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Abstract 

Concept location identifies parts of a software system 
that implement a specific concept that originates from the 
problem or the solution domain.  Concept location is a 
very common software engineering activity that directly 
supports software maintenance and evolution tasks such 
as incremental change and reverse engineering. 

This paper addresses the problem of concept location 
using an advanced information retrieval method, Latent 
Semantic Indexing (LSI).  LSI is used to map concepts 
expressed in natural language by the programmer to the 
relevant parts of the source code.  Results of a case study 
on NCSA Mosaic are presented and compared with 
previously published results of other static methods for 
concept location. 

1 Introduction 

The processes of software maintenance and evolution 
consist of repeated tasks with software change being the 
most common.  Change is triggered by a change request 
that specifies what should be changed in the system.  An 
example of such change request is: “Add a credit card 
payment to a point-of-sale system”.  As a part of 
incremental change design, the programmer must locate 
the implementation of the concepts embedded in the 
change request (e.g., “payment”, “credit card”, etc.).  The 
code implementing these concepts will most likely 
change. 

The users are often the originators of the change 
requests.  While the users of a point-of-sale system could 
learn about inventory, merchandise, customer, bill 
payment, and other concepts of the domain, they may 
know nothing about the implementation of these concepts 
in the program.  The process of concept location is to find 
the code that implements these concepts.  In addition to 
problem domain concepts, change requests can also be 
formulated in terms of the solution domain (e.g., stack, 
list, client, server, etc.). 

A description of a problem or solution domain concept 
expressed in natural language is the input to the concept 
location process.  The output is a set of software 
components that implement or address the concept.  In the 
ideal case, the traceability links between external 
documentation (design and requirements) and the source 
code provide all that is needed for concept location.  In 
practice though, the external documentation is typically 
outdated and often nonexistent.  An example software 
system with these types of attributes is an old version of 
the NCSA Mosaic web browser [24].  We use Version 2.7 
of Mosaic in the case study presented in this paper and it 
has no external documentation.  In such situations, the 
programmer must use other techniques for concept 
location. 

If the programmer fully understands the software, 
concept location is a relatively easy task.  However, it can 
still be daunting for large complex systems.  The difficulty 
is caused, among other things, by the fact that the input 
and the output of the location process belong to different 
levels of abstraction.  Namely, the input is at the natural 
language level and the output is at the source code (i.e., 
programming language) level.  To make the translation 
from one level to another, extensive knowledge is 
required.  The knowledge includes information on the 
problem domain, programming techniques, idioms, 
algorithms, data structures, software architecture, etc. 

Concept location is traditionally an intuitive and 
informal process, based on past experience with the 
system.  When intuition and experience fail to provide the 
answer, programmers widely use string based pattern 
matching techniques that take advantage of the similarity 
of concept names and program identifiers.  For example, 
when searching for the location of “payment”, the 
programmer searches for identifiers such as “payment”, 
“payBill”, etc.  When the appropriate identifier is found, 
the programmer studies the surrounding code and decides 
if this is an actual implementation of the concept, or just a 
coincidence. 

A well-known example of a string pattern matching is 
the Unix utility grep.  Although the technique is widely 



used, it has known weaknesses.  It is based on the 
correspondence between the name for the concept and an 
identifier in the code, therefore it fails when the concepts 
are hidden more implicitly in the code, or when the 
original programmers used synonyms for the identifiers.  
Homonyms may also reduce precision of the search. 

In this paper we propose a new technique for concept 
location based on an advanced information retrieval 
method, namely Latent Semantic Indexing (LSI).  The 
work leverages the experience gained in our previous 
research where we utilized LSI to support other software 
engineering tasks that benefit from the power of IR 
methods.  In our earlier work, we used LSI to identify 
abstract data types and high-level concept clones in 
procedural code [21, 22].  Additionally, we used LSI to 
recover traceability links between external documentation 
and source code [23].  A common feature of our previous 
work is that LSI was used to find relationships among 
existing software artifacts (i.e., source to source and 
source to document). 

In the work presented here, we address the concept 
location problem in the absence of external 
documentation.  This requires a new approach and a 
different application of LSI than in our previous work.  
The important difference is that in this application LSI is 
used to map domain concepts formulated as user queries 
to software components (i.e., query to source).  The users 
play a dominant part in this process; they formulate the 
queries and evaluate the results returned by the system. 

The users can apply the method in two distinct ways: 
one is by directly querying the system and the other is 
based on automatically generated queries.  The results for 
both types of methods for generating queries are evaluated 
in this paper.  Both approaches are significantly different 
from the way we previously leveraged LSI to support 
other software engineering tasks.  For example, in [23] 
parts of documentation are automatically mapped to 
elements of the source code.  The user had no input on 
formulating queries.  In [22] the user also did not 
formulate any queries since the software is automatically 
clustered.  In both cases, the user only inspected and 
analyzed the results. 

Additionally, we compare the results of using our LSI-
based method with other known methods of concept 
location which are based on static code analysis: a search 
of the program dependency graph and the traditional 
grep based method.  By leveraging the strengths of each 
of these types of approaches in conjunction, we foresee 
the emergence of very powerful tools to address the 
problem of static concept location. 

The paper is organized as follows.  Section 2 covers 
the related work.  Section 3 describes the proposed 
methodology for concept location.  Section 0 presents the 
results of a case study that is aimed at assessing the 
quality of the results, and compares LSI based concept 
location with dependence graph search and the grep 

based search.  Section 5 concludes the paper and presents 
future work. 

To make the paper self-contained, a brief conceptual 
description of LSI is given in the Appendix.  This 
discussion is based on our previous papers and the readers 
familiar with LSI may skip this part. 

2 Related Work 

The work presented in this paper addresses two 
specific issues: the use of information retrieval (IR) 
methods to support software engineering tasks and 
activities, and the location of concepts and features in the 
source code.  Related work on concept and feature 
location is reviewed in subsection 2.1.  The overview of 
the use of IR methods in software engineering is presented 
in subsection 2.2. 

2.1 Concept and Feature Location 

The concept assignment problem, as defined by 
Biggerstaff et al. [3], forms the starting point for much of 
the work on concept and/or feature location.  They 
describe a research prototype that utilizes parsing, simple 
clustering, identifier names, and a browser to support 
concept location. 

Chen and Rajlich [4] propose a semi-automated 
approach for the location of features based on the search 
of program dependence graph.  Other work that addresses 
the issue of concept or feature location include [12, 18], 
where reverse engineering techniques and visualization 
are used to support this problem. 

Independently and in parallel, Wilde developed the 
Software Reconnaissance method [33, 34] which utilizes 
dynamic information to locate features in existing 
systems.  Wong et al. [35] analyze execution slices of test 
cases to the same end.  Eisenbarth et al. [9] use dynamic 
information gathered from scenarios of invoking features 
in a system.  This work, based on the analysis of 
execution traces, is geared towards feature location.  
Features are special concepts that describe the system 
functionality, observable at execution.  The Software 
Reconnaissance approach is extended to detect multiple 
features, represented using concept lattices. 

Licata et al [17] uses the user test cases to define 
feature signature for programs during evolution. 

Rajlich and Wilde [25, 26] analyze the importance and 
role of concepts in program comprehension, describe the 
process of concept location, and discuss how vital it is to 
the maintenance of code.  Recently, they compared their 
two approaches in a case study and both approaches 
proved effective [32].  Each approach seemed better 
suited for different situations; the dynamic approach is 
better suited to discover features (i.e., concepts that are 
observed by the user through the selection of the 
appropriate input data), while static approaches are better 



suited to the location of the remaining concepts that are 
present in the code but are not selectable by the user at run 
time. 

Extraction of identifiers and comments requires very 
limited parsing and similarity among the programming 
languages allows developing a tool that deals with several 
languages.  We developed a simple program that is 
applicable to C, C++, and Java source code. 

Other approaches address this problem indirectly or 
from different perspective.  Antoniol et al [1] is looking at 
identifying the start set during impact analysis.  Robillard 
et al [27, 28] built the FEAT tool for feature separation 
using concern graphs.  Hipikat [7] recommends the user 
relevant software artifacts when adding new features to 
Eclipse.  Tjortjis [31] uses data mining techniques to help 
users identify parts of the software related to a concept. 

Source 
code

User 
queries 

Query 
results

Preprocessing  

SVDCorpus LSI space2.2 IR and Software Engineering 
 

Several information retrieval methods exist [29] 
including signature files, inversion, and clustering.  Much 
of this work deals with indexing, classifying, and 
retrieving natural language text documents.  In software 
engineering, IR methods are mostly used in the context of 
indexing reusable software components and automatically 
constructing libraries [11, 13, 19, 20].  Antoniol et al. [2] 
use both a probabilistic methods and a Bayesian classifier 
to address the problem of traceability links between 
external documentation and source code. 

Marcus and Maletic [21, 22] use LSI to derive 
similarity measures between source code elements.  These 
measures are used to cluster the source code for the 
identification of abstract data types in procedural code and 
for the identification of clones.  The version of Mosaic 
that is used here is also used in those case studies.  In 
addition, LSI was used for the recovery of traceability 
links between external documentation and source code 
[23].  This approach is compared to that of Antoniol’s [2] 
supporting the conclusion that IR methods can be 
successfully applied to these types of problems. 

3 Using LSI for Concept Location 

All techniques for concept location reduce the search 
space that the user needs to review.  However, the user is 
still necessary in order to locate an actual concept in the 
code.  The same is true for our technique.  It is shown in 

 and described in the remainder of this section.  
Details of LSI are in an Appendix as these details have 
been published in previous papers.  The first part is the 
preparation of the corpus and generation of the LSI space. 

Figure 1

Figure 1:  The concept location process using LSI 

Figure 1

The next step involves identifier separation.  While not 
paramount with respect to the results, it is a simple step 
that enriches the corpus and improves the results.  We 
observe two commonly used coding styles for identifiers: 
one is the combination of words using underscore “_” as 
separators (e.g., concept_location); and the other is the 
combination of words using letter capitalization for 
separation (e.g., ConceptLocation, CONCEPTLocation).  
All identifiers that follow these rules are separated into 
constituent words (e.g., concept location for the above 
examples).  The original form of the identifier is also 
maintained and the separated words are added into the 
corpus immediately following the identifier and will be 
later processed by LSI. 

The final step of the preprocessing is partition of the 
code into documents.  For systems written in procedural 
languages we choose each function to be a separate 
document and all declarations blocks outside functions in 
each file to be treated as one document each. 

After the preprocessing, the software system under 
analysis (S) is decomposed into a set of documents.  A 
source code document (or simply document) d is any 
contiguous set of lines of source code and/or text.  
Typically a document is a file of source code or a program 
entity such as a class, function, interface, etc.  The 
software system is the complete set of defined documents  
S = {d1, d2, …, dn}. 

These steps convert the system into a corpus, see 
.  Single Value Decomposition (SVD) is then 

used to create the LSI space.  Here SVD is used as a black 
box subroutine, the definitions and underlying theory can 
be found in the relevant literature  [8, 14, 30].  In the LSI 
space each document di ∈ S will have a corresponding 
vector vi.  We use this vector representation to define a 
similarity measure between two documents sim(di, dj). 

3.1 Preparing the Corpus and the LSI Space 

Domain knowledge and concepts are embedded in the 
source code through identifier names and internal 
comments.  We target these elements from the source 
code to be analyzed by LSI; therefore a simple 
preprocessing of the source code is needed.  Three actions 
are taken here: 1) extraction of identifiers and comments; 
2) identifier separations; and 3) establishing document 
granularity. 

The user query will also be converted into a document 
of LSI space, and the similarity measure between user 
query and documents of the corpus will help us to identify 
the documents most relevant to the query.  

 



3.2 Formulating the User Queries 

In the proposed methodology, there are two ways in 
which the user can formulate queries for identifying a 
given concept.  One is to create a natural language query 
with one or more words, entire phrases, or even short 
paragraphs.  The query is formulated by the users based 
on the change request and their knowledge of the software 
domain and/or the source code.  The system will return 
the documents from the software under exploration, 
ranked by the similarity measure to the query. 

The second option for querying is to create queries that 
contain both words and identifiers from the source code.  
LSI will automatically provide the similarities between 
terms.  With this in mind, the user can specify a single 
word query and find all the related terms from the corpus 
(i.e., identifiers and words from the source code and 
comments).  These queries can be generated automatically 
starting from a single user specified term or phrase.  The 
user does not need to have a priori knowledge of the terms 
used in the source code. 

Figure 2:  Retrieving the results for a query (q) 

Figure 2

 

In the case study presented in Section 4 we analyzed 
the results for both types of queries. 

3.3 Generating the Results 

Using the system is similar with using any search 
engine.  The results are returned as a set of ranked 
documents that the user inspects to decide their relevancy.  
A stopping criterion is defined, which indicates the user 
not to search any further through the returned documents. 

Once the user formulates a query, a document q 
representing the query is created and mapped onto the LSI 
space. Then LSI creates a corresponding vector vq and 
returns the set of all documents in the system, ranked by 
the similarity measure to the user query.  At this point, the 
user will inspect a subset of the documents in the 
suggested order and decide which ones are actually parts 
of the concept. 

In order to determine how many documents to inspect, 
we partition the search space based on the similarity 
measure.  Each partition, at step i, is made up of 
documents d that are closer than a threshold α to a 
document dc: P(i) = {d ∈ S | sim(dc, d) ≤ α}.  The 

threshold was established empirically.  Based on our 
experience, α = 0.075 gives good results. 

For the first partition P(1) the user searches, dc is set to 
be the closest neighbor of the query q.  In a step i, the user 
will investigate all documents from the partition P(i).  If 
no relevant documents were found, the search stops.  If 
relevant documents were identified, dc is reset to the last 
document visited in partition P(i) and the next partition 
P(i+1) is defined.  Formally, the new dc is reset : new dc = 
dj ∈ P(i) such that sim(dc, dj) = min{sim(dc, d) | (∀) d ∈ 
P(i)}.   shows these steps in a flow chart format. 

4 Locating “font properties” in Mosaic 

The question we try to answer in this case study is how 
well the LSI-based technique, described in the previous 
section, helps the user in locating the concepts.  

4.1 Case Study Design 

Our hypothesis is that LSI-based technique will help 
the user to identify all documents that correspond to 
functions and/or declarations that either actually 
implement the concepts or extensively use it.  We want to 
compare different ways how to formulate the query and 
the impact of the query on the result.  We also want to 
compare LSI to other previously used or published 
concept location techniques that are also based on the 
static analysis of the source code.  Techniques that belong 
to this category include the grep based search and the 
search of the program dependence graph. 

Read q 
Create vq 
i:=1; 

i:=i+1; 

Set dc YES 

Relevant 
documents 
found? 

Retrieve P(i) STOP
Investigate P(i) NO 

It would also be interesting to compare LSI with 
dynamic techniques but the comparison is less conclusive 
since the dynamic techniques limit the located concepts to 
features only, forcing a more narrow selection of the 
concepts.  Since the static and dynamic techniques were 
compared elsewhere [32], we limited the case study to the 
comparison among the static techniques. 

We conducted a case study to locate concepts in 
version 2.7 of the NCSA Mosaic web browser [24].  This 
older version is written in C and we analyzed 269 files 
with approximately 95,000 lines of comments and code.  
The choice is motivated by the existence of previous 
results on concept location in Mosaic [5].  This allows us 
to compare the results and assess their quality.  Mosaic 
has been used many times in research studies, starting 
with Clayton and Rugaber [6].  It covers a well-defined 
domain and is known to the research community.   

As in [5], the concept we are locating is “font 
properties”.  We want to find the documents within 
Mosaic that deal with font properties.  An example of a 
change request that may need this concept located is the 
following: “Add a new font to Mosaic”. 

In order to minimize the bias, the case study was 
conducted by the 2nd author of the paper and observed by 
the remaining authors.  However, he was not familiar with 



Mosaic and had no previous experience in using LSI.  In 
order to evaluate the results, we used two of the most 
common measures in experiments with IR methods: recall 
and precision.  For a given query q, Ni documents will be 
inspected in step i.  Among these Ni documents the user 
will identify that Ci ≤ Ni of them are actually related to the 
concept expressed by the query.  There are Ri documents 
considered relevant to the concept.  With these numbers 
we define the recall and precision for q as follows: 

Recall = #of correct & retrieved documents
total # of correct documents

i

i

C
R

=  

Precision = #of correct & retrieved documents
total # of retrieved documents

i

i

C
N

=  

If recall is 100%, it means that all the relevant 
documents are recovered, though there could be recovered 
documents that are not correct.  If the precision is 100%, it 
means that all the recovered documents are correct, 
though there could be correct documents that were not 
recovered. 

4.2 Preparation of the Corpus 

In this case study, each declaration block, each 
function, and each “.h file” correspond to a document 
respectively.  Some very large functions and .h files (i.e., 
over 10,000 characters) were split into smaller pieces.  
Such documents are later recombined during the 
evaluation of the results.  In other words, the users are 
unaware that some functions may be mapped to more than 
one document in the LSI space.  This process generated 
2,347 documents.  Preparation of the corpus is automatic 
and fast (under 30 seconds for Mosaic), since no serious 
parsing is needed. 

The next phase focuses on the location of a concept in 
Mosaic (i.e., properties of fonts).  In each case we 
formulated several queries and compared the results. 

Table 1:  The functions and data types in Mosaic that 
implement the font properties. 

Table 1

Table 1

Function/data name File Doc
wrapFont() gui-menubar.c 389 
mo_set_fonts() gui-menubar.c 390 
mo_get_font_size_from_res() gui.c 257 
XtResources resources[] HTML.c 1229
PSfont() HTML-PSformat.c 1468

4.3 User Specified Queries 

We attempted several sets of queries based on the rules 
described in section 3.2.  For the first set of queries we 
used English terms that we felt best describe the concept.  
We started with the simplest one: “font”.  Next, we asked 
six people in our research lab to formulate a query that 
describes the font properties, based on their knowledge of 
web browsers.  The results were very similar.   
lists these queries (rows 2 through 7).  We also created a 
query (#8) that is the union of all the words from the other 

queries.  Interestingly, no person used font names in the 
queries (e.g., Times New Roman, Courier, etc.).  When 
questioned, the consensus was that each of them tried to 
formulate general (rather than specific) queries in an 
attempt to reach 100% recall rather than high precision. 

After running all these queries, we inspected the source 
code based on the steps suggested by LSI.  The set of 
relevant documents R, which implement the font 
properties in Mosaic was determined by the authors.  

 shows the functions and data structures that 
implement the font properties in Mosaic, in what files they 
are located, and what corresponding document number 
they have in the LSI space. 

Table 2

Table 2:  A first set of queries formulated by different 
users.  The last query (#8) is the union. 

Table 2

# Query 
1 font 
2 font size style small regular large 
3 font style large small regular family 
4 font style bold italics large small regular 
5 font size style small regular large family bold italics 

type 
6 font size style small regular large family bold italics 
7 font family style bold italics size small regular medium 

large 
8 font size style small regular large family bold italics 

medium type 
 
Based on the set from  (five documents), we 

computed the recall and precision for each of the eight 
queries in .   shows these measures and 
also shows how many documents we investigated in how 
many steps.  Based on these numbers and the number of 
relevant documents found in this set, we compute the 
recall and precision.  For some queries (i.e., #1 and #3) 
some relevant documents were not found before the 
stopping step was reached (i.e., a step in which no 
relevant documents are found) which resulted in less than 
100% recall.  The best result is given by query#4: “font 
style bold italics large small regular”.  The five 
documents were located in the four steps, by investigating 
15 documents (precision 33.33%). 

Table 3

Table 3:  The results for the first set of queries.  The 
highlighted items show the best results. 

Q Investigated 
documents Recall Precision 

Last 
relevant 

doc. 
pos. 

Step 

1 4 0% 0% 89 1 
2 54 100% 9.25% 17 4 
3 9 60% 33.33% 13 3 
4 15 100% 33.33% 11 4 
5 79 100% 6.32% 22 4 
6 57 100% 8.77% 14 4 
7 49 100% 10.02% 10 4 
8 72 100% 6.94% 18 4 



We also looked on what position is ranked the last 
relevant document to the query, in other words, how many 
documents did the user have to visit in order to determine 
the relevant documents.  If we take this as a quality 
criterion, query#7 did in fact return the best result (i.e., the 
5 relevant documents were in the top 10 returned results).  
The most interesting result though is the fact that query#1 
(“font”) returned the worst results from every point of 
view.  In fact, the first four returned documents (returned 
in step 1) are not part of our concept.  The first relevant 
document is in fact on the 5th position.  This did not come 
as a surprise since the term font is related to a number of 
other concepts such as “font stack”. 

Except query#1, each query returned the correct results 
within the first 22 documents (see ).  Even for 
query#3, where we stopped after investigating the first 9 
documents, all the relevant documents were in the top 13 
returned documents. 

Table 3

4.4 Automatically Generating Queries 

The second part of the case study is aimed at 
establishing how well the system can automatically 
generate queries, starting from a single word or phrase 
specified by the user. 

A second set of queries are defined using LSI starting 
from the word “font”.  We use the top 40 terms from the 
Mosaic corpus that are most related to “font”.  These are, 
as returned by LSI: nheader, medium, naddress, 
nfixeditalic, nplain, nplainbold, nplainitalic, nsup, wb, 
nbold, nfixed, nfixedbold, nitalic, normal, nfont, nactive, 
wrap, super, subfield, lsa, times, sophisticated, helvetica, 
family, plainbold, fixeditalic, plainitalic, century, 
fixedbold, schoolbook, xmx, set, lucidatypewriter, nlisting, 
nresolve, previously, lucidabright, wbc, subscript, 
superscript.  With these terms we automatically created 
40 queries based on the following formula:  

query(n) = “font” + the first n terms  
from the list 

Based on the previous queries we learned that the term 
“font” returns rather poor results since is widely used in 
Mosaic and generates many correlations.  Therefore, we 
generated another set of 40 queries similar to the ones 
above, but without the term “font” included: 

query’(n) = the first n terms from the list 
For this set of queries, we looked within how many 

positions in the ordered list of returned documents are the 
five relevant ones, the same information as “Last relevant 
document position” in Table 3.  The results of the 
comparison between the two sets of queries are shown in 
Figure 3.  The best result (35) among the first set of 
queries is given by query(31) (it contains the word “font” 
followed by the 31 closest terms).  Among the latter set 
the best result (i.e., 11) is given by both query’(30) and 
query’(31) (contain the first 30 and 31 respectively closest 
terms to “font”).  On average, in the first set the relevant 

results were among the first 90 returned documents.  In 
the second set the results are among the first 77 returned 
documents, on average. 

We also computed the precision and recall for the 
queries in these two sets, considering all documents 
returned by LSI in each step and the defined stopping 
criterion.  For query(31) we investigated 15 documents in 
5 steps and identified four of the five relevant documents: 
recall 80% and precision 26.66%.  For query’(31) we 
investigated 64 documents in 6 steps and found all five 
relevant results: recall 100% and precision 7.80%.  For 
this query the last relevant document (389) is in fact the 
nearest neighbor (dc) in the last examined partition. 
 

 
Figure 3:  Position of the 5 relevant documents for 

each query(n) and query’(n), with n=1, …, 40. 

In the worst case there is query(37) where 40 
documents are examined in 5 steps with 80% recall and 
10% precision, and query’(37) where five documents are 
investigated in 2 steps with 20% recall and 10% precision. 

While the average results are not as good as in the case 
of the user formulated queries, the best result is almost the 
same.  One important thing to remember is that these 80 
queries are in fact automatically generated starting with 
the word “font”.  No domain knowledge is needed to 
formulate the queries, as in the first set. 

4.5 Comparison with Search of the Dependence 
Graph 

These results were also compared with those published 
in [5], which are based on searching the dependence 
graph.  Some discrepancies occurred; namely only three 
of the five detected component in our process correspond 
to those detected previously in [5] (i.e., mo_set_fonts(), 
mo_get_font_size_from_res(), and XtResource 
resources[]).  The authors in [5] also identified one more 
function and three global variables (i.e., menubar_cb(), 
Rdata, menuspec, and mo_token).  At the same time they 



did not identify two of the functions we identified (i.e., 
PSFont() and wrapFont()). 

In order to understand and explain the difference we 
must emphasize the differences in the approaches and 
underlying maintenance tasks.  In [5] the task under 
analysis by the authors was a change request to add a new 
font size Tiny. In order to locate the code where the 
change needs to be done, the authors divided the process 
in four subtasks, based on prior knowledge of the system: 
1) to find the function that opens a new window; 2) to find 
how the font properties are specified in the new window; 
3) to find what the default type is, and how and where it is 
set; and 4) to find the connection between the font - 
related menu items and the font settings.  The end result in 
[5] is the impact set of the change.  In contrast, our goal is 
to identify the parts of the software that implement font 
properties, rather than the impact set. 

With this in mind and after the investigation of the 
source code the reasons for the discrepancies became 
clear.  Our approach missed the Rdata, menuspec, and 
mo_token global variables because of the selected 
granularity size.  The missed variables are defined inside 
declaration blocks with many other global variables that 
did not relate to font properties.  In addition, they support 
menu handling and only one of the multiple menus 
actually dealt with selections of font types.  Thus, the 
correlation with font related terms is very weak.  The 
same reason stands for the menubar_cb() function.  We 
consider this function simply a usage of the font property 
concept rather than a definition.  These documents should 
be included in the impact set as they change in response to 
the change request. 

Based on the same principle, the authors in [5] did not 
include wrapFont() in their impact set, although they did 
visit it.  While, wrapFont() is part of the concept 
definition (i.e., it is called only by mo_set_fonts() and 
does not call any function) it did not need to be changed 
for the introduction of a new font type. 

Finally, PSFont() was not identified in the case study 
presented in [5] for two reasons.  The authors started the 
concept location from the “open new window” menu and 
identified the font properties related functions through 
data and control dependencies.  With respect to this 
feature (i.e., display of fonts in windows) their impact set 
is correct and the change is propagated through all the 
necessary functions.  However, PSFont() does set the font 
properties for post script printing of the HTML page that 
is not related to window opening and display 
functionality.  Based on the approach from [5] in order to 
identify PSFont() the logical starting point would have 
been in the “print post script” menu.  In addition, there is 
no explicit dependency between the PSFont() and the 
menubar_cb() function, which was the first function 
identified in the impact set. 

This finding turned out to be an unexpected result and 
helped in better understanding the differences between 

methods.  In essence, the “font properties” concept is part 
of at least two features in Mosaic: “display in window” 
and “print postscript”.  In conclusion, we are able to find a 
part of the concept missed in the previous case studies.  In 
fact, the document corresponding to PSFont() is the 
nearest neighbor to each query in our case study, except 
query#1.  Although direct comparison of recall and 
precision is questionable given that we identified slightly 
different sets of functions and data, it is an indication of a 
qualitative aspect of the result.  In [5] the precision for the 
entire location process was 7.69% and for the propagation 
process was 5.63%. Precision using LSI ( ) is close 
to this result in the worst case, but better in the best case. 

Table 3

Finally, for each of the queries, there are a number of 
documents not relevant to the searched concept, which 
always occurres among the top 10-15 nearest neighbors to 
the query.  They are: PopFont(), PushFont(), 
TriggerMarkChanges(), HTMLPart, and font_rec.  The 
first two are obviously related by usage to the font 
properties as both concepts (i.e., font property and font 
stack) are part of the more general concept of font.  The 
TriggerMarkChanges() function is a very large function in 
Mosaic that deals with changes and history, as well as 
font_rec.  The function uses the font stack.  HMTLPart is 
a large structure that defines the properties for new HTML 
widgets, including the displayable fonts.  Finally, one 
large block of macro definition from HTML.c is of interest 
since it defines names for new resources including some 
related to fonts.  Based on the task at hand for which the 
concept location is needed, these documents may or may 
not be considered relevant by the user. 

4.6 Comparison with grep-type Search 

As mentioned previously, one of the most commonly 
used methods in practice for concept location is the grep 
based search.  Similar comparisons were made by Maarek 
et al. [19] and Antoniol et al. [2].  Given this fact we used 
the regular expression search engine built in Microsoft 
Visual .NET development environment to search the 
Mosaic source code.  It is very similar in usage with 
grep.  In fact, it has some additional features.  One of the 
issues with the grep based approach is also the 
granularity level they work at (i.e., files).  This prohibits 
us to directly compare recall and precision, since the 
results are in different format. 

The obvious start is to look for the word “font”, which 
returned 1168 occurrences in 24 files, an obviously 
ineffective result.  We then performed several searches by 
combining words with the “or” operator.  These still 
proved to be unsuccessful since they still returned 
hundreds of hits in dozens of files.  Then we created 
queries using regular expressions.  The best results were 
returned by:  

1. font[^]*style 
2. font[^]*large. 



For query (1) we obtained 9 occurrences in 1 file that 
pointed to the PSFont() function.  For query (2) we 
obtained 9 occurrences over three files that pointed to 
PSFont() and mo_get_font_size_from_res().  These results 
helped locating at least a part of the implementation. 

Other queries such as: 
• font[^]*properties 
• [^]*font[^]*size[^]*style[^]*small[^]*regular[^]*

large[^]* 
returned no hits.  In conclusion, a number of the 

queries returned results that were not very helpful.  Even 
the better ones missed many of the relevant documents, 
hence recall was low.  The main problem with the grep 
based approach is that the returned results are not ranked.  
This means that the user has to examine a large number of 
documents with the same priority. 

5 Conclusions and Future Work 

The paper presents a new technique for concept 
location using an information retrieval method, latent 
semantic indexing (LSI).  The method uses LSI to find 
semantic similarities between user queries and modules of 
the software in order to locate concepts of interest in the 
source code.  Two variants of the concept location 
technique using LSI are presented.  One, based on user 
formulated queries and the other based on partially 
automated generated queries. 

A case study of locating concepts in NCSA Mosaic is 
also presented and analyzed.  The results are compared 
with other methods that are based on regular expression 
searches and search on the program dependence graph. 

By comparison with related methods, the use of LSI for 
concept location presents several advantages.  The method 
is almost as easy and flexible to use as grep based 
techniques and it provides better results.  Additionally, we 
are able to identify certain parts of a concept (i.e., the 
PSFont() function) that are missed by the dependence 
graph search approach.  The advantage of using LSI is 
that the method is independent of programming language, 
and the source code preprocessing is simpler than building 
a dependence graph. 

One important feature of the method that sets it apart 
from other related approaches is that LSI is able to 
identify words and identifiers from the source code that 
are related to a user-specified term or phrase within the 
context of the software system.  This allows us to 
automatically generate queries starting with a single (or 
more) user-specified word.  These queries returned results 
comparable with the queries formulated manually by the 
users based on their domain knowledge. 

Several additional issues will be addressed in future 
work.  As far as the quality of the corpus is concerned, we 
plan a set of case studies with software that includes 
external documentation, and software that is commented 

more richly than Mosaic.  We will investigate the impact 
of these additional properties on the results.  In addition, 
we plan to see how much the structure of the software 
(e.g., procedural vs. object-oriented, application vs. 
library) influences the results. 

With respect to the user queries we plan to define 
several query templates based on the type of concept that 
is searched.  One important aspect that needs to be 
addressed is the definition of better heuristics, dependent 
on the corpus that will allow a flexible definition of the α 
threshold to determine the stopping criterion.  This should 
improve the precision of the method.  We also plan to 
define a heuristic that will determine which of the 
automatically generated queries is best.  In the same 
realm, we plan to formulate a third method for user 
queries.  It will automatically translate the user queries 
from natural language into terms from the software system 
vocabulary, based on a modified editing distance between 
the terms.  Future case studies will assess these types of 
queries as well. 

The results of this paper and the conclusions in [32] 
show that none of the concept location methods is perfect.  
The logical conclusion is that the user should use a 
combination of such methods when searching for concepts 
in the source code.  An investigation on how to combine 
various methods to support location of concepts during 
maintenance activities is being undertaken. 
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Appendix: Overview of LSI 

Latent Semantic Indexing (LSI) [14] is a machine-
learning model that induces representations of the 
meaning of words by analyzing the relation between 
words and passages in large bodies of text.  LSI has been 
used in applied settings with a high degree of success in 
areas like automatic essay grading and automatic tutoring 
to improve summarization skills in children.  As a model, 
LSI’s most impressive achievements have been in human 
language acquisition simulations and in modeling of high-



level comprehension phenomena like metaphor 
understanding, causal inferences and judgments of 
similarity.  For complete details on LSI see [8].  LSI was 
originally developed in the context of information 
retrieval as a way of overcoming problems with polysemy 
and synonymy that occurred with vector space model 
(VSM) [30] approaches.  The method used by LSI to 
capture the essential semantic information is dimension 
reduction, selecting the most important dimensions from a 
co-occurrence matrix decomposed using Singular Value 
Decomposition (see below).  It has been shown in [14, 15] 
that LSI addresses the synonyms very well.  With simple 
corpus training, LSI managed to answer correctly 64% of 
the synonyms questions in the Test of English as a 
Foreign Language, better than the average student. 

VSM is a widely used classic method for constructing 
vector representations for documents.  It encodes a 
document collection by a term-by-document co-
occurrence matrix whose [i, j]th element indicates the 
association between the ith term and jth document.  In 
typical applications of VSM, a term is a word, and a 
document is an article.  However, it is possible to use 
different types of text units.  For instance, phrases or 
word/character n-grams can be used as terms, and 
documents can be paragraphs, sequences of n consecutive 
characters, or sentences.  The essence of VSM is that it 
represents one type of text unit (documents) by its 
association with the other type of text unit (terms) where 
the association is measured by explicit evidence based on 
term occurrences in the documents.  A geometric view of 
a term-by-document matrix is as a set of document vectors 
occupying a vector space spanned by terms; we call this 
vector space VSM space.  The similarity between 
documents is typically measured by the cosine between 
the corresponding vectors, which increases as more terms 
are shared.  In general, two documents are considered 
similar if their corresponding vectors in the VSM space 
point in the same (general) direction. 

LSI relies on a Single Value Decomposition (SVD) 
[30] of the co-occurrence matrix.  SVD is a form of factor 
analysis and acts as a method for reducing the 
dimensionality of a feature space without serious loss of 
specificity.  The formalism behind SVD is rather complex 
and lengthy to be presented here.  The interested reader is 
referred to [30] for details.  One of the most successful 
applications of SVD in information retrieval is the Google 
search engine (www.google.com). 

Any matrix can be decomposed and then recomposed 
perfectly using only as many factors as the smallest 
dimension of the original matrix.  However, an interesting 
phenomenon occurs when the original matrix is 
recomposed using fewer dimensions than necessary: the 
reconstructed matrix is a least-squares best fit. 

Intuitively, in SVD a rectangular matrix X is 
decomposed into the product of three other matrices.  One 
component matrix (U) describes the original row entities 

as vectors of derived orthogonal factor values, another (V) 
describes the original column entities in the same way, 
and the third is a diagonal matrix (Σ) containing scaling 
values such that when the three components are matrix-
multiplied, the original matrix is reconstructed (i.e., X = 
UΣVT).  The columns of U and V are the left and right 
singular vectors, respectively, corresponding to the 
monotonically decreasing (in value) diagonal elements of 
Σ which are called the singular values of the matrix X.  
When fewer than the necessary number of factors are 
used, the reconstructed matrix is a least-squares best fit.  
One can reduce the dimensionality of the solution simply 
by deleting coefficients in the diagonal matrix, ordinarily 
starting with the smallest.  The first k columns of the U 
and V matrices and the first (largest) k singular values of 
X are used to construct a rank-k approximation to X 
through Xk = UkΣkVk

T.  The columns of U and V are 
orthogonal, such that UTU = VTV = Ir, where r is the rank 
of the matrix X.  Xk constructed from the k-largest 
singular triplets of X (a singular value and its 
corresponding left and right singular vectors are referred 
to as a singular triplet), is the closest rank-k 
approximation (in the least squares sense) to X. 

With regard to LSI, Xk is the closest k-dimensional 
approximation to the original term-document space 
represented by the incidence matrix X. 

For document retrieval in the LSI space a similarity 
measure is defined between two documents as the cosine 
between their corresponding vectors in the LSI space.  
The similarity measure between two documents dq and di 
is defined as a cosine sim(dq, di) = cos(vq, vi).  We denote 
the inner product of the two vectors vq and vi as vq

T vi and 
length of a vector v as |v|.  The cosine of vq and vi is the 
length-normalized inner product: 

cos(vq, vi) = 
T

q i

q 2 i 2

v v
|v | ×|v |

 

LSI is mostly used on natural language corpora.  
However, the method lends itself perfectly to other type of 
data.  One criticism of this type of method, when applied 
to natural language texts is that it does not make use of 
word order, syntactic relations, or morphology.  Very 
good representations and results are derived without this 
information [16].  This characteristic is well suited to the 
domain of source code and internal documentation.  
Source code is hardly English prose but with selective 
naming, much of the high level meaning of the problem-
at-hand is conveyed to the reader.  Internal source code 
documentation is also commonly written in a subset of 
English [10] so queries formulated in natural language are 
perfectly usable.  This makes automation drastically easier 
and directly supports programmer defined variable names 
that have implied meanings (e.g., avg) yet are not in the 
natural language vocabulary. 
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