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Abstract

Missing data are frequently encountered in biomedical, epidemiologic and social research. It is well known

that a naive analysis without adequate handling of missing data may lead to bias and/or loss of efficiency.

Partly due to its ease of use, multiple imputation has become increasingly popular in practice for handling

missing data. However, it is unclear what is the best strategy to conduct multiple imputation in the

presence of high-dimensional data. To answer this question, we investigate several approaches of using

regularized regression and Bayesian lasso regression to impute missing values in the presence of high-

dimensional data. We compare the performance of these methods through numerical studies, in which we

also evaluate the impact of the dimension of the data, the size of the true active set for imputation, and the

strength of correlation. Our numerical studies show that in the presence of high-dimensional data the

standard multiple imputation approach performs poorly and the imputation approach using Bayesian lasso

regression achieves, in most cases, better performance than the other imputation methods including the

standard imputation approach using the correctly specified imputation model. Our results suggest that

Bayesian lasso regression and its extensions are better suited for multiple imputation in the presence of

high-dimensional data than the other regression methods.
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1 Introduction

Missing data are frequently encountered in biomedical, epidemiologic, and social research. It is well
known that a naive analysis without adequate handling of missing data may lead to bias and/or loss
of efficiency. Among statistical methods that have been developed for handle missing data, multiple
imputation (MI)1,2 can be readily conducted using existing software package3,4 in a wide range of
situations and it allows data analysts to apply standard complete-data analysis directly to imputed
data sets. As a result, MI has become increasingly popular in practice. The key idea of MI is to
replace each missing value with a set of ‘‘plausible’’ values drawn from their predictive distributions
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conditional on the observed data and generate multiple imputed data sets to account for uncertainty
of imputing missing values. Subsequently, each imputed data set is analyzed separately using
standard complete-data methods and the results are combined across imputed data sets using
Rubin’s rule.1,2 MI has been investigated extensively in many settings.5–12 Harel and Zhou13

provide a nice review of theory, implementation, and software for MI.
While MI has proven to be very flexible, its validity in practice is predicated on several important

conditions. First, most MI methods assume that data are missing at random (MAR)2; in particular,
we are not aware of any available MI software package which can deal with the case that data are
not missing at random (NMAR). While sensitivity analysis has been proposed in combination with
MI in the presence of NMAR, this approach has not been widely used in practice. Most
practitioners prefer direct application of MI, often implicitly or explicitly relying on the
assumption of MAR. Second, imputation models need to be correctly specified or close to
the true models and it has been advocated14,15 that imputation models should be as general as
the data allow them to be so as to accommodate a wide range of statistical models that will be
used on the imputed data sets. One reason is that it is often unclear to an imputer what analysis will
eventually be conducted by data analysts; furthermore, more general imputation models make it
more likely that the assumption of MAR will hold and imputation is proper. To build a sensible,
general imputation model, a major challenge is to avoid leaving out important predictors, since
leaving out important variables may lead to imputation models that are less general than analysis
models and then biased results. In particular, in the case of high-dimensional data where the number
of variables (p) is large or even greater than the sample size (n), it is often not feasible to include all
possibly relevant predictors and their interactions in imputation models. When conducting
imputation in such cases, model trimming or regularization becomes imperative but classical
model trimming techniques such as stepwise selection-based Akaike information criterion16 or
other criteria are known to perform poorly. To the best of our knowledge, principled MI
approaches that can handle high-dimensional data (p4 n or p� n) have not been investigated in
the literature and this issue is not addressed in existing MI software packages, which likely perform
poorly or fail as shown in our numerical studies.

Regularized regression has been proposed to conduct simultaneous parameter estimation and
model selection, which seems to offer a natural solution for the issue of constructing imputation
models in the presence of high-dimensional data. We briefly review here the key concepts of
regularized regression and Bayesian lasso (BLasso) regression and explore how they may fit in
with imputation. Consider a linear regression model with n observations and p predictors

y ¼ Xbþ �

where y ¼ ð y1, y2, . . . , ynÞ
T, X ¼ ðx1, x2, . . . , xpÞ is the n� p design matrix, and � is white noise. In the

case of p5 n, one could estimate the coefficients b ¼ ð�1,�2, . . . ,�pÞ by minimizing the residual sum
of squares

LðbÞ ¼ ðy� XbÞTðy� XbÞ

which leads to the ordinary least squares estimator. However, in the cases of p4 n and p � n, the
aforementioned approach fails and instead we can use the regularized least squares estimator

b̂R ¼ arg min
b
ðy� XbÞTðy� XbÞ þ p�ðbÞ
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where p�ðbÞ is a regularization function, shrinking some parameter estimates toward/to zero. Several
forms of p�ðbÞ have been proposed, leading to different regularized estimators; some popular choices

include ridge penalty,17 p�ðbÞ ¼ �
Pp

j¼1 �
2
j , lasso penalty,18 p�ðbÞ ¼ �kbk1, elastic net (EN) penalty,19

p�ðbÞ ¼ �1kbk1 þ �2kbk
2
2, and adaptive lasso (ALasso),20 p�ðbÞ ¼ �

Pp
j¼1 !̂jj�j j, where x̂ ¼ 1=jb̂j�

and b̂ is a
ffiffiffi
n
p

consistent estimator. Alternatively, we can use BLasso regression and its
generalizations21–23 to fit the aforementioned model in the presence of high-dimensional data.
While there are some connections between BLasso regression and regularized regression, there are
also some key differences; in particular, prediction, not model selection, is of primary interest in
BLasso regression, making it a more natural fit for MI. However, the performance of these methods
has not been evaluated in the context of MI.

In this article, we investigate approaches for multiply imputing missing values in the presence of
high-dimensional data and compare their finite sample performance through numerical studies. The
remainder of this article is organized as follows. In Section 2, we describe three MI approaches based
on regularized regression and BLasso regression. In Section 3, we present numerical results for
evaluating the performance of the proposed and existing approaches in the presence of high-
dimensional data. We conclude this article with some discussion remarks in Section 4.

2 MI methods

Suppose that we have a sample of n independent observations from a target population; each
observation consists of p variables zi ¼ zi,1, zi,2, . . . , zi,p

� �T
(i ¼ 1, 2, . . . , n), representing a random

draw from a multivariate distribution with a set of unknown parameters h. Some of the p variables
have missing values. Define the missing data indicator matrix � ¼ ð�i,jÞ such that �i,j ¼ 1 if zi,j is
missing and �i,j ¼ 0 if zi,j is observed. Let Z ¼ ðz1, z2, . . . , znÞ

T denote the complete data, Zobs denote
the observed components of Z, and Zmis denote the missing components.

Throughout, we assume that data are MAR, that is, f ð�jZ,�Þ ¼ f ð�jZobs,�Þ, where � denotes
the set of parameters associated with the missing data mechanism; we also assume that � and � are
distinct, resulting in ignorable missingness. It then follows from the assumption of MAR that

f ðZmisjZobsÞ ¼

Z
f ðZmisjZobs, hÞ f ðhjZobsÞdh ð1Þ

f ðhjZobsÞ / f ðhÞ

Z
f ðZobs,ZmisjhÞdZmis ð2Þ

where f ðhÞ represents a prior distribution of �. f ðZmisjZobsÞ and f ðZmisjZobs, hÞ in equation (1) are the
conditional predictive distributions of Zmis given Zobs and given Zobs and h, respectively. f ðhjZobsÞ in
equations (1) and (2) is the posterior distribution of h conditional on the observed data. Equations
(1) and (2) motivate the standard MI procedure, which typically consists of two steps: in the m-th
imputation (m ¼ 1, . . . ,M), one first generates a random draw for h from its posterior distribution,

denoted by ĥðmÞ, and then impute each component of Zmis by a random draw from the conditional

predictive distribution f ðZmisjZobs, ĥ
ðmÞÞ. Subsequently, statistical methods for complete data can be

directly applied to each of the M imputed data sets and Rubin’s rule can be used to combine the
results across the M imputed data sets. Specifically, assuming that the parameter of interest in the
data analysis is � and its estimate and associated variance estimate in the m-th imputed data set are

�̂ðmÞ and UðmÞ, respectively, the combined estimate for the M imputed data sets is �� ¼M�1
PM

m¼1 �̂
ðmÞ
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and its variance is estimated by dVarð ��Þ ¼ �Uþ ð1þM�1ÞB, where B ¼ ðM� 1Þ�1
PM

m¼1 ð
��� �̂ðmÞÞ2

and �U ¼M�1
PM

m¼1 U
ðmÞ.

In order to conduct MI, it is essential to postulate a statistical model for f ðZmisjZobs, hÞ or more
broadly for f ðZjhÞ so as to obtain the posterior distribution of h in equation (2). For example, for
continuous Z, one could assume that Z follows a multivariate normal distribution with unknown
mean and variance–covariance. When the dimension of the data (p) is much smaller than the sample
size of the observed data, one could fit a fairly complex model without any restrictions, say, on
the correlation structure of a multivariate normal Z, and obtain the posterior distribution of h using
the observed data. If, however, p is large relative to the sample size, model trimming or
regularization are needed. Since classical model trimming techniques such as stepwise selection do
not work well in the presence of high-dimensional data, the key idea underlying the proposed
approaches is to use regularized regression or BLasso regression to estimate the posterior
distribution of h in equation (2).

2.1 A simplified data setup

For the ease of exposition, we consider a simplified data setup where only one variable has missing
values with the others fully observed. Without loss of generality, we assume that z1 is continuous and

contains missing values with the first r components observed, zobs,1 ¼ ðz1,1, . . . , zr,1Þ
T, and

the remaining n – r components missing, zmis,1 ¼ ðzrþ1,1, . . . , zn,1Þ
T. Define the complement

data set for z1 as Z�1 ¼ ðz1,�1, z2,�1, . . . , zn,�1Þ
T
¼ ðZobs,�1,Zmis,�1Þ

T with zi,�1 ¼ ðzi,2, zi,3, . . . , zi,pÞ
T,

and define the complement data sets for zobs,1 and zmis,1 as Zobs,�1 ¼ ðz1,�1, . . . , zr,�1Þ
T and

Zmis,�1 ¼ ðzrþ1,�1, . . . , zn,�1Þ
T, respectively. Then the observed data are Zobs ¼

ðzobs,1,Zobs,�1,Zmis,�1Þ and the missing data are Zmis ¼ ðzmis,1Þ; there are r complete cases and n–r
incomplete cases with z1 missing. It follows that the imputation model (1) reduces to

f ðzmis,1jzobs,1,Z�1Þ ¼

Z
f ðzmis,1jZmis,�1, hÞ f ðhjzobs,1,Zobs,�1Þdh ð3Þ

To obtain the posterior distribution of h, f ðhjzobs,1,Zobs,�1Þ, we can posit and fit a regression
model with zobs,1 as the outcome variable and Zobs,�1 as the set of predictors. For the purpose of
illustration, we consider here a linear regression model

zobs,1 ¼ 	0 þ Zobs,�1aþ � ð4Þ

where � � Nð0, 
2IrÞ and a ¼ ð	1, . . . ,	p�1Þ
T. Under Model (4), h ¼ ð	0, a, 


2Þ
T. When p� r, MI

software packages that implement existing MI procedures such as R packages mi and mice can be
directly used to fit Model (4), obtain f ðhjzobs,1,Zobs,�1Þ, and conduct imputation; however, when
p4 r or p � r, the existing procedures and software packages are not directly applicable or do not
perform well.

In Sections 2.2 to 2.4, we discuss three approaches to obtain f ðhjzobs,1,Zobs,�1Þ in the cases of
p4 r or p � r. In Section 2.5, we briefly discuss extensions to more general missing patterns. Of
note, the proposed methods can be readily extended to the cases where interaction terms between
individual columns of Zobs,�1 are included in Model (4) or the variables with missing values such as
z1 follow other distributions.
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2.2 MI through direct use of regularized regression

We consider the data setup as introduced in Section 2.1 and our goal is to conduct MI for zmis,1.
Specifically, we need to fit the imputation model (4) using r complete cases. We denote by S the set of
variables in Zobs,�1 that are associated with zobs,1, also known as the true active set, and denote by
jSj ¼ q its cardinality, that is, the number of important variables for imputing z1, and by Zobs,S the
corresponding design matrix. As stated previously, it is imperative to conduct model trimming or
regularization when fitting Model (4); we define the subset of predictors that are selected to impute
z1 as the active set, denoted by Ŝ, and denote the corresponding design matrix as Z

obs,Ŝ
.

To achieve model trimming when fitting the imputation model (4), we propose to use
regularization methods such as lasso or ALasso. However, it is not trivial to obtain the
distribution f ð�jzobs,1,Zobs,�1Þ when regularized regression is used for (4). We first consider an
approach where a regularization method is used to conduct both model trimming and parameter
estimation and a bootstrap step is incorporated to simulate random draws from f ðhjzobs,1,Zobs,Ŝ

Þ,
ensuring that imputation is proper.2 Similar bootstrap steps have been used in MI in other
settings24,25 for the same purpose. This approach is referred to as the direct use of regularized
regression (DURR). In the DURR approach, the algorithm for the m-th imputation can be
described as follows:

(1) Generate a bootstrap data set ZðmÞ of size n by randomly drawing n observations from Z with
replacement.

(2) Use a regularized regression method to fit Model (4) based on the complete cases in ZðmÞ, that is,

ðz
ðmÞ
obs,1,Z

ðmÞ
obs,�1Þ, and obtain parameter estimate ĥðmÞ, noting that ĥðmÞ can be considered a random

draw from f ðhjzobs,1,Zobs,�1Þ.

(3) Impute zmis,1 with z
ðmÞ
mis,1 by drawing randomly from the predictive distribution

f ðzmis,1jZmis,�1, ĥ
ðmÞÞ, noting that imputation is conducted on the original data set, not the

bootstrap data set.

Repeating the above procedure for M times results in M imputed data sets. Subsequently,
standard complete-data analysis can be applied to each one of the M imputed data sets.

2.3 MI through indirect use of regularized regression

We also investigate an alternative approach to DURR: a regularization method is used for model
trimming only and is followed by a standard MI procedure using the estimated active set (Ŝ), say,
through a maximum likelihood inference procedure. This approach is referred to as the indirect use
of regularized regression (IURR). The algorithm of the IURR approach is described as follows:

(1) Use a regularized regression method to fit Model (4) based on the r complete cases in the
observed data, that is, ðzobs,1,Zobs,�1Þ, and identify the active set, Ŝ.

(2) Approximate the distribution, f ðhjzobs,1,Zobs,Ŝ
Þ, using a standard inference procedure such as

maximum likelihood.
(3) Conduct MI for zmis,1: in the m-th imputation, randomly draw ĥðmÞ from f ðhjzobs,1,Zobs,Ŝ

Þ, and

subsequently impute zmis,1 with z
ðmÞ
mis,1 by drawing randomly from the predictive distribution

f ðzmis,1jZmis,�1, ĥ
ðmÞÞ.
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In this approach, step 3 is repeated for M times to obtain M imputed data sets. The most notable
difference between DURR and IURR is that IURR only uses regularized regression to conduct
model trimming for the imputation model whereas DURR uses regularized regression to conduct
both model trimming and parameter estimation for the imputation model. In cases where p is large
(e.g. p¼ 200 or 1000) and q is small (e.g. q¼ 4 or 20), we expect IURR to outperform DURR, since
DURR is likely to shrink the regression coefficient estimates in S toward 0 in order to filter out noisy
variables in Zobs,�1.

2.4 MI through Bayesian lasso regression

For various regularization methods, their Bayesian counterparts through hierarchical Bayesian
formulations have been investigated in the literature.21,26 The basic idea underlying the BLasso21

is to set a conditional double-exponential prior f ðaj
2Þ ¼
Qp�1

j¼1
�

2
ffiffiffiffi

2
p exp

��j	j jffiffiffiffi

2
p for regression

parameters and noninformative scale-invariant marginal prior f ð
2Þ ¼ 1=
2 for 
2, where the
BLasso parameter � is selected by marginal maximum likelihood. It follows that lasso estimates
can be interpreted as the mode of the posterior distribution under a fully Bayesian formulation. In
addition, to account for the uncertainty about regression model specification, Hans23 proposed a
mixture prior for 	 in the high-dimensional case

f ð	j
2, �, �Þ ¼
Yp�1
j¼1

ð1� �Þ�0ð	j Þ þ �
�

2
ffiffiffiffiffi

2
p exp

��j	j jffiffiffiffiffi

2
p

� �
ð5Þ

where �ð�Þ is a point mass at zero. Priors for parameters 
2, � and � are


2 � Inverse�Gammaða, bÞ, � � Gammaðr, sÞ, � � Betað g, hÞ ð6Þ

with prespecified hyperparameters ða, bÞ, ðr, sÞ and ð g, hÞ.
There are several distinct advantages to use BLasso regression for imputation. First, it produces a

valid posterior distribution of � and a valid posterior predictive distribution of zmis,1 via Markov
chain Monte Carlo (MCMC) in a principled framework, avoiding the difficulty on generating
predictive distributions for missing data that are associated with the use of frequentist approaches
as described in Sections 2.2 and 2.3. Second, when conducting imputation, we are more interested in
accurate prediction (imputation) than in variable selection and it has been shown that BLasso
performs similarly or better in prediction when compared with frequentist lasso in finite
samples.21,26 Third, even though the prior probability of the event 	j ¼ 0 is nonzero in (5),
Bayesian lasso tends to induce a weaker shrinkage effect compared with the frequentist
regularization in the case of high-dimensional data; as a result, BLasso likely leads to more
general imputation models in (4) and hence is better suited for imputation.

The imputation algorithm that incorporates BLasso regression is described as follows:

(1) Formulate a hierarchical BLasso model for the data based on Model (4), that is, assigning prior
(5) for 	 and hyperpriors (6) for 
2, �, and � to account for model uncertainty and conduct
Bayesian model trimming.

(2) Simulate f ðhjzobs,1,Zobs,�1Þ via MCMC.
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 at PENNSYLVANIA STATE UNIV on September 16, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2013) [15.11.2013–3:05pm] [1–15]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/130231/APPFile/SG-SMMJ130231.3d (SMM) [PREPRINTER stage]

(3) Conduct MI for zmis,1: in the m-th imputation, randomly draw ĥðmÞ from the posterior
distribution, f ðhjzobs,1,Zobs,�1Þ, and subsequently impute zmis,1 with z

ðmÞ
mis,1 by drawing

randomly from the posterior predictive distribution f ðzmis,1jZmis,�1, ĥ
ðmÞÞ.

2.5 MI for general missing pattern

In Sections 2.2 to 2.4, we present three MI approaches for the simplified data setup as defined in
Section 2.1. Here, we consider a general missing pattern. Following the previous notation, for the
data set Z, we denote the observed components and missing components for variable j by zobs,j and
zmis,j with the corresponding complement data set for the remaining variables denoted by Zobs,�j

and Zmis,�j (j ¼ 1, 2, . . . , p), respectively. Note that unlike the simplified setup in Section 2.1, Zobs,�j

and Zmis,�j may themselves contain missing values since the variables in the complement set of j may
also contain missing values. In addition, we assume that the conditional distribution of zobs,j given
Zobs,�j is parameterized by hj.

For the general missing pattern, we extend the methods described in Sections 2.2 to 2.4 based on
the technique of chained equations; the basic idea is to impute the missing values of each variable
using the remaining variables and conduct imputation iteratively. This approach has been adopted
in multivariate imputation by chained equations (MICE)27 and MICE has been implemented in
several statistical software packages including SPSS and R and is applicable in cases where p� n.
While MICE lacks rigorous theoretical justification for some general missing patterns, it has been
shown in practice to achieve good performance in a wide range of settings.3,27,28

In the setup of our interest, we start the iterative procedure with some initial values. In the m-th
step, we generate a random draw, ĥ

ðmÞ
j , from f ðhj jzobs,j,Zobs,�jÞ through a regularized regression or

BLasso regression approach as described in Sections 2.2 to 2.4; we then impute z
ðmÞ
mis,j based on the

distribution f ðzmis,jjZmis,�j, ĥ
ðmÞ
j Þ for each j ¼ 1, 2, . . . , p. We repeat this step iteratively until

convergence. The complete algorithm can be summarized as follows:

ĥ
ðmÞ
1 � f h1jzobs,1,Z

ðm�1Þ
obs,�1

� �
z
ðmÞ
mis,1 � f ðzmis,1jZ

ðm�1Þ
mis,�1, ĥ

ðmÞ
1 Þ

..

.

ĥðmÞp � f ðhpjzobs,p,Z
ðm�1Þ
obs,�pÞ

z
ðmÞ
mis,p � f ðzmis,pjZ

ðm�1Þ
mis,�p, ĥ

ðmÞ
p Þ,

where ĥ
ðmÞ
1 through ĥðmÞp are obtained using regularized regression or BLasso regression. Note that the

superscript ðm� 1Þ in Z
ðm�1Þ
obs,�j and Z

ðm�1Þ
mis,�j implies that the missing values in Zobs,�j and Zmis,�j are

filled in using their previous updates; in other words, while the observed data Zobs do not change in
the iterative updating procedure, the missing data Zmis do change from one iteration to another.
After convergence, the last M imputed data sets after appropriate thinning are chosen for
subsequent standard complete-data analysis.

The MI approach incorporating BLasso regression (Section 2.4) directly simulates the posterior
distribution of the unknown parameters and posterior predictive distribution of missing data. Thus,
it is straightforward to incorporate this method to simulate f ðhj jzobs,j,Zobs,�jÞ in the above iterative
procedure. We simply need to posit a hierarchical Bayesian model for each conditional distribution.
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On the other hand, it is considerably more involved to incorporate the DURR and IURR methods
in this iterative procedure.

3 Numerical studies

We conduct numerical studies to evaluate the finite sample performance of the three proposed
methods including DURR, IURR, and BLasso in the presence of high-dimensional data. For
DURR and IURR, we consider three widely used regularization methods, namely, lasso, EN,
and ALasso, with a 10-fold cross-validation used to select tuning parameters. For BLasso, we use
the approach proposed by Hans23 with hyperparameters ða, bÞ ¼ ð0:1, 0:1Þ, ðr, sÞ ¼ ð0:01, 0:01Þ, and
ð g, hÞ ¼ ð1, 1Þ in (6). We also compare these methods with a standard parametric imputation
approach that either is based on the true imputation model or uses all variables in the data set
without model trimming. For all MI methods, 30 imputed data sets are generated for subsequent
complete-data analysis.

In our numerical studies, we focus on settings where the primary goal is to conduct regression
analysis and estimate the regression coefficients, denoted by b, in the presence of missing data.
Specifically, we first conduct imputation using each approach and then estimate b using imputed
data sets; the regression coefficient estimate b̂ is then used to compare the performance of different
methods. To benchmark bias and loss of efficiency for estimating b, two additional methods that do
not involve imputation are also used in numerical studies: a gold standard (GS) method that
estimates b using the underlying complete data before missing data are generated and a complete-
case (CC) analysis method that estimates b using only the complete cases.

3.1 Simulations

In all simulations, the sample size is fixed at n¼ 100. Each simulated data set includes y, the fully
observed outcome variable, and Z ¼ ðz1, . . . , zpÞ, the set of predictors and auxiliary variables where
z1 contains missing values and Z�1 is associated with y and/or missingness of the data. ðz2, . . . , zpÞ is
first generated from a multivariate normal distribution with mean ð0, . . . , 0Þp�1 and a first-order
autoregressive covariance matrix with autocorrelation � varying as 0, 0.5, and 0.9. We consider
settings with p¼ 200 and p¼ 1000. For each combination of p and �, z1 is generated from a normal
distribution with variance 
2z1 ¼ 1 and mean �z1 ¼ 	0 þ ZSa, where S represents the true active set
with a cardinality of q. We considered cases where q¼ 4, 20, or 50, and the corresponding design
matrices ZS ¼ fz2, z3, z50, z51g, fz2, . . . , z11, z50, . . . , z59g and fz2, . . . , z11, z50, . . . , z59, z70, . . . , z79,
z90, . . . , z99, z110, . . . , z119g, respectively. To fix the signal-to-noise ratio when generating z1, 	 is set
to 10 � 1, 10 �

ffiffiffiffiffiffiffi
0:2
p

and 10 �
ffiffiffiffiffiffiffiffiffi
0:08
p

for q ¼ 4, 20, or 50, respectively. Given Z, y is generated from a
normal distribution with mean �y ¼ �0 þ �1z1 þ �2z2 þ �3z3 (�j ¼ 1) and variance 
2y ¼ 3. Missing
values are generated from only one variable z1 and the missing data indicator �1 for z1 is generated
from a logistic model logit½Prð�1 ¼ 1jZ�1, yÞ	 ¼ �1� 0:1z2 þ 2z3 � 2y, resulting in approximately
30% of z1 missing.

For each simulated data set, MI is conducted using each method of interest; then the linear
regression model for y is fit using the imputed data sets for ðy, z1, z2, z3Þ and Rubin’s rule is used
to obtain b̂ and their standard errors. When conducting imputation using DURR, IURR, and
BLasso, the entire data set ðy,ZÞ is used. However, since the standard parametric MI procedure
cannot be directly used in the cases of p4 n, we consider two ways to use the standard parametric
MI: (1) the true active set S plus y are used to impute z1, denoted by MI-true and (2) 50 (or 80)
variables including the true active set S plus y are used to impute z1 in the cases of q ¼ 4, 20 (or
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q¼ 50), denoted by MI-50 (or MI-80). Note that MI-true is not applicable in practice since the true
active set is unknown;MI-50 (or MI-80) is analogous to an approach used in practice that includes an
initial screening step to reduce the number of predictors to less than n or r. For MI-true, MI-50, and
MI-80, we use the R packages micewith its default method (i.e. Bayesian linear regression with a ridge
prior) and mi with its default method (i.e. Bayesian regression for Gaussian data) and we obtain
similar results; thus, we only report the results using mice. When using the R package mice, we also
specify different ridge parameter values (namely 10�5, 10�8, and 10�10) and observe little change in
performance; as a result, we present only the results based on a ridge parameter value of 10�5.

The simulation results are summarized for �̂1 based on the following measures that are calculated
over 500 Monte Carlo data sets: mean bias of �̂1, mean standard error of �̂1 (SE), Monte Carlo
standard deviation of �̂1 (SD), mean square error of �̂1 (MSE), and coverage rate of the 95%
confidence interval of �̂1 (CR). In addition to compare different methods, we also investigate the
effect of the dimension of the data (p), the correlation among the data (�), and the size of the true
active set for imputation (q). Note that when � ¼ 0 (i.e. the predictors are independent of each
other), the IURR method is expected to perform well since the regularization methods are known to
achieve model selection consistency under such independence condition.

The simulation results are presented in Tables 1 to 3 for q¼ 4, 20, and 50, respectively; within
each table different methods are compared and the effects of correlation � and dimension p are
evaluated with q fixed. In all scenarios, the naive approach (CC) and the standard MI method that
does not use the true active set (i.e. MI-50 or MI-80) lead to considerable to substantial bias and
larger MSE, underperforming IURR and BLasso; in addition, both methods underperform DURR
in most cases except when p¼ 1000, � ¼ 0:9 and q¼ 20 or 50.

When the size of the true active set is small, that is, q¼ 4 (Table 1), BLasso exhibits negligible bias
and its CR is close to the nominal level; its performance is comparable or better than that of the
DURR and IURR methods in all cases. In addition, the IURR methods exhibit smaller bias and
MSE compared with their DURR counterparts for all values of � and p. Within IURR or DURR,
ALasso tends to achieve better performance than lasso and EN in terms of bias and MSE, which is
more pronounced when � ¼ 0 or 0.5. When correlation is high, all IURR methods perform
reasonably well with EN and ALasso exhibiting negligible bias and small MSE. IURR and
BLasso achieve clearly better performance in the case of � ¼ 0:9 compared with the cases of
� ¼ 0 or 0.5, whereas DURR shows somewhat mixed results. This suggests that when variables
are strongly correlated the variables that are selected to impute missing values, although may not be
identical to the true active set, still provide sufficient information for imputation, which leads to
improved performance of IURR and BLasso. As the dimension of data increases from p¼ 200 to
1000, the performance of each method tends to deteriorate with BLasso showing the least amount of
deterioration.

Compared with Table 1 (q¼ 4), Tables 2 (q¼ 20) and 3 (q¼ 50) show similar patterns on
comparisons among the imputation methods. BLasso is shown to achieve overall better
performance compared to DURR and IURR and its performance is comparable to MI-true (the
standard MI using the true active set) when q¼ 4 or q¼ 20 and better than MI-true when q¼ 50.
Several new trends also emerge as the size of the active set (q) increases. When q¼ 20 or 50, the
impact of � on the performance of IURR becomes somewhat mixed; in particular under p¼ 1000,
IURR tends to perform better in the case of � ¼ 0 compared with � ¼ 0:5 or 0.9. As q increases, the
performance of each imputation method deteriorates with larger bias and MSE and such
deterioration is considerably more pronounced with IURR and DURR than with BLasso. While
MI-true achieves satisfactory performance when q is small to moderate, it exhibits substantial bias
when q¼ 50 whereas the performance of BLasso remains satisfactory, indicating that even in the

Zhao and Long 9

 at PENNSYLVANIA STATE UNIV on September 16, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2013) [15.11.2013–3:05pm] [1–15]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/130231/APPFile/SG-SMMJ130231.3d (SMM) [PREPRINTER stage]

case that the true active set is known it is still advantageous to incorporate regularization in fitting
imputation models, especially when the size of the true active set (q) is large.

We conduct additional simulations in settings that are similar to those in Tables 1 to 3 but have
three variables (z1, z2, and z3) with missing values. The findings on comparisons of different
imputation methods are consistent with those reported in Tables 1 to 3. However, the
computational cost for our proposed approaches, in particular, the BLasso imputation, is
considerably higher in this set of simulations.

3.2 Data from a cancer study

The proposed methods are further compared using gene expression data collected from a cancer
study. The data set includes n¼ 200 subjects, for which expression data for 1036 gene probe sets are
obtained through microarray experiments, and we refer to them as gene biomarkers. We randomly
pick one gene biomarker as the outcome variable of interest, y, and four biomarkers as predictors of
interest, ðz1, z2, z3, z4Þ. The main goal of the analysis is to fit the regression model:
Eðyjz1, z2, . . . , z4Þ ¼ �0 þ �1z1 þ � � � þ �4z4. The remaining biomarkers are denoted by
ðz5, z6, . . . , z1035Þ, noting that the order in which the biomarkers are arranged is randomly chosen.

Table 1. Simulation results for estimating �1 ¼ 1 in the presence of missing data based on 500 Monte Carlo data

sets, where n¼ 100 and q¼ 4.

� ¼ 0:0 � ¼ 0:5 � ¼ 0:9

Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS 0.001 0.101 0.108 0.012 0.932 �0.007 0.089 0.091 0.008 0.938 �0.003 0.081 0.077 0.006 0.954

CC �0.206 0.123 0.123 0.058 0.630 �0.176 0.112 0.114 0.044 0.648 �0.173 0.105 0.102 0.040 0.598

MI-true �0.008 0.115 0.116 0.014 0.938 �0.005 0.100 0.097 0.009 0.954 �0.008 0.090 0.087 0.008 0.960

MI-50 �0.356 0.154 0.164 0.154 0.378 �0.333 0.145 0.153 0.134 0.394 �0.300 0.138 0.141 0.110 0.406

DURR

Lasso 0.074 0.129 0.131 0.023 0.894 0.073 0.105 0.107 0.017 0.896 0.051 0.096 0.101 0.013 0.924

p¼ 200 EN 0.066 0.137 0.135 0.022 0.922 0.075 0.110 0.110 0.018 0.892 0.056 0.098 0.104 0.014 0.916

ALasso 0.056 0.120 0.118 0.017 0.918 0.053 0.100 0.106 0.014 0.906 0.025 0.091 0.098 0.010 0.922

Lasso 0.066 0.146 0.145 0.025 0.904 0.093 0.117 0.128 0.025 0.838 0.079 0.097 0.105 0.017 0.862

p¼ 1000 EN 0.028 0.158 0.152 0.024 0.952 0.075 0.130 0.134 0.024 0.896 0.079 0.103 0.110 0.018 0.866

ALasso 0.050 0.134 0.129 0.019 0.924 0.069 0.107 0.115 0.018 0.872 0.050 0.093 0.103 0.013 0.900

IURR

Lasso 0.017 0.111 0.116 0.014 0.930 0.013 0.097 0.108 0.012 0.912 �0.006 0.091 0.100 0.010 0.924

p¼ 200 EN 0.002 0.118 0.123 0.015 0.930 0.010 0.102 0.105 0.011 0.930 �0.017 0.093 0.097 0.010 0.930

ALasso 0.008 0.107 0.110 0.012 0.942 0.004 0.094 0.104 0.011 0.926 �0.003 0.088 0.092 0.008 0.940

Lasso 0.030 0.113 0.127 0.017 0.918 0.044 0.098 0.112 0.015 0.894 0.019 0.090 0.112 0.013 0.906

p¼ 1000 EN 0.020 0.126 0.134 0.018 0.926 0.037 0.107 0.113 0.014 0.904 0.003 0.094 0.110 0.012 0.934

ALasso 0.006 0.108 0.112 0.013 0.940 0.002 0.094 0.096 0.009 0.952 0.001 0.086 0.086 0.007 0.944

p¼ 200 BLasso �0.023 0.115 0.120 0.015 0.946 �0.005 0.098 0.098 0.010 0.950 �0.001 0.090 0.092 0.009 0.952

p¼ 1000 BLasso �0.030 0.118 0.123 0.016 0.934 �0.009 0.101 0.102 0.010 0.950 �0.005 0.092 0.094 0.009 0.948

Bias: mean bias of �̂1; SE: mean standard error of �̂1; SD: Monte Carlo standard deviation of �̂1; MSE: mean square error of �̂1; CR:

coverage rate of 95% confidence interval for �̂1 ; GS: gold standard; CC: complete-case; EN: elastic net; DURR: direct use of

regularized regression; IURR: indirect use of regularized regression; ALasso: adaptive lasso; BLasso: Bayesian lasso.

10 Statistical Methods in Medical Research 0(0)

 at PENNSYLVANIA STATE UNIV on September 16, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2013) [15.11.2013–3:05pm] [1–15]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/130231/APPFile/SG-SMMJ130231.3d (SMM) [PREPRINTER stage]

There are no missing data in the original data set, so we adopt the following scheme to compare
different imputation methods. About 500 pseudo data sets with a sample size of n¼ 200 are
generated from the original data set through randomly sampling n¼ 200 observations with
replacement. For each pseudo data set, we generate missing values for z1 with the missing
indicator � following a logistic model: logit½Prð� ¼ 1Þ	 ¼ 1þ yþ z4 � 2z5. The proposed
imputation methods are applied to each pseudo data set with missing data and subsequently a
linear regression analysis is conducted to estimate b based on the imputed data sets. For
comparison, we also use the naive approach based on the CC in each pseudo data and a GS
approach based on the analysis of the original complete data. The estimates of b averaged over
500 pseudo data sets are used to evaluate the performance of different imputation methods. It is
noteworthy that unlike the simulation studies the true imputation model for the cancer data is
unknown; however, our analysis scheme still allows us to access the underlying complete data
and hence compare the imputation methods with the GS approach to benchmark their performance.

Similar to the simulation studies, Table 4 presents only the results for estimating �1. In addition, the
computational cost (3.4GHz CPU, 8GB Memory, Windows System) for the MI methods is also
provided. Consistent with the simulation results, BLasso again achieves best performance with its
estimate being closest to the GS estimate, and the CC analysis exhibits substantial bias compared with

Table 2. Simulation results for estimating �1 ¼ 1 in the presence of missing data based on 500 Monte Carlo data

sets, where n¼ 100 and q¼ 20.

� ¼ 0:0 � ¼ 0:5 � ¼ 0:9

Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS �0.005 0.082 0.083 0.007 0.958 �0.002 0.056 0.054 0.003 0.948 �0.001 0.039 0.038 0.001 0.960

CC �0.224 0.104 0.103 0.061 0.412 �0.163 0.081 0.082 0.033 0.484 �0.093 0.063 0.064 0.013 0.700

MI-true �0.046 0.097 0.093 0.011 0.940 �0.025 0.070 0.073 0.006 0.916 �0.018 0.052 0.049 0.003 0.938

MI-50 �0.264 0.135 0.131 0.087 0.530 �0.201 0.113 0.133 0.058 0.606 �0.156 0.101 0.105 0.035 0.718

DURR

Lasso 0.053 0.129 0.136 0.021 0.886 0.117 0.084 0.085 0.021 0.718 0.050 0.054 0.056 0.006 0.872

p¼ 200 EN 0.055 0.132 0.138 0.022 0.896 0.134 0.085 0.088 0.026 0.662 0.059 0.054 0.058 0.007 0.824

ALasso 0.018 0.129 0.133 0.018 0.932 0.072 0.083 0.081 0.012 0.904 0.038 0.054 0.054 0.004 0.910

Lasso 0.032 0.152 0.154 0.025 0.914 0.149 0.098 0.101 0.032 0.672 0.110 0.060 0.065 0.016 0.572

p¼ 1000 EN 0.019 0.156 0.152 0.023 0.936 0.157 0.106 0.106 0.036 0.688 0.131 0.062 0.070 0.022 0.462

ALasso 0.006 0.153 0.142 0.020 0.978 0.102 0.097 0.088 0.018 0.834 0.062 0.060 0.061 0.008 0.868

IURR

Lasso �0.012 0.108 0.116 0.014 0.918 0.035 0.070 0.079 0.007 0.900 0.002 0.047 0.052 0.003 0.922

p¼ 200 EN �0.024 0.112 0.130 0.017 0.932 0.026 0.073 0.079 0.007 0.922 �0.001 0.050 0.051 0.003 0.936

ALasso �0.019 0.106 0.110 0.012 0.934 0.022 0.071 0.080 0.007 0.908 0.006 0.047 0.054 0.003 0.914

Lasso �0.003 0.117 0.125 0.016 0.934 0.079 0.078 0.104 0.017 0.790 0.038 0.047 0.059 0.005 0.824

p¼ 1000 EN �0.023 0.126 0.137 0.019 0.946 0.081 0.085 0.106 0.018 0.802 0.046 0.051 0.060 0.006 0.838

ALasso �0.024 0.108 0.119 0.015 0.924 0.033 0.078 0.085 0.008 0.920 0.017 0.047 0.056 0.003 0.902

p¼ 200 BLasso �0.037 0.114 0.112 0.014 0.942 �0.003 0.078 0.075 0.006 0.954 0.003 0.051 0.055 0.003 0.936

p¼ 1000 BLasso �0.056 0.126 0.116 0.017 0.956 0.004 0.088 0.082 0.007 0.962 0.006 0.056 0.059 0.004 0.932

Bias: mean bias of �̂1; SE: mean standard error of �̂1; SD: Monte Carlo standard deviation of �̂1; MSE: mean square error of �̂1; CR:

coverage rate of 95% confidence interval for �̂1 ; GS: gold standard; CC: complete-case; EN: elastic net; DURR: direct use of

regularized regression; IURR: indirect use of regularized regression; ALasso: adaptive lasso; BLasso: Bayesian lasso.
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GS. For each regularization method, DURR and IURR perform similarly. Furthermore, the results
show that ALasso underperforms Lasso and EN within DURR and this trend is not as pronounced
within IURR. As for computational time, BLasso is more computationally intensive thanDURR and
IURR, though its computational time is still acceptable. DURR requires longer computational time
than IURR, which is expected since DURR requires fitting regularized regression in each of the M
imputed data sets, whereas IURR only requires fitting regularized regression once.

4 Discussion

Since MI is inherently Bayesian, the BLasso regression is a natural fit for multiply imputing missing
values in the presence of high-dimensional data. Our numerical results show that the BLasso
imputation achieves, in most cases, better performance than the other imputation methods
including several existing imputation methods. In addition, the DURR and IURR methods have
two other disadvantages. First, it is not straightforward to extend the DURR and IURR approaches
to the case of general missing pattern, where the use of bootstrap in DURR further complicates
matters. Second, it has been shown that the standard residual bootstrap method, while works for
ALasso, may not work for lasso.29,30 Even though the DURR approach uses the bootstrap that

Table 3. Simulation results for estimating �1 ¼ 1 in the presence of missing data based on 500 Monte Carlo data

sets, where n¼ 100 and q¼ 50.

� ¼ 0:0 � ¼ 0:5 � ¼ 0:9

Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS �0.003 0.080 0.078 0.006 0.954 �0.003 0.053 0.055 0.003 0.940 0.001 0.031 0.031 0.001 0.958

CC �0.217 0.102 0.102 0.058 0.408 �0.166 0.078 0.084 0.035 0.470 �0.087 0.054 0.057 0.011 0.628

MI-true �0.273 0.136 0.136 0.093 0.502 �0.221 0.118 0.136 0.067 0.568 �0.123 0.097 0.102 0.025 0.846

MI-80 �0.222 0.102 0.110 0.061 0.406 �0.172 0.080 0.088 0.037 0.406 �0.087 0.057 0.083 0.014 0.686

DURR

Lasso 0.032 0.134 0.129 0.018 0.946 0.113 0.090 0.093 0.022 0.760 0.069 0.053 0.052 0.007 0.788

p¼ 200 EN 0.036 0.135 0.130 0.018 0.948 0.130 0.092 0.096 0.026 0.718 0.084 0.053 0.053 0.010 0.664

ALasso 0.014 0.136 0.126 0.016 0.952 0.082 0.090 0.086 0.014 0.860 0.053 0.055 0.052 0.006 0.874

Lasso 0.011 0.162 0.154 0.024 0.942 0.130 0.111 0.108 0.029 0.758 0.155 0.067 0.077 0.030 0.354

p¼ 1000 EN 0.003 0.163 0.151 0.023 0.960 0.135 0.119 0.111 0.031 0.782 0.195 0.070 0.084 0.045 0.170

ALasso 0.007 0.163 0.151 0.023 0.952 0.089 0.110 0.098 0.017 0.870 0.110 0.067 0.064 0.016 0.678

IURR

Lasso �0.012 0.111 0.111 0.012 0.950 0.030 0.075 0.094 0.010 0.926 0.010 0.041 0.050 0.003 0.896

p¼ 200 EN �0.030 0.118 0.126 0.017 0.938 0.026 0.080 0.101 0.011 0.916 0.002 0.046 0.053 0.003 0.922

ALasso �0.031 0.108 0.116 0.014 0.930 0.023 0.077 0.081 0.007 0.924 0.020 0.040 0.052 0.003 0.876

Lasso �0.024 0.118 0.131 0.018 0.930 0.071 0.087 0.094 0.014 0.838 0.065 0.044 0.065 0.008 0.650

p¼ 1000 EN �0.036 0.124 0.128 0.018 0.942 0.066 0.097 0.103 0.015 0.874 0.066 0.052 0.083 0.011 0.712

ALasso �0.040 0.110 0.120 0.016 0.936 0.021 0.083 0.091 0.009 0.910 0.021 0.083 0.091 0.009 0.910

p¼ 200 BLasso �0.055 0.116 0.109 0.015 0.944 0.000 0.081 0.076 0.006 0.962 0.005 0.048 0.048 0.002 0.940

p¼ 1000 BLasso �0.079 0.131 0.121 0.021 0.936 �0.002 0.090 0.084 0.007 0.962 0.016 0.057 0.060 0.004 0.936

Bias: mean bias of �̂1; SE: mean standard error of �̂1; SD: Monte Carlo standard deviation of �̂1; MSE: mean square error of �̂1; CR:

coverage rate of 95% confidence interval for �̂1 ; GS: gold standard; CC: complete-case; EN: elastic net; DURR: direct use of

regularized regression; IURR: indirect use of regularized regression; ALasso: adaptive lasso; BLasso: Bayesian lasso.
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resample the cases rather than residuals, it is also likely plagued by the problem inherent with the
standard residual bootstrap method, likely contributing to its poor performance in the numerical
studies. In summary, our results suggest that the BLasso regression and its extensions are better
suited for MI in the presence of high-dimensional data than the other regression methods.

Many researchers31–35 have investigated optimal strategies for MI in the presence of a large
number of variables and in particular, the question that how many variables should be included
in imputation models in such cases. Van Buuren et al.31 suggested to select no more than 15–25
variables for imputation purposes. More recently, Hardt et al.35 investigated the same question in
small sample research; they used the existing MI methods that are implemented in the R package
mice3 and arrived at a rule of thumb that the ratio of variables used for imputation to the number of
complete cases should not be more than 1:3. It is worth noting that both advices were derived based
on the classical regression techniques for fitting imputation model that were available at the time.
Consistent with recommendations by others,14,15 van Buuren et al.31 also stated that the generally
accepted principle for imputation ‘‘implies that the number of predictors should be as large as
possible.’’ However, the performance of the classical regression techniques is known to
deteriorate as p increases; as a result, if p is large, it is generally not feasible to include all
available variables in imputation models when the classical regression techniques are used for
imputation. Consequently, while their advices likely work well in the low-dimensional setting
(n4 p) when the classical regression techniques are used, their applicability to the high-
dimensional setting (p4 n or p� n) as investigated in the current work may be questionable. As
mentioned previously, state-of-the-art modern regression techniques have been developed in recent
years including those investigated in our paper, allowing one to include all available predictors in
imputation models and achieve simultaneous predictor selection and parameter estimation when
fitting imputation models. These new regression techniques open the door for us to conduct
imputation in the high-dimensional setting (p4 n or p� n). Our research fills this gap and
provides some initial insights on applying modern regression techniques to imputation. Compared

Table 4. Estimation of �1 using the MI methods, gold standard approach and CC analysis for the cancer data

example.

Method Estimate SE SD TIME (min)

GS 0.394 0.292

CC 0.622 0.392 0.431

DURR

Lasso 0.402 0.327 0.349 0.262

EN 0.412 0.331 0.357 0.264

ALasso 0.331 0.306 0.267 6.322

IURR

Lasso 0.408 0.303 0.353 0.108

EN 0.388 0.300 0.335 0.120

ALasso 0.350 0.305 0.257 0.240

BLasso 0.390 0.299 0.323 4.804

For the MI methods and CC, SE: mean standard error of �̂1; SD: Monte Carlo standard deviation of �̂1; TIME: mean computational

time for one data set; GS: gold standard; CC: complete-case; EN: elastic net; DURR: direct use of regularized regression; IURR:

indirect use of regularized regression; ALasso: adaptive lasso; BLasso: Bayesian lasso.
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with the existing MI approaches based on the classical regression techniques, the main advantages of
the proposed methodology are as follows: (1) it is directly applicable to both low-dimensional and
high-dimensional data and (2) it is a principled approach achieving simultaneous predictor selection
and parameter estimation in imputation models and does not rely on heuristic rules of thumb for
predictor selection.

One limitation of the proposed approaches, in particular, the BLasso approach, is their
computational cost. While their computational cost is acceptable for the settings considered in
this work, it can become computationally very expensive or even infeasible to apply them in the
settings where there are a large number of variables and many of these variables have missing values.
Additional research is needed for development of efficient algorithms for the proposed approaches
and for extensive evaluations of their performance in situations with more general missing patterns.
For example, one potential extension is to embed the iterative procedure in Section 2.5 as part of the
BLasso imputation.

Our numerical studies focus on continuous data that are normally distributed, a potentially
restrictive, unrealistic assumption in practice. The sampling (or posterior) distribution of ĥ in the
imputation model is obtained from f ðhjZobsÞ in Model (1), which is likely insensitive to
the assumption of multivariate normality if there are enough data and in particular, the
regularization methods such as ALasso are used. However, imputing Zmis is based on
the conditional distribution f ðZmisjZobs, hÞ in Model (1), which is likely sensitive to the normality
assumption. To the best of our knowledge, this issue has not been investigated in the context of
imputation. Future work is needed to assess the robustness of the proposed imputation methods to
violations of the normality assumption and extend the proposed methodology to other types of data
such as count or discrete data.

In parallel with existing robust imputation approaches, nonparametric regression approaches
such as regularized additive models36 or boosting37 may also be adapted to multiply impute
missing values in the presence of high-dimensional data, which can relax some modeling
assumptions. On a related note, a direct application of classical nonparametric regression
techniques such as K-nearest neighbors38 is unlikely to be satisfactory for imputation in the
presence of high-dimensional data due to several well-known issues; one major issue is the curse
of dimensionality, that is, the convergence rate of the resulting estimator in nonparametric
regression decreases as the dimension of the predictors (p) increases, which is particularly acute in
the presence of high-dimensional data.
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