
1

Robust Multiclass Signaling Overload Control
S. Kasera J. Pinheiro C. Loader T. LaPorta M. Karaul A. Hari

Univ. of Utah Novartis CWRU Penn State Univ. Consultant Lucent

Abstract—We propose multi-class signaling overload control algorithms,
for telecommunication switches, that are robust against different input traf-
fic patterns and system upgrades. In order to appropriately measure the
system load when several classes of signaling traffic are present, we first
introduce the concept of equivalent system load measure, that converts the
multiple system measures associated with different classes of traffic into a
single measure with respect to a pre-defined base class. We use this mea-
sure to develop three multi-class overload detection and measurement al-
gorithms. Next, we develop a new algorithm for partitioning the allowable
equivalent system load across multiple traffic classes, using a strict priority
scheme. Using simulations of call flows from mobile telecommunications
standards, we compare different multi-class overload algorithms under a
variety of overload conditions. Our simulation results indicate that our
algorithm that measures system load using a combination of request accep-
tance rate and processor occupancy, provides highly reactive and robust
overload control. Last, for the purpose of making the overload control al-
gorithms more robust, we propose a measurement-based simple regression
technique to dynamically estimate key system parameters. We find that
estimates derived in this manner converge rapidly to their true values.

I. INTRODUCTION

Telecommunication switches are engineered to support a cer-
tain number of active calls and to process requests for calls and
services at a certain rate. Occasionally, service requests may
arrive at a switch at higher rate than the switch can process,
even if a switch has available bearer resources. This is possible
under many conditions in a multi-service wireless network, for
example a UMTS network, in which many requests to the net-
work are for services other than connections, such as location
updates. In this paper, we address processor overload controls
due to signaling traffic. These controls execute inside switch
controllers to react to conditions of high signaling requests that
overwhelm internal switch processing resources. They are re-
quired to maintain system integrity and maximize performance
during overload. The lifetime of switches is many years, and
processor upgrades can only be made within tight power bud-
gets and floor-space constraints which are major cost factors in
running a telecommunication network. Therefore, properly en-
gineering a switch for expected traffic, and relying on overload
control algorithms to manage unexpected bursts of requests is
critical to providing a cost effective service. These controls may
also be used for load balancing and traffic differentiation.

Due to the ever growing demand for faster, ubiquitous, and
newer services, mobile telephony poses new challenges in the
design of signaling overload control algorithms for a switch.
First, user mobility causes fast changing hot spots resulting in
bursty signaling traffic. Second, user mobility management and
newer services result in a large number of signaling messages
that require processing in an access switch. Third, some service
requests might be more important than others, thereby requiring
differential treatment under overload. Multi-class overload con-
trols, as opposed to single class overload controls, are critical to
multi-service wireless networks. The importance of service re-
quests for basic users may vary from requests to establish calls,

which generate immediate revenue, to registrations which may
generate revenue in the future. Furthermore, these networks will
provide multiple services, including voice, data, and messaging,
each of which may generate different revenues for operators. By
instituting multi-class overload controls, operators may maxi-
mize their revenue during overload periods.

Under overload, a switch may invoke remote overload con-
trol by signaling its neighbors of its state. In practice, although
recommended procedures exist to deal with inter-switch conges-
tion control, many deployed switches do not implement these
algorithms. Therefore, it is critical that a switch makes no as-
sumptions about any remote overload control and locally protect
its own processing resources by implementing appropriate local
overload controls. This is usually done by throttling a fraction
of the new service requests. In the multi-class case when certain
service requests are more important than the others, the throt-
tling must honor the class priority.

In this paper, we propose multi-class local overload con-
trol algorithms that are designed to be robust against differ-
ent input traffic patterns (gradual, bursty) and system upgrades.
Generally, overload control algorithms involve measurement of
the system load and its comparison with a specified or mea-
sured system load threshold. When the system load threshold
is reached or exceeded, overload control actions are triggered.
In order to appropriately measure the system load when several
classes of traffic are present, we first introduce the concept of
equivalent system load measure, that converts the multiple sys-
tem measures associated with different classes of traffic into a
single measure with respect to a pre-defined base class. For
example, arrival rates corresponding to calls, location updates,
registrations, and short messages may be converted into a sin-
gle, equivalent arrival rate. We use the concept of equivalent
system load measure to develop three multi-class overload de-
tection and measurement algorithms. These algorithms extend
the single-class algorithms presented in [1].

The first algorithm (denoted “Occupancy”) uses processor oc-
cupancy to measure system load. The second algorithm (de-
noted “ARO”) uses acceptance rate in conjunction with proces-
sor occupancy to measure the system load. Acceptance rate is
defined to be the number of service requests accepted into the
system in a given time interval. The third algorithm (denoted
“SiRED”) measures the system load using queue lengths. Each
of the three algorithms determine how much equivalent load
should be allowed into the system at any given time. We de-
velop a new procedure for partitioning the allowable equivalent
load across traffic classes, using a strict priority scheme that as-
signs preferential treatment to higher priority classes. Our parti-
tioning procedure is common to all the three algorithms.

Although our algorithms can be used in a variety of network
elements, in this paper, we develop and evaluate them for a Mo-

2

bile Switching Center (MSC). MSCs are the heart of the mo-
bile telecommunication networks. They perform both control
and transport functions. Control functions include routing calls
to and from mobile users through the access radios, processing
authentication of location update requests from mobile users,
accessing user profiles so that advanced services may be in-
voked, and providing access to data services such as short mes-
saging services. These control services are requested and in-
voked through the exchange of application level signaling pro-
tocols. We use simulations of call flows from mobile telecom-
munication standards to investigate the performance of the three
algorithms. We find that all three algorithms are capable of sus-
taining good throughput and delay performances under a wide
range of steady overload conditions. Interestingly, under sud-
den load ramp up, ARO and SiRED dramatically reduce the re-
action time and the maximum average delay in comparison to
the Occupancy algorithm. In comparison to SiRED, ARO has a
slightly higher reaction time and maximum average delay under
sudden load ramp up, but provides more stable feedback under
heavy overload, leading to a throttling pattern that is more con-
sistent with the desired priority scheme.

Our algorithms require the relative processing cost of each
class of traffic. Knowledge of switch behavior may allow values
to be specified, but it is important to know how robust the algo-
rithms are when the relative processing costs are mis-specified.
We find that mis-specification can cause some instability in the
algorithms, particularly if the cost of a high priority event is
under-specified. For the purpose of making the algorithms more
robust, we propose a scheme that does not require prior speci-
fication, but instead uses simple regression techniques to obtain
estimates of relative processing costs using measured data. We
find that estimates of relative costs derived in this manner con-
verge rapidly to their true values as additional data accumulates.

The rest of the paper is structured as follows. Section II de-
scribes related work in multi-class overload control algorithms.
A high level description of a wireless access switch and the sys-
tem model used is presented in Section III. The multi-class over-
load algorithms considered in the paper are described in Sec-
tion IV and compared via simulations in Section V. We con-
clude in Section VII and also provide several directions for fu-
ture extensions to our work.

II. RELATED WORK

Overload and congestion control has been actively studied in
both telecommunication networks and the Internet. In telecom-
munication networks, single class overload controls have been
proposed and evaluated in [1], [2], [3], [4], [5], [6], [7], [8]. One
common overload control technique standardized and used in
telecommunications networks is call gapping in which all ser-
vice requests are rejected during certain time gaps. The period
and duration of the gap are tuned based on overload conditions.
To date, no analysis of multi-class overload controls using call
gapping exist. Another common technique used is call percent-
age blocked in which a certain percentage of service requests
are blocked during overload periods, but the remainder are ser-
viced. The percentage blocked is tuned based on the level of
overload. We have designed our algorithms in the spirit of per-
centage blocked algorithms, but they can be applied to call gap-

ping algorithms as well. In the remainder of this section, we
consider work related to multi-class overload controls only.

In [2] the authors examined a multi-class token-based scheme
where a newly arrived call of a given class is accepted when
there is free token of that class or when there is free token in a
common pool of unused tokens. One concern with this scheme
is that there is no priority mechanism in using the tokens of the
common pool and under overload, calls belonging to lower pri-
ority classes might exhaust these tokens. In [11] Rumsewicz
used different queue size thresholds, one for each class, for dis-
carding call messages when the thresholds are exceeded in a tail
drop manner. He also observed that call completion throughput
rather than message throughput is a better measure of perfor-
mance. We also use call completion throughput as one of our
performance measures.

In the Internet, overload control has manifested itself in ac-
tive queue management of router queues. Most of the pro-
posed multi-class active queue management approaches includ-
ing RIO [12], WRED [13] and [14] are multi-class extensions of
the Random Early Discard (RED) algorithm [15]. In these ap-
proaches, different average queue size thresholds are set for dif-
ferent classes and packet drop probabilities are computed based
on how the actual average queue length(s) compare with the
thresholds. It is assumed that the link, rather than the processor,
is the bottleneck. In order to study the applicability of RED-like
approaches in the context of controlling processor overload due
to multi-class signaling traffic, we studied a modified version of
WRED, called signaling RED, or SiRED. The performance of
RED, RIO, WRED has been mainly evaluated in the presence
of TCP traffic with TCP’s remote overload control (end-to-end
congestion control). In evaluating our algorithms, we do not
assume any remote overload controls.

Our algorithms and their evaluation extend and build upon
the earlier work on single class signaling overload control [1].
The main enhancements and differences from [1] are as follows.
First, we consider multiple classes of traffic and introduce the
concept of equivalent system load measures to design multi-
class overload control algorithms. We introduce a new algo-
rithm for partitioning load across multiple classes of traffic. Sec-
ond, we evaluate our algorithms for a wireless scenario. Last, we
propose a simple scheme that uses regression techniques to es-
timate relative processing cost of calls belonging to each traffic
class.

We end this section by noting that several papers on handling
multi-class traffic have been written in the context of admis-
sion control where new calls or requests are admitted or dropped
depending upon their requirements and the available bearer re-
sources. This differs from our work which focuses on control-
ling processor overload due to the signaling messages them-
selves.

III. SYSTEM DESCRIPTION AND MODEL

Figure 1 shows a mobile network with an MSC. The MSC
receives both control as well as bearer traffic from base stations
on one side and the Public Services Telephone Network (PSTN)
on the other side. The functional components of an MSC [16]
are shown in Figure 2. Typically, the processing in a switch is
distributed between line cards and processing cards [7]. The sig-

3

naling component, which terminates the protocol interfaces with
the network, is implemented on line cards. These line cards
exchange internal control messages with the processing cards
which perform the call processing and Visitor Location Regis-
ter (VLR) functions. The call processing functions include call
routing, invoking services, and maintaining call state.

Station
Base

Base
Station

Public Services
Telephone Network

(PSTN)

Radio
Network
Controller

Mobile
Switching

Center

(MSC)Signaling

Bearer Traffic Bearer Traffic
 +

Signaling
 +

Fig. 1. A Simple Mobile Network

Cards

VLR

Bearer ResourcesBearer Traffic

Signaling Traffic

Administrative,
Other

Functions

Line Cards

Call Processing

Fig. 2. A Typical Mobile Switching Center

We are concerned with signaling overload control at the line
and the call processing cards. Signaling traffic arrives in the
form of new requests, messages associated with established re-
quests, or those associated with requests that are in the process
of getting established. It is a standard practice to throttle new
requests under overload rather than throttling a message associ-
ated with an established request or that associated with a request
in the process of getting established. This allows elimination of
future signaling messages associated with the throttled requests.
When a signaling message arrives at a line card, the line card
must first perform lower layer protocol processing and any other
processing to determine if the signaling message is a new call re-
quest. Hence even if a new call is throttled due to overload in
the line card, it imposes some processing cost on the line card.
This processing cost is called the throttling cost. A call pro-
cessing card may avoid this cost by communicating its load (or
the rate at which it would accept calls) to the line card(s) which
identifies and throttles new calls appropriately. The division of
functionality across cards varies in different switch implemen-
tations.

We model a card, also referred to as system, by a single pro-
cessor queue as shown in Figure 3. In this model, new requests
belonging to different priority classes are assumed to arrive at
the queue. For example, in the case of the MSC we could po-
tentially have five different priority classes of requests - mobile
calls, power-up registrations, location updates, paging requests,
and SMS (short messaging service) requests. Depending on the
current measure of load of the system, the class priority, and the
overload control algorithm, a new request could be accepted or
throttled. If the new request is accepted, it is processed by the
CPU and, depending on the nature of the request, an additional
task is generated and fed back into the system after a variable
delay. This additional task, when processed, may generate more

 Delay
Variable

CPU

Create new tasks
for accepted calls

Throttled Requests

Variable
 Delay

New Requests

 Retrial

 No Retrial

Completed Requests

Scenario1: Cost of throttling incurred
 by neighboring card.

 Delay
Variable

CPU

Create new tasks
for accepted calls

Throttled Requests

Variable
 Delay

New Requests

 Retrial

 No Retrial

Scenario2: Cost of throttling incurred
 by signaling card.

Completed Requests

Fig. 3. Single processor queue model for a card.

tasks which are fed back into the system. The processor sched-
ules tasks using a first-in-first-out policy. Eventually, when all
the tasks associated with an accepted request are executed, the
request is considered completed and removed from the system.
The generation of new tasks models the multiple tasks and mes-
sages associated with a request. The variable delay applied to
a task, before it is fed back into the system, models the delay
between arrival of different tasks associated with a request. Two
throttling scenarios are shown in Figure 3. In the first scenario,
a new call is throttled in a neighboring card and hence is shown
to be throttled even before it is queued. In the second scenario
a new call is throttled after incurring some processing cost. Due
to user retrials a throttled request could arrive again at the sys-
tem after a variable amount of delay. In this paper, we will only
examine the first throttling scenario and assume that the call re-
trials are part of the new calls. The correlation between throttled
calls and the retrials is not considered. Retrials cause overload
to persist for a longer period of time. We do consider persistent
overload in our evaluation in Section V.

IV. MULTI-CLASS OVERLOAD ALGORITHMS

In this section we develop overload control algorithms for
multiple classes of signaling traffic representing tasks of mul-
tiple types of service requests. Under normal conditions, when
the processor is not in overload, all the requests are allowed into
the system. When the processor is in overload, some requests
are throttled. In this paper we consider the scenario where ser-
vice requests are arranged in strict priority order and under over-
load lower priority service requests are throttled first. An alter-
nate approach would be to allow some kind of fair access to
different service requests but we do not consider that approach
in this paper.

As mentioned earlier, the process of throttling tasks could be
done intelligently by throttling only those tasks that initiate ser-
vice requests. It is assumed that ongoing events cannot be ter-
minated to reduce overload.

4

All multi-class overload control algorithms considered in this
paper are comprised of three steps.
1. A Time-driven measurement and detection mechanism in
which system load is measured at fixed probe times, with over-
load being assessed at every kth probe interval, denoted the as-
sessment time. The detection mechanism produces a total frac-
tion of the incoming service requests that must be allowed into
the system.
2. An allocation mechanism, in which the total fraction to be
allowed is converted into fractions for individual classes, in a
manner that respects class priority.
3. A throttling scheme, which converts the fractions allowed
into accept/reject decisions for individual events in each class.
The algorithms presented below differ only with respect to the
first step where different measures are used for detecting over-
load; the allocation and throttling mechanisms are common to
all algorithms.

In the rest of this section we introduce the concept of equiv-
alent measures used in three multi-class overload detection and
measurement algorithms (Step 1) described below. This is fol-
lowed by a description of the allocation procedure (Step 2) and
the throttling scheme (Step 3).

A. Equivalent System Load Measure

Equivalent system load measure allows us to convert the mul-
tiple system load measures associated with different classes of
traffic into a single load measure with respect to a pre-defined
base class as described below.

It is assumed that there are M types of origination events
that start a new thread of tasks (e.g., new calls, location updates,
registrations), which are assumed to be the only events that can
be throttled. These origination events arrive at rates λi, i =
1, . . . , M events/sec and are processed by a single card at rates
µi, i = 1, . . . , M . The corresponding average processing times
µ−1

i comprise the complete processing of the events, including
all subtasks they generate, up to their termination.

It is also assumed that a strict throttling priority pi, i =
1, . . . , M has been established for each event class, such that,
if pi < pj , then events of class i should be throttled before
events of class j. A processing priority may also be established
for the event classes, but, for simplicity of implementation, we
consider that all events have the same processing priority and
are processed according to a FIFO scheme.

Let ci represent a generic system measure for class i based
on counts. Examples of such count measures are arrival rates,
acceptance rates (i.e., the number of events accepted into the
system per unit time), and queue lengths (i.e., the number of
events waiting for processing).

One possible way of combining the different class count mea-
sures would be to simply add the ci, but this is clearly not rea-
sonable for certain load measures, as events in different classes
generally have very different processing times. For example, if
a location update takes, on average, 10% of the average process-
ing time of a call, then accepting ten new location updates into
the system is equivalent, in terms of processing effort, to accept-
ing one new call. Therefore, a weighted average of the ci, with
the weights proportional to the processing times of each class, is
used to combine the different class count measures into a single,

equivalent count measure. For that, we choose a class, say the
M th, to serve as a base class and define the relative cost of pro-
cessing an event of class i with respect to an event in the base
class as πi = µ−1

i /µ−1
M . The equivalent count measure is then

defined as

ceq =

M∑

i=1

πici. (1)

This measure can be interpreted as the equivalent number of
counts (in terms of processing cost) if the system were receiving
only base class events. In order to determine πi’s we require the
relative processing cost of each class of traffic. A measurement-
based scheme for estimating these costs is derived in Section VI-
B.

B. Overload Measurement and Detection

In this section, we describe three algorithms that use equiva-
lent measures of system load and compare it with a correspond-
ing equivalent system load threshold to detect and measure over-
load. The goal is to produce an equivalent fraction of the input
load that can be allowed into the system. The three algorithms
we describe are multi-class extensions of the single class algo-
rithms described in [1]. The first algorithm is based on measure-
ment of processor occupancy, the second is based on a combina-
tion of processor occupancy and acceptance rate measurements,
and the third is based on measurement of queue lengths.

B.1 Occupancy Algorithm

Processor occupancy, ρ, is defined as the percentage of time,
within a given probe interval, that the processor is busy pro-
cessing tasks. Processor occupancy is a dimensionless quantity,
which makes it relatively system independent. The measure-
ment of processor occupancy is clearly independent of the num-
ber of event classes present in the system. This is because the
total processor occupancy is the sum of individual processor oc-
cupancies. Therefore, the measurement and detection part of
the Occupancy algorithm are same in the single-class and multi-
class cases.

In the Occupancy algorithm, the estimated processor occu-
pancy at assessment interval n, denoted by ρ̂n and given by the
average of the previous k probed processor occupancies, is com-
pared to an occupancy threshold ρthresh. When the measured ρ̂n

is greater than ρthresh, the system is considered to be in over-
load, and throttling is forced. When ρ̂n is less than ρthresh,
no throttling is required. The specific feedback function for the
equivalent fraction allowed (similar to the single class feedback
function proposed in [3] and later examined in [1]), is

f eq
n+1 = restrict

(
fmin,

ρthresh

ρ̂n

f eq
n , 1

)
(2)

where restrict(a, x, b) = max(a, min(x, b)) bounds x to the in-
terval [a, b]. A minimum fraction allowed fmin is used to prevent
the system from throttling all incoming events. In the single-
class case the fraction allowed is applied directly to the indi-
vidual events; in the multi-class case, it must be split into sep-
arate fractions allowed for the individual classes depending on
their priorities. The mechanism for achieving this is described
in Section IV-C.

5

B.2 ARO Algorithm

One of the problems with using an occupancy-based algo-
rithm is that processor occupancy provides only a measure of
the processed load. The offered load in a given time interval
might be much higher than the processed load especially when
there is a sudden burst of service requests. The acceptance rate,
defined to be the number of new service requests accepted into
the system in a given time interval, is a better measure of of-
fered load. An algorithm based on the acceptance rate (AR) uses
a feedback function similar to (2), but here the average num-
ber of accepted service requests over the past k probe intervals
replaces the processor occupancy. In our multi-class scenario,
the equivalent acceptance rate is obtained using (1). That is,
letting α̂n,i represent the estimated acceptance rate for events
in class i at assessment time n, the equivalent acceptance rate
is α̂eq

n =
∑M

i=1 πiα̂n,i. It estimates the equivalent number of
class M events being accepted into the system. Letting αeq

thresh

denote the equivalent acceptance rate threshold (whose deter-
mination is discussed later in this section), the multi-class AR
feedback function is

f eq
n+1 = restrict(fmin,

αeq

thresh

α̂eq
n

f eq
n , 1). (3)

The equivalent acceptance rate threshold αeq

thresh is the most
crucial parameter in the multi-class AR feedback function (3).
It may either be determined based on the engineered capacity
of the system, or it may be estimated dynamically, by determin-
ing the equivalent maximum system throughput µeq

max = α̂eq/ρ̂,
where α̂eq is the current estimate of the equivalent acceptance
rate and ρ̂ is the current estimate of the processor occupancy.
We then set αeq

thresh = ρthreshµeq
max. For robustness against

sudden traffic bursts, αeq

thresh is updated at every K � k probe
intervals, according to an exponentially weighted moving aver-
age (EWMA) scheme with small updating weight w.

The problem with using a detection mechanism based only
on acceptance rate is that this measure does not indicate over-
load induced by internal changes in the system. For example,
an increase in the service rate for certain classes of events or
consumption of processing resources by background tasks can
not be captured by acceptance rate. Therefore, it is necessary
to combine acceptance rate with another system measure that
represents the system’s processed load and not just offered load.
This leads us to consider the combined acceptance rate and oc-
cupancy (ARO) algorithm,

f eq
n+1 = restrict

[
fmin, min

(
αeq

thresh

α̂eq
n

,
ρthresh

ρ̂n

)
f eq

n , 1

]
.

B.3 SiRED Algorithm

The SiRED algorithm is based on the average queue length
of new events. We use (1) to obtain the equivalent queue length
qeq =

∑M

i=1 πiqi, where qi represents the length of the queue of
originating events of class i1.

1We consider the equivalent queue of origination events instead of equivalent
queue of all events for the following reasons.
1. There is no simple definition of an equivalent non-originating event as the
relative costs used refer to the complete processing of the event and the events

The average equivalent queue length at time n+1 is estimated
according to an EWMA based on the measured equivalent queue
length at time n, qeq

n , Qeq
n+1 = (1 − w)Qeq

n + wqeq
n , where the

updating weight w needs to be specified. The equivalent fraction
allowed for the multi-class SiRED algorithm is then defined as

f eq
n+1 =

f eq
min, Qeq

n ≥ Qeq
max

1, Qeq
n ≤ Qeq

min

max
[
f eq
min,

Qeq
max−Qeq

n

Q
eq
max−Q

eq

min

]
, otherwise

,

where Qeq
min and Qeq

max are lower and upper thresholds on the
equivalent queue length, which need to be specified or could
also be obtained from specifications of minimum and maximum
queue length thresholds of each class using (1). Note that unlike
the Occupancy and ARO algorithms, SiRED does not use an
explicit closed feedback loop for updating f eq

n .

C. Allocation

The detection step of the overload algorithms, discussed in
Section IV-B, determines the equivalent fraction of class M
events that should be allowed into the system. Let τ eq = 1−f eq

be the the equivalent fraction of class M events that should be
throttled. In the multi-class case, this throttling fraction needs
to be split among the various event classes, respecting the throt-
tling priority specified for them. We now describe a simple al-
gorithm for calculating throttling fractions τ1, . . . , τN for each
priority, so that the equivalent throttling fraction is τ eq.

Recall the arrival rate for class i events is λi, and the rela-
tive processing cost with respect to the base class M is πi. The
total requested load, per unit time, for class i events is there-
fore λiπi, and the total requested load for the entire system is
ΛM =

∑M

i=1 λiπi.
Since the required equivalent throttling fraction is τ eq, the

load that must be throttled is τ eqΛM . The throttling scheme
then assigns individual throttling fractions to each class, so that
the low priority classes are throttled first, and to maintain the
desired overall throttling fraction. Formally, define Λ0 = 0 and
Λk =

∑k

j=1 λiπi; note that Λk is the cumulative requested load
for classes 1 to k. The throttling fraction τj for class j is

τj =

1, Λj ≤ τ eqΛM

(τ eqΛM − Λj−1) /λjπj , Λj−1 ≤ τ eqΛM < Λj

0, Λj−1 ≥ τ eqΛM

(4)
The allocation algorithm described in (4) requires that some

estimates of the class arrival rates, λi, be available. We use sep-
arate EWMAs in each measured class arrival rate, which, for
robustness, are updated at each Ka � k probe intervals, using
a small updating weight wa.

that are processed by it.
2. In our scheme, only new service requests (originating events) can be throt-
tled, so there is a direct relationship between the queue length and the amount
of throttling, which would be indirect if all events were considered.
3. The SiRED algorithm is more reactive when only originating events are used
in the queue because lower threshold can be used, and more immediate changes
in the queue length are produced.

6

D. Throttling

Given the throttling fraction τn,i to be used for class i during
the nth interval, the throttling scheme determines which new
events to drop. We adopt a deterministic throttling scheme first
proposed by [10]. In this algorithm, a variable r is first initial-
ized to 0, then the accept/reject decision procedure described
below is used

r := r + (1 − τn,i).
If r ≥ 1

r := r − 1
accept request

else reject request,

[1] compares this deterministic throttling algorithm to alterna-
tive schemes based on pseudo-random numbers and concludes
that the deterministic algorithm has the best overall performance
in terms of reducing the variability in the fraction allowed. The
randomness in arrivals from different sources ensures that no
particular source is able to misuse the deterministic throttling to
its advantage.

V. PERFORMANCE OF ALGORITHMS

We now evaluate the performance of the multi-class overload
control algorithms described in Section IV by simulating the
system model described in Section III. We make the simpli-
fying assumption that the process of detecting overload is free.
The simulator used to obtain the results presented in this section
is custom written.

For simplicity, only two classes of events are considered in
the simulation: mobile originated calls and location updates. As
described in Section IV, strict priority is used in throttling events
from the two classes. The task and event structures for calls and
location updates, derived from call flows from mobile telecom-
munication standards, are presented in Figure 4. The call model
treats each request as consisting of four task segments: initial
request, call setup, handover, and call termination. The model
used for location updates consists of a single task segment: the
initial request. The initial request, call setup and call termina-
tion tasks comprise several subtasks which are generated after a
random delay. For the purpose of the simulation, subtasks oc-
curring with negligible delay of each other are combined into
one subtask. This results in the initial request being subdivided
into one or three subtasks, the call setup being subdivided into
four subtasks and the call termination being composed of three
subtasks. Only 10% of the initial request events require three
subtasks; the other 90% require a single subtask2. In our sim-
ulations, 70% of the calls experience handover and the ratio of
number of calls to the number of location updates has been as-
sumed to be 1:10.

The system represented in the simulation is designed to oper-
ate under approximately 95% processor occupancy under a load
of 592,000 busy hour calls attempts (BHCA), corresponding to
an average of about 164 call attempts per second, together with
ten times more location updates. The probability distributions

2The choice of one or three subtasks depends upon whether the record of the
user is available on the local VLR or if it must be obtained from a remote VLR
or even the user’s Home Location Register (HLR). Here, we assume that 90%
of the time the user’s record is found in the local VLR.

Location update
arrives

Location update
arrivesarrivesarrives completed

Location update

Initial Request

Initial Request
Call arrives

Call Set-Up

further tasks

further tasks

0.1

0.1

further tasks

Hand-over

0.3

Call Termination

0.7

further tasks

Call completed

Fig. 4. Task and event structures for calls and location updates. Numbers
represent branching probabilities.

used for the delays until the next subtask and the subtask pro-
cessing times are listed in Table I, with exp(λ) denoting the
exponential distribution with parameter λ and Γ(α, β) denoting
the Gamma distribution with parameters α and β. The choice

TABLE I

PROBABILITY DISTRIBUTIONS FOR DELAY UNTIL THE NEXT SUBTASK AND

SUBTASK PROCESSING TIME.

Subtasks
Subt. Delay Process. Mean

Task No. Dist. Dist. (ms)
Init. Req. 1 exp(250) Γ(2.5, 10) .25

2 exp(250) Γ(2, 10) .2
3 exp(250) Γ(2, 10) .2

Setup 1 exp(250) Γ(3, 3) 1
2 exp(250) Γ(2, 10) .2
3 exp(7500) Γ(2, 10) .2

(no HO) 4 exp(90000) Γ(2, 10) .2
(with HO) 4 exp(45000)

HO 1 exp(45000) Γ(3, 3) 1
Term. 1 exp(250) Γ(3, 10) .3

2 exp(250) Γ(2, 10) .2
3 — Γ(2, 10) .2

of distributions and parameter values in Table I, as well as the
task and event structures in Figure 4, are based on telecommuni-
cations traffic engineering recommendations and measurements
on prototype implementations. Under these assumptions, the to-
tal average processing time is 2.89 ms per call and 0.29 ms per
location update. The average relative cost of a location update
with respect to a call is about 10%. The holding time for a call,
that is, the time between the end of the call setup and the start of
the call termination, is assumed to be exponentially distributed
with mean 90 seconds.

All three overload algorithms considered in the simulation use
the same probe intervals and assessment intervals of 100 ms,
and the same minimum fraction allowed, fmin = 0.005. Expe-
rience with evaluation of switches suggests that a timer value of
a few hundred milliseconds is good for a variety of input traffic
patterns and system settings. Smaller timer values would result

7

in faster response during sudden overload but also cause more
oscillations during steady state leading to reduced performance.
Table II lists the parameter values used in the simulations for the
different algorithms. The parameter values for the SiRED algo-

TABLE II

PARAMETER VALUES USED IN THE SIMULATIONS.

Algorithm
Parameter Occupancy SiRED ARO
ρthresh 0.95 – 0.95
φmax 20 – 20

k 3 1 3
w – 0.05 0.02
K – – 300

Qmin – 1 –
Qmax – 4.5 –

rithm were chosen to produce an average processor occupancy
of about 95% under mild to moderate overload conditions (call
rates between 160 and 350 calls/s). As discussed in Section V-
A, SiRED becomes unstable under higher overload (call rates
above 500 calls/s) and it is not possible to choose parameter val-
ues that give steady 95% occupancy for the range of call rates
considered in the simulation.

The performance metrics used to compare the algorithms are
task delay (time in queue until start of processing), throughput
(number of service requests or calls completed per second), and
allowed fraction of service requests (call origination or location
update events) into the system.

A. Performance Under Steady Load

We investigate the performance of the overload control algo-
rithms when call arrivals are Poisson3, under steady mean call
attempt rates varying between 450 thousand BHCA (125 calls/s)
and 7.2 million BHCA (2000 calls/s), covering the range from
no overload to severe overload. The location update mean ar-
rival (also a Poisson process) rate was set to ten times the mean
call rate. For each attempt rate, calls and location updates were
simulated over a 15-minute period, with the performance met-
rics averaged over the whole period.

The sample size associated with the simulation depends on
the performance metric under consideration: for task delay the
sample size is determined by the number of simulated calls dur-
ing the 15-minute period (which ranges from around 112,500 to
1,800,000, depending on the call load); for throughput and al-
lowed fraction the sample size is determined by the number of
probe intervals in the 15-minute period, 9000.

Figure 5 shows the averages of the performance metrics ver-
sus call attempt rate, for each overload control algorithm4. The
sample sizes, mentioned above, give the following maximum
simulation errors for the average performance metrics in this
figure: ±0.1ms for task delay, ±1% for allowed fraction, and

3Other arrival processes can be easily used in our simulator
4Because of their close proximity, the ARO curves have been overwritten by

the Occupancy curves in some cases.

2
4

6
8

10
12

500 1000 1500 2000

Delay (ms)

0
20

40
60

80
10

0

500 1000 1500 2000

Fraction Allowed

Loc. update

Call

0
50

0
10

00
15

00

500 1000 1500 2000

Throughput

Loc. update

Call

Call Rate (calls/s)

A
ve

ra
ge

ARO Occupancy SiRED

Fig. 5. Average performance metrics versus call attempt rate by overload control
algorithm.

±3 calls (or location updates)/s for throughput5. All three
algorithms show good, similar performance under multi-class
overload conditions. The average delay stays within reason-
able limits (below 12 ms), though SiRED gives consistently
higher delays for heavier overload conditions. The fraction of al-
lowed events behave consistently with the strict priority scheme
adopted: the fraction of allowed location updates drops faster
than that of calls, staying close to zero for call rates ≥ 500
calls/s. Consistently, the average throughput curves indicate that
no location updates are processed under heavier overload. The
system is capable of sustaining a constant call throughput, under
all three overload algorithms.

The fraction allowed and throughput plots in Figure 5 also
indicate that SiRED throttles location updates less aggressively
than the other two algorithms, under moderate overload condi-
tions (close to 500 calls/s). The reason for this is the greater
instability observed for the feedback mechanism of this algo-
rithm, which translates into a highly variable fraction allowed of
calls. Figure 6 presents the inter-quartile ranges (i.e., the differ-
ence between the third and the first quartiles, which provides a
measure of variation for the variable under consideration) of the
fractions of calls and location updates allowed, observed over
time during the simulation, for the different call attempt rates.
The SiRED fraction allowed variation is about three times larger
for location updates and ten times larger for calls. To further ex-
plore this issue we study the behavior of the algorithms over
time.

0

10

20

30

40

500 1000 1500 2000

Loc. Update

500 1000 1500 2000

Call

Call Rate (calls/s)

In
te

r-
Q

ua
rt

ile
 R

an
ge

ARO Occupancy SiRED

Fig. 6. Inter-quartile ranges of fraction allowed versus call attempt rate by
overload control algorithm and event class.

5In order to obtain the simulation errors, we had to make some assumptions
about the distributions of these performance metrics. The details have been
skipped for brevity.

8

We consider the case of a steady state call rate of 1.38 million
BHCA (385 calls/s), considerably above the nominal capacity
of the system. As before, the location update rate was set to ten
times the call rate. Figure 7 shows the behavior of the fractions
of calls and location updates allowed (given as averages per sec-
ond), between the third and the fifth minutes of operation, for
the three overload control algorithms.

0
10

20
30

180 200 220 240 260 280 300

Loc. Update

0
20

60
10

0 Call

Time (sec)

F
ra

ct
io

n
A

llo
w

ed
 (

%
)

ARO Occupancy SiRED

Fig. 7. Evolution of fractions allowed under a steady overload.

0
20

00

300 350 400 450

Delay (ms)

0
40

80

Fraction Allowed: Loc. Update (%)

0
40

80

Fraction Allowed: Call (%)

Time (sec)

ARO Occupancy SiRED

Fig. 8. Evolution of performance under non-steady overload.

The ARO and Occupancy algorithms show similar, stable
fractions allowed with respect to both calls and location updates,
which are consistent with the strict priority scheme. The SiRED
algorithm, however, presents quite unstable fractions allowed in
both event classes, which, over time, leads to throttling that is
not consistent with strict priority. The ARO and Occupancy al-
gorithms show more consistent behavior under steady overload.

B. Performance Under Non-Steady Load

In order to study the reactiveness of the algorithms to sudden
changes in arrival rates, we consider the scenario in which the
call and location update processes operate at mean rates of, re-
spectively, 167 calls/s and 1667 location updates/s (correspond-
ing to a condition of non-overload) up to 300 seconds, at which
point both rates experience an eight-fold increase over a period
of 1.5 seconds, staying at that level for two minutes, and then
dropping back to their original non-overload rates in 1.5 sec-
onds. Note that the arrival process in each interval is still Pois-
son but with different mean arrival rates. The objective of this
simulation is to study how fast the overload algorithms react to

a sudden onset of overload and to a sudden cessation of over-
load. Figure 8 presents the evolution of the average delay and
the fractions allowed for the three algorithms.

The SiRED algorithm has the best overall performance with
respect to average delay under this overload scenario, show-
ing no significant changes in average delay during the onset of
overload. The Occupancy algorithm has the worst delay perfor-
mance, taking about 38 seconds to recover from the event rate
ramp up and experiencing maximum delay of 4.5 seconds. The
ARO algorithm has a much better performance than the Occu-
pancy algorithm, but slightly worse than SiRED: about 5 sec-
onds to recover and a maximum delay of 260 milliseconds. The
basic reason for the poorer performance of the Occupancy al-
gorithm is that processor occupancy measures processed load
which cannot be higher than 100% even when the offered load
is very high. This reduces the processor occupancy measure’s
response to sudden overload in comparison to to either queue
length (SiRED) or call acceptance rate (ARO).

Once again, the SiRED algorithm displays a marked increase
in variability of fraction allowed (for call originations, in this
case) under overload, which is not observed for the other two al-
gorithms. All three algorithms show almost immediate recovery
when the system goes from overload to non-overload.

In summary, under sudden load ramp up, ARO and SiRED re-
duce the response time by an order of magnitude in comparison
to the algorithm that uses processor occupancy only. In com-
parison to SiRED, ARO experiences a slightly higher response
time under sudden load ramp up but exhibits more stable frac-
tions allowed under overload. We also investigate the behavior
of the three algorithms under a variety of other simulation set-
tings (including variations in Tables I and II, different load pat-
terns, etc.) and find that the results are qualitatively the same as
the ones presented here.

VI. ESTIMATION OF PROCESSING COSTS

The algorithms and simulations studied so far assume that the
relative processing costs of events in different classes is known.
In this section, we investigate the sensitivity of the algorithms
to mis-specification of the relative processing costs, and derive
reliable, measurement-based estimates of the relative processing
costs.

A. Behavior under mis-specified costs

Figure 9 compares the performance of the algorithms when
there is an abrupt increase in the rate of the low priority location
updates. The scenario used in the simulations (the same for all
three plots) is similar to the one described in Section V-B, but
this time only the location update rate increases during overload:
call and location update processes operate at rates of, respec-
tively, 167 calls/s and 1667 location updates/s (corresponding to
a condition of non-overload) up to 300 seconds, at which point
the location update rate increases eight-fold to 13,333 location
updates/s, over a period of 1.5 seconds, staying at that level for
two minutes, and then dropping back to its original non-overload
level in 1.5 seconds.

For the occupancy and ARO algorithms, the interpretation of
these plots is straightforward. Under-specification of the cost
of the (lower priority) location updates results in the algorithms

9

0
40

0
10

00

Delay (ms)

0
20

60
10

0 Fraction Allowed: Loc. Update (%)

0
20

60
10

0 Fraction Allowed: Call (%)

Correct Cost

ARO Occupancy SiRED
0

50
0

15
00

Delay (ms)

0
20

60
10

0 Fraction Allowed: Loc. Update (%)

20
60

10
0 Fraction Allowed: Call (%)

Underspecified Cost

0
10

00
30

00

300 350 400 450

Delay (ms)

0
20

60
10

0 Fraction Allowed: Loc. Update (%)

0
20

60
10

0 Fraction Allowed: Call (%)

Time (sec)

Overspecified Cost

Fig. 9. Fractions allowed and average delay with a plateau in the location update
rate. The costs are correctly specified (top); under-specified for location
updates (middle) and over-specified for location updates (bottom).

overreacting to overload. The result is oscillation, and some new
calls are unnecessarily rejected. When the cost is over-specified,
the algorithms are more stable, but reaction to the onset of over-
load is slower. In all cases, SiRED shows high variability in
the fraction allowed, and correspondingly drops an unnecessary
number of call originations.

B. Regression Estimates of Processing Cost

A reliable strategy for determining the relative costs of the
various event types is to estimate them directly from the data
collected at the MSC, under non-overload conditions. We use
a simple, easy to implement methodology for estimating the
relative costs using linear regression. The underlying idea for
a regression model is to collect measurements over successive
time intervals of the processor occupancy and event processing

counts, and to use this data to model the behavior of processor
occupancy as a function of the count data. The fitted model can
then be used both to estimate the system capacity, and to esti-
mate the relative costs of processing the different event classes.

Our regression model for estimating the relative costs of each
originating event class is based on the relation between the over-
all processor occupancy and the processor occupancies associ-
ated with each event class.

ρ = ρ0 +
∑

i

ρi = ρ0 +
∑

i

λi/µi (5)

where ρ0 represents the “background” processor occupancy
when no call traffic is present, and ρi, λi, and µ−1

i are, respec-
tively, the processor occupancy, the arrival rate and the average
processing time associated with the ith event class. Recall from
Section IV-A that the relative costs πi are proportional to the av-
erage processing times of the originating events. Note that (5)
includes all events, not just the originating ones.

In order to estimate the relative costs using a regression model
based on (5), measurements of overall processor occupancy and
the counts of processed events are collected over successive time
intervals. The counts are broken down by the type of event: the
number of location updates; number of new call originations,
handovers etc.. For each time interval n, we denote the observed
variables as follows:

Ln = No. of Location Updates

On = No. of New Call Originations

Hn = No. of Handovers

Tn = No. of Call Terminations

ρn = Processor Occupancy

The number of events over each unit time interval represents an
estimate of the arrival rate (λi). The following linear regression
model is then used to explain the behavior of processor occu-
pancy as a function of the different event counts during the nth
time interval.

ρn = a0 + a1Ln + a2On + a3Hn + a4Tn + εn

where a0, a1, a2, a3 and a4 are the regression coefficients to
be estimated from the observed data representing, respectively,
the background occupancy ρ0 when no call traffic is present and
the average processing times µ−1

i of event classes L, O, H , and
T . The motivation for this model is that processor occupancy
is expected to behave linearly in the amount of traffic handled.
The error term εn accommodates the stochastic nature of the
observed data and represents sources of variation that cannot
be controlled, variability in event processing time, measurement
error, and any other random fluctuations.

The coefficients a0, . . . , a4 are unknown, and must be esti-
mated from the data. The regression coefficients should be es-
timated so that the regression model explains as much variation
of ρn as possible. Equivalently, we want the “unexplained varia-
tion” represented by the error terms εn to be as small as possible.
The regression coefficients are chosen to minimize the squared-
error loss [17],

∑

n

(ρn − (a0 + a1Ln + a2On + a3Hn + a4Tn))2.

10

This minimization problem can be reduced to solving a system
of linear equations.

As mentioned above, the regression model can include terms
that do not correspond to the originating event classes. Here, we
have included Handover and Call Termination. A mobile origi-
nated call consists of one origination, possibly some handovers,
and one termination. The corresponding processing costs can
be lumped together in a single event, as done in Section IV-A.
However, when the events are collected over shorter time inter-
vals, there may be an imbalance between originations and ter-
minations, and the regression model provides a better fit when
these are treated separately. This leads to additional complica-
tions when converting the estimated coefficients to relative cost,
as addressed below.

One could also extend the regression model by including sep-
arate terms for each subtask of call origination, for example. But
this seems less beneficial; since all subtasks will typically be
completed within a small time interval, the imbalance between
the counts of subtasks will generally be small, and there is less
benefit to treating these separately.

0.
08

0
0.

09
5

0.
11

0

0 500 1000 1500

Relative Cost0.
22

0.
26

Location Update Coefficient

1.
70

1.
80

1.
90

Call Origination Coefficient

Time (min)

Fig. 10. Regression coefficients (in m.s. per event) for call origination (top) and
location updates (middle); and estimated relative cost (bottom).

Figure 10 shows the behavior of regression coefficients a1

and a2 over a period of 1500 minutes, measured and updated
every 10 seconds. The coefficients show the average cost of
processing these events; they quickly stabilize around long-term
asymptotic values. The main computational effort in updating
the coefficients is the solution of a system of linear equations
with five variables.

The regression coefficient a1 provides an estimate of the cost
of a location update. The cost of a new call is more complicated,
since it consists of a call origination, call termination and pos-
sibly one or more handovers. Let κ be the average number of
handovers per call; this may be known from experience or esti-
mated as a long-run average. The average cost of processing a
call is then

a2 + κa3 + a4. (6)

The relative cost of a location update is a1 divided by the quan-
tity (6). The third panel of Figure 10 shows this estimate stabi-
lizing over time; the true value of 0.1 is shown for reference.

VII. CONCLUSIONS AND FUTURE EXTENSIONS

We proposed and evaluated approaches for monitoring and
controlling processor overload due to excessive signaling traffic
in a wireless access switch, involving multiple classes of traf-
fic. All the three multi-class overload control algorithms de-
veloped in this paper, require relative processing cost of each
class of traffic. We studied the performance of these algorithms
when these processing costs were mis-specified and derived
measurement-based regression estimates of the relative costs.

In this paper, we have only considered and evaluated the case
where no processing costs are associated with new service re-
quests that are eventually throttled. Even though this is a realis-
tic assumption for some of the cards in the MSC, it does not nec-
essarily hold for all cards. If processing costs are associated with
new service requests that are throttled (Scenario 2 in Figure 2),
the processing power of the system might be reduced consider-
ably. Hence schemes that appropriately adjust the system load
threshold(s) with variations in the degree of overload need to be
developed. The strict priority throttling scheme described in this
paper may be impractical in situations where there is an interest
in allowing events from all classes into the system, at possibly
different, prioritized rates. We need to develop a weighted fair
allocation, for such cases.

REFERENCES

[1] S. Kasera, J. Pinheiro, C. Loader, M. Karaul, A. Hari, and T. LaPorta,
“Fast and robust signaling overload control,” in Proceedings of ICNP,
Riverside, CA, November 2001.

[2] A. W. Berger and W. Whitt, “The Brownian approximation for rate-control
throttles and the G/G/1/C queue,” Journal of Discrete Event Dynamic
Systems, vol. 2, pp. 685–717, 1992.

[3] B. L. Cyr, J. S. Kaufman, and P. T. Lee, “Load balancing and overload
control in a distributed processing telecommunications system,” United
States Patent No. 4,974,256, 1990.

[4] B. T. Doshi and H. Heffes, “Analysis of overload control schemes for a
class of distributed switching machines,” in Proceedings of ITC-10, Mon-
treal, June 1983, Section 5.2, paper 2.

[5] R. Pillai, “A distribute overload control algorithm for delay-bounded call
setup,” IEEE/ACM Transactions on Networking, vol. 9, pp. 780–789,
2001.

[6] M. Rumsewicz, “Ensuring robust call throughput and fairness for scp
overload controls,” IEEE/ACM Transactions on Networking, vol. 3, pp.
538–548, 1995.

[7] M. Schwarz, Telecommunications Networks: Protocols, Modeling and
Analysis, Addison-Wesley, 1988.

[8] B. Wallstrom, “A feedback queue with overload control,” in Proceedings
of ITC-10, Montreal, June 1983, Section 1.3, paper 4.

[9] A. I. Elwalid and D. Mitra, “Analysis, approximations and admission con-
trol of a multi-service multiplexing system with priorities,” in Proceedings
of IEEE Infocom, Boston, April 1995.

[10] B. Hajek, “External splitting of point processes,” Mathematics of Opera-
tions Research, vol. 10, pp. 543–556, 1985.

[11] M. Rumsewicz, “Analysis of the effects of ss7 message discards schemes
for call completion rates during overload,” IEEE/ACM Transactions on
Networking, vol. 1, pp. 491–502, 1993.

[12] D. Clark and W. Fang, “Explicit allocation for best effort packet delivery
service,” IEEE/ACM Transactions on Networking, August 1998.

[13] Technical Specification from CISCO, “Distributed weighted random early
detection,” .

[14] U. Bodin, O. Schelen, and S. Pink, “Load-tolerant differentiation with ac-
tive queue management,” in In ACM Computer Communications Review,
July 2000.

[15] S. Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp.
397–413, August 1993.

[16] T. LaPorta, R. Ramjee, K. Murakami, R. Buskens, and Y-J. Lin, “Cluster
mobile switching center for third generation wireless systems,” in Pro-
ceedings of IEEE PIMRC, September 1998.

[17] N.R. Draper and H. Smith, ,” in Applied Regression Analysis, 2000.

