

Original FCM GA+FCM

Count BS OF value BS OF value

1 0.03354 164.472 0.13256 166.883
2 0.00875 163.670 0.11246 161.542
3 0.03238 165.057 0.12661 162.911
4 0.03825 162.653 0.08058 162.073
5 0.02165 163.758 0.10667 162.798
6 0.04096 164.086 0.09778 162.312
7 0.02806 163.052 0.11873 162.042
8 0.04473 164.877 0.13659 162.773
9 0.02478 162.452 0.12898 162.905
10 0.04645 169.216 0.11246 161.542

Average 0.03195 164.329 0.11534 162.778

B
L

-
C

5
B

L
-

C
6

B
L

-
C

7
B

L
-

C
8

B
L

 -
   

C
1

B
L

-
C

2
B

L
-

C
3

B
L

-
C

4

Cluster 1
class: BL

N
B

-
C

1
N

B
-

C
2

N
B

-
C

3
N

B
-

C
6

N
B

 -
C

12
N

B
-

C
7

N
B

-
C

4
N

B
-

C
5

N
B

-C
10

N
B

- 
C

11
N

B
-

C
9

N
B

-
C

8

Cluster 3
class: NB

R
M

S
-

C
4

R
M

S
-

C
3

R
M

S
-

C
9

R
M

S
-

C
2

R
M

S
-

C
5

R
M

S
-

C
6

R
M

S-
C

7
R

M
S

-
C

8
R

M
S

-
C

1
0

R
M

S
-

C
1

1
R

M
S

-T
1

R
M

S
-T

4
R

M
S

-T
2

R
M

S
-T

6
R

M
S

-T
7

R
M

S
-T

8
R

M
S

-T
5

R
M

S
-T

3
R

M
S

-T
10

R
M

S
-T

11

Cluster 2
class: RMS

E
W

S
-T

1
E

W
S

-T
2

E
W

S
-T

3
E

W
S

-T
4

E
W

S
-

T
6

E
W

S
-T

7
E

W
S

-T
9

E
W

S
-T

11
E

W
S

-T
12

E
W

S
-T

14
E

W
S

-T
15

E
W

S
-T

19
E

W
S

-
C

8
E

W
S

-
C

3
E

W
S

-
C

2
E

W
S

-
C

4
E

W
S

-
C

6
E

W
S

-
C

9
E

W
S

-
C

7
E

W
S

-
C

1
E

W
S

-
C

11
E

W
S

-
C

10
E

W
S

-T
13

Cluster 4
class: EWS

Fig. 10. Clustering result of the SRBCT dataset (96 samples).

Table IV. List of samples.

Fuzzy sample First cluster Second cluster

EWS-T19 0.549942 (3) 0.379079 (4)
NB-C5 0.564467 (6) 0.313732 (7)
RMS-C6 0.349232 (7) 0.333511 (6)
RMS-C8 0.456904 (5) 0.339977 (1)
EWS-T13 0.718476 (3) 0.210988 (4)

sample EWS-T13, which is marked with a line, belongs
to EWS class with the membership degree of 0.5043 and
also to the RMS class with the membership degree of
0.3860.

We have conducted an additional experiment with the
2308 samples used by Khan20—the obtained clusters are
shown in Table IX.

Table IV represents fuzzy samples that have higher
membership degrees than 0.3 and belong to several clus-
ters simultaneously. Membership degrees and cluster num-
bers are shown in the table. The last sample EWS-C13
is searched when only 96 meaningful samples are used
for experiments. Considering it belongs to cluster 3 and

Table V. Clustering result of SRBCT dataset (2308 samples).

Cluster
number Samples

Cluster 0 EWS-C8 EWS-C6 EWS-C9 EWS-C11 EWS-C10
Cluster 1 EWS-C3 EWS-C2 EWS-C1

BL-C1 BL-C2 BL-C3 BL-C4
NB-C1

Cluster 2 BL-C5 BL-C6 BL-C7 BL-C8
Cluster 3 EWS-T6 EWS-T7 EWS-T9 EWS-T11 EWS-T12

EWS-T14 EWS-T15 EWS-T19
Cluster 4 EWS-T13

RMS-C4 RMS-T6 RMS-T7 RMS-T8 RMS-T5
RMS-T10 RMS-T11

Cluster 5 EWS-T1 EWS-T2 EWS-T3 EWS-T4 EWS-C4
RMS-C8 RMS-C11 RMS-T1 RMS-T4 RMS-T2 RMS-T3

Cluster 6 NB-C2 NB-C3 NB-C6 NB-C12 NB-C7 NB-C4
NB-C5 NB-C10 NB-C11 NB-C9 NB-C8

Cluster 7 EWS-C7
RMS-C3 RMS-C9 RMS-C2 RMS-C5 RMS-C6

RMS-C7 RMS-C10
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Fig. 11. Classification of clusters of SRBCT dataset (2308 samples).

4, we can conjecture they are related to class EWS or
RMS. Table V shows clusters and samples of those clus-
ters. Some clusters have samples of several classes. Fuzzy
samples are marked with bold type.

Analyzing the relationship of each cluster based on
Table V, the result is presented in Figure 11. Cluster 0
and cluster 3 belong to only class EWS, and cluster 2
and cluster 6 belong to class BL and NB respectively. On
the other hand, cluster 4, cluster 5, and cluster 7 belong
to both class EWS and class RMS. Cluster 4 and cluster

weak similarity to hnRNP complex protein homolog YBR233w
similarity to Pif1p
weak similarity to yeast translation regulator Gcd6p

hypothetical protein
hypothetical protein
suppressor of rvs161 and rvs167 mutations
involved in the HOG1 high-osmolarity signal transduction

forms schmoos poorly
Rap1p interacting factor. telomere silencing
DNA replication factor A, 13 kDa subunit

similarity to rat regucalcin
protein with internal repeats
involved in regulating membrane traffic

hypothetical protein

ubiquinone biosynthesis, methyltransferase
similarity to bovine Graves disease carrier protein
hypothetical protein
cyclin like protein interacting with Pho85p
acyl CoA synthase
hypothetical protein
hypothetical protein

cyclin, G1/S-specific
phosporylates Cdc28, SPB separation, nuclear division
for chromosome transmission in mitosis and normal telomere
required for normal transcription at a number of loci

10

Gene description Clusters

4, 7
4, 7
7, 11

5, 15
5, 15
5, 13
5, 13
5, 13
5, 13
5, 12
5, 12

0, 1
0, 1
0, 1
0, 1
0, 2
1, 2
1, 2
1, 2
1, 2
1, 2

10, 12
10, 12
10, 12
10, 12

Fig. 12. Expression level, gene description and cluster number of “fuzzy” genes of yeast cell-cycle dataset searched by the proposed method.

Table VI. Fuzzy clustering of genes from the yeast cell-cycle dataset.

Gene First cluster Second cluster

YBL032w 0�35035 �7� 0�33226 �4�
YHR031C 0�40455 �4� 0�38120 �7�
YCL063w 0�40413 �7� 0�39001 �11�
YBR007c 0�52122 �5� 0�39115 �15�
YER019w 0�43167 �5� 0�32937 �15�
YDR297w 0�62344 �5� 0�31825 �13�
YER118c 0�6049 �5� 0�33987 �13�
YHR173C 0�39546 �13� 0�38228 �5�
YLL021w 0�66923 �5� 0�31998 �13�
YBR275c 0�59041 �5� 0�37740 �12�
YJL173C 0�43414 �5� 0�41046 �12�
YBR053c 0�45555 �0� 0�44679 �1�
YKL163W 0�4623 �0� 0�36860 �1�
YLL040c 0�44400 �0� 0�34000 �1�
YML110C 0�59168 �1� 0�32380 �0�
YDL119c 0�4835 �0� 0�38849 �2�
YBR158w 0�5869 �1� 0�40988 �2�
YDL179w 0�55259 �1� 0�43413 �2�
YIL009W 0�60611 �1� 0�35258 �2�
YNL046W 0�5581 �2� 0�43928 �1�
YOR264W 0�69030 �1� 0�30635 �2�
YDL127w 0�52180 �12� 0�44541 �10�
YJL187C 0�56953 �12� 0�33059 �10�
YMR078C 0�5827 �12� 0�41445 �10�
YMR179W 0�56833 �10� 0�40397 �12�

7 can be thought of as the member of class RMS since
all samples except one belong to the class RMS. In case
of cluster 5, half of them belong to class EWS, and the
other half belong to class RMS, so it can be thought of
as a cluster having both characteristics of class EWS and
RMS. Using these results of 2308 samples, we can find

8 J. Comput. Theor. Nanosci. 2, 1–10, 2005
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Fig. 13. Change of gene expression level over a time course.

further characteristics of samples and various analyses are
possible though the accuracy is lower.

4.3.2. Analysis of Yeast Cell-Cycle Dataset

We have compared and analyzed the result of yeast cell-
cycle dataset with the known genes at Cho’s work.21 In
particular, we have focused on fuzzy genes, which have
membership degrees higher than 0.3 and belong to several
clusters at once. Table VI shows the membership degrees
and cluster numbers of “fuzzy” genes. The number in
parentheses means the cluster number.

We have divided the genes in Table VI into 4 groups.
First three genes, YBL032w, YHR031C, and YCL063w,
are members of cluster 4, cluster 7, and cluster 11, respec-
tively. All of them belong to cluster 7, and they are one
group. Another group of cluster 5, cluster 12, cluster 13,
and cluster 15 is grouped on cluster 5. Group of cluster 0,
cluster 1, and cluster 2 and group of cluster 10 and clus-
ter 12 are the remaining two groups. Observing expression
levels on the left figure, it is easily confirmed that patterns
are distinguished by group. Compared these fuzzy genes
with known functions of yeast cell-cycle dataset, discov-
ered information is provided in Figure 12. For example,
YDR297w of the second group is known as a suppressor
of rvs161 and rvs167 mutations, and YJL173C in the same
group is known as a DNA replication factor. The known
functions of the other genes are described in Figure 12.

Each of four cluster groups is related to specific phase
of the cell division. Figure 13 illustrates the transitions of

expression levels of four clusters, which is represented in
each group, according to cluster numbers. Cluster 7 has
26 genes, and they express the most at G2 phase of cell-
cycle, so cluster 7 is thought to be related to G2 phase. In
case of cluster 5, most genes express with high level in S
phase, and that time point is a little earlier than genes of
cluster 7. Cluster 1 of the third group expresses the most
G1 phase, and cluster 12 of the last group expresses the
most between G1 and S phase. Considering that genes of
cluster 12 were grouped with cluster 5 in Figure 12, it is
also related to the second group.
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Fig. 14. A distribution of fuzzy clustered genes (yeast cell-cycle
dataset).
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Figure 14 is a 3 dimensional distribution of the genes
from Table VI. This is obtained using PCA (Principal
Component Analysis). Genes of each group are distin-
guished by their shapes, and “fuzzy” genes are marked
with ‘+’. As shown in this figure, the fuzzy genes are
located near the boundaries of two clusters.

5. CONCLUSIONS AND FUTURE WORK

This paper has proposed an evolutionary clustering method
to search for optimal cluster partitioning and knowledge-
based cluster validation. Applying the proposed method
to SRBCT and yeast cell-cycle gene expression datasets
and comparing the results with previous methods has
shown a better performance than the original fuzzy c-
means method. Finally, we have analyzed the optimal clus-
ter partitions searched by the proposed method to find their
biological significance. Though the proposed method pro-
vides better results than conventional methods, there are
some disadvantages. Genetic algorithm evolution process,
including variable length chromosomes and their opera-
tions, takes longer time than conventional methods, and
evaluation also takes longer since it requires the creation
of the validation rules in advance.

Future research includes experiments on various datasets
since we have performed experiments only on two
datasets. More comparisons with other cluster validation
methods are needed. The proposed here method shows
potentials for a detailed analysis of microarray data, espe-
cially for genes involved in more than one biological
function. It thus contributes to the better utilization of the
massive amount of data coming from DNA microarray
chips for the creation of novel nanotechnologies.
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