
An Information Retrieval Approach to
Concept Location in Source Code

Andrian Marcus1, Andrey Sergeyev1, Václav Rajlich1, Jonathan I. Maletic2

1Department of Computer Science
Wayne State University

Detroit, Michigan USA 48202
{amarcus,andrey,rajlich}@wayne.edu

2Department of Computer Science
Kent State University

Kent Ohio 44240
jmaletic@cs.kent.edu

Abstract

Concept location identifies parts of a software system
that implement a specific concept that originates from the
problem or the solution domain. Concept location is a
very common software engineering activity that directly
supports software maintenance and evolution tasks such
as incremental change and reverse engineering.

This paper addresses the problem of concept location
using an advanced information retrieval method, Latent
Semantic Indexing (LSI). LSI is used to map concepts
expressed in natural language by the programmer to the
relevant parts of the source code. Results of a case study
on NCSA Mosaic are presented and compared with
previously published results of other static methods for
concept location.

1 Introduction

The processes of software maintenance and evolution
consist of repeated tasks with software change being the
most common. Change is triggered by a change request
that specifies what should be changed in the system. An
example of such change request is: “Add a credit card
payment to a point-of-sale system”. As a part of
incremental change design, the programmer must locate
the implementation of the concepts embedded in the
change request (e.g., “payment”, “credit card”, etc.). The
code implementing these concepts will most likely
change.

The users are often the originators of the change
requests. While the users of a point-of-sale system could
learn about inventory, merchandise, customer, bill
payment, and other concepts of the domain, they may
know nothing about the implementation of these concepts
in the program. The process of concept location is to find
the code that implements these concepts. In addition to
problem domain concepts, change requests can also be
formulated in terms of the solution domain (e.g., stack,
list, client, server, etc.).

A description of a problem or solution domain concept
expressed in natural language is the input to the concept
location process. The output is a set of software
components that implement or address the concept. In the
ideal case, the traceability links between external
documentation (design and requirements) and the source
code provide all that is needed for concept location. In
practice though, the external documentation is typically
outdated and often nonexistent. An example software
system with these types of attributes is an old version of
the NCSA Mosaic web browser [24]. We use Version 2.7
of Mosaic in the case study presented in this paper and it
has no external documentation. In such situations, the
programmer must use other techniques for concept
location.

If the programmer fully understands the software,
concept location is a relatively easy task. However, it can
still be daunting for large complex systems. The difficulty
is caused, among other things, by the fact that the input
and the output of the location process belong to different
levels of abstraction. Namely, the input is at the natural
language level and the output is at the source code (i.e.,
programming language) level. To make the translation
from one level to another, extensive knowledge is
required. The knowledge includes information on the
problem domain, programming techniques, idioms,
algorithms, data structures, software architecture, etc.

Concept location is traditionally an intuitive and
informal process, based on past experience with the
system. When intuition and experience fail to provide the
answer, programmers widely use string based pattern
matching techniques that take advantage of the similarity
of concept names and program identifiers. For example,
when searching for the location of “payment”, the
programmer searches for identifiers such as “payment”,
“payBill”, etc. When the appropriate identifier is found,
the programmer studies the surrounding code and decides
if this is an actual implementation of the concept, or just a
coincidence.

A well-known example of a string pattern matching is
the Unix utility grep. Although the technique is widely

used, it has known weaknesses. It is based on the
correspondence between the name for the concept and an
identifier in the code, therefore it fails when the concepts
are hidden more implicitly in the code, or when the
original programmers used synonyms for the identifiers.
Homonyms may also reduce precision of the search.

In this paper we propose a new technique for concept
location based on an advanced information retrieval
method, namely Latent Semantic Indexing (LSI). The
work leverages the experience gained in our previous
research where we utilized LSI to support other software
engineering tasks that benefit from the power of IR
methods. In our earlier work, we used LSI to identify
abstract data types and high-level concept clones in
procedural code [21, 22]. Additionally, we used LSI to
recover traceability links between external documentation
and source code [23]. A common feature of our previous
work is that LSI was used to find relationships among
existing software artifacts (i.e., source to source and
source to document).

In the work presented here, we address the concept
location problem in the absence of external
documentation. This requires a new approach and a
different application of LSI than in our previous work.
The important difference is that in this application LSI is
used to map domain concepts formulated as user queries
to software components (i.e., query to source). The users
play a dominant part in this process; they formulate the
queries and evaluate the results returned by the system.

The users can apply the method in two distinct ways:
one is by directly querying the system and the other is
based on automatically generated queries. The results for
both types of methods for generating queries are evaluated
in this paper. Both approaches are significantly different
from the way we previously leveraged LSI to support
other software engineering tasks. For example, in [23]
parts of documentation are automatically mapped to
elements of the source code. The user had no input on
formulating queries. In [22] the user also did not
formulate any queries since the software is automatically
clustered. In both cases, the user only inspected and
analyzed the results.

Additionally, we compare the results of using our LSI-
based method with other known methods of concept
location which are based on static code analysis: a search
of the program dependency graph and the traditional
grep based method. By leveraging the strengths of each
of these types of approaches in conjunction, we foresee
the emergence of very powerful tools to address the
problem of static concept location.

The paper is organized as follows. Section 2 covers
the related work. Section 3 describes the proposed
methodology for concept location. Section 0 presents the
results of a case study that is aimed at assessing the
quality of the results, and compares LSI based concept
location with dependence graph search and the grep

based search. Section 5 concludes the paper and presents
future work.

To make the paper self-contained, a brief conceptual
description of LSI is given in the Appendix. This
discussion is based on our previous papers and the readers
familiar with LSI may skip this part.

2 Related Work

The work presented in this paper addresses two
specific issues: the use of information retrieval (IR)
methods to support software engineering tasks and
activities, and the location of concepts and features in the
source code. Related work on concept and feature
location is reviewed in subsection 2.1. The overview of
the use of IR methods in software engineering is presented
in subsection 2.2.

2.1 Concept and Feature Location

The concept assignment problem, as defined by
Biggerstaff et al. [3], forms the starting point for much of
the work on concept and/or feature location. They
describe a research prototype that utilizes parsing, simple
clustering, identifier names, and a browser to support
concept location.

Chen and Rajlich [4] propose a semi-automated
approach for the location of features based on the search
of program dependence graph. Other work that addresses
the issue of concept or feature location include [12, 18],
where reverse engineering techniques and visualization
are used to support this problem.

Independently and in parallel, Wilde developed the
Software Reconnaissance method [33, 34] which utilizes
dynamic information to locate features in existing
systems. Wong et al. [35] analyze execution slices of test
cases to the same end. Eisenbarth et al. [9] use dynamic
information gathered from scenarios of invoking features
in a system. This work, based on the analysis of
execution traces, is geared towards feature location.
Features are special concepts that describe the system
functionality, observable at execution. The Software
Reconnaissance approach is extended to detect multiple
features, represented using concept lattices.

Licata et al [17] uses the user test cases to define
feature signature for programs during evolution.

Rajlich and Wilde [25, 26] analyze the importance and
role of concepts in program comprehension, describe the
process of concept location, and discuss how vital it is to
the maintenance of code. Recently, they compared their
two approaches in a case study and both approaches
proved effective [32]. Each approach seemed better
suited for different situations; the dynamic approach is
better suited to discover features (i.e., concepts that are
observed by the user through the selection of the
appropriate input data), while static approaches are better

suited to the location of the remaining concepts that are
present in the code but are not selectable by the user at run
time.

Extraction of identifiers and comments requires very
limited parsing and similarity among the programming
languages allows developing a tool that deals with several
languages. We developed a simple program that is
applicable to C, C++, and Java source code.

Other approaches address this problem indirectly or
from different perspective. Antoniol et al [1] is looking at
identifying the start set during impact analysis. Robillard
et al [27, 28] built the FEAT tool for feature separation
using concern graphs. Hipikat [7] recommends the user
relevant software artifacts when adding new features to
Eclipse. Tjortjis [31] uses data mining techniques to help
users identify parts of the software related to a concept.

Source
code

User
queries

Query
results

Preprocessing

SVDCorpus LSI space2.2 IR and Software Engineering

Several information retrieval methods exist [29]
including signature files, inversion, and clustering. Much
of this work deals with indexing, classifying, and
retrieving natural language text documents. In software
engineering, IR methods are mostly used in the context of
indexing reusable software components and automatically
constructing libraries [11, 13, 19, 20]. Antoniol et al. [2]
use both a probabilistic methods and a Bayesian classifier
to address the problem of traceability links between
external documentation and source code.

Marcus and Maletic [21, 22] use LSI to derive
similarity measures between source code elements. These
measures are used to cluster the source code for the
identification of abstract data types in procedural code and
for the identification of clones. The version of Mosaic
that is used here is also used in those case studies. In
addition, LSI was used for the recovery of traceability
links between external documentation and source code
[23]. This approach is compared to that of Antoniol’s [2]
supporting the conclusion that IR methods can be
successfully applied to these types of problems.

3 Using LSI for Concept Location

All techniques for concept location reduce the search
space that the user needs to review. However, the user is
still necessary in order to locate an actual concept in the
code. The same is true for our technique. It is shown in

 and described in the remainder of this section.
Details of LSI are in an Appendix as these details have
been published in previous papers. The first part is the
preparation of the corpus and generation of the LSI space.

Figure 1

Figure 1: The concept location process using LSI

Figure 1

The next step involves identifier separation. While not
paramount with respect to the results, it is a simple step
that enriches the corpus and improves the results. We
observe two commonly used coding styles for identifiers:
one is the combination of words using underscore “_” as
separators (e.g., concept_location); and the other is the
combination of words using letter capitalization for
separation (e.g., ConceptLocation, CONCEPTLocation).
All identifiers that follow these rules are separated into
constituent words (e.g., concept location for the above
examples). The original form of the identifier is also
maintained and the separated words are added into the
corpus immediately following the identifier and will be
later processed by LSI.

The final step of the preprocessing is partition of the
code into documents. For systems written in procedural
languages we choose each function to be a separate
document and all declarations blocks outside functions in
each file to be treated as one document each.

After the preprocessing, the software system under
analysis (S) is decomposed into a set of documents. A
source code document (or simply document) d is any
contiguous set of lines of source code and/or text.
Typically a document is a file of source code or a program
entity such as a class, function, interface, etc. The
software system is the complete set of defined documents
S = {d1, d2, …, dn}.

These steps convert the system into a corpus, see
. Single Value Decomposition (SVD) is then

used to create the LSI space. Here SVD is used as a black
box subroutine, the definitions and underlying theory can
be found in the relevant literature [8, 14, 30]. In the LSI
space each document di ∈ S will have a corresponding
vector vi. We use this vector representation to define a
similarity measure between two documents sim(di, dj).

3.1 Preparing the Corpus and the LSI Space

Domain knowledge and concepts are embedded in the
source code through identifier names and internal
comments. We target these elements from the source
code to be analyzed by LSI; therefore a simple
preprocessing of the source code is needed. Three actions
are taken here: 1) extraction of identifiers and comments;
2) identifier separations; and 3) establishing document
granularity.

The user query will also be converted into a document
of LSI space, and the similarity measure between user
query and documents of the corpus will help us to identify
the documents most relevant to the query.

3.2 Formulating the User Queries

In the proposed methodology, there are two ways in
which the user can formulate queries for identifying a
given concept. One is to create a natural language query
with one or more words, entire phrases, or even short
paragraphs. The query is formulated by the users based
on the change request and their knowledge of the software
domain and/or the source code. The system will return
the documents from the software under exploration,
ranked by the similarity measure to the query.

The second option for querying is to create queries that
contain both words and identifiers from the source code.
LSI will automatically provide the similarities between
terms. With this in mind, the user can specify a single
word query and find all the related terms from the corpus
(i.e., identifiers and words from the source code and
comments). These queries can be generated automatically
starting from a single user specified term or phrase. The
user does not need to have a priori knowledge of the terms
used in the source code.

Figure 2: Retrieving the results for a query (q)

Figure 2

In the case study presented in Section 4 we analyzed
the results for both types of queries.

3.3 Generating the Results

Using the system is similar with using any search
engine. The results are returned as a set of ranked
documents that the user inspects to decide their relevancy.
A stopping criterion is defined, which indicates the user
not to search any further through the returned documents.

Once the user formulates a query, a document q
representing the query is created and mapped onto the LSI
space. Then LSI creates a corresponding vector vq and
returns the set of all documents in the system, ranked by
the similarity measure to the user query. At this point, the
user will inspect a subset of the documents in the
suggested order and decide which ones are actually parts
of the concept.

In order to determine how many documents to inspect,
we partition the search space based on the similarity
measure. Each partition, at step i, is made up of
documents d that are closer than a threshold α to a
document dc: P(i) = {d ∈ S | sim(dc, d) ≤ α}. The

threshold was established empirically. Based on our
experience, α = 0.075 gives good results.

For the first partition P(1) the user searches, dc is set to
be the closest neighbor of the query q. In a step i, the user
will investigate all documents from the partition P(i). If
no relevant documents were found, the search stops. If
relevant documents were identified, dc is reset to the last
document visited in partition P(i) and the next partition
P(i+1) is defined. Formally, the new dc is reset : new dc =
dj ∈ P(i) such that sim(dc, dj) = min{sim(dc, d) | (∀) d ∈
P(i)}. shows these steps in a flow chart format.

4 Locating “font properties” in Mosaic

The question we try to answer in this case study is how
well the LSI-based technique, described in the previous
section, helps the user in locating the concepts.

4.1 Case Study Design

Our hypothesis is that LSI-based technique will help
the user to identify all documents that correspond to
functions and/or declarations that either actually
implement the concepts or extensively use it. We want to
compare different ways how to formulate the query and
the impact of the query on the result. We also want to
compare LSI to other previously used or published
concept location techniques that are also based on the
static analysis of the source code. Techniques that belong
to this category include the grep based search and the
search of the program dependence graph.

Read q
Create vq
i:=1;

i:=i+1;

Set dc YES

Relevant
documents
found?

Retrieve P(i) STOP
Investigate P(i) NO

It would also be interesting to compare LSI with
dynamic techniques but the comparison is less conclusive
since the dynamic techniques limit the located concepts to
features only, forcing a more narrow selection of the
concepts. Since the static and dynamic techniques were
compared elsewhere [32], we limited the case study to the
comparison among the static techniques.

We conducted a case study to locate concepts in
version 2.7 of the NCSA Mosaic web browser [24]. This
older version is written in C and we analyzed 269 files
with approximately 95,000 lines of comments and code.
The choice is motivated by the existence of previous
results on concept location in Mosaic [5]. This allows us
to compare the results and assess their quality. Mosaic
has been used many times in research studies, starting
with Clayton and Rugaber [6]. It covers a well-defined
domain and is known to the research community.

As in [5], the concept we are locating is “font
properties”. We want to find the documents within
Mosaic that deal with font properties. An example of a
change request that may need this concept located is the
following: “Add a new font to Mosaic”.

In order to minimize the bias, the case study was
conducted by the 2nd author of the paper and observed by
the remaining authors. However, he was not familiar with

Mosaic and had no previous experience in using LSI. In
order to evaluate the results, we used two of the most
common measures in experiments with IR methods: recall
and precision. For a given query q, Ni documents will be
inspected in step i. Among these Ni documents the user
will identify that Ci ≤ Ni of them are actually related to the
concept expressed by the query. There are Ri documents
considered relevant to the concept. With these numbers
we define the recall and precision for q as follows:

Recall = #of correct & retrieved documents
total # of correct documents

i

i

C
R

=

Precision = #of correct & retrieved documents
total # of retrieved documents

i

i

C
N

=

If recall is 100%, it means that all the relevant
documents are recovered, though there could be recovered
documents that are not correct. If the precision is 100%, it
means that all the recovered documents are correct,
though there could be correct documents that were not
recovered.

4.2 Preparation of the Corpus

In this case study, each declaration block, each
function, and each “.h file” correspond to a document
respectively. Some very large functions and .h files (i.e.,
over 10,000 characters) were split into smaller pieces.
Such documents are later recombined during the
evaluation of the results. In other words, the users are
unaware that some functions may be mapped to more than
one document in the LSI space. This process generated
2,347 documents. Preparation of the corpus is automatic
and fast (under 30 seconds for Mosaic), since no serious
parsing is needed.

The next phase focuses on the location of a concept in
Mosaic (i.e., properties of fonts). In each case we
formulated several queries and compared the results.

Table 1: The functions and data types in Mosaic that
implement the font properties.

Table 1

Table 1

Function/data name File Doc
wrapFont() gui-menubar.c 389
mo_set_fonts() gui-menubar.c 390
mo_get_font_size_from_res() gui.c 257
XtResources resources[] HTML.c 1229
PSfont() HTML-PSformat.c 1468

4.3 User Specified Queries

We attempted several sets of queries based on the rules
described in section 3.2. For the first set of queries we
used English terms that we felt best describe the concept.
We started with the simplest one: “font”. Next, we asked
six people in our research lab to formulate a query that
describes the font properties, based on their knowledge of
web browsers. The results were very similar.
lists these queries (rows 2 through 7). We also created a
query (#8) that is the union of all the words from the other

queries. Interestingly, no person used font names in the
queries (e.g., Times New Roman, Courier, etc.). When
questioned, the consensus was that each of them tried to
formulate general (rather than specific) queries in an
attempt to reach 100% recall rather than high precision.

After running all these queries, we inspected the source
code based on the steps suggested by LSI. The set of
relevant documents R, which implement the font
properties in Mosaic was determined by the authors.

 shows the functions and data structures that
implement the font properties in Mosaic, in what files they
are located, and what corresponding document number
they have in the LSI space.

Table 2

Table 2: A first set of queries formulated by different
users. The last query (#8) is the union.

Table 2

Query
1 font
2 font size style small regular large
3 font style large small regular family
4 font style bold italics large small regular
5 font size style small regular large family bold italics

type
6 font size style small regular large family bold italics
7 font family style bold italics size small regular medium

large
8 font size style small regular large family bold italics

medium type

Based on the set from (five documents), we

computed the recall and precision for each of the eight
queries in . shows these measures and
also shows how many documents we investigated in how
many steps. Based on these numbers and the number of
relevant documents found in this set, we compute the
recall and precision. For some queries (i.e., #1 and #3)
some relevant documents were not found before the
stopping step was reached (i.e., a step in which no
relevant documents are found) which resulted in less than
100% recall. The best result is given by query#4: “font
style bold italics large small regular”. The five
documents were located in the four steps, by investigating
15 documents (precision 33.33%).

Table 3

Table 3: The results for the first set of queries. The
highlighted items show the best results.

Q Investigated
documents Recall Precision

Last
relevant

doc.
pos.

Step

1 4 0% 0% 89 1
2 54 100% 9.25% 17 4
3 9 60% 33.33% 13 3
4 15 100% 33.33% 11 4
5 79 100% 6.32% 22 4
6 57 100% 8.77% 14 4
7 49 100% 10.02% 10 4
8 72 100% 6.94% 18 4

We also looked on what position is ranked the last
relevant document to the query, in other words, how many
documents did the user have to visit in order to determine
the relevant documents. If we take this as a quality
criterion, query#7 did in fact return the best result (i.e., the
5 relevant documents were in the top 10 returned results).
The most interesting result though is the fact that query#1
(“font”) returned the worst results from every point of
view. In fact, the first four returned documents (returned
in step 1) are not part of our concept. The first relevant
document is in fact on the 5th position. This did not come
as a surprise since the term font is related to a number of
other concepts such as “font stack”.

Except query#1, each query returned the correct results
within the first 22 documents (see). Even for
query#3, where we stopped after investigating the first 9
documents, all the relevant documents were in the top 13
returned documents.

Table 3

4.4 Automatically Generating Queries

The second part of the case study is aimed at
establishing how well the system can automatically
generate queries, starting from a single word or phrase
specified by the user.

A second set of queries are defined using LSI starting
from the word “font”. We use the top 40 terms from the
Mosaic corpus that are most related to “font”. These are,
as returned by LSI: nheader, medium, naddress,
nfixeditalic, nplain, nplainbold, nplainitalic, nsup, wb,
nbold, nfixed, nfixedbold, nitalic, normal, nfont, nactive,
wrap, super, subfield, lsa, times, sophisticated, helvetica,
family, plainbold, fixeditalic, plainitalic, century,
fixedbold, schoolbook, xmx, set, lucidatypewriter, nlisting,
nresolve, previously, lucidabright, wbc, subscript,
superscript. With these terms we automatically created
40 queries based on the following formula:

query(n) = “font” + the first n terms
from the list

Based on the previous queries we learned that the term
“font” returns rather poor results since is widely used in
Mosaic and generates many correlations. Therefore, we
generated another set of 40 queries similar to the ones
above, but without the term “font” included:

query’(n) = the first n terms from the list
For this set of queries, we looked within how many

positions in the ordered list of returned documents are the
five relevant ones, the same information as “Last relevant
document position” in Table 3. The results of the
comparison between the two sets of queries are shown in
Figure 3. The best result (35) among the first set of
queries is given by query(31) (it contains the word “font”
followed by the 31 closest terms). Among the latter set
the best result (i.e., 11) is given by both query’(30) and
query’(31) (contain the first 30 and 31 respectively closest
terms to “font”). On average, in the first set the relevant

results were among the first 90 returned documents. In
the second set the results are among the first 77 returned
documents, on average.

We also computed the precision and recall for the
queries in these two sets, considering all documents
returned by LSI in each step and the defined stopping
criterion. For query(31) we investigated 15 documents in
5 steps and identified four of the five relevant documents:
recall 80% and precision 26.66%. For query’(31) we
investigated 64 documents in 6 steps and found all five
relevant results: recall 100% and precision 7.80%. For
this query the last relevant document (389) is in fact the
nearest neighbor (dc) in the last examined partition.

Figure 3: Position of the 5 relevant documents for

each query(n) and query’(n), with n=1, …, 40.

In the worst case there is query(37) where 40
documents are examined in 5 steps with 80% recall and
10% precision, and query’(37) where five documents are
investigated in 2 steps with 20% recall and 10% precision.

While the average results are not as good as in the case
of the user formulated queries, the best result is almost the
same. One important thing to remember is that these 80
queries are in fact automatically generated starting with
the word “font”. No domain knowledge is needed to
formulate the queries, as in the first set.

4.5 Comparison with Search of the Dependence
Graph

These results were also compared with those published
in [5], which are based on searching the dependence
graph. Some discrepancies occurred; namely only three
of the five detected component in our process correspond
to those detected previously in [5] (i.e., mo_set_fonts(),
mo_get_font_size_from_res(), and XtResource
resources[]). The authors in [5] also identified one more
function and three global variables (i.e., menubar_cb(),
Rdata, menuspec, and mo_token). At the same time they

did not identify two of the functions we identified (i.e.,
PSFont() and wrapFont()).

In order to understand and explain the difference we
must emphasize the differences in the approaches and
underlying maintenance tasks. In [5] the task under
analysis by the authors was a change request to add a new
font size Tiny. In order to locate the code where the
change needs to be done, the authors divided the process
in four subtasks, based on prior knowledge of the system:
1) to find the function that opens a new window; 2) to find
how the font properties are specified in the new window;
3) to find what the default type is, and how and where it is
set; and 4) to find the connection between the font -
related menu items and the font settings. The end result in
[5] is the impact set of the change. In contrast, our goal is
to identify the parts of the software that implement font
properties, rather than the impact set.

With this in mind and after the investigation of the
source code the reasons for the discrepancies became
clear. Our approach missed the Rdata, menuspec, and
mo_token global variables because of the selected
granularity size. The missed variables are defined inside
declaration blocks with many other global variables that
did not relate to font properties. In addition, they support
menu handling and only one of the multiple menus
actually dealt with selections of font types. Thus, the
correlation with font related terms is very weak. The
same reason stands for the menubar_cb() function. We
consider this function simply a usage of the font property
concept rather than a definition. These documents should
be included in the impact set as they change in response to
the change request.

Based on the same principle, the authors in [5] did not
include wrapFont() in their impact set, although they did
visit it. While, wrapFont() is part of the concept
definition (i.e., it is called only by mo_set_fonts() and
does not call any function) it did not need to be changed
for the introduction of a new font type.

Finally, PSFont() was not identified in the case study
presented in [5] for two reasons. The authors started the
concept location from the “open new window” menu and
identified the font properties related functions through
data and control dependencies. With respect to this
feature (i.e., display of fonts in windows) their impact set
is correct and the change is propagated through all the
necessary functions. However, PSFont() does set the font
properties for post script printing of the HTML page that
is not related to window opening and display
functionality. Based on the approach from [5] in order to
identify PSFont() the logical starting point would have
been in the “print post script” menu. In addition, there is
no explicit dependency between the PSFont() and the
menubar_cb() function, which was the first function
identified in the impact set.

This finding turned out to be an unexpected result and
helped in better understanding the differences between

methods. In essence, the “font properties” concept is part
of at least two features in Mosaic: “display in window”
and “print postscript”. In conclusion, we are able to find a
part of the concept missed in the previous case studies. In
fact, the document corresponding to PSFont() is the
nearest neighbor to each query in our case study, except
query#1. Although direct comparison of recall and
precision is questionable given that we identified slightly
different sets of functions and data, it is an indication of a
qualitative aspect of the result. In [5] the precision for the
entire location process was 7.69% and for the propagation
process was 5.63%. Precision using LSI () is close
to this result in the worst case, but better in the best case.

Table 3

Finally, for each of the queries, there are a number of
documents not relevant to the searched concept, which
always occurres among the top 10-15 nearest neighbors to
the query. They are: PopFont(), PushFont(),
TriggerMarkChanges(), HTMLPart, and font_rec. The
first two are obviously related by usage to the font
properties as both concepts (i.e., font property and font
stack) are part of the more general concept of font. The
TriggerMarkChanges() function is a very large function in
Mosaic that deals with changes and history, as well as
font_rec. The function uses the font stack. HMTLPart is
a large structure that defines the properties for new HTML
widgets, including the displayable fonts. Finally, one
large block of macro definition from HTML.c is of interest
since it defines names for new resources including some
related to fonts. Based on the task at hand for which the
concept location is needed, these documents may or may
not be considered relevant by the user.

4.6 Comparison with grep-type Search

As mentioned previously, one of the most commonly
used methods in practice for concept location is the grep
based search. Similar comparisons were made by Maarek
et al. [19] and Antoniol et al. [2]. Given this fact we used
the regular expression search engine built in Microsoft
Visual .NET development environment to search the
Mosaic source code. It is very similar in usage with
grep. In fact, it has some additional features. One of the
issues with the grep based approach is also the
granularity level they work at (i.e., files). This prohibits
us to directly compare recall and precision, since the
results are in different format.

The obvious start is to look for the word “font”, which
returned 1168 occurrences in 24 files, an obviously
ineffective result. We then performed several searches by
combining words with the “or” operator. These still
proved to be unsuccessful since they still returned
hundreds of hits in dozens of files. Then we created
queries using regular expressions. The best results were
returned by:

1. font[^]*style
2. font[^]*large.

For query (1) we obtained 9 occurrences in 1 file that
pointed to the PSFont() function. For query (2) we
obtained 9 occurrences over three files that pointed to
PSFont() and mo_get_font_size_from_res(). These results
helped locating at least a part of the implementation.

Other queries such as:
• font[^]*properties
• [^]*font[^]*size[^]*style[^]*small[^]*regular[^]*

large[^]*
returned no hits. In conclusion, a number of the

queries returned results that were not very helpful. Even
the better ones missed many of the relevant documents,
hence recall was low. The main problem with the grep
based approach is that the returned results are not ranked.
This means that the user has to examine a large number of
documents with the same priority.

5 Conclusions and Future Work

The paper presents a new technique for concept
location using an information retrieval method, latent
semantic indexing (LSI). The method uses LSI to find
semantic similarities between user queries and modules of
the software in order to locate concepts of interest in the
source code. Two variants of the concept location
technique using LSI are presented. One, based on user
formulated queries and the other based on partially
automated generated queries.

A case study of locating concepts in NCSA Mosaic is
also presented and analyzed. The results are compared
with other methods that are based on regular expression
searches and search on the program dependence graph.

By comparison with related methods, the use of LSI for
concept location presents several advantages. The method
is almost as easy and flexible to use as grep based
techniques and it provides better results. Additionally, we
are able to identify certain parts of a concept (i.e., the
PSFont() function) that are missed by the dependence
graph search approach. The advantage of using LSI is
that the method is independent of programming language,
and the source code preprocessing is simpler than building
a dependence graph.

One important feature of the method that sets it apart
from other related approaches is that LSI is able to
identify words and identifiers from the source code that
are related to a user-specified term or phrase within the
context of the software system. This allows us to
automatically generate queries starting with a single (or
more) user-specified word. These queries returned results
comparable with the queries formulated manually by the
users based on their domain knowledge.

Several additional issues will be addressed in future
work. As far as the quality of the corpus is concerned, we
plan a set of case studies with software that includes
external documentation, and software that is commented

more richly than Mosaic. We will investigate the impact
of these additional properties on the results. In addition,
we plan to see how much the structure of the software
(e.g., procedural vs. object-oriented, application vs.
library) influences the results.

With respect to the user queries we plan to define
several query templates based on the type of concept that
is searched. One important aspect that needs to be
addressed is the definition of better heuristics, dependent
on the corpus that will allow a flexible definition of the α
threshold to determine the stopping criterion. This should
improve the precision of the method. We also plan to
define a heuristic that will determine which of the
automatically generated queries is best. In the same
realm, we plan to formulate a third method for user
queries. It will automatically translate the user queries
from natural language into terms from the software system
vocabulary, based on a modified editing distance between
the terms. Future case studies will assess these types of
queries as well.

The results of this paper and the conclusions in [32]
show that none of the concept location methods is perfect.
The logical conclusion is that the user should use a
combination of such methods when searching for concepts
in the source code. An investigation on how to combine
various methods to support location of concepts during
maintenance activities is being undertaken.

6 Acknowledgements

This work was supported in part by a grant from the
National Science Foundation (CCR-02-04175).

7 References

[1] Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A.,
"Identifying the Starting Impact Set of a Maintenance Request: a
Case Study", in Proceedings of European Conference on
Software Maintenance and Reengineering (CSMR'00), Zurich,
Switzerland, February 29 - March 3 2000, pp. 227-230.
[2] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E., "Recovering Traceability Links between Code and
Documentation", IEEE Transactions on Software Engineering,
vol. 28, no. 10, October 2002, pp. 970 - 983.
[3] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E.,
"Program Understanding and the Concept Assignment Problem",
Comm. of the ACM, vol. 37(5), May 1994, pp. 72-82.
[4] Chen, K. and Rajlich, V., "Case Study of Feature Location
Using Dependency Graph", in Proceedings of Intern. Workshop
on Program Comprehension (IWPC'00), 2000, pp. 241-249.
[5] Chen, K. and Rajlich, V., "RIPPLES: Tool for Change in
Legacy Software", in Proceedings of International Conference
on Software Maintenance (ICSM'01), 2001, pp. 230 - 239.
[6] Clayton, R., Rugaber, S., Taylor, L., and Wills, L., "A Case
Study of Domain-based Program Understanding", in
Proceedings of 5th Workshop on Program Comprehension,
Dearborn, MI, May 28-30 1997, pp. 102-110.

[7] Cubranic, D. and Murphy, G. C., "Hipikat: Recommending
pertinent software development artifacts", in Proceedings of 25th
International Conference on Software Engineering (ICSE'03),
Portland, OR, May 2003, pp. 408-418.
[8] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T.
K., and Harshman, R., "Indexing by Latent Semantic Analysis",
J. of the Amer. Soc. for Info Science, vol. 41, 1990, pp. 391-407.
[9] Eisenbarth, T., Koschke, R., and Simon, D., "Locating
Features in Source Code", IEEE Transactions on Software
Engineering, vol. 29, no. 3, March 2003, pp. 210 - 224.
[10] Etzkorn, L. H. and Davis, C. G., "Automatically Identifying
Reusable OO Legacy Code", IEEE Computer, vol. 30, no. 10,
October 1997, pp. 66-72.
[11] Fischer, B., "Specification-Based Browsing of Software
Component Libraries", in Proceedings of ASE, 1998, pp. 74-83.
[12] Fiutem, R., Tonella, P., Antoniol, G., and Merlo, E., "A
Cliche'-Based Environment to Support Architectural Reverse
Engineering", in Proceedings of Intern Conference on Software
Maintenance (ICSM '96), Nov 04 - 08 1996, pp. 319-328.
[13] Frakes, W., "Software Reuse Through Information
Retrieval", in Proc of HICSS, Kona, HI, Jan. 1987, pp. 530-535.
[14] Landauer, T. K., Foltz, P. W., and Laham, D., "An
Introduction to Latent Semantic Analysis", Discourse Processes,
vol. 25, no. 2&3, 1998, pp. 259-284.
[15] Landauer, T. K., Laham, D., and Foltz, P. W., "Learning
human-like knowledge by Singular Value Decomposition: A
progress report", Advances in Neural Information Processing
Systems, vol. 10, 1998, pp. 45-51.
[16] Landauer, T. K., Laham, D., Rehder, B., and Shreiner, M.
E., "How Well Can Passage meaning Be Derived without Using
Word Order? A Comparison of Latent Semantic Analysis and
Humans", in Proceedings of Annual Conference of the Cognitive
Science Society, 1997, pp. 412--417.
[17] Licata, D. R., Harris, C. D., and Krishnamurthi, S., "The
feature signatures of evolving programs", in Proceedings of
IEEE International Conference on Automated Software
Engineering (ASE'03), October 6-10 2003, pp. 281-285.
[18] Lukoit, K., Wilde, N., Stowell, S., and Hennessey, T.,
"TraceGraph: Immediate Visual Location of Software Features",
in Proceedings of International Conference on Software
Maintenance (ICSM'00), San Jose, Oct 11 - 14 2000, pp. 33-39.
[19] Maarek, Y. S., Berry, D. M., and Kaiser, G. E., "An
Information Retrieval Approach for Automatically Constructing
Software Libraries", IEEE Transactions on Software
Engineering, vol. 17, no. 8, 1991, pp. 800-813.
[20] Maarek, Y. S. and Smadja, F. A., "Full Text Indexing Based
on Lexical Relations, an Application: Software Libraries", in
Proceedings of SIGIR, Cambridge, June 1989, pp. 198-206.
[21] Maletic, J. I. and Marcus, A., "Supporting Program
Comprehension Using Semantic and Structural Information", in
Proceedings of Intern. Conference on Software Engineering
(ICSE'01), Toronto, Canada, May 12-19 2001, pp. 103-112.
[22] Marcus, A. and Maletic, J. I., "Identification of High-Level
Concept Clones in Source Code", in Proceedings of Automated
Software Engineering (ASE'01), San Diego, CA, November 26-
29 2001, pp. 107-114.

[23] Marcus, A. and Maletic, J. I., "Recovering Documentation-
to-Source-Code Traceability Links using Latent Semantic
Indexing", in Proc Intern Conference on Software Engineering
(ICSE'03), Portland, OR, May 3-10 2003, pp. 125-137.
[24] Mosaic, "Mosaic Source Code v2.7b5", NCSA, ftp site,
Date Accessed: 4/12/2000, ftp://ftp.ncsa.uiuc.edu/Mosaic/Unix/.
[25] Rajlich, V. and Wilde, N., "The Role of Concepts in
Program Comprehension", in Proceedings of International
Workshop on Program Comprehension (IWPC 2002), Paris,
France, June 27 - 29 2002, pp. 271-278.
[26] Rajlich, V., Wilde, N., Buckellew, M., and Page, H.,
"Software Cultures and Evolution", IEEE Computer, vol. 34, no.
9, September 2001, pp. 24-28.
[27] Robillard, M. P. and Murphy, G. C., "Concern graphs:
finding and describing concerns using structural program
dependencies", in Proceedings of Intern Conference on Software
Engineering (ICSE 2002), Orlando, 2002, pp. 406 - 416.
[28] Robillard, M. P. and Murphy, G. C., "Automatically
Inferring Concern Code from Program Investigation Activities",
in Proceedings of 18th International Conference on Automated
Software Engineering (ASE'03), October 2003, pp. 225-234.
[29] Salton, G., Automatic Text Processing: The
Transformation, Analysis and Retrieval of Information by
Computer, Addison-Wesley, 1989.
[30] Salton, G. and McGill, M., Introduction to Modern
Information Retrival, McGraw-Hill, 1983.
[31] Tjortjis, C., Sinos, L., and Layzell, P. J., "Facilitating
Program Comprehension by Mining Association Rules from
Source Code", in Proceedings of 11th IEEE International
Workshop on Program Comprehension (IWPC'03), Portland,
May 10-11 2003, pp. 125-133.
[32] Wilde, N., Buckellew, M., Page, H., Rajlich, V., and
Pounds, L., "A Comparison of Methods for Locating Features in
Legacy Software", Journal of Systems and Software, vol. 65, no.
2, 15 February 2003 2003, pp. 105-114.
[33] Wilde, N. and Gust, T., "Locating User Functionality in Old
Code", in Proceedings of Conference on Software Maintenance,
Orlando, Florida, 1992, pp. 200-205.
[34] Wilde, N. and Scully, M., "Software Reconnaissance:
Mapping Program Features to Code", Journal of Software
Maintenance and Evolution, vol. 7, 1995, pp. 49-62.
[35] Wong, E., Gokhale, W., S., S., and Horgan, J. R.,
"Quantifying the closeness between program components and
features", Journal of Systems and Software, vol. 54, no. 2, Oct.
2000, pp. 87-98.

Appendix: Overview of LSI

Latent Semantic Indexing (LSI) [14] is a machine-
learning model that induces representations of the
meaning of words by analyzing the relation between
words and passages in large bodies of text. LSI has been
used in applied settings with a high degree of success in
areas like automatic essay grading and automatic tutoring
to improve summarization skills in children. As a model,
LSI’s most impressive achievements have been in human
language acquisition simulations and in modeling of high-

level comprehension phenomena like metaphor
understanding, causal inferences and judgments of
similarity. For complete details on LSI see [8]. LSI was
originally developed in the context of information
retrieval as a way of overcoming problems with polysemy
and synonymy that occurred with vector space model
(VSM) [30] approaches. The method used by LSI to
capture the essential semantic information is dimension
reduction, selecting the most important dimensions from a
co-occurrence matrix decomposed using Singular Value
Decomposition (see below). It has been shown in [14, 15]
that LSI addresses the synonyms very well. With simple
corpus training, LSI managed to answer correctly 64% of
the synonyms questions in the Test of English as a
Foreign Language, better than the average student.

VSM is a widely used classic method for constructing
vector representations for documents. It encodes a
document collection by a term-by-document co-
occurrence matrix whose [i, j]th element indicates the
association between the ith term and jth document. In
typical applications of VSM, a term is a word, and a
document is an article. However, it is possible to use
different types of text units. For instance, phrases or
word/character n-grams can be used as terms, and
documents can be paragraphs, sequences of n consecutive
characters, or sentences. The essence of VSM is that it
represents one type of text unit (documents) by its
association with the other type of text unit (terms) where
the association is measured by explicit evidence based on
term occurrences in the documents. A geometric view of
a term-by-document matrix is as a set of document vectors
occupying a vector space spanned by terms; we call this
vector space VSM space. The similarity between
documents is typically measured by the cosine between
the corresponding vectors, which increases as more terms
are shared. In general, two documents are considered
similar if their corresponding vectors in the VSM space
point in the same (general) direction.

LSI relies on a Single Value Decomposition (SVD)
[30] of the co-occurrence matrix. SVD is a form of factor
analysis and acts as a method for reducing the
dimensionality of a feature space without serious loss of
specificity. The formalism behind SVD is rather complex
and lengthy to be presented here. The interested reader is
referred to [30] for details. One of the most successful
applications of SVD in information retrieval is the Google
search engine (www.google.com).

Any matrix can be decomposed and then recomposed
perfectly using only as many factors as the smallest
dimension of the original matrix. However, an interesting
phenomenon occurs when the original matrix is
recomposed using fewer dimensions than necessary: the
reconstructed matrix is a least-squares best fit.

Intuitively, in SVD a rectangular matrix X is
decomposed into the product of three other matrices. One
component matrix (U) describes the original row entities

as vectors of derived orthogonal factor values, another (V)
describes the original column entities in the same way,
and the third is a diagonal matrix (Σ) containing scaling
values such that when the three components are matrix-
multiplied, the original matrix is reconstructed (i.e., X =
UΣVT). The columns of U and V are the left and right
singular vectors, respectively, corresponding to the
monotonically decreasing (in value) diagonal elements of
Σ which are called the singular values of the matrix X.
When fewer than the necessary number of factors are
used, the reconstructed matrix is a least-squares best fit.
One can reduce the dimensionality of the solution simply
by deleting coefficients in the diagonal matrix, ordinarily
starting with the smallest. The first k columns of the U
and V matrices and the first (largest) k singular values of
X are used to construct a rank-k approximation to X
through Xk = UkΣkVk

T. The columns of U and V are
orthogonal, such that UTU = VTV = Ir, where r is the rank
of the matrix X. Xk constructed from the k-largest
singular triplets of X (a singular value and its
corresponding left and right singular vectors are referred
to as a singular triplet), is the closest rank-k
approximation (in the least squares sense) to X.

With regard to LSI, Xk is the closest k-dimensional
approximation to the original term-document space
represented by the incidence matrix X.

For document retrieval in the LSI space a similarity
measure is defined between two documents as the cosine
between their corresponding vectors in the LSI space.
The similarity measure between two documents dq and di
is defined as a cosine sim(dq, di) = cos(vq, vi). We denote
the inner product of the two vectors vq and vi as vq

T vi and
length of a vector v as |v|. The cosine of vq and vi is the
length-normalized inner product:

cos(vq, vi) =
T

q i

q 2 i 2

v v
|v | ×|v |

LSI is mostly used on natural language corpora.
However, the method lends itself perfectly to other type of
data. One criticism of this type of method, when applied
to natural language texts is that it does not make use of
word order, syntactic relations, or morphology. Very
good representations and results are derived without this
information [16]. This characteristic is well suited to the
domain of source code and internal documentation.
Source code is hardly English prose but with selective
naming, much of the high level meaning of the problem-
at-hand is conveyed to the reader. Internal source code
documentation is also commonly written in a subset of
English [10] so queries formulated in natural language are
perfectly usable. This makes automation drastically easier
and directly supports programmer defined variable names
that have implied meanings (e.g., avg) yet are not in the
natural language vocabulary.

	Introduction
	Related Work
	Concept and Feature Location
	IR and Software Engineering

	Using LSI for Concept Location
	Preparing the Corpus and the LSI Space
	Formulating the User Queries
	Generating the Results

	Locating “font properties” in Mosaic
	Case Study Design
	Preparation of the Corpus
	User Specified Queries
	Automatically Generating Queries
	Comparison with Search of the Dependence Graph
	Comparison with grep-type Search

	Conclusions and Future Work
	Acknowledgements
	References
	Appendix: Overview of LSI

