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ABSTRACT
In wireless ad hoc networks, although defense strategies
such as intrusion detection systems (IDSs) can be deployed
at each mobile node, significant constraints are imposed in
terms of the energy expenditure of such systems. In this pa-
per, we propose a game theoretic framework to analyze the
interactions between pairs of attacking/defending nodes us-
ing a Bayesian formulation. We study the achievable Nash
equilibrium for the attacker/defender game in both static
and dynamic scenarios. The dynamic Bayesian game is a
more realistic model, since it allows the defender to con-
sistently update his belief on his opponent’s maliciousness
as the game evolves. A new Bayesian hybrid detection ap-
proach is suggested for the defender, in which a lightweight
monitoring system is used to estimate his opponent’s ac-
tions, and a heavyweight monitoring system acts as a last
resort of defense. We show that the dynamic game produces
energy-efficient monitoring strategies for the defender, while
improving the overall hybrid detection power.
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1. INTRODUCTION
Ad hoc networks are infrastructure-free, self-organized sys-

tems, for which the network operation is based on cooper-
ation of nodes within the neighborhood. In an open envi-
ronment (i.e. no pre-existing trusted authority), each node
agrees to perform network functions such as forwarding and
routing. Besides selfishness, ad hoc network misbehavior
may be inflicted by malicious nodes, each of which inten-
tionally aims at harming the network operation. A malicious
node can mount attacks against different network layers to
either compromise individual node(s) or degrade the perfor-
mance of the overall network. Moreover, existing protocols
and techniques for ad hoc networks do not limit end users
to use them in a WLAN environment. Hence, if a malicious
node can form an ad hoc network with a legitimate WLAN
station, it can compromise this station, and then use it as
a “backdoor” into the WLAN to stage attacks. Therefore,
malicious behavior in ad hoc networks can reach to WLANs
and wired networks.

IDSs are important means to detect malicious node be-
havior. In ad hoc networks, most IDSs are proposed to indi-
vidual nodes (e.g. [1, 2, 3, 4]) due to the lack of centralized
management. To better defend a network, every defending
node is suggested to be equipped with an IDS, and each IDS
is assumed to be always-on. That is to say, each defending
node has to be in promiscuous mode. From a system us-
age perspective, always-on is not an efficient option because
mobile nodes are often resource-constrained. To improve de-
fender’s monitoring efficiency, a game-theoretic approach is
suggested to model the interactions between attacking node
(attacker) and defending node (defender).

We formulate the attacker/defender game model in both
static and dynamic Bayesian game contexts, and investigate
the equilibrium strategies of the two players. The motivation
behind our Bayesian game formulation is that generally an
attacker/defender game is an incomplete information game
[5, p209] where the defender is uncertain about the type
of his opponent (regular or malicious). A Bayesian game
formulation provides a framework for the defender to select
his strategies based on his belief on the type of his opponent.

The difference between a static and a dynamic Bayesian
game is that the former does not take into account the game
evolution, and the defender has fixed prior beliefs about the
types of his opponent. In contrast, the latter is a more re-



alistic game model, because the defender can dynamically
update his beliefs based on new observations of the oppo-
nent’s actions and the game history, and then can adjust his
monitoring strategy accordingly.

In the dynamic game model, a new Bayesian hybrid detec-
tion approach is suggested for the defender, with one being
used as a lightweight monitoring system to estimate his op-
ponent’s action in each stage game, and the other being used
as a heavyweight monitoring system, which functions as a
last resort of defense. The heavyweight monitoring system is
assumed to have more detection power than the lightweight
monitoring system, e.g., can resolve attack sources or has
higher detection rate. We show that the dynamic game pro-
duces energy-efficient monitoring strategies for the defender,
while improving the overall hybrid detection power.

The rest of the paper is organized as follows. Section 2
introduces the static Bayesian game model, and Bayesian
Nash equilibrium solutions are investigated. Section 3 de-
scribes the dynamic Bayesian game model, and perfect Bayesian
equilibrium solutions are studied. Section 4 considers mul-
tiplayer scenarios for both game models. Section 5 presents
numerical examples for the proposed games. Section 6 dis-
cusses related work. Finally, Section 7 concludes the paper.

2. STATIC BAYESIAN GAME

2.1 Game Model
Consider a flat ad hoc network with a fixed number of

N nodes in the network. It is assumed that any defending
node is equipped with an IDS. Depending on the capability
of the IDS, the defending node can detect an attacking node
in the neighborhood or any node in the network.

We consider a two-player static Bayesian game. One player
is a potential attacking node, denoted by i. The other player
is a defending node, denoted by j. Player i has private in-
formation about his type, which is either regular, denoted
by θi = 0, or malicious, denoted by θi = 1. In other words,
the maliciousness of player i is unknown to defender j. De-
fender j is of regular type denoted by θj = 0. The type of
defender j is common knowledge to the two players.

The malicious type of player i has two pure strategies:
Attack and Not attack. The regular type of player i has one
pure strategy: Not attack. Defender j has two pure strate-
gies: Monitor and Not monitor. The two players choose
their strategies simultaneously at the beginning of the game,
assuming common knowledge about the game (costs and be-
liefs).

Assume defender j’s security value is worth of w, where
w > 0. In practice, w could be the (monetary) value of
protected assets. In other words, −w represents a loss of se-
curity whose value is equivalent to a degree of damage such
as loss of reputation, loss of data integrity, cost of damage
control, etc. Therefore w is subject to different security poli-
cies. We also assume that there is an equal gain/loss w for
both the defender and the attacker. This is reasonable when
dealing with malicious nodes (as opposed to selfish nodes).

Table 1 illustrates the payoff matrix of the game in strate-
gic form. In the matrix, α represents the detection rate (i.e.
true positive rate) of the IDS, β represents the false alarm
rate (i.e. false positive rate) of the IDS, and α, β ∈ [0, 1].
w is defender j’s security value. Costs of attacking and
monitoring are denoted by ca and cm respectively, where
ca, cm > 0. It is reasonable to assume that w > ca, cm,

since otherwise the attacker does not have incentive to at-
tack and the defender does not have incentive to monitor.
In a resource-constrained network, cost of monitoring (cm)
can be defined as a function of energy consumption with re-
spect to the monitoring activities; cost of attacking (ca) can
be defined as a function of energy consumption with respect
to the attack activities.

Table 1: Strategic form of static Bayesian game

Monitor Not monitor

Attack (1− 2α)w − ca, (2α− 1)w − cm w − ca, −w

Not attack 0, −βw − cm 0, 0

(a) Player i is malicious

Monitor Not monitor

Not attack 0, −βw − cm 0, 0

(b) Player i is regular

In Table 2(a), for the strategy combination (Attack, Not
monitor), defender j’s payoff is −w, and the malicious type
of player i’s payoff is his gain of success minus the attack-
ing cost, i.e. w − ca. For the strategy combination (Attack,
Monitor), defender j’s payoff is the expected gain of detect-
ing the attack minus the monitoring cost cm. The expected
gain of detecting the attack depends on the value of α, which
is αw − (1− α)w = (2α− 1)w. Note that 1− α is the false
negative rate. In contrast, the malicious type of player i’s
gain is the loss of defender j, which is (1− 2α)w. Thus the
payoff of player i is his gain minus the attacking cost. For
the other two strategy combinations, when player i plays
Not attack, his payoff is always 0. In both cases, defender
j’s payoff is 0 if he decides not to monitor, and he has a
monitoring cost cm and an expected loss −βw due to false
alarms if he monitors.

In Table 2(b), the payoff of the regular type of player i is
always 0. The payoff of defender j is 0 if he decides not to
monitor, and has a monitoring cost cm and an expected loss
due to the false alarm, −βw, if he monitors.

2.2 Bayesian Nash Equilibrium (BNE)
Analysis

Suppose defender j assigns a prior probability µ0 to player
i being malicious. Figure 1 illustrates the extensive form of
the static Bayesian game. In the figure, node N represents
a “nature” node, who determines the type of player i.

The objective of both players is to maximize their ex-
pected payoffs. This implies that we assume that both play-
ers are rational. This assumption is a generic assumption for
a well-defined game, and it fits in perfectly with the attacker-
defender scenario in the sense that the attacker would like to
play a Bayesian strategy to minimize his chances of being de-
tected, and the defender would also want to play a Bayesian
strategy in order to maximize his chance of detecting attacks
without overspending his energy on monitoring. Adopting
a non-Bayesian strategy is expected to reduce the players’



Figure 1: Extensive form of static Bayesian game

payoffs.
In the following, we analyze BNE based on the assumption

that µ0 is a common prior, i.e. player i knows defender j’s
belief of µ0.

• If player i plays his pure strategy pair (Attack if mali-
cious, Not attack if regular), then the expected payoff
of defender j playing his pure strategy Monitor is

Euj(Monitor) = µ0((2α−1)w−cm)−(1−µ0)(βw+cm),

and his expected payoff of playing his pure strategy
Not monitor is

Euj(Not monitor) = −µ0w.

So if Euj(Monitor) > Euj(Not monitor), or if µ0 >
(1+β)w+cm

(2α+β−1)w
, then the best response of player j is to

play Monitor. However, if defender j plays Monitor,
Attack will not be the best response for the malicious
type of player i, and he will move on to play Not at-
tack instead. Hence, ((Attack if malicious, Not attack
if regular), Monitor, µ0) is not a BNE. However, if

µ0 < (1+β)w+cm

(2α+β−1)w
, the best response for defender j is

Not monitor and thus ((Attack if malicious, Not at-
tack if regular), Not monitor, µ0) is a pure-strategy
BNE.

• If the malicious type of player i plays his pure strategy
Not attack, defender j’s dominant strategy is to play
Not monitor, regardless of µ0. However, if defender j
plays Not monitor, the best response for the malicious
type of player i is to play Attack, which reduces to the
previous case. So strategy ((Not attack if malicious,
Not attack if regular), Not monitor) is not a BNE.

• We previously showed that no pure-strategy BNE ex-

ists for the game when µ0 > (1+β)w+cm

(2α+β−1)w
. A mixed-

strategy BNE is derived as follows. Let p be the prob-
ability with which player i plays Attack, and q be the
probability with which defender j plays Monitor. The
expected payoff of defender j playing Monitor is

Euj(Monitor) =pµ0((2α− 1)w − cm)

− (1− p)µ0(βw + cm)

− (1− µ0)(βw + cm),

and the expected payoff of defender j playing Not mon-
itor is

Euj(Not monitor) = −pµ0w.

By imposing Euj(Monitor) = Euj(Not monitor), we
get that the malicious type of player i’s equilibrium
strategy is to play Attack with probability p∗ = βw+cm

(2α+β)wµ0
.

Similarly, By imposing Eui(Attack) = Eui(Not attack),
we get that defender j’s equilibrium strategy is to play
Monitor with probability q∗ = w−ca

2αw
. Thus, strategy

pair ((p∗ if malicious, Not attack if regular), q∗, µ0) is
a mixed-strategy BNE.

In summary, the static Bayesian game has no pure-strategy

BNE if µ0 > (1+β)w+cm

(2α+β−1)w
, but has a mixed-strategy BNE ((p∗

if malicious, Not attack if regular), q∗, µ0). That is, if de-
fender j’s belief about the maliciousness of player i is high

enough (µ0 > (1+β)w+cm

(2α+β−1)w
), a mixed-strategy BNE exists for

which defender j plays Monitor with probability q∗, and
player i plays Attack with probability p∗ if malicious and
plays Not attack if regular. We also see that if defender
j’s belief about the maliciousness of player i is very low

(µ0 < (1+β)w+cm

(2α+β−1)w
), a pure-strategy BNE ((Attack if mali-

cious, Not attack if regular), Not monitor, µ0) exists. That
is, a pure-strategy BNE exists for which defender j plays
his pure strategy Not monitor, and player i plays his pure
strategy Attack if malicious and Not attack if regular.

Note that the static Bayesian game model is general enough
to model most types of attacks in ad hoc networks pro-
vided that the IDS is designed to handle these types of
attacks. Examples of these kind of attacks supported by
the Bayesian model include denial-of-service (DoS) attacks
at different network layers (e.g., network layer and trans-
port layer), routing disruption attacks at the network layer,
etc. The only exception, is that the Bayesian framework
cannot model defense for colluding attacks, due to the game
assumption that every node’s action is independent of other
nodes’ actions.

The advantage of using a static Bayesian game model
is that instead of applying an always-on IDS monitoring
strategy, the defender can implement an efficient monitor-
ing strategy according to his BNE solution that maximizes
his expected payoff. One possible drawback in practice is
that it may be hard to determine a reasonable prior proba-
bility µ0. In practical applications, the defender can assign
µ0 based on his knowledge of the network environment: if it
is a hostile environment, a high value of µ0 can be assigned.

3. DYNAMIC BAYESIAN GAME
The aforesaid static Bayesian game is a one-stage game,

for which the defender maximizes his payoff based on a fixed
prior belief about the maliciousness of his opponent. Due
to the difficulty of assigning accurate prior probabilities for
player i’s types, we extend the static Bayesian game to a
multi-stage dynamic Bayesian game, where the defender up-
dates his beliefs according to the game evolution.

We assume that the static Bayesian game is repeatedly
played in each time period tk, where k = 0, 1, .... An in-
terval of T seconds may be selected for each stage game.
We consider that the game has an infinite horizon because
in general any node will not have the information about
when his neighboring node leaves the network. The payoffs
of the players in each stage game are the same as in the
preceding static game, and we assume that there is no dis-
count factor with respect to the payoffs of the players. That
is to say that the payoffs remain the same in every stage



game. Furthermore, we assume that the players’ identities
remain consistent throughout the game. This implies that
the proposed dynamic game model relies on authentication
mechanisms to counteract spoofing, impersonation, and the
Sybil [6] attacks. An example of authentication protocol for
ad hoc networks is TIK, proposed by Hu et al. in [7].

Continuing with the notations presented in the preced-
ing static game, a potential attacker is denoted by i, and a
defender is denoted by j. Player i’s type θi is private in-
formation. Defender j’s type is regular (θj = 0), and it is
common knowledge. The players choose actions simultane-
ously at the beginning of each stage game. The extensive
form of each stage game can be represented in a similar
manner as for the static Bayesian game (see Figure 1).

We suppose in the beginning of each stage game tk, the
malicious type of player i chooses an action ai(tk) in Ai =
{Attack, Not attack}, or the regular type of player i chooses
his only action Not attack ; defender j chooses an action
aj(tk) in Aj = {Monitor, Not monitor}. Similar to the
static game, we can define mixed strategies for the con-
stituent static games. For dynamic game, these mixed strate-
gies depend on the history of the game and are denoted as
behavior strategies. A behavior strategy specifies a probabil-
ity distribution over actions at each information set. Specif-
ically, a behavior strategy for player i, denoted by σi, is
defined as σi(ai(tk)|θi,h

j
i (tk)), where hj

i (tk) represents the
action history profile of player i with respect to his opponent
j at the beginning of stage game tk. We define a behavior
strategy for defender j as σj(aj(tk)|θj ,h

i
j(tk)), where hi

j(tk)
represents the action history profile of defender j with re-
spect to his opponent i at the beginning of stage game tk.
We define the action history profile of player i with respect
to defender j at stage game tk, hj

i (tk), as a binary vector
that contains actions of player i at each stage game t0, ...,
tk−1, which is

hj
i (tk) = (aj

i (t0), ..., a
j
i (tk−1)), (1)

where aj
i (tk) indicates player i’s action with respect to de-

fender j at stage game tk.
In what follows, to simplify the exposition, we will use an

abuse of notation and denote

σi(ai(tk) = Attack|θi,h
j
i (tk)) = p,

σi(ai(tk) = Not attack|θi,h
j
i (tk)) = 1− p,

σj(aj(tk) = Monitor|θj ,h
i
j(tk)) = q, and

σj(aj(tk) = Not monitor|θj ,h
i
j(tk)) = 1− q,

with the understanding that the mixed strategies p and q
for a stage game, will depend on the current information set
of the game (the history of the game).

In a stage game tk, defender j’s optimal behavior strategy,
depends on his beliefs about the types of player i at the
beginning of tk. In the first stage game t0, defender j’s
belief of player i being malicious is characterized by a prior
probability µ0. In the subsequent stages of the dynamic
game, defender j can update his beliefs at the end of each
stage game based on his observed action of player i and the
action history profile of the game.

3.1 Bayesian Updating Rule for Beliefs
We construct a belief updating system for defender j, so

that the beliefs of defender j can be updated from stage

game tk to tk+1 using Bayes’ rule. Specifically, defender
j updates his beliefs about the types of his opponent i at
the end of each stage game by calculating his posterior be-
liefs, defined as µj(θi|ai(tk),hj

i (tk)), where ai(tk) represents

player i’s action at stage game tk, and hj
i (tk) represents the

action history profile of player i with respect to defender j.
From Bayes’ rule, the posterior beliefs of player j can be
computed as follows:

µj(θi|ai(tk),hj
i (tk))

=
µj(θi|hj

i (tk))P (ai(tk)|θi,h
j
i (tk))∑

θ̃i
µj(θ̃i|hj

i (tk))P (ai(tk)|θ̃i,h
j
i (tk))

,
(2)

where µj(θ̃i|hj
i (tk)) > 0, hj

i (tk) > 0, and P (ai(tk)|θi, h
j
i (tk))

is the probability that action ai is observed at this stage of
the game, given the type of the opponent and the history of
the game.

From Equation (2), we see that, in order to update the
belief, at stage game tk, defender j first needs to “observe”
i’s action ai(tk).

From defender j’s point of view, the action (Attack or Not
attack) of player i at each stage game can be observed (de-
tected) by an always-on monitoring system. As described
in the preceding static game model, always-on monitoring is
not an energy-efficient strategy, instead the defender can use
the static game model to derive a better solution. However,
although each stage game is considered as a static Bayesian
game, this solution will not fit in the stage games of the dy-
namic model, because belief updating requires the defender
to constantly observe the actions of his opponent at each
stage game.

To save the energy spent on the IDS, we propose a Bayesian
hybrid detection approach that comprises of two monitoring
systems: lightweight monitoring system and heavyweight
monitoring system. The assumption is that the latter is
a more sophisticated IDS which provides more detection
power, but consumes more energy. The objective of the
hybrid detection approach is to derive efficient monitoring
strategies for the two monitoring systems based on a dy-
namic Bayesian game formulation.

3.2 Bayesian Hybrid Detection

Detection Output


Heavyweight IDS


Belief Updating


System


Lightweight IDS

Heavy


Monitoring?


No
 Yes


History


Profile


Audit Data Input
 Audit Data Input


Figure 2: The Bayesian hybrid detection framework.

Figure 2 illustrates the framework of the proposed Bayesian
hybrid detection approach. As shown, the decision on set-
ting on or off the heavyweight IDS depends on the output
of the belief updating system, which in turn utilizes the in-
formation from the lightweight monitoring system and the
game history profile as the inputs. In other words, the de-
fender decides whether to activate the heavyweight monitor-
ing system in next stage game based on his updated beliefs



of the types of player i at the end of current stage game. The
output of the heavyweight IDS can update (or reset) the de-
fender’s belief. Note that once the heavyweight IDS is on,
the lightweight monitoring is off, so that only one system is
active at a time.

To realize the proposed Bayesian hybrid detection ap-
proach in practice, we suggest one heavyweight system as
the last-resort IDS. We then suggest two lightweight mon-
itoring systems, with one emphasizing on detecting mali-
ciousness of the entire neighborhood (i.e., player i, the de-
fender’s opponent, is the entire neighborhood instead of a
single node), and the other emphasizing on evaluating neigh-
boring nodes individually (i.e., pairwise attacking/defending
node interactions are monitored).

1) One heavyweight monitoring system
For the heavyweight monitoring system, we consider an

anomaly based IDS which we previously proposed in [8].
This system employs an association-rule mining technique
to find association patterns from a set of packet-level trans-
action events, which consist of features collected according
to Table 2. The IDS builds a normal profile by extract-
ing association rules from training data. Association rules
extracted from test data are then compared against the nor-
mal profile. Any deviance from the norm is considered as an
anomaly rule, which may trigger an intrusion alert accord-
ingly.

Table 2: Cross-layer feature set
Dimension Value Space

Flow direction (Dir) SEND, RECV, DROP

Send address (SA) sai, ∀i ∈ node set S

Destination address (DA) daj , ∀j ∈ node set S

MACFrameType RTS, CTS, DATA, ACK

RtPktType* RtDataPkt, RtCtrlPkt

*This feature dimension applies to MAC DATA frame only.

The advantage of this IDS is the ability to identify attack
source(s) within one-hop perimeter due to the use of MAC
addresses as features for intrusion detection. However, the
size of audit data collected from the MAC layer traffic is
usually large even for a short time interval. Thus, the normal
profile usually contains a large set of rules, even if some
aggregation and pruning steps are taken.

2) Two lightweight monitoring systems
Cross-feature analysis system

The cross-feature analysis system is an anomaly detec-
tion system that employs the cross-feature mining technique
proposed by Huang et al. [9]. This technique explores inter-
correlations among features in a feature vector. The details
of this system are presented in [10]. Briefly, the cross-feature
mining technique is applied to data collected on statistical
features, as specified in Table 3. The feature set is defined
on the MAC layer data (assume 802.11 MAC), so that the
monitoring range of the system is within the neighborhood.
A feature vector f = {f1, f2, ..., fk} is a set of quantized
feature values collected according to Table 3.

Given a feature vector f = {f1, f2, ..., fk} in a data set,
the inter-correlation value of fi, denoted by ri, with respect
to f is defined as the conditional probability of fi. That
is, ri = pi(fi|f1, f2, ..., fi−1, fi+1, ..., fk). An overall inter-

correlation value of f, denoted by R, is defined as R =
∑

i ri

k
.

If R > θ, where θ is a decision threshold, f is classified
as a normal feature vector. A normal profile consists of
a set of normal feature vectors constructed from training
data. For test data, each constructed feature vector is tested
against the normal profile, and any deviance may trigger an
intrusion alert.

Table 3: Statistical feature set
Feature Value Space Unit

Time ignored in classification second

Network allocator value continuous second

Transmit traffic rate continuous byte

Receive traffic rate continuous byte

Retransmit RTS discrete count

Retransmit DATA discrete count

Neighbor node count discrete count

Forwarding node count discrete count

The advantage of this IDS is that the audit data size is
dramatically smaller than the one used in the association-
rule anomaly detection system. Thus, less time would be
spent on both training and testing. Nevertheless, the inclu-
sion of the latter can help to identify the attack source(s).

Note that the cross-feature analysis system is unable to
provide attack source information, thus, in the game model,
player i represents the entire neighborhood of defender j.

To use the cross-feature analysis system in the dynamic
Bayesian game, we consider each sampling interval of the
cross-feature analysis system, e.g. 5 seconds, as the time
period of a stage game. The action of Attack is determined
when the feature vector is classified as an abnormal feature
vector, and in contrast, the action of Not attack is deter-
mined when the feature vector is classified as a normal fea-
ture vector. Following the determination of player i’s action,
defender j updates his beliefs about the types of player i. In
the next stage game, whether the association-rule analysis
(heavyweight monitoring) is activated or not, depends on
defender j’s posterior belief about player i being malicious,
and on the costs associated with each action, according to
the game formulation.
Coarse-grained node-to-node analysis system

If interested in evaluating neighboring nodes individually,
pairwise attacking/defending node interactions need to be
monitored. Because association-rule analysis is not suitable
for always-on monitoring due to the massive packet-level
transactions in MAC layer and network layer, we propose
the following lightweight monitoring system to substitute
the cross-feature analysis so that the beliefs of defender i
can be updated consistently on consecutive stage games.

Let Γj denote the set of neighboring nodes of defender j,
where Γj ∈ N . We consider that a potential attacker i is a
neighbor of j, so i ∈ Γj . We assume i and j have symmetric
links, thus j ∈ Γi. We denote Ri

j(tk) as the number of
packets received at node j from node i. The normalized
reception ratio (NRR) of node j from node i for stage game
tk, denoted by ψi

j(tk), is given by

ψi
j(tk) =

Ri
j(tk)

∑
u 6=v R

v∈Γj

u∈Γj
(tk) + R

v∈Γj

j (tk)
. (3)

So, NRR of node j reflects the level of inbound traffic



rate at node j from node i with respect to the overall traffic
rate of the neighborhood of node j. The Attack action of
player i is determined by applying threshold value τ , where
τ is considered as a caution level of node j with respect to
player i. That is,

ai(tk) = Attack, if ψi
j(tk) > τ. (4)

From Equations (3) and (4), we see that the complexity of
the coarse-grained node-to-node (attacker-to-defender) anal-
ysis system is much less than that of the association-rule
analysis system which we use it as the heavyweight IDS. In
addition, from Table 2, we see that the association-rule anal-
ysis includes multiple features (5 feature dimensions and at
least 24 features without considering the number of active
nodes in the network) for anomaly detection. On the other
hand, the coarse-grained node-to-node analysis system only
uses one NRR feature. Furthermore, in the association-rule
analysis, a normal file usually consists of tens to hundreds
association rules. This means that each rule extracted from
test data needs to be compared against all the rules in the
normal profile. In contrast, the coarse-grained node-to-node
analysis system requires only one one comparison at each
stage game to determine the action of player i.

The choice of τ influences the performance of coarse-grained
node-to-node analysis. Although τ may be determined ex-
perimentally by learning the normal traffic pattern in the
network, its accuracy is limited by the bursty nature of data
traffic. Nonetheless, in our previous work [8], we have shown
that using this simple traffic analysis as a preprocessing step
for the association-rule analysis leads to a lower false posi-
tive rate for the overall system. The drawback of the coarse-
grained node-to-node analysis system is that it can only de-
tect inbound traffic attacks such as sleep deprivation, flood-
ing, and some DoS attacks, and it misses outbound traffic
attacks such as blackhole and packet dropping attacks.

3.3 Belief Updating in the Presence of
Observation Errors

Since the lightweight monitoring system may inevitably
produce false positives and false negatives, the “observed”
actions may not always accurately reflect the reality. We in-
corporate the effect of false alarm and misdetection errors for
the lightweight IDS, in updating the beliefs by appropriately
determining the conditional probabilities P (ai(tk)|θi,h

j
i (tk)).

More specifically, denoting with αp and βp the detection rate
and false positive rate of the lightweight monitoring system,
respectively, the above conditional probabilities can be up-
dated as follows:

P (ai(tk) = Attack|θi = 1,hj
i (tk))

= αp × p + βp × (1− p),
(5)

and

P (ai(tk) = Not attack|θi = 1,hj
i (tk))

= (1− αp)× p + (1− βp)× (1− p),
(6)

and

P (ai(tk) = Attack|θi = 0,hj
i (tk)) = βp, (7)

and

P (ai(tk) = Not attack|θi = 0,hj
i (tk)) = 1− βp. (8)

Note that 1 − αp represent the false negative rate, and
1− βp represent the true negative rate.

We used the notations αp and βp in Equations (5)-(8) to
differentiate from the detection rate α and the false positive
rate β defined in the payoff functions of defender j, which
refer to the heavyweight monitoring system.

Provided that defender j can determine player i’s action
and behavior strategy in each stage game according to the
preceding subsections 3.2 and 3.3, defender j can then up-
date his beliefs about the types of player i using Equation
(2). Figure 3 demonstrates the convergence of defender j’s
posterior beliefs under various αp, βp, and w

ca
. Figures 3(a)

and (b) assume the parameters in the payoff functions of the
defender are: α = 0.9, β = 0.01, w

cm
= 1000 and w

ca
= 1000,

and Figure 3(c) assumes α = 0.9, β = 0.01, αp = 0.8,
βp = 0.01. For all three scenarios, defender’s prior proba-
bility µ0 = 1

2
.

From Figure 3(a), we see that the higher αp is, the faster
posterior belief converges to 1. By contrast, Figure 3(b)
shows that the lower βp is, the faster posterior belief con-
verges to 1. In other words, the convergence speed of de-
fender j’s posterior belief increases with the detection ac-
curacy of the lightweight monitoring system. From Figure
3(c), we see that the higher the ratio of security value w to
the attacking cost ca is, the faster the convergence speed of
defender j’s posterior beliefs will be. The ratio of w versus
monitoring cost cm influences the convergence speed in a
similar manner.

3.4 Perfect Bayesian Equilibrium (PBE)
Analysis

A Dynamic Bayesian game is a multi-stage game with
observed actions and incomplete information. In a sequen-
tial game, the players best responses are often guided by
the threats about certain reactions for other players. For a
sequential game with incomplete information, such threats
are dependent on the current beliefs, which may change as
the game evolves. The concept of PBE defines the proper
interaction between users’ beliefs about types, given a se-
lection of actions, and the actual strategies. PBE requires
that players form a complete system of beliefs about the op-
ponents’ types at each decision node that can be reached,
update this beliefs according to a Bayes’ rule, and the take
best response actions using regular Bayesian Nash equilib-
rium. PBE demands that subsequent play should be optimal
for every stage of the game, i.e., it is related to the concept
of subgame perfection.

In what follows, we show that our proposed multi-stage
attacker/defender game has a PBE. We first show that the
proposed multi-stage attacker/defender game satisfies the
Bayesian conditions B(i)-B(iv) and equilibrium condition P.
The above conditions guarantee that the incomplete-information
game has a PBE [5, p333].

Lemma 1: The described multi-stage attacker/defender
game satisfies the four Bayesian conditions B(i)-B(iv):

B(i) Posterior beliefs are independent, and all types of
player j have the same beliefs, and even unexpected events
will not change the independence assumption for the type
of the opponents.

B(ii) Bayes’ rule is used to update beliefs from µj(θi|hj
i (tk))

to µj(θi|hj
i (tk+1)) whenever possible.

B(iii) The players do not signal what they do not know.
B(iv) All players must have the same belief about the type
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Figure 3: Convergence of defender’s posterior be-
liefs given the observations of a sequence of consec-
utive Attack actions (a) under various αp, (b) under
various βp, (c) under various ratios of w/ca.

of another player.
The proof of Lemma 1 is rather trivial because this is a

two-player game. Briefly, B(i) is trivially satisfied because
defender j has only one type. From the proposed belief
updating system, we see that the game satisfied B(ii). Con-
dition B(iii) means µj(θi = 1|(ai(tk),hj

i (tk))) = µj(θi =

1|(âi(tk),hj
i (tk))), if ai(tk) = âi(tk)). In our attack/defender

game context, attacker’s signal is part of attack actions, thus
B(iii) is satisfied. For condition B(iv), because at any stage
game only two players are in the game, and there are no
other players influencing the belief updates of the two play-
ers.

In essence, Lemma 1 states that each player’s belief updat-
ing is consistent in every stage game. Based on the assump-
tion of rationality of players, at each stage game, defender
j’s optimal strategy is to maximize his payoff according to
his new beliefs.

Definition 1: In the described multi-stage attacker/defender
game, defender j’s optimal behavior strategy σ∗j with respect

to his beliefs about player i’s type µj(θi|ai(tk),hj
i (tk)) at

stage game tk satisfies the following relation:

uj((σi, σ
∗
j )|θj ,h

j
i (tk), µj(·)) ≥ uj((σi, σ

′
j)|θj ,h

j
i (tk), µj(·)),

(9)
where σ′j is an alternative behavior strategy of defender j,

and hj
i (tk) is the action history profile of player i with re-

spect to defender j, µj(·) is the abbreviation of
µj(θi|ai(tk),hj

i (tk)), and uj(·) is the expected payoff of de-
fender j under strategy profile (σi, σ

∗
j ) at stage game tk.

Analogously, we define potential attacker i’s optimal strat-
egy as follows.

Definition 2: In the described multi-stage attacker/defender
game, the optimal behavior strategy of a potential attacker i,
denoted by σ∗i , with respect to his beliefs µi(θj |aj(tk),hi

j(tk))
at stage game tk satisfies the following condition:

ui((σ
∗
i , σj)|θi,h

i
j(tk), µi(·)) ≥ ui((σ

′
i, σj)|θi,h

i
j(tk), µi(·)),

(10)
where σ′i is an alternative behavior strategy of i, and hi

j(tk)
is the action history profile of j with respect to i, µi(·) is
the abbreviation of µi(θj |aj(tk),hi

j(tk)), and ui(·) is player
i’s expected payoff under strategy profile (σ∗i , σj) at stage
game tk. Since j has only one type, Equation (10) reduces
to

ui((σ
∗
i , σj)|θi,h

i
j(tk)) ≥ ui((σ

′
i, σj)|θi,h

i
j(tk)). (11)

Lemma 2: The described multi-stage attacker/defender
game satisfies the equilibrium condition P for multi-stage
games of incomplete-information:

(P) For each player x, type θx, player x’s alternative strat-
egy σ′x, and history h(tk), the expected payoff achieved by
employing strategy σx, denoted by ux, satisfies the following
condition:

ux(σ|h(tk), θx, µ(·|h(tk)))

≥ ux((σ′x, σ−x)|h(tk), θx, µ(·|h(tk))).
(12)

In essence, condition P states that each player’s behavior
strategy is sequential rational in each stage game. By Defi-
nitions 1 and 2, given defender j’s belief µj , the multi-stage



attacker/defender game has a strategy pair σ = (σ∗i , σ∗j )
that satisfies the above inequality formula, hence condition
P is satisfied.

Theorem 1: The described multi-stage attacker/defender
game has a perfect Bayesian equilibrium.

Proof: Since the described multi-stage attacker/defender
game satisfies the four Bayesian conditions B(i)-B(iv) (Lemma
1) and the equilibrium condition P (Lemma 2), the game has
a strategy profile (σ, µ), where σ = (σ∗i , σ∗j ) is a strategy pair

for the two players, and µ = (µi(θj |hi
j(tk)), µj(θi|hj

i (tk))) is
the vector of beliefs for the two players. Note that µi is
not needed since θj ’s type is common knowledge. By the
definition of PBE [5, p333], (σ, µ) is a PBE.

In the subsequent paragraphs, we determine the PBE
for each stage game. We analyze the dynamic game as a
Bayesian signaling game, in which the actions of potential
attacker i signal his type to defender j. Due to the fact that
defender j relies on an always-on monitoring system (cross-
feature analysis system or lightweight monitoring system)
to determine the actions of his opponent i, which is not er-
ror free, the equilibrium we seek is always a semi-separating
equilibrium. Note that the other two possible equilibria for
signaling games, separating and pooling equilibria, do not
apply for our scenario [5]. The separating case occurs if the
type of the potential attacker i can be perfectly determined
after signaling, while in the pooling case, the two types of i
cannot be distinguished based on their behavior.

The semi-separating equilibrium, is given by the strate-
gies that maximize both players’ payoffs, while none of the
players have an incentive to change its strategy. We can see
that only a mixed strategy equilibrium exists for each stage
game.

To determine this mixed strategy equilibrium we rely on
the indifference condition for players’ different strategies.

At stage game tk, if defender j observes that the action
of his opponent i was Attack, then his expected payoff for
playing Monitor is

Euj(aj(tk) = Monitor |ai(tk) = Attack)

= (((2α− 1)w − cm)p + (−βw − cm)(1− p))µj(θi = 1|·)
+ (−βw − cm)µj(θi = 0|·),

(13)
and his expected payoff for playing Not monitor conditional
on his observation is

Euj(aj(tk) = Not Monitor |ai(tk) = Attack)

= −wpµj(θi = 1|·). (14)

So, player i chooses p∗ (the probability with which player i
plays Attack) to keep defender j indifferent between Monitor
and Not monitor. That is, p∗ is derived by setting Equations
(13) and (14) equal. Consequently, we have

p∗ =
βw + cm

(2α + β)wµj(θi = 1|·) . (15)

On the other hand, q∗ (the probability with which de-
fender j plays Monitor) is selected to keep the malicious
type of player i indifferent between his strategies Attack and
Not attack. The indifference condition is given as

(((1− 2α)w − ca)q + (w − ca)(1− q)) = 0, (16)

and thus defender j’s equilibrium strategy is to choose q∗ as

q∗ =
w − ca

2αw
. (17)

The PBE for the game is given as (p∗, q∗, µ(.)), with p∗,
q∗, µ(.)) given by Equations (15), (17), and (2), respectively.

To see why there is no pure strategy equilibrium for this
game, we determine the best response strategy (BR) for both
players to be

BRj = Monitor if p >
βw + cm

(2α + β)wµj(θi = 1|·) , (18)

BRi = Attack if q <
w − ca

2αw
. (19)

If (18) holds ⇒ monitor, q = 1 ⇒ (19) does not hold ⇒
not attack, p = 0 ⇒ (18) does not hold ⇒ not monitor,
q = 0, ... Using the above argument, we see that there
is no pure strategy equilibrium for the analyzed dynamic
Bayesian game.

3.5 Advantage of Dynamic Bayesian game
The advantage of implementing the IDS system as a Bayesian

hybrid IDS is that it allows to save significant energy (poten-
tially spent on continuously monitoring the network), while
minimizing the potential damage inflicted by an undetected
attacker. This comes as a result of an interesting property
of the equilibrium solution: the monitoring probability does
not depend on the current belief of the defender on his op-
ponent’s maliciousness, but rather influences the attacker
behavior. As indicated by Equation (15), a high belief for
the defender on his opponent being malicious results in the
attacker drastically reducing his attacks. This is a result of
the fact that both the attacker and the defender are ratio-
nal players, and the costs and beliefs are common knowledge
for both players. In practice, the attacker may estimate de-
fender’s beliefs according to his observations on defender’s
actions.

As we described in Section 4.2, in the proposed hybrid
detection framework, only one monitoring system is active at
a time between heavyweight IDS and lightweight IDS. Thus,
if we denote as Ej the energy spent by the defender on the
heavyweight IDS and by ej the energy spent on lightweight
monitoring, the savings in energy compared with an always-
on heavyweight IDS system are equal to

Es = Ej − (qEj + (1− q)ej) = (1− q)(Ej − ej). (20)

Note that Es > 0, since Ej > ej . Besides saving energy
consumption cost, the use of hybrid detection framework
can also reduce the probability of false alarm for the overall
equivalent IDS. Our simulation results show that by adding
the very simple coarse-grained node-to-node analysis system
in front of the association-rule analysis system will reduce
the probability of false alarm for the overall equivalent IDS.

4. MULTIPLAYER CONSIDERATION
Both the static and dynamic Bayesian games proposed so

far, are two-player games. As we have already mentioned for
the cross-feature analysis IDS, the two-player game can also
be set up as the defender, against his entire neighborhood.
This relaxes the assumption of pairwise interactions in the
attacker/defender game.



For our proposed hybrid IDS systems, the defender has
also the option to evaluate each of his neighboring nodes
individually using the coarse-grained node-to-node analy-
sis system. In general, a maximum degree of uncertainty
on the neighboring nodes’ types can be reflected by select-
ing equal prior probabilities for the types of each node. As
the game evolves, the defender learns about his neighbors
through their past actions, and updates his beliefs accord-
ingly. At each stage of the game, the defender can then
determine his equilibrium monitoring strategy based on his
highest posteriori belief on maliciousness among his active
neighbors. Here, “active” means the nodes who have inter-
actions with the defender.

5. NUMERICAL EXAMPLES
In this section, we provide examples to illustrate the equi-

librium achieved for the dynamic Bayesian game. We use
the cross-feature analysis to determine actions of a potential
attacker in each stage game.

In our previous work [8, 10], we have simulated a network
of 500 x 500 square meters on the network simulator ns2 [11]
platform, and evaluated the performance of the association-
rule analysis system and the cross-feature analysis system
separately. We have set the total number of mobile nodes
to 30, and the maximum moving speed of a node to 10
m/s. Our simulation results show that the detection rate
and false positive rate of the association-rule analysis sys-
tem against blackhole attack are α = 91.78% and β = 0.25%
respectively, and the detection rate and false positive rate
of the cross-feature analysis system are αp = 83.33% and
βp = 0.29% respectively. Note that α and β are the param-
eters in the payoff functions of the defender, while αp and
βp are used to estimate the potential attacker’s behavior
strategies as given in Equations (5)-(8).

We first consider a military mobile ad hoc network, which
requires high degree of security. For instance, the network
must meet stringent confidentiality requirements and must
be resistant to DoS attacks. In such circumstances, the se-
curity value w is considered very high as compared with the
monitoring cost and the attacking cost, i.e. w >> cm, ca.
For illustration purpose, we choose w

cm
= 1000 and ca = cm

(note that, if choosing ca < cm, then q∗ increases to a higher
level, and if choosing ca > cm, then q∗ decreases to a lower
level).

For this example network, suppose a defending node plays
the previously proposed dynamic Bayesian game against po-
tential attacker(s). The PBE for the game has the mali-
cious type of player i playing Attack with probability p∗ =

0.0019
µj(θi=1|·) , and defender j playing Monitor with probability

q∗ = 54.42% (here Monitor refers to the association-rule
analysis system - heavy monitoring). Assume that defender
j’s prior beliefs for both types of player i are 1

2
, then the

first stage game BNE has player i playing Attack with prob-
ability p∗ = 0.38% . This means that the potential attacker
(i.e. malicious type of player i) has a very low probability to
attack in order to avoid detection. In the subsequent stage
games, if defender j’s posterior belief for maliciousness up-
dates to a higher level, then p∗ is getting even lower for the
malicious type of player i.

The second example network is a personal area ad hoc
network where each node considers the battery life as the
priority requirement. In other words, each defending node
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Figure 4: Posterior beliefs of defender j, µj(θi = 1|·)
(a) Two sequences of observations of blackhole at-
tack, (b) The corresponding posteriori beliefs of de-
fender j, given αp = 83.33%, βp = 0.29%, (c) The
corresponding posteriori beliefs of defender j, given
αp = 83.33%, βp = 10%.



needs to defend against resource consumption attacks such
as sleep deprivation attacks. The security value w of each
node may be now represented by his reserved energy. Sup-
pose that w

cm
= 10, i.e., if running the heavyweight monitor-

ing system as always-on, the battery energy is cut to 1
10

, and
assume that ca = cm. According to Equations (15) and (17),
the PBE of the game has p∗ = 0.0558

µj(θi=1|·) and q∗ = 49.03%.

Providing that the defender has equal prior beliefs ( 1
2
) on

both types of player i, then p∗ = 11.15%.
We see that the probability of player i playing Attack is

29.35 times higher than one in the previous example, while
the probability of defender j playing Monitor is lower than
the one in the previous example. This means that if the
attacker knows that the dynamic game is taken place, then
the high security value of the defender will pull back the
attacker’s probability of attacking, otherwise, the attacker
will receive lower payoff which is caused by a successful de-
tection by the defender. On the other hand, because of the
defender’s high security value, his chances of activate the
heavyweight monitoring system also increase. Statistically,
the energy saved for using the proposed hybrid detection ap-
proach is that instead of turning on the heavyweight mon-
itoring system 100% of the time, the defender only uses it
54.42% of the time, and 49.03% of the time, respectively.

Figure 4 illustrates two sequences of observations of our
simulated blackhole attack, and the corresponding posterior
beliefs of defender j. At each stage game, the observation of
actions is determined by the cross-feature analysis system.
Figure 4(a) illustrates the two observation sequences. Each
sampling data point represents a feature vector, and if its
overall inter-correlation probability is above of the threshold
line θ = 0.2, it is then considered as normal feature vector,
otherwise it is considered to be abnormal. The binary se-
quences in Figure 4(b) and (c) corresponds to the observa-
tion sequences in Figure 4(a), where bit value 1 represent
abnormal or Attack action in the corresponding stage game.
Figure 4(b) shows that the posterior beliefs converges to 1
quickly due to low false positive rate at each stage game.
Once the posterior belief reaches 1, it cannot automatically
reduce to a lower level even if the defender observes Not at-
tack in the subsequent stage games. This means that the
defender has to take defense action, which is to activate
association-rule analysis. The output of the association-rule
analysis can be used to reset defender’s posterior belief. Fig-
ure 4(c) shows a scenario in which the defender has a high
false alarm rate at each stage game. We can see that if the
posterior belief has not yet converged to 1, it is possible to
adjust to a lower level based on the new observed actions.

We note that the equilibrium strategy of player i depends
on his knowledge of the payoff functions and the updated
belief of defender j. So now we seek to determine how
robust the strategy selection p is with possible imperfect
knowledge on the defender’s lightweight monitoring system
performance, which may occur in practical scenarios. Fig-
ures 5 and 6 present the variation of p with regard to αp

and βp, respectively. We have assumed that αp > βp. This
is a reasonable assumption, since otherwise the lightweight
monitoring system is useless. From the two figures, we see
that the choice of p is only slightly affected by the values of
αp and βp, especially for small variation ranges. This im-
plies that the semi-separating equilibrium of the proposed
Bayesian game is fairly robust to some imperfect knowledge

of the attacker on the performance of the lightweight moni-
toring system.
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Figure 5: Player i’s probability of Attack p vs. de-
fender j’s lightweight monitoring detection rate αp.
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Figure 6: Player i’s probability of Attack p vs. de-
fender j’s lightweight monitoring false alarm rate βp.

6. RELATED WORK
A game theoretic framework is suitable for modeling se-

curity issues such as intrusion prevention and intrusion de-
tection. An example of an intrusion prevention game model
is presented in [12], where the authors propose a game theo-
retic approach to infer attacker intent, objectives, and strate-
gies (AIOS). In the context of intrusion detection, several
game-theoretic approaches have been proposed to wired net-
works, WLANs, sensor networks, and ad hoc networks.

Kodialam and Lakshman [13] have proposed a game the-
oretic framework to model the intrusion detection game be-
tween two players: the service provider and the intruder. A
successful intrusion is when a malicious packet reaches the
desired target. In the game, the objective of intruder is to
choose a particular path between the source node and the
target node, and the objective of the service provider is to
determine a set of links on which sampling has to be done in
order to detect the intrusion. Essentially, the game is formu-
lated as a two-person zero-sum game, in which the service
provider tries to maximize his payoff, which is defined by
the probability of detection, and on the other hand, the in-
truder tries to minimize the probability of being detected.



The optimal solution for both players is to play the minmax
strategy of the game. The limitation of this game is the as-
sumption of perfect knowledge, which implies the intruder
has considerable information about the network and is able
to choose the optimal path in order to play the minmax
strategy.

In general, using a zero-sum game to model the problem
of intrusion detection has a limitation, that is, the cost of
intrusion and the cost of detection is assumed to be strictly
competitive commodities. This obviously is not true in most
cases. For example, in [13], the cost of sampling at multiple
links is much higher than the cost of sending a malicious
packet on a particular path.

Alpcan and Basar [14] presented a game theoretic ap-
proach to intrusion detection in distributed virtual sensor
networks, where each agent in the network has imperfect de-
tection capabilities. They model the interaction between the
attacker(s) and the IDS as a noncooperative non-zero-sum
game with two versions: finite and continuous-kernel ver-
sions. In their model, besides the attacker(s) and the IDS,
a third “fictitious” player is added to the game to represent
the output of the sensor network during a specific attack,
which is a fixed probability distribution that is defined as
the ratio of the detection probability (i.e. set an alert) at
the target sensor to the sum of the detection probabilities of
all the sensors in the network. The authors then suggest a
cost function to the continuous-kernel security game, which
is parameterized by this probability distribution. Nonethe-
less, because both the attacker and the IDS try to minimize
their costs according to the cost function, this implies that
both players have knowledge about the probability of detec-
tion of every sensor (with respect to the specific attack) in
the overall network during the course of the game.

A two-player noncooperative, non-zero-sum game has also
been studied by Agah et al. [15] and Alpcan and Basar [16]
to address attack-defense problems in sensor networks. Sim-
ilar to our one-stage attacker/defender game as described in
Section 2.1, in their model, each player’s optimal strategy
depends only on the payoff function of the opponent, and the
game is assumed to have complete information. However, as
we pointed out earlier, this assumption has limitations in a
real network.

Most game-theoretic solutions previously proposed for ad
hoc networks focus on modeling cooperation and selfishness
of the network (e.g. [17, 18, 19, 20, 21]). In these games,
each node choose whether to forward or not forward a packet
based on the concern about his cost (energy consumption),
his benefit (network throughput), and the collaboration of-
fered to the network by the neighbors. Each of these works
try to show that by enforcing cooperation mechanisms, a
selfish node not abiding the rules will have low throughput
in return from the network. For example, in [17], each node
uses the normalized acceptance rate (NAR) to evaluate what
action he will choose (i.e. forward or not forward) when he
receives a packet. NAR is defined as the ratio of the num-
ber of successful relay requests generated by a node, to the
number of relay requests made by the node.

In this work, we use dynamic Bayesian game to model
the interactions between attacker and defender in ad hoc
networks. This allows the two players to choose their op-
timal strategies according to the action history profile and
their beliefs about the types of their opponents, and hence
help to overcome the limitations of one-stage static game.

7. CONCLUSION
In this paper, we have proposed a Bayesian game formula-

tion for IDS implementation in wireless ad hoc networks. In
these games, each player tries to maximize its payoff: the at-
tacker seeks to inflict the most damage in the network with-
out being detected, while the defender tries to maximize his
defending capabilities with a constraint on its energy expen-
diture for heavy traffic monitoring using IDS, and without
complete information on the type of his opponent.

In the proposed static game, the defender always assume
fixed prior probabilities about the types of his opponent
throughout the entire game period. On the other hand, a
more realistic model, the dynamic game, allows the defender
to update his belief about his opponent’s type based on new
observed actions and the game history. We have shown that
the static game leads to a mixed-strategy BNE when the
defender’s belief of player i being malicious is high and to a
pure-strategy BNE when the defender’s belief of player i be-
ing malicious is low. We have also shown that the dynamic
game has a mixed-strategy PBE. We have proposed a novel
Bayesian hybrid detection approach which uses the dynamic
game model to derive equilibrium strategies for both players.
We have shown that the equilibrium strategies can preserve
energy expenditure, and improve the performance of the hy-
brid detection approach. Finally, we have shown that, while
the equilibrium depends on the malicious node’s knowledge
on the defender’s utility for different actions, and depends
on what he thinks about the defender’s updated belief, it
is fairly robust to the malicious node’s imperfect knowledge
on the performance of the defender’s lightweight monitoring
system.
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