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Abstract

In this study, physical models are used to model reflections from
target primitives commonly encountered in a mobile robot’s envi-
ronment. These targets are differentiated by employing a multi-
transducer pulse/echo system that relies on both time-of-flight data
and amplitude in the feature-fusion process, allowing more robust

differentiation. Target features are generated as being evidentially
tied to degrees of belief, which are subsequently fused by employ-
ing multiple logical sonars at geographically distinct sites. Feature
datafrom multiple logical sensors arefused with Dempster’s rule of
combination to improve the performance of classification by reduc-
ing perception uncertainty. Using three sensing nodes, improvement
in differentiation is between 10% and 35% withoutfalse decision, at
the cost of additional computation. The method is verified by exper-
iments with a real sonar system. The evidential approach employed
here helps to overcome the vulnerability of the echo amplitude to
noise, and enables the modeling of nonparametric uncertainty in
real time.

1. Introduction

There is no single sensor that perfectly detects, locates, and
identifies targets under all circumstances. Although some
sensors are more accurate at locating and tracking objects,
they may not provide identity information, or vice versa,
pointing to the need for combining data from multiple sensors
via data-fusion techniques. The primary aim of data fusion is
to combine data from multiple sensors to perform inferences
that may not be possible from a single sensor. Data-fusion

applications span a wide domain, including automatic target
recognition, mobile-robot navigation, target tracking, aircraft
navigation, and teleoperations (Steinberg 1987; Blackman
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and Broida 1990; Hall 1992; Murphy 1993). In robotics

applications, data fusion enables intelligent sensors to be in-
corporated into the overall operation of robots so that they
can interact with and operate in unstructured environments,
without the complete control of a human operator (Luo and
Lin 1988).

Data fusion can be accomplished by using geometrically,
geographically, or physically different sensors at different
levels of representation, such as signal-level, pixel-level,
feature-level, and symbol-level fusion. In this study, phys-
ically identical sonar sensors are employed to combine in-
formation when they are located at geographically differ-
ent sensing sites. Feature-level fusion is used to provide
a system performing an object-recognition task with addi-
tional features that can be used to increase its recognition
capabilities.
One mode of sensing that is potentially useful and cost ef-

fective for mobile-robot applications is sonar. Since acous-
tic sensors are light, robust, and inexpensive devices, they
are widely used in applications such as navigation of au-
tonomous vehicles through unstructured environments (Kuc
and Siegel 1987; Kuc and Viard 1991), map building (Crow-
ley 1985; Leonard and Durrant-Whyte 1991 ), target tracking
(Kuc 1993), and obstacle avoidance (Borenstein and Koren
1988). Although there are difficulties in the interpretation of
sonar data owing to multiple specular reflections, the poor
angular resolution of sonar, and the need to establish cor-
respondence between multiple echoes on different receivers
(Peremans, Audenaert, and Campenhout 1993; Kleeman and
Kuc 1995), these difficulties can be overcome by employ-
ing accurate physical models for the reflection of sonar.
Sensory information from a single sonar has poor angu-
lar resolution and is not sufficient to differentiate the most

commonly encountered target primitives (Barshan and Kuc
1990). Therefore, many applications require multiple sonar
configurations. The most popular sonar ranging system is
based on the time-of-flight (TOF) measurement, which is the
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time elapsed between the transmission of a pulse and its re-
ception. Since the amplitude of sonar signals is prone to en-
vironmental conditions and since the standard electronics for
the commonly used Polaroid transducers (Polaroid 1990) do
not provide the echo amplitude directly, most sonar systems
exploit only the TOF information. Differential TOF models
of planes, edges, comers, and cylinders have been used by
several researchers in map-building, robot-localization, and
target tracking applications. In Bozma (1992), using a sin-
gle mobile sensor for map building, edges are differentiated
from planes and corners from a single location. Planes and
corners are differentiated by scanning from two separate lo-
cations using TOF information from complete sonar scans of
the targets. In Leonard (1990) and Peremans et al. (1993),
similar approaches have been proposed to identify these tar-
gets as beacons for mobile-robot localization. Manyika has
applied differential TOF models to target tracking (Manyika
and Durrant-Whyte 1994).

For improved target classification, multitransducer

pulse/echo systems that rely on both TOF and amplitude
information can be employed. In earlier work by Barshan
and Kuc, a methodology based on TOF and amplitude in-
formation is introduced to differentiate planes and corners
using a statistical error model for the noisy signals (Barshan
and Kuc 1990). Here, this work is extended to develop algo-
rithms that cover additional target types and fuse the decisions
of multiple sensing agents using evidential reasoning. Un-
certain environmental data acquired by multiple sonars at dis-
tinct geographical sites is used for target recognition. First,
the ultrasonic reflection process from commonly encountered
target primitives is modeled such that sonar pairs become evi-
dential logical sensors. Logical sensors, as opposed to physi-
cal sensors that simply acquire real data, process real sensory
data to generate perception units that are context-dependent
interpretations of the real data (Nazhbilek and Erkmen 1993).
By processing the real data, logical sensors classify the tar-
get primitives. An automated perception system for mobile
robots fusing uncertain sensory information must be reliable
in the sense that it is predictable. Therefore, quantitative
approaches to uncertainty are needed. These considerations
favor measure-based methods for handling sensory data (both
physical and logical) at different levels of granularity related
to the resolution of the data, as well as the time constants
of the different sensors. The sensor-integration problem can
be abstracted in a conceptual model where uncertainty about
evidence and knowledge can be measured and systematically
reduced. To overcome the vulnerability of echo amplitude to
noise, multiple sonar sensors are used in the decision-making
process. Decisions of these sensing agents are then integrated
using Dempster’s rule of combination.

Section 2 explains the sensing configuration used in this
study, and introduces the target primitives. A differentiation
algorithm that is employed to identify the target primitives is
also provided in the same section. In Section 3, the belief-

Fig. 1. A typical echo of the ultrasound ranging system.

assignment process is described, which is based on both TOF
and amplitude characteristics of the data. Also included is
a description of feature and location fusion when multiple
sonar-sensing nodes are used. Consensus of multiple sen-
sors at different sites is achieved by using Dempster’s rule of
combination, and the sensitivity to different levels of ampli-
tude noise is investigated. Simulation results are provided in
Section 4. In Section 5, the methodology is verified experi-
mentally by assigning belief values to the TOF and amplitude
characteristics of the target primitives, based on real data.
Further experiments are conducted in an uncluttered rectan-
gular room where feature and location fusion processes are
demonstrated by employing one to three sensing nodes. In
the last section, concluding remarks are made and directions
for future research are motivated.

2. Sonar Sensing and Target Differentiation
Algorithm

In this section, basic principles of sonar sensing are reviewed.
The sensing configuration and the target primitives that are
used in this study are described. A differentiation algorithm
is developed to identify and locate the target primitives from
the measurements of a single logical sensor.

2.1. Physical Reflection Models of Sonar from Different
Target Primitives

The most popular sonar ranging system is the TOF system. In
this system, an echo is produced when the transmitted pulse
encounters an object and a range value r is produced when
the echo amplitude waveform first exceeds a preset threshold
level T, as shown in Figure 1:

Here, to is the TOF of the echo signal at which the echo
amplitude first exceeds the threshold level, and c is the speed
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Fig. 2. Sensitivity region of an ultrasonic transducer pair.

of sound in air. I Assuming additive Gaussian-distributed
noise, T is usually set equal to 4 to 5 times the value of
the noise standard deviation, which is estimated based on

experimental data.
In this study, the far-field model of a piston-type transducer

having a circular aperture is used (Zemanek 1971 ). The am-
plitude of the echo decreases with inclination angle B, which
is the deviation angle of the target from normal incidence, as
illustrated in Figure 2. The echo amplitude falls below the
threshold level when 181 > 0., where 0. is the beam angle
that depends on the aperture size and the resonant frequency
of the transducer as

Here, a is the transducer aperture radius, and f is the
resonant frequency of the transducer (Zemanek 1971).

With a single transducer, it is not possible to estimate the
azimuth of a target with better resolution than the angular
resolution of sonar, which is approximately 290. In the

present system, two identical acoustic transducers a and b
with center-to-center separation d are employed to improve
the angular resolution, as illustrated in Figure 2. Each trans-
ducer can operate both as transmitter and receiver by con-
struction. The typical shape of the sensitivity region of an
ultrasonic transducer pair is shown in Figure 2. The extent
of this region is in general different for each target type, since
geometrically or physically different targets exhibit different
reflection properties. The word target is used here to refer to
any environmental feature that is capable of being observed
by a sonar sensor.

In this study, the target primitives modeled are plane, cor-
ner, acute comer, edge, and cylinder, whose horizontal cross
sections are illustrated in Figure 3. These target primitives
constitute the basic building blocks for most of the surfaces
likely to exist in an uncluttered robot environment. Since the
wavelength of sonar (À ~ 8.6 mm at 40.0 kHz) is much larger
than the typical roughness of object surfaces encountered in
laboratory environments, targets in these environments re-
flect acoustic beams specularly, like a mirror (Morse and
Ingard 1968). Hence, while modeling the received signals
from these targets, all reflections are considered to be specu-
lar. This allows transducers both transmitting and receiving
to be viewed as a separate transmitter T and virtual receiver
R in all cases (Kuc and Siegel 1987).

Detailed physical reflection models of these target primi-
tives with corresponding echo-signal models are provided in
the Appendix.

2.2. Target Differentiation Algorithm

In the differentiation of the target primitives discussed in this
section, both TOF and amplitude characteristics are used.
In Figures 4 and 5, TOF characteristics of various target
primitives are given over the range 9 E [-60°, 60°] for a
wide-beam transducer. The TOF characteristics of plane,
comer, edge, and cylinder have almost the same form as il-
lustrated in Figure 4. However, Figure 5 indicates that the
TOF characteristics of the acute corner are significantly dif-
ferent than those of other targets. Let tab( 0) denote the TOF
reading extracted at angle 9 from Aab(r, 0, d, t), which is the
signal transmitted by a and received by b, modeled in the Ap-
pendix. The difference in the TOF characteristics of the acute
comer is exploited by the following algorithm to differentiate
the acute comer from the other targets.

Acute corner differentiation algorithm

then acute comer;

then plane, corner, edge, or cylinder.

In this algorithm, 0’ is the standard deviation of the TOF es-
timate, which is in general nonlinearly related to the additive
noise on the signal amplitude. This relationship is inves-
tigated in (Ayrulu 1996). A multiple of ot, A;t<7t, is used
to improve the robustness of the differentiation algorithm to
noise (Ayrulu 1996).
Note that if a new decision on the target type is to be made

at each value of 9 as proposed in the algorithm, an acute
comer and a corner cannot be differentiated over a ±1’ ° in-

terval around 0 = 0° . This is because the qualitative TOF
1. c = 331.4&radic;T/273 m/s, where T is absolute temperature in Kelvin. At
room temperature (T = 293 K), c = 343.3 m/s.
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Fig. 3. Target primitives modeled and differentiated in this study.

Fig. 4. The TOF characteristics of targets when the target is at r = 2 m: (a) plane; (b) corner; (c) edge with 0, = 90’; and
(d) cylinder with rc = 20 cm.

characteristics of a comer are the same as that of an acute

corner in this interval, as illustrated in Figures 4b and 5.
However, after mistakenly identifying a comer as an acute
corner, the wedge angle of the acute comer will be computed
as 90° in this small interval, as verified experimentally in
Section 5. Hence, if the differentiation algorithm initially
detects an acute comer but calculates the wedge angle to
be around 90°, the final decision will be a corner. For 6
values outside the interval [-20°, 20°], an acute corner of
0c = 60° cannot be differentiated from the other target prim-
itives, since its TOF characteristics resemble those of other

target primitives for these 0 values. Similarly, acute comers

of 0c = 45° and 0c = 30° cannot be differentiated when 0
is outside the intervals [-45°, 45°] and [-55°, 55°], respec-
tively. Therefore, acute corners of wedge angle less than 60°
can be reliably differentiated from the rest of the target prim-
itives when 0 E [-20°, 20°]. If 0, > 60°, the differentiation
is not reliable, since the TOF characteristics are very similar
to those of other targets.
The azimuth 0 and angle 0, of the acute corner can be

estimated as
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Fig. 5. TOF characteristics of acute corner at r = 2 m with (a) 0c = 30° (b) 0, = 45° (c) 0. = 60° and (d) 0, = 90°.

where the geometry for raa and r66 are provided in the Ap-
pendix.

For () = 00,

To estimate the range r for 0 # 0°, a second-order poly-
nomial equation must be solved:

The coefficients of this polynomial are:

For the identification of the rest of the targets, amplitude
characteristics of the return signals, given in Figure 6, must
be used, since their TOF characteristics have the same form.
Based on the amplitude characteristics, the following algo-
rithm is used to differentiate the planar target from the rest
of the target primitives.

Plane differentiation algorithm

then plane with

then corner, edge, or cylinder.

Here, Aaa(0), Aab(O), and A66(B), respectively, denote
the maximum values of Aaa(r, 0, d, t), Aab(r, 0, d, t), and
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Fig. 6. Amplitude characteristics at r = 2 m when the target is a (a) plane; (b) corner; (c) edge with 6e = 90° ; (d) cylinder
with re = 20 cm; (e) acute comer with 0, = 60° .
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Abb(r, 0, d, t) over time at angle 0. Functional forms of the
latter are provided in the Appendix. The ra and rb are the per-
pendicular distances of the respective transducers from the
target, whose geometries are also included in the Appendix.
To differentiate a comer target from an edge or cylinder,

amplitude characteristics over the range 9 E [ - 0., 0. j are
studied. The distinguishing feature is that the maxima of
Aaa(8), Aab(B), A6b(B) over 0 E [-90, 80] are equal for a
right-angle corner, whereas this is not so for the edge and the
cylinder, as shown in Figure 6. Hence, the differentiation

algorithm follows.

Comer differentiation algorithm

. If [max{Aaa(8)} - max{Abb(8)} < kAoA] and
[max{Abb(8)} - max(Aab(0)) < kAO&dquo;A]
then comer with

else edge or cylinder.

In the above algorithm, max{Aaa(9)} corresponds to the
maximum amplitude over 0 for 9 E [ - 00 , 80], With the given
number of measurements, it is not possible to determine the
orientation of the two planes forming the corner. Only the
orientation of the line where the two planes intersect can be
found with respect to the line of sight. To find the orientation
of the planes, measurements that include reflections from the
two constituent planes are necessary.

In the above algorithms, noise multiplicity factors kA and
kt provide robustness for the differentiation process. Simu-
lation results for integer values of kA and kt between 0 and
6 are provided in Ayrulu (1996), which indicate that for the
desired level of robustness, it is appropriate to set these equal
to one. In situations where a greater level of robustness is

desired, larger values may be employed.
Referring to Figure 6, edge and cylinder targets can be

distinguished over a small interval near 0 = 0’. At 0 = 0°,
Aaa(0) = Aab(0) = Abb(0) for an edge, but this equality
is not true for a cylinder. Depending on the radius of the
cylinder, it may be possible to differentiate edge and cylinder
with this configuration of transducers. An edge is a target
with zero radius of curvature. For an edge, expressions for
range r and azimuth 0 given in eqs. (12) and (13) are the
same as in the case of a corner. In the case of a cylinder,
in addition to range and azimuth, the radius of the cylinder
can be estimated. The radius of curvature has two limits

of interest: As re ~ 0, the characteristics of the cylinder
approach those of an edge. On the other hand, as y-e ->

oo, the characteristics are more similar to those of a plane.

By assuming the target is a cylinder first and estimating its
radius of curvature (Barshan 1996), it may be possible to
distinguish these two targets for relatively large values of r,.
Approximate expressions for the r, 0 and re estimates are
given by

The ratio of transducer separation to the operating range
(d/r) is an important parameter in the differentiation of target
primitives, directly affecting how well these target primitives
can be differentiated by their TOF and amplitude character-
istics. The further apart are the transducers, the larger are
the differentials in TOF and amplitude as long as the target
remains within the sensitivity patterns of both transducers, as
in Figure 7a. If this is not the case, as in Figure 7b, some or all
four of the signals may not be detected. In the limit d -> 0,
which corresponds to either the transducers being too close
together and/or the target being too far, the two transducers
behave as a single transducer and the differential signals are
not reliable. This situation is equivalent to the case of try-
ing to differentiate the targets using a single transducer at a
fixed location, which is not feasible (Barshan and Kuc 1990;
Bozma 1992). A detailed study on the effect of transducer
separation d and range r on the maximum differentials is

provided in Ayrulu (1996).

3. Feature and Position Fusion by Multiple
Logical Sensors

This section focuses on the development of a logical sensing
module that produces evidential information from uncertain
and partial information obtained by multiple sonars at geo-
graphically distinct sensing sites. The formation of such evi-
dential information is accomplished with reasoning based on
belief functions. Belief values are generated by each logical
sensor and assigned to the detected features. These features
and their evidential metric obtained from multiple sonars are
then fused using Dempster’s rule of combination.
A belief function is a mapping from a class of sets to the

interval [0,1 that assigns numerical degrees of support based
on evidence (Shafer 1976). This is a generalization of proba-
bilistic approaches, since one is allowed to model ignorance
about a given situation. Unlike probability theory, a belief
function brings a metric to the intuitive idea that a portion of
one’s belief can be committed to a set but need not be also
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Fig. 7. A planar target falls (a) within the intersection of the sensitivity patterns of both transducers and (b) outside the
intersection of the sensitivity patterns so that cross-signals are not detected.

committed to its complement. In the target classification

problem, ignorance corresponds to not having any informa-
tion on the type of target that the transducer pair is scanning.
Dempster-Shafer theory differs from the Bayesian approach
by allowing support for more than one proposition at a time,
allowing lack of data (ignorance) to be represented. With this
approach, full description of conditional (or prior) probabili-
ties are no longer required, and incremental evidence can be
easily incorporated. Several researchers have recently started
using evidential reasoning in applications such as landmark-
based navigation (Murphy 1996) and map building (Pagac,
Nebot, and Durrant-Whyte 1996).
To differentiate the target primitives, differences in the

reflection characteristics of these targets are exploited and
formulated in terms of basic probability masses. This logical
sensor model of sonar perception is novel in the sense that it
models the uncertainties associated with the target type, its

range, and its azimuth, as detected by each sensor pair. The
uncertainty in the measurements of each sensor node is rep-
resented by a belief function having target type (or feature)
and target location rand 0 as focal elements, with basic prob-
ability masses m(.) associated with them:

3.1. Feature Fusion from Multiple Sonars

The focus of this section is feature fusion; fusion of target-
location estimates will be handled in the next section. Logical
sensing of the target primitives is accomplished through a
metric as degrees of belief assigned to the target primitives,
according to the TOF and amplitude characteristics of the
received signals described in Section 2. According to the
method used in this study, a new decision on the target type
is made on-line at each discrete value of 9, based on the

differentiation algorithm. Since complete amplitude sonar
scans that cover the whole range of 0 E [-00,00] must be
interpreted to differentiate edge and cylinder from corner, it is
possible to differentiate only plane, corner, and acute corner
with on-line data processing. However, once complete TOF
and amplitude characteristics are obtained for all values of
0, all five targets can be differentiated. Based on TOF and
amplitude characteristics of the received signals from plane,
comer, and acute corner, basic probability assignment to each
feature is made as follows:

where Aab(0) denotes the maximum value of Aab(r, 9, d, t)
(the signal transmitted by a and received by b), and tab(0) de-
notes TOF extracted from Aab(r, 9, d, t) at inclination angle
0 by thresholding. The definitions of Aaa(8), Abb(O), taa(9),
and tbb(0) are similar. 1,, I2, 13, and 14 are the indicators of
the conditions given below:
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The remaining belief is assigned to an unknown target type,
representing ignorance or undistributed probability mass, as

Dempster’s fusion rule applies where independent opinion
sources are to be combined (Shafer 1976). This is the case
in the present application. Given two sources with belief

functions

and

consensus is obtained as the orthogonal sum

which is both associative and commutative, with the resulting
operation being shown in Table 1. The sequential combina-
tion of multiple bodies of evidence can be obtained for n
sensor pairs as

Using Dempster’s rule of combination,

where L Lhk=f.n9,=o ~t(A)~2(~) is a measure of con-
flict. 

’ ’

The consensus belief function representing the feature-
fusion process has the metrics

Disagreement in the consensus of two logical sensing units
is represented by the &dquo;conflict&dquo; term above. The conflict
measure is expressed as

After discounting this conflict, the beliefs can be rescaled
and used in further data-fusion processes, such as in the se-

quential combination of multiple bodies of evidence (Murphy
1996).

3.2. Fusion of Range and Azimuth Estimates

Assignment of belief to range and angle measurements is
based on the simple observation that the closer the target is
to the face of the transducer, the more accurate is the range
reading, and the closer the target is to the line of sight of the
transducer, the more accurate is the angle estimate (Barshan
1991 ). This is due to the physical properties of sonar: signal
amplitude decreases with r and with 181. At large ranges and
larger angular deviations, the signal-to-noise ratio is smaller.
The most accurate measurements are obtained along the line
of sight (9 = 0°) and at nearby ranges to the sensor pair.
Therefore, belief assignments to range and azimuth estimates
derived from the TOF measurements are made as follows:

Note that, belief of r takes its maximum value of one when
r = r~.~,zn and its minimum value of zero when r = rmax- ·

Similarly, belief of 9 is one when 0 = 0° and zero when
8 = tB°.

Since each sensor pair takes measurements in its own

sensor-centric coordinate frame, the beliefs of range and az-
imuth information need to be first projected onto a common
coordinate system where they can be integrated. This is rep-
resented in Figure 8, where erroneous estimates are assumed
for r and 9. Then the metric of the fusion process is computed
based on these projected values. Due to the noise on the sys-
tem, estimated range and azimuth values are different than
the true values. Suppose n transducer pairs are employed
and each pair estimates the range and azimuth of the target
as

The correct position of the target is denoted by
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Table 1. Target Differentiation by Dempster’s Rule of Combination

Fig. 8. Common coordinate system for n pairs of sonar
sensors.

Fig. 9. Projected range and azimuth for transducer pair i.

in each sensor’s own coordinate frame, while the target is
within its sensitivity region. The projected range and azimuth
are represented in Figure 9 as

Although typically logarithmic relationships are used to re-
late uncertainty and belief (Pearl 1988), here a simpler linear

relationship is chosen to facilitate the analysis:

where p corresponds to either the range or azimuth of the
target.

Since the range and azimuth estimates are transformed
onto a common coordinate frame, uncertainties in the esti-
mated range and azimuth must be represented as uncertainties
in the transformed range and azimuth with the transformation
below:

where (7~ and ug represent uncertainties in the range and
azimuth measurements, respectively, and 4>i is the angle be-
tween f, and r’’. Since the position of the ith transducer pair,
rs, , is known, 4>~ can be found from the geometry by using
the cosine theorem:

where rs, is the distance of the ith sensor pair from the ori-
gin. After projecting the range and azimuth estimates onto
a common coordinate system, they are fused into a single
range and a single azimuth estimate as follows:

where the new belief value in the common coordinate system
can be found by solving eq. (41 ) for m(p).

Beliefs to these combined range and azimuth estimates
are assigned by using eqs. (36) and (37). When the system
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Fig. 10. Position of a plane with respect to each sensor pair.

is noiseless and the location of the target in the common
coordinate system is (r, 0), all estimated range and azimuth
values are equal to their true values:

Then the projected and fused range and azimuth estimates
are all equal:

For the planar target case, which is illustrated in Figure 10,
fusion of range and azimuth estimates needs to be modified,
because each sensor pair detects the plane at a different posi-
tion. For this case, a line that represents the plane in 2-D can
be estimated using the estimated positions of the plane by
all sensor pairs in the common coordinate frame. Then the
perpendicular distance between this line and the origin, and
the orientation of this line with respect to the origin must be
found which yield the fused range and azimuth of this plane.

In 2-D, a planar target can be represented as a line with the
equation

If range and azimuth measurements from n sensors are avail-

able, a weighted least-squares solution (Bar-Shalom 1990) is
sought for a and b where the weights and uncertainty are in-
versely related. The weighted least-squares solution can be
found by minimizing the following expression:

Here,

and the weights that minimize the mean-square error can be
found as (Barshan and Kuc 1990)

where ()&dquo; x. and oy. are found by transforming the uncertainties
in r’ and 0§ as

Note that here there is no need to normalize the sum of the

weights to one. The weighted least-squares solution is

and the fused range and azimuth estimates are

4. Simulation Results

4.1. Feature Fusion for Plane-Corner Identc; fication
In the simulation studies, it is assumed that a decision-making
unit consisting of a pair of sonars with separation d = 24.0 cm
is available, mounted on a stepper motor with step size 0.9°.
Signals are simulated according to the models presented in the
Appendix for the Panasonic transducer, which has a resonant
frequency of 10 = 40 kHz and 0. = 54°. Temporally and
spatially uncorrelated zero-mean additive Gaussian noise of
standard deviation <y~ is added to the echo signals. At each
step of the motor, a pulse is transmitted, and four TOF and
four amplitude measurements are recorded. The unit scans
an uncluttered area which is a 1.4 m x 1.0 m rectangular room
for 0 E [-180°,180°] in order to detect corners and planar
walls.
The results of the belief assignment process for a single

transducer pair located at the center of the room are given
in Figure 11. In this figure, m(1n) clearly indicates that the
plane feature is recognized with high beliefs at right angles
around 0°, ::1::900, ::I:: 1800, and with highest beliefs in range
than comer, since planes lie at closer proximity to the sensor
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Fig. 11. Belief assignment with information from a single transducer pair.

than corners. For larger inclination angles, these four planes
are confused with corners, because the tails of the amplitude
characteristics of a plane and corner are similar. The belief
m(c) shows that the four corners of the room are identified
with highest belief values around :f:45° and :f: 1350. The be-
lief chop in the middle of each corner belief curve reflects
a pin-type rise in uncertainty at these locations. This is due
to the amplitude characteristics of the corner. At +E, me

degrees to the left or to the right of this line, higher beliefs
are generated in the recognition of a corner. In the angular
interval between the identification of plane and that of comer,
there exists a region of high uncertainty in m(u) due to no re-
turn signal being available. In this case, neglecting multiple
reflections of third and higher orders, all transmitted wave-
forms bounce off the room boundaries, and no return signal
is recorded. Thus, m(r) = m(6) = 0.

Further simulation studies were performed with three iden-
tical logical sensors located at different positions in the

1.4 mx 1.0 m rectangular room. The decisions of the three
pairs are combined so as to perform the feature fusion by
employing Dempster’s rule of combination. The locations of
these transducer pairs are (0.0, 0.0), (-0.1, 0.1 ), and (0.1, 0.1 )
in meters, where the origin is taken as the center of the room.
All transducer pairs are assumed to rotate on stepper mo-
tors with step size 0.9’. These units scan the room for

0 E [-180°,180°]. At each step, transducer pairs collect
data from the target at the same step angle 0, and the decisions
of all pairs at this angle are fused. To calculate probabilities
of correct classification, misclassification, and lack of target
identification, data is collected for 0 E [-180°, 180°] three
times, which corresponds to about 1,200 decisions.
The classification results for each transducer pair and the

data fusion using three transducer pairs are given in Figure 12.
For a maximum echo-amplitude value of 0.3, amplitude noise
standard deviation of 0.02 corresponds to 50% of the max-
imum signal-amplitude differences. For u A > 0.03, differ-
ential signal levels are comparable to the noise level, and
it becomes impossible to detect these differences. In Fig-
ure 12b-12d, the probability of misclassification with one
pair is almost zero for all the noise standard deviation values,
owing to the inclusion of a A in the classification algorithms.
The probability of correct classification with the fusion of
three pairs can be seen in Figure 12e. The improvement in
the probability of correct classification is shown in Figure 12f.
Here, the probability of correct classification is derived from
the consensus of three logical sonars, illustrating how fusion
provides an increase in evidential support that raises the prob-
ability of correct classification when compared to that of a
single transducer pair. The improvement is between 10% and
35% for a A < 0.03, becoming smaller for larger values of
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a A. Of course, this is at the increased cost of time to collect
more data and do the necessary computations to fuse the data
from three pairs of sensors.
When O’A is excluded from the differentiation algorithm

by replacing it with zero, the algorithm becomes less robust
and the probability of misclassification increases, as shown
in Figure 13. In this case, when u A > 0.02, the performance
of the classification is comparable to the performance of a
randomized decision rule (Berger 1988), where 50% of the
time the target is randomly guessed to be a plane, and 50% of
the time it is guessed to be a comer, by completely ignoring
the information carried by the data.

4.2. Acute Corner Simulations

Acute comers are less frequently encountered in comparison
to the other target primitives. One example where they com-
monly occur is in orchestra shells for auditoriums and opera
houses.

In the acute-comer simulations, the same sensing configu-
ration as in the previous subsection is used. An acute corner
with wedge angle 0c is placed in front of the sensor pair
at r = 2 m, as shown in Figure 14. Each time a pulse is
transmitted, four TOF and four amplitude measurements are
collected. The stepper motor is rotated, and the target is
scanned for 9 from -60° to 60’. While obtaining classifi-
cation results for each angular step, the unit scans the target
from 0 = -60° to 9 = 60°, eight times. As a result, the log-
ical sensing unit makes about 1,072 decisions for each pair
of at and a A values.

For the region in which an acute comer can be reli-

ably differentiated with the classification algorithm (9 E
[-20°, 20°]), the results of belief assignments by a logi-
cal sensor unit for different values of 0c are obtained, and
the result for 0c = 60° is provided in Figure 15 as an exam-
ple. According to the results, for all Or values, the maximum
belief of being an acute corner is obtained at 0 = 0° when
the system is noiseless. Moreover, the belief of being a plane
or a comer is zero for all 0, 9~, and a A values. The values
of a A used in this study are 0.002 and 0.003. Although the
decrease in the belief of acute corner with increasing 101 is

sharper for larger 9~, the belief of acute corner is greater than
the belief of unknown target for all 0 and QA values. Belief
values are between 0.8 and 1.0 for Or = 30°, between 0.7
and 1.0 for 0c = 45°, and between 0.6 and 1.0 for Oc = 60’.
The range, azimuth, and 0c are estimated for acute comers

with 0c = 30°, 45°, and 60° at r = 2 m, for different a A
values. The results for a A = 0.002 are provided in Figure 16.
For a A = 0.002, the maximum range error is 5.7 cm, and
the maximum error in azimuth is 1.8°, which occurs with the
acute corner of 0c = 30°, and the maximum error in 0c is
1.4°, occurring for the acute comer of 0, = 60°.
The classification results for these acute corners are il-

lustrated in Figure 17. In this figure, the probability of

correct classification is higher than both the probability of
misclassification and the probability of unknown target up to
ut = 160 J.Lsec for 0c = 30°, ut = 100 psec for Be = 45°,
and ut = 40 ilsec for 0, = 60’. The probability of misclas-
sification is always less than both the probability of correct
classification and the probability of unknown target.

5. Experimental Verification
In this study, an experimental setup is employed to assign
belief values to the experimentally obtained TOF and am-
plitude characteristics of the target primitives, and to test
the proposed fusion method for target classification. Data
was collected at Bilkent University Robotics and Sensing
Research Laboratory. Three sensor nodes are placed in a
small, uncluttered, rectangular room with specularly reflect-
ing surfaces. Panasonic transducers are used, which have
much wider beam width than the commonly used Polaroid
transducers. The aperture radius of the Panasonic transducer
is a = 0.65 cm, and its resonant frequency is 10 = 40 kHz;
therefore 00 E# 54° for these transducers (Panasonic 1989).
Since Panasonic transducers are manufactured with distinct
characteristics for transmitting and receiving, two transmit-
ter/receiver pairs with very small vertical separation, as il-
lustrated in Figure 18, are used as a single logical unit. The
horizontal center-to-center separation between the transduc-
ers is d = 24.0 cm. This sensing unit is mounted on a small
6-V stepper motor with step size 0.9’. The stepping action is
controlled through the parallel port of an IBM-PC 486, with
the aid of a microswitch. The sensor data is acquired using a
DAS-50 A/D card with four channels, 12-bit resolution, and
1 MHz sampling frequency. The echo signals are processed
on an IBM-PC 486 using a C language program. From the
time of transmission, 10,000 samples of each echo signal are
collected and thresholded. The amplitude information is ex-
tracted by finding the maximum value of the signal after the
threshold value is exceeded. The targets employed in this
study are: cylinders with radii 1.5, 2.5, 5.0, and 7.5 cm; a
planar target; a comer; and an acute corner of Oc = 60° .

All of the experiments are conducted on large sheets of
millimetric paper to allow accurate calibration. In the exper-
iments, each target’s surface distance r to the center of the
transducer system is varied between 20 cm to 140 cm at 10
cm intervals. At each position, the target is scanned while it
is stationary at 0 = 0° . The typical differential TOF between
the transducers varies between 0 cm and 14 cm, depending
on the target type, curvature, and distance for the fixed sep-
aration of d = 24.0 cm (Ayrulu 1996). As the range of the
target increases, the differential signal becomes less reliable
for target classification.

Belief-assignment results to the TOF and amplitude char-
acteristics of a plane at r = 50 cm when scanned with the
sensing unit are given in Figure 19. In this figure, belief
of being a planar target primitive is greater than zero for
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Fig. 12. (a) The simulated room; (b) classification results: sensor at (0.0, 0.0); (c) sensor at (-0.1, 0.1); (d) sensor at (0.1,
0.1 ); (e) all three sensors; (f) improvement in the probability of correct classification.
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Fig. 13. Classification with a single transducer pair without the (j A term in the classification algorithm.

Fig. 14. Position of the transducer pair and the acute comer.

0 E [-20°, 20°]. Belief of being a plane and the belief of
being an unknown target oscillate around 0.5 for 101 < 10°,
and the belief of being an unknown target is greater than
the belief of a plane outside this region. Moreover, belief
of being a corner or an acute corner is zero for all 0 values.
Estimated range and azimuth values are given in Figure 20.
Referring to this figure, maximum range error is 0.5 cm and
maximum error in the azimuth estimate is 0.7°.

Beliefs are assigned to the TOF and amplitude character-
istics of a corner at r = 80 cm, as shown in Figure 21 when
scanned with the sensing unit. Although the target is a cor-
ner, for the interval 0 E [-5°, 2°], highest belief is assigned
to the acute comer. This is due to the similarity of the TOF
characteristics (for small 9 ~ ) of corners and acute comers
with large 8e, as explained in Section 2.2. Belief of corner
becomes larger than belief of acute corner for 101 > 5°, as

expected. Since the TOF characteristics are significantly dif-
ferent for 101 > 5°, the correct decision is reached. Belief of

plane is zero for all 0 values except at 0 = -9°.
Estimated range and azimuth values are given in Figure 22.

Referring to this figure, maximum range error is 0.3 cm,
and the maximum error in azimuth is 3.6° in the region
0 E [-4°, 4°]. In Figure 22c, estimated wedge angle of
the acute corner is shown. Although the belief for an acute
corner is around one for 101 < 5°, estimated wedge angle is
around 90° in this region. Therefore, the final decision is a
comer, as discussed in Section 2.2.

Beliefs assigned to the TOF and amplitude characteristics
of an acute corner of 8 = 60° at r = 40 cm, which is scanned

with the same system, are given in Figure 23. In this figure,
belief of being an acute corner is always greater than the belief
of being an unknown target, and belief of being a plane or a
comer is always zero. Estimated range, azimuth, and wedge
angle of acute comer are given in Figure 24. Referring to this
figure, maximum range error is 2.0 cm, maximum azimuth
error is 3.0°, and maximum error in estimated angle of the
acute comer is 4.2’ for 9 c [-6°, 6°].
The fusion method is tested experimentally in an unclut-

tered rectangular room measuring 1.4 m x 1.0 m with specu-
larly reflecting surface, created by partitioning off a section
of a laboratory. The test area is scanned by three sensor units
located at (0.0, 0.0), (-0.1, 0.1), and (0.1, 0.1) in meters,
which are same as the positions employed in the simulation
studies. The physical limitations of the hardware prevent the
sensors from covering the entire angular range 0. Instead,
rotation is over the range 0 E [0°, 284°]. As an example, the
range readings of the sensor located at (-0.1, 0.1) are given
in Figure 25.

Feature beliefs are assigned by the sensors based on
the TOF and amplitude characteristics of the sonar sig-
nals reflected from comers and planar walls. The basic

probability assignments by individual sensors are shown in
Figure 26a-26c. Note the high degree of uncertainty, since
a single logical sensor is employed. Each of the sensor de-
cisions on target type is referred to the central position for
comparison and fusion. During a scan, a sensor estimates the
range and angle of the target under observation. The values
for a target are weighted by the beliefs assigned to the esti-
mates, and then referred to position (0.0, 0.0). The sensors’
determinations of beliefs are fused using Dempster’s rule of
combination. Fusion results are shown in Figure 26d. Us-
ing a single sensing node, the percentage of correct decisions
is about 30%. The remaining 70% is attributed to incorrect
decisions due to noise and complete uncertainty, which oc-
curs when the target is not visible to the sensor at certain

viewpoints during a scan. When decisions of two nodes are

 at PENNSYLVANIA STATE UNIV on September 18, 2016ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


613

Fig. 15. Belief assignment by the sensing unit when an acute comer at r = 2 m with 0c = 60° is scanned. Results for (a)
QA = 0.0; (b) 0&dquo; A = 0.002; and (c) 0&dquo; A = 0.003.

fused using the Dempster’s rule, the correct decision percent-
age improves to 43.6%. This percentage is 51.9% when the
decisions of three nodes are fused. A navigation algorithm
would apply a belief threshold to these values to reliably
recognize targets with belief above a set threshold. The ac-
curacy of the map improves with the number of sensor nodes
used. In addition, there is a trade-off between the threshold
level versus false target recognition. The higher the thresh-
old, the lower the false recognition rate. On the other hand,
some targets that are difficult to detect, such as edges and
thin cylinders, may not be detected if the threshold is set too
high. After fusion over three sensing nodes, a threshold level
between 0.3 and 0.5 is a good choice. In fact, 0.5 is approx-
imately equal to the correct decision rate with three sensing
nodes.

6. Conclusion

This work presents a novel application of the theory of evi-
dence for target or beacon recognition. Physical models are
used to model reflections from target primitives commonly
encountered in mobile-robot applications. Target features
are generated as being evidentially tied to degrees of belief

which are subsequently fused for multiple sonars at distinct
geographical sites. Using both TOF and amplitude data in
the feature fusion process allows more robust differentia-
tion.

Employing an evidential reasoning approach in the dif-
ferentiation process enables the modeling of nonparametric
uncertainty. Fusion of feature data from multiple sensors us-
ing Dempster’s rule of combination reduces such perception
uncertainty. The consequent increase in processing time does
not entail a significant cost, considering the speeds of mod-
ern computers. Although this paper reports the use of only
three sensing nodes, it has been experimentally demonstrated
elsewhere that the methodology is suitable for real-time ap-
plications with up to 15 sensing sites (Ayrulu, Barshan, and
Utete 1997; Utete, Barshan, and Ayrulu Forthcoming).
The results have ground for application in mobile robotics,

where multiple sensing agents or robots are employed to sur-
vey an unknown environment composed of primitive target
types. As for future work, the proposed fusion method can
be extended to include physically different sensors, such as
infrared and laser-ranging systems for map building, target
identification, localization, and tracking applications. The
eventual goal is to realize robots capable of a high degree of
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Fig. 16. Estimated values of range r, inclination angle 6, and angle of acute corner Be, with CA = 0.002 for acute corners of
0,, = 30°, 45°, and 60° at r = 2 m.

Fig. 17. Classification results with a single sensing unit when acute corners at r = 2 m with (a) Oc = 30°; (b) Or = 45°; (c)
0, = 60° are scanned.
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Fig. 18. Configuration of the Panasonic transducers in the real system.

autonomy through the use of multiple sensors. The work can
be further generalized to three-dimensional targets. Coordi-
nation of the sensing agents and strategic target recognition
while either or both the sensors and the targets are in motion
is another possible direction for future research.
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Appendix:
Geometric Target and Echo Signal Models

In this appendix, geometric models of the target primitives
used in this study are provided. The targets modeled are

plane, corner, acute corner, edge, and cylinder. For each

target primitive, models of the corresponding echo signals
are given, which are based on experimental data.

Planar Target Model

A plane has a line segment profile in 2-D. The geometry of
reflection for a planar target is illustrated in Figure 27. Since
each transducer can be employed both as transmitter and re-
ceiver, a set of four TOF and four amplitude measurements
are obtained each time data is collected from the target. From
the geometry, the TOF measurements for each transmitter and
receiver pair are found as

where ta6 denotes TOF extracted from Aab(r, 6, d, t), which
is the signal transmitted by a and received by b at time t.
In earlier work, it has been shown that the reflected signals
are well approximated by a sinusoid with a Gaussian enve-
lope (Kuc and Siegel 1987). The detected signals by each
transmitter and receiver pair can be modeled as

In all of the signal models, QT is chosen as i (Bozma
1992). The form of the range-attenuation term rI + r2 in
eqs. (66) and (67) is due to the specular reflection of the
beam. Since r,.,.,,zn is the minimum distance at which the

beam-pattern model described above is valid, the beam will
be in the near zone when r < rmm, where the far-zone beam

model cannot be used anymore. According to the piston
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model of the transducer (Zemanek 1971), in the near zone,
the beam is confined to a cylinder with radius a, which is the
radius of the transducer. The length of this zone is approxi-
mately 4°’~ from the face of the transducer where A is the
wavelength of the acoustic transmission. On the other hand,
the beam is confined to a cone with angle 200 in the far zone.

Corner-Target Model

A right-angle comer is the line between two perpendicu-
lar planes that form a concave dihedral, as illustrated in
Figure 28. When the target is a corner, the received sig-
nal consists of two components: the diffracted signal that
originates from the junction of the two planes; and the dou-
bly reflected signal from the two intersecting planes. The

diffracted signal can be neglected, since its contribution to
amplitude is much smaller than that of the reflected signal.
The TOF measurements for each transmitter can be found as

The sonar signal reflected from a corner target can be mod-
eled as

Edge- Target Model

An edge is the intersection of two planes that form a convex
space when observed from the transducers. This target type
is illustrated in Figure 29. For the edge, the acoustic signal
diffracts and spreads out cylindrically once it reaches the line
defining the edge. Owing to the relatively lower echo am-
plitude, edges are the most difficult and problematic targets
to detect in a mobile robot’s environment. For the edge, the
TOF measurements of each transmitter and receiver pair can

be found as

The signal waveforms are modeled as

where pe is a reflection coefficient that decreases with 0,,
defining the sharpness of the wedge. Based on experimental
data (Kuc and Barshan 1989), pe can be approximately mod-
eled as a linear function of 9e, which is the angle of the edge
(Be < ~) given in Figure 29 such that

and

where Amax = 1, rum = 10 cm, and ra E# 10 cm. Then,
pe can be found as

with 9e in degrees.

Cylinder-Target Model

Although not as common as planes and corners, a mobile
robot often comes across a cylindrical target in its envi-
ronment in the form of pillars or poles. The geometry of
reflections from this target type is illustrated in Figure 30.
Experimental observations indicate that for a cylinder with
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Fig. 19. Belief assignment to a plane at r = 50 cm, scanned with the logical sensing unit.

Fig. 20. Estimated (a) range and (b) azimuth values of a plane at r = 50 cm, scanned with the sensing unit.

Fig. 21. Belief assignment to a corner at r = 80 cm, scanned with the sensing unit.

radius 2.54 cm located at 10 cm, the echo amplitude is ob-
served to be 50% of that from a normally incident plane at
the same range (Kuc and Barshan 1989). The TOF measure-
ments and signal models of each transmitter and receiver pair
are
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Fig. 22. Estimated (a) range, (b) azimuth, and (c) wedge angle of a corner at r = 80 cm, scanned with the sensing unit.

Fig. 23. Belief assignment to an acute comer with 0c = 60° at r = 40 cm, scanned with the sensing unit.

where pc is the reflection coefficient of the cylinder, which
depends on its radius of curvature. When the radius of the
cylinder increases, the amplitude of the detected signal in-
creases. An approximate model is to vary Pc linearly with
the radius of the cylinder based on the given data points. A
better model would result if more data points were taken and

the best-fitting curve was found. In the upper limit, when r,
is larger than 10 m, the cylinder behaves like a planar target.

According to the amplitude curves in Figure 31 (obtained
by using the above models), for re > 10 m the amplitude
curves of the transmitter and receiver pairs are the same as
the curves obtained when the target is a plane. As a result,

In the limit as re goes to zero, a line target is obtained. In
this case, if ric < 5 cm, the cylinder behaves like an edge-
type target with 6e < 30’. Then, pc £f p,. Using eq. (83), pe
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Fig. 24. Estimated (a) range, (b) azimuth, and (c) wedge angle of an acute comer of 0. = 60° at r = 40 cm, scanned with
the sensing unit.

is calculated as 1.98 x 10-6 for Be = 30’. Hence the linear
dependence between pc and re is

where r-c is in meters.

Moreover, it can be seen from the equations of the detected
signals for both the edge and the cylinder that they produce a
cylindrically divergent echo wavefront that decays as r- 1/2
In both cases, the received signal is only composed of the
diffracted signal. Since this diffracted component attenuates
very quickly, reflections from edges and cylinders with small
cross sections are the most difficult echoes to detect.

Acute-Corner Model

An acute corner is an intersection of two planes that form a
concave space when observed from the transducers. Wedge
angle Or of an acute corner varies from 0 to 90° . From the
geometry of Figure 32, the measurements can be expressed
as

Fig. 25. Range readings of the sensor located at (-0.1, 0.1)
in a rectangular room.

Note that the round-trip distances measured by sensors a and
b are twice their distance from the target when the target is a
90° corner, but are less than their actual distance by a factor
of sin 0, if the target is an acute corner with wedge angle
9~. The sin 0, factor can be observed in Figure 5, where
at fixed distance to the target, the measured TOF increases
with increasing values of 0,. The observation points that
give the same TOF reading fall onto an arc bounded by the
acute corner, with the center of the arc being at the junction
point.
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Fig. 26. Belief assignment of the sensors located at (a) (0.0, 0.0); (b) (-0.1, 0.1); (c) (0.1, 0.1); and (d) results when the
decisions of all three sensors are fused.

From eqs. (95) and (96), one gets ’- = ’- z a. Squaringrb rbb

and dividing eq. (97) by r2and using the definition of a
4{32 sin2 Be = a2 + 1 - 2a cos(20, - <~r), (98)

where {3 ~ ~. To a good approximation, <~r ~ 2d/r «
2(}e and can be neglected. Then, the solution for (}e is

Substituting for 0, in eq. (95), solutions for ra and rb follow:

To find the locations r and 0 of the acute corner, the two

equations

are solved simultaneously for r and B:

The TOF measurements are

and the signal models for each transmitter-receiver pair are
given by
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Fig. 27. Geometry of the problem with the given sensor pair
when the target is a plane.

Fig. 28. Geometry of the problem when the target is a comer.

Fig. 29. Geometry of the problem when the target is an edge.

Here, aab is the angle made by the line of sight of trans-
ducer a and the line drawn between the centers of transducer
a and virtual receiver b. Similarly, ,Qa6 is the angle made
by the line of sight of virtual receiver b and the line drawn
between the centers of transducers a and virtual receiver b.

Definitions of aaa, abb, /3aa, and /3bb are similar.

Fig. 30. Geometry of the problem when the target is a cylinder
with radius re.

Fig. 31. Amplitude curves of the detected signal in the case
of (a) a planar target, (b) and a cylindrical target with radius
10 m.

 at PENNSYLVANIA STATE UNIV on September 18, 2016ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


622

Fig. 32. Geometry of the problem where each surface of the
acute comer is considered a specular reflector. The virtual
receiver of transducer a is shown with a dashed line.
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